1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 #include <linux/audit.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 enum timekeeping_adv_mode { 35 /* Update timekeeper when a tick has passed */ 36 TK_ADV_TICK, 37 38 /* Update timekeeper on a direct frequency change */ 39 TK_ADV_FREQ 40 }; 41 42 /* 43 * The most important data for readout fits into a single 64 byte 44 * cache line. 45 */ 46 static struct { 47 seqcount_t seq; 48 struct timekeeper timekeeper; 49 } tk_core ____cacheline_aligned = { 50 .seq = SEQCNT_ZERO(tk_core.seq), 51 }; 52 53 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 54 static struct timekeeper shadow_timekeeper; 55 56 /** 57 * struct tk_fast - NMI safe timekeeper 58 * @seq: Sequence counter for protecting updates. The lowest bit 59 * is the index for the tk_read_base array 60 * @base: tk_read_base array. Access is indexed by the lowest bit of 61 * @seq. 62 * 63 * See @update_fast_timekeeper() below. 64 */ 65 struct tk_fast { 66 seqcount_t seq; 67 struct tk_read_base base[2]; 68 }; 69 70 /* Suspend-time cycles value for halted fast timekeeper. */ 71 static u64 cycles_at_suspend; 72 73 static u64 dummy_clock_read(struct clocksource *cs) 74 { 75 return cycles_at_suspend; 76 } 77 78 static struct clocksource dummy_clock = { 79 .read = dummy_clock_read, 80 }; 81 82 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 83 .base[0] = { .clock = &dummy_clock, }, 84 .base[1] = { .clock = &dummy_clock, }, 85 }; 86 87 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 88 .base[0] = { .clock = &dummy_clock, }, 89 .base[1] = { .clock = &dummy_clock, }, 90 }; 91 92 /* flag for if timekeeping is suspended */ 93 int __read_mostly timekeeping_suspended; 94 95 static inline void tk_normalize_xtime(struct timekeeper *tk) 96 { 97 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 98 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 99 tk->xtime_sec++; 100 } 101 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 102 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 103 tk->raw_sec++; 104 } 105 } 106 107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 108 { 109 struct timespec64 ts; 110 111 ts.tv_sec = tk->xtime_sec; 112 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 113 return ts; 114 } 115 116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 117 { 118 tk->xtime_sec = ts->tv_sec; 119 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 120 } 121 122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 123 { 124 tk->xtime_sec += ts->tv_sec; 125 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 126 tk_normalize_xtime(tk); 127 } 128 129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 130 { 131 struct timespec64 tmp; 132 133 /* 134 * Verify consistency of: offset_real = -wall_to_monotonic 135 * before modifying anything 136 */ 137 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 138 -tk->wall_to_monotonic.tv_nsec); 139 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 140 tk->wall_to_monotonic = wtm; 141 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 142 tk->offs_real = timespec64_to_ktime(tmp); 143 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 144 } 145 146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 147 { 148 tk->offs_boot = ktime_add(tk->offs_boot, delta); 149 } 150 151 /* 152 * tk_clock_read - atomic clocksource read() helper 153 * 154 * This helper is necessary to use in the read paths because, while the 155 * seqlock ensures we don't return a bad value while structures are updated, 156 * it doesn't protect from potential crashes. There is the possibility that 157 * the tkr's clocksource may change between the read reference, and the 158 * clock reference passed to the read function. This can cause crashes if 159 * the wrong clocksource is passed to the wrong read function. 160 * This isn't necessary to use when holding the timekeeper_lock or doing 161 * a read of the fast-timekeeper tkrs (which is protected by its own locking 162 * and update logic). 163 */ 164 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 165 { 166 struct clocksource *clock = READ_ONCE(tkr->clock); 167 168 return clock->read(clock); 169 } 170 171 #ifdef CONFIG_DEBUG_TIMEKEEPING 172 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 173 174 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 175 { 176 177 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 178 const char *name = tk->tkr_mono.clock->name; 179 180 if (offset > max_cycles) { 181 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 182 offset, name, max_cycles); 183 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 184 } else { 185 if (offset > (max_cycles >> 1)) { 186 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 187 offset, name, max_cycles >> 1); 188 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 189 } 190 } 191 192 if (tk->underflow_seen) { 193 if (jiffies - tk->last_warning > WARNING_FREQ) { 194 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 195 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 196 printk_deferred(" Your kernel is probably still fine.\n"); 197 tk->last_warning = jiffies; 198 } 199 tk->underflow_seen = 0; 200 } 201 202 if (tk->overflow_seen) { 203 if (jiffies - tk->last_warning > WARNING_FREQ) { 204 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 205 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 206 printk_deferred(" Your kernel is probably still fine.\n"); 207 tk->last_warning = jiffies; 208 } 209 tk->overflow_seen = 0; 210 } 211 } 212 213 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 214 { 215 struct timekeeper *tk = &tk_core.timekeeper; 216 u64 now, last, mask, max, delta; 217 unsigned int seq; 218 219 /* 220 * Since we're called holding a seqlock, the data may shift 221 * under us while we're doing the calculation. This can cause 222 * false positives, since we'd note a problem but throw the 223 * results away. So nest another seqlock here to atomically 224 * grab the points we are checking with. 225 */ 226 do { 227 seq = read_seqcount_begin(&tk_core.seq); 228 now = tk_clock_read(tkr); 229 last = tkr->cycle_last; 230 mask = tkr->mask; 231 max = tkr->clock->max_cycles; 232 } while (read_seqcount_retry(&tk_core.seq, seq)); 233 234 delta = clocksource_delta(now, last, mask); 235 236 /* 237 * Try to catch underflows by checking if we are seeing small 238 * mask-relative negative values. 239 */ 240 if (unlikely((~delta & mask) < (mask >> 3))) { 241 tk->underflow_seen = 1; 242 delta = 0; 243 } 244 245 /* Cap delta value to the max_cycles values to avoid mult overflows */ 246 if (unlikely(delta > max)) { 247 tk->overflow_seen = 1; 248 delta = tkr->clock->max_cycles; 249 } 250 251 return delta; 252 } 253 #else 254 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 255 { 256 } 257 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 258 { 259 u64 cycle_now, delta; 260 261 /* read clocksource */ 262 cycle_now = tk_clock_read(tkr); 263 264 /* calculate the delta since the last update_wall_time */ 265 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 266 267 return delta; 268 } 269 #endif 270 271 /** 272 * tk_setup_internals - Set up internals to use clocksource clock. 273 * 274 * @tk: The target timekeeper to setup. 275 * @clock: Pointer to clocksource. 276 * 277 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 278 * pair and interval request. 279 * 280 * Unless you're the timekeeping code, you should not be using this! 281 */ 282 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 283 { 284 u64 interval; 285 u64 tmp, ntpinterval; 286 struct clocksource *old_clock; 287 288 ++tk->cs_was_changed_seq; 289 old_clock = tk->tkr_mono.clock; 290 tk->tkr_mono.clock = clock; 291 tk->tkr_mono.mask = clock->mask; 292 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 293 294 tk->tkr_raw.clock = clock; 295 tk->tkr_raw.mask = clock->mask; 296 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 297 298 /* Do the ns -> cycle conversion first, using original mult */ 299 tmp = NTP_INTERVAL_LENGTH; 300 tmp <<= clock->shift; 301 ntpinterval = tmp; 302 tmp += clock->mult/2; 303 do_div(tmp, clock->mult); 304 if (tmp == 0) 305 tmp = 1; 306 307 interval = (u64) tmp; 308 tk->cycle_interval = interval; 309 310 /* Go back from cycles -> shifted ns */ 311 tk->xtime_interval = interval * clock->mult; 312 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 313 tk->raw_interval = interval * clock->mult; 314 315 /* if changing clocks, convert xtime_nsec shift units */ 316 if (old_clock) { 317 int shift_change = clock->shift - old_clock->shift; 318 if (shift_change < 0) { 319 tk->tkr_mono.xtime_nsec >>= -shift_change; 320 tk->tkr_raw.xtime_nsec >>= -shift_change; 321 } else { 322 tk->tkr_mono.xtime_nsec <<= shift_change; 323 tk->tkr_raw.xtime_nsec <<= shift_change; 324 } 325 } 326 327 tk->tkr_mono.shift = clock->shift; 328 tk->tkr_raw.shift = clock->shift; 329 330 tk->ntp_error = 0; 331 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 332 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 333 334 /* 335 * The timekeeper keeps its own mult values for the currently 336 * active clocksource. These value will be adjusted via NTP 337 * to counteract clock drifting. 338 */ 339 tk->tkr_mono.mult = clock->mult; 340 tk->tkr_raw.mult = clock->mult; 341 tk->ntp_err_mult = 0; 342 tk->skip_second_overflow = 0; 343 } 344 345 /* Timekeeper helper functions. */ 346 347 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 348 static u32 default_arch_gettimeoffset(void) { return 0; } 349 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 350 #else 351 static inline u32 arch_gettimeoffset(void) { return 0; } 352 #endif 353 354 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 355 { 356 u64 nsec; 357 358 nsec = delta * tkr->mult + tkr->xtime_nsec; 359 nsec >>= tkr->shift; 360 361 /* If arch requires, add in get_arch_timeoffset() */ 362 return nsec + arch_gettimeoffset(); 363 } 364 365 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 366 { 367 u64 delta; 368 369 delta = timekeeping_get_delta(tkr); 370 return timekeeping_delta_to_ns(tkr, delta); 371 } 372 373 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 374 { 375 u64 delta; 376 377 /* calculate the delta since the last update_wall_time */ 378 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 379 return timekeeping_delta_to_ns(tkr, delta); 380 } 381 382 /** 383 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 384 * @tkr: Timekeeping readout base from which we take the update 385 * 386 * We want to use this from any context including NMI and tracing / 387 * instrumenting the timekeeping code itself. 388 * 389 * Employ the latch technique; see @raw_write_seqcount_latch. 390 * 391 * So if a NMI hits the update of base[0] then it will use base[1] 392 * which is still consistent. In the worst case this can result is a 393 * slightly wrong timestamp (a few nanoseconds). See 394 * @ktime_get_mono_fast_ns. 395 */ 396 static void update_fast_timekeeper(const struct tk_read_base *tkr, 397 struct tk_fast *tkf) 398 { 399 struct tk_read_base *base = tkf->base; 400 401 /* Force readers off to base[1] */ 402 raw_write_seqcount_latch(&tkf->seq); 403 404 /* Update base[0] */ 405 memcpy(base, tkr, sizeof(*base)); 406 407 /* Force readers back to base[0] */ 408 raw_write_seqcount_latch(&tkf->seq); 409 410 /* Update base[1] */ 411 memcpy(base + 1, base, sizeof(*base)); 412 } 413 414 /** 415 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 416 * 417 * This timestamp is not guaranteed to be monotonic across an update. 418 * The timestamp is calculated by: 419 * 420 * now = base_mono + clock_delta * slope 421 * 422 * So if the update lowers the slope, readers who are forced to the 423 * not yet updated second array are still using the old steeper slope. 424 * 425 * tmono 426 * ^ 427 * | o n 428 * | o n 429 * | u 430 * | o 431 * |o 432 * |12345678---> reader order 433 * 434 * o = old slope 435 * u = update 436 * n = new slope 437 * 438 * So reader 6 will observe time going backwards versus reader 5. 439 * 440 * While other CPUs are likely to be able observe that, the only way 441 * for a CPU local observation is when an NMI hits in the middle of 442 * the update. Timestamps taken from that NMI context might be ahead 443 * of the following timestamps. Callers need to be aware of that and 444 * deal with it. 445 */ 446 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 447 { 448 struct tk_read_base *tkr; 449 unsigned int seq; 450 u64 now; 451 452 do { 453 seq = raw_read_seqcount_latch(&tkf->seq); 454 tkr = tkf->base + (seq & 0x01); 455 now = ktime_to_ns(tkr->base); 456 457 now += timekeeping_delta_to_ns(tkr, 458 clocksource_delta( 459 tk_clock_read(tkr), 460 tkr->cycle_last, 461 tkr->mask)); 462 } while (read_seqcount_retry(&tkf->seq, seq)); 463 464 return now; 465 } 466 467 u64 ktime_get_mono_fast_ns(void) 468 { 469 return __ktime_get_fast_ns(&tk_fast_mono); 470 } 471 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 472 473 u64 ktime_get_raw_fast_ns(void) 474 { 475 return __ktime_get_fast_ns(&tk_fast_raw); 476 } 477 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 478 479 /** 480 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 481 * 482 * To keep it NMI safe since we're accessing from tracing, we're not using a 483 * separate timekeeper with updates to monotonic clock and boot offset 484 * protected with seqlocks. This has the following minor side effects: 485 * 486 * (1) Its possible that a timestamp be taken after the boot offset is updated 487 * but before the timekeeper is updated. If this happens, the new boot offset 488 * is added to the old timekeeping making the clock appear to update slightly 489 * earlier: 490 * CPU 0 CPU 1 491 * timekeeping_inject_sleeptime64() 492 * __timekeeping_inject_sleeptime(tk, delta); 493 * timestamp(); 494 * timekeeping_update(tk, TK_CLEAR_NTP...); 495 * 496 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 497 * partially updated. Since the tk->offs_boot update is a rare event, this 498 * should be a rare occurrence which postprocessing should be able to handle. 499 */ 500 u64 notrace ktime_get_boot_fast_ns(void) 501 { 502 struct timekeeper *tk = &tk_core.timekeeper; 503 504 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 505 } 506 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 507 508 509 /* 510 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 511 */ 512 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 513 { 514 struct tk_read_base *tkr; 515 unsigned int seq; 516 u64 now; 517 518 do { 519 seq = raw_read_seqcount_latch(&tkf->seq); 520 tkr = tkf->base + (seq & 0x01); 521 now = ktime_to_ns(tkr->base_real); 522 523 now += timekeeping_delta_to_ns(tkr, 524 clocksource_delta( 525 tk_clock_read(tkr), 526 tkr->cycle_last, 527 tkr->mask)); 528 } while (read_seqcount_retry(&tkf->seq, seq)); 529 530 return now; 531 } 532 533 /** 534 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 535 */ 536 u64 ktime_get_real_fast_ns(void) 537 { 538 return __ktime_get_real_fast_ns(&tk_fast_mono); 539 } 540 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 541 542 /** 543 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 544 * @tk: Timekeeper to snapshot. 545 * 546 * It generally is unsafe to access the clocksource after timekeeping has been 547 * suspended, so take a snapshot of the readout base of @tk and use it as the 548 * fast timekeeper's readout base while suspended. It will return the same 549 * number of cycles every time until timekeeping is resumed at which time the 550 * proper readout base for the fast timekeeper will be restored automatically. 551 */ 552 static void halt_fast_timekeeper(const struct timekeeper *tk) 553 { 554 static struct tk_read_base tkr_dummy; 555 const struct tk_read_base *tkr = &tk->tkr_mono; 556 557 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 558 cycles_at_suspend = tk_clock_read(tkr); 559 tkr_dummy.clock = &dummy_clock; 560 tkr_dummy.base_real = tkr->base + tk->offs_real; 561 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 562 563 tkr = &tk->tkr_raw; 564 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 565 tkr_dummy.clock = &dummy_clock; 566 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 567 } 568 569 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 570 571 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 572 { 573 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 574 } 575 576 /** 577 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 578 */ 579 int pvclock_gtod_register_notifier(struct notifier_block *nb) 580 { 581 struct timekeeper *tk = &tk_core.timekeeper; 582 unsigned long flags; 583 int ret; 584 585 raw_spin_lock_irqsave(&timekeeper_lock, flags); 586 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 587 update_pvclock_gtod(tk, true); 588 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 589 590 return ret; 591 } 592 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 593 594 /** 595 * pvclock_gtod_unregister_notifier - unregister a pvclock 596 * timedata update listener 597 */ 598 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 599 { 600 unsigned long flags; 601 int ret; 602 603 raw_spin_lock_irqsave(&timekeeper_lock, flags); 604 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 605 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 606 607 return ret; 608 } 609 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 610 611 /* 612 * tk_update_leap_state - helper to update the next_leap_ktime 613 */ 614 static inline void tk_update_leap_state(struct timekeeper *tk) 615 { 616 tk->next_leap_ktime = ntp_get_next_leap(); 617 if (tk->next_leap_ktime != KTIME_MAX) 618 /* Convert to monotonic time */ 619 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 620 } 621 622 /* 623 * Update the ktime_t based scalar nsec members of the timekeeper 624 */ 625 static inline void tk_update_ktime_data(struct timekeeper *tk) 626 { 627 u64 seconds; 628 u32 nsec; 629 630 /* 631 * The xtime based monotonic readout is: 632 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 633 * The ktime based monotonic readout is: 634 * nsec = base_mono + now(); 635 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 636 */ 637 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 638 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 639 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 640 641 /* 642 * The sum of the nanoseconds portions of xtime and 643 * wall_to_monotonic can be greater/equal one second. Take 644 * this into account before updating tk->ktime_sec. 645 */ 646 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 647 if (nsec >= NSEC_PER_SEC) 648 seconds++; 649 tk->ktime_sec = seconds; 650 651 /* Update the monotonic raw base */ 652 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 653 } 654 655 /* must hold timekeeper_lock */ 656 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 657 { 658 if (action & TK_CLEAR_NTP) { 659 tk->ntp_error = 0; 660 ntp_clear(); 661 } 662 663 tk_update_leap_state(tk); 664 tk_update_ktime_data(tk); 665 666 update_vsyscall(tk); 667 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 668 669 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 670 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 671 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 672 673 if (action & TK_CLOCK_WAS_SET) 674 tk->clock_was_set_seq++; 675 /* 676 * The mirroring of the data to the shadow-timekeeper needs 677 * to happen last here to ensure we don't over-write the 678 * timekeeper structure on the next update with stale data 679 */ 680 if (action & TK_MIRROR) 681 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 682 sizeof(tk_core.timekeeper)); 683 } 684 685 /** 686 * timekeeping_forward_now - update clock to the current time 687 * 688 * Forward the current clock to update its state since the last call to 689 * update_wall_time(). This is useful before significant clock changes, 690 * as it avoids having to deal with this time offset explicitly. 691 */ 692 static void timekeeping_forward_now(struct timekeeper *tk) 693 { 694 u64 cycle_now, delta; 695 696 cycle_now = tk_clock_read(&tk->tkr_mono); 697 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 698 tk->tkr_mono.cycle_last = cycle_now; 699 tk->tkr_raw.cycle_last = cycle_now; 700 701 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 702 703 /* If arch requires, add in get_arch_timeoffset() */ 704 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 705 706 707 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 708 709 /* If arch requires, add in get_arch_timeoffset() */ 710 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 711 712 tk_normalize_xtime(tk); 713 } 714 715 /** 716 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 717 * @ts: pointer to the timespec to be set 718 * 719 * Returns the time of day in a timespec64 (WARN if suspended). 720 */ 721 void ktime_get_real_ts64(struct timespec64 *ts) 722 { 723 struct timekeeper *tk = &tk_core.timekeeper; 724 unsigned int seq; 725 u64 nsecs; 726 727 WARN_ON(timekeeping_suspended); 728 729 do { 730 seq = read_seqcount_begin(&tk_core.seq); 731 732 ts->tv_sec = tk->xtime_sec; 733 nsecs = timekeeping_get_ns(&tk->tkr_mono); 734 735 } while (read_seqcount_retry(&tk_core.seq, seq)); 736 737 ts->tv_nsec = 0; 738 timespec64_add_ns(ts, nsecs); 739 } 740 EXPORT_SYMBOL(ktime_get_real_ts64); 741 742 ktime_t ktime_get(void) 743 { 744 struct timekeeper *tk = &tk_core.timekeeper; 745 unsigned int seq; 746 ktime_t base; 747 u64 nsecs; 748 749 WARN_ON(timekeeping_suspended); 750 751 do { 752 seq = read_seqcount_begin(&tk_core.seq); 753 base = tk->tkr_mono.base; 754 nsecs = timekeeping_get_ns(&tk->tkr_mono); 755 756 } while (read_seqcount_retry(&tk_core.seq, seq)); 757 758 return ktime_add_ns(base, nsecs); 759 } 760 EXPORT_SYMBOL_GPL(ktime_get); 761 762 u32 ktime_get_resolution_ns(void) 763 { 764 struct timekeeper *tk = &tk_core.timekeeper; 765 unsigned int seq; 766 u32 nsecs; 767 768 WARN_ON(timekeeping_suspended); 769 770 do { 771 seq = read_seqcount_begin(&tk_core.seq); 772 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 773 } while (read_seqcount_retry(&tk_core.seq, seq)); 774 775 return nsecs; 776 } 777 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 778 779 static ktime_t *offsets[TK_OFFS_MAX] = { 780 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 781 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 782 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 783 }; 784 785 ktime_t ktime_get_with_offset(enum tk_offsets offs) 786 { 787 struct timekeeper *tk = &tk_core.timekeeper; 788 unsigned int seq; 789 ktime_t base, *offset = offsets[offs]; 790 u64 nsecs; 791 792 WARN_ON(timekeeping_suspended); 793 794 do { 795 seq = read_seqcount_begin(&tk_core.seq); 796 base = ktime_add(tk->tkr_mono.base, *offset); 797 nsecs = timekeeping_get_ns(&tk->tkr_mono); 798 799 } while (read_seqcount_retry(&tk_core.seq, seq)); 800 801 return ktime_add_ns(base, nsecs); 802 803 } 804 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 805 806 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 807 { 808 struct timekeeper *tk = &tk_core.timekeeper; 809 unsigned int seq; 810 ktime_t base, *offset = offsets[offs]; 811 812 WARN_ON(timekeeping_suspended); 813 814 do { 815 seq = read_seqcount_begin(&tk_core.seq); 816 base = ktime_add(tk->tkr_mono.base, *offset); 817 818 } while (read_seqcount_retry(&tk_core.seq, seq)); 819 820 return base; 821 822 } 823 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 824 825 /** 826 * ktime_mono_to_any() - convert mononotic time to any other time 827 * @tmono: time to convert. 828 * @offs: which offset to use 829 */ 830 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 831 { 832 ktime_t *offset = offsets[offs]; 833 unsigned int seq; 834 ktime_t tconv; 835 836 do { 837 seq = read_seqcount_begin(&tk_core.seq); 838 tconv = ktime_add(tmono, *offset); 839 } while (read_seqcount_retry(&tk_core.seq, seq)); 840 841 return tconv; 842 } 843 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 844 845 /** 846 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 847 */ 848 ktime_t ktime_get_raw(void) 849 { 850 struct timekeeper *tk = &tk_core.timekeeper; 851 unsigned int seq; 852 ktime_t base; 853 u64 nsecs; 854 855 do { 856 seq = read_seqcount_begin(&tk_core.seq); 857 base = tk->tkr_raw.base; 858 nsecs = timekeeping_get_ns(&tk->tkr_raw); 859 860 } while (read_seqcount_retry(&tk_core.seq, seq)); 861 862 return ktime_add_ns(base, nsecs); 863 } 864 EXPORT_SYMBOL_GPL(ktime_get_raw); 865 866 /** 867 * ktime_get_ts64 - get the monotonic clock in timespec64 format 868 * @ts: pointer to timespec variable 869 * 870 * The function calculates the monotonic clock from the realtime 871 * clock and the wall_to_monotonic offset and stores the result 872 * in normalized timespec64 format in the variable pointed to by @ts. 873 */ 874 void ktime_get_ts64(struct timespec64 *ts) 875 { 876 struct timekeeper *tk = &tk_core.timekeeper; 877 struct timespec64 tomono; 878 unsigned int seq; 879 u64 nsec; 880 881 WARN_ON(timekeeping_suspended); 882 883 do { 884 seq = read_seqcount_begin(&tk_core.seq); 885 ts->tv_sec = tk->xtime_sec; 886 nsec = timekeeping_get_ns(&tk->tkr_mono); 887 tomono = tk->wall_to_monotonic; 888 889 } while (read_seqcount_retry(&tk_core.seq, seq)); 890 891 ts->tv_sec += tomono.tv_sec; 892 ts->tv_nsec = 0; 893 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 894 } 895 EXPORT_SYMBOL_GPL(ktime_get_ts64); 896 897 /** 898 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 899 * 900 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 901 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 902 * works on both 32 and 64 bit systems. On 32 bit systems the readout 903 * covers ~136 years of uptime which should be enough to prevent 904 * premature wrap arounds. 905 */ 906 time64_t ktime_get_seconds(void) 907 { 908 struct timekeeper *tk = &tk_core.timekeeper; 909 910 WARN_ON(timekeeping_suspended); 911 return tk->ktime_sec; 912 } 913 EXPORT_SYMBOL_GPL(ktime_get_seconds); 914 915 /** 916 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 917 * 918 * Returns the wall clock seconds since 1970. This replaces the 919 * get_seconds() interface which is not y2038 safe on 32bit systems. 920 * 921 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 922 * 32bit systems the access must be protected with the sequence 923 * counter to provide "atomic" access to the 64bit tk->xtime_sec 924 * value. 925 */ 926 time64_t ktime_get_real_seconds(void) 927 { 928 struct timekeeper *tk = &tk_core.timekeeper; 929 time64_t seconds; 930 unsigned int seq; 931 932 if (IS_ENABLED(CONFIG_64BIT)) 933 return tk->xtime_sec; 934 935 do { 936 seq = read_seqcount_begin(&tk_core.seq); 937 seconds = tk->xtime_sec; 938 939 } while (read_seqcount_retry(&tk_core.seq, seq)); 940 941 return seconds; 942 } 943 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 944 945 /** 946 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 947 * but without the sequence counter protect. This internal function 948 * is called just when timekeeping lock is already held. 949 */ 950 time64_t __ktime_get_real_seconds(void) 951 { 952 struct timekeeper *tk = &tk_core.timekeeper; 953 954 return tk->xtime_sec; 955 } 956 957 /** 958 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 959 * @systime_snapshot: pointer to struct receiving the system time snapshot 960 */ 961 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 962 { 963 struct timekeeper *tk = &tk_core.timekeeper; 964 unsigned int seq; 965 ktime_t base_raw; 966 ktime_t base_real; 967 u64 nsec_raw; 968 u64 nsec_real; 969 u64 now; 970 971 WARN_ON_ONCE(timekeeping_suspended); 972 973 do { 974 seq = read_seqcount_begin(&tk_core.seq); 975 now = tk_clock_read(&tk->tkr_mono); 976 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 977 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 978 base_real = ktime_add(tk->tkr_mono.base, 979 tk_core.timekeeper.offs_real); 980 base_raw = tk->tkr_raw.base; 981 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 982 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 983 } while (read_seqcount_retry(&tk_core.seq, seq)); 984 985 systime_snapshot->cycles = now; 986 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 987 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 988 } 989 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 990 991 /* Scale base by mult/div checking for overflow */ 992 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 993 { 994 u64 tmp, rem; 995 996 tmp = div64_u64_rem(*base, div, &rem); 997 998 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 999 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1000 return -EOVERFLOW; 1001 tmp *= mult; 1002 rem *= mult; 1003 1004 do_div(rem, div); 1005 *base = tmp + rem; 1006 return 0; 1007 } 1008 1009 /** 1010 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1011 * @history: Snapshot representing start of history 1012 * @partial_history_cycles: Cycle offset into history (fractional part) 1013 * @total_history_cycles: Total history length in cycles 1014 * @discontinuity: True indicates clock was set on history period 1015 * @ts: Cross timestamp that should be adjusted using 1016 * partial/total ratio 1017 * 1018 * Helper function used by get_device_system_crosststamp() to correct the 1019 * crosstimestamp corresponding to the start of the current interval to the 1020 * system counter value (timestamp point) provided by the driver. The 1021 * total_history_* quantities are the total history starting at the provided 1022 * reference point and ending at the start of the current interval. The cycle 1023 * count between the driver timestamp point and the start of the current 1024 * interval is partial_history_cycles. 1025 */ 1026 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1027 u64 partial_history_cycles, 1028 u64 total_history_cycles, 1029 bool discontinuity, 1030 struct system_device_crosststamp *ts) 1031 { 1032 struct timekeeper *tk = &tk_core.timekeeper; 1033 u64 corr_raw, corr_real; 1034 bool interp_forward; 1035 int ret; 1036 1037 if (total_history_cycles == 0 || partial_history_cycles == 0) 1038 return 0; 1039 1040 /* Interpolate shortest distance from beginning or end of history */ 1041 interp_forward = partial_history_cycles > total_history_cycles / 2; 1042 partial_history_cycles = interp_forward ? 1043 total_history_cycles - partial_history_cycles : 1044 partial_history_cycles; 1045 1046 /* 1047 * Scale the monotonic raw time delta by: 1048 * partial_history_cycles / total_history_cycles 1049 */ 1050 corr_raw = (u64)ktime_to_ns( 1051 ktime_sub(ts->sys_monoraw, history->raw)); 1052 ret = scale64_check_overflow(partial_history_cycles, 1053 total_history_cycles, &corr_raw); 1054 if (ret) 1055 return ret; 1056 1057 /* 1058 * If there is a discontinuity in the history, scale monotonic raw 1059 * correction by: 1060 * mult(real)/mult(raw) yielding the realtime correction 1061 * Otherwise, calculate the realtime correction similar to monotonic 1062 * raw calculation 1063 */ 1064 if (discontinuity) { 1065 corr_real = mul_u64_u32_div 1066 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1067 } else { 1068 corr_real = (u64)ktime_to_ns( 1069 ktime_sub(ts->sys_realtime, history->real)); 1070 ret = scale64_check_overflow(partial_history_cycles, 1071 total_history_cycles, &corr_real); 1072 if (ret) 1073 return ret; 1074 } 1075 1076 /* Fixup monotonic raw and real time time values */ 1077 if (interp_forward) { 1078 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1079 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1080 } else { 1081 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1082 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1083 } 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * cycle_between - true if test occurs chronologically between before and after 1090 */ 1091 static bool cycle_between(u64 before, u64 test, u64 after) 1092 { 1093 if (test > before && test < after) 1094 return true; 1095 if (test < before && before > after) 1096 return true; 1097 return false; 1098 } 1099 1100 /** 1101 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1102 * @get_time_fn: Callback to get simultaneous device time and 1103 * system counter from the device driver 1104 * @ctx: Context passed to get_time_fn() 1105 * @history_begin: Historical reference point used to interpolate system 1106 * time when counter provided by the driver is before the current interval 1107 * @xtstamp: Receives simultaneously captured system and device time 1108 * 1109 * Reads a timestamp from a device and correlates it to system time 1110 */ 1111 int get_device_system_crosststamp(int (*get_time_fn) 1112 (ktime_t *device_time, 1113 struct system_counterval_t *sys_counterval, 1114 void *ctx), 1115 void *ctx, 1116 struct system_time_snapshot *history_begin, 1117 struct system_device_crosststamp *xtstamp) 1118 { 1119 struct system_counterval_t system_counterval; 1120 struct timekeeper *tk = &tk_core.timekeeper; 1121 u64 cycles, now, interval_start; 1122 unsigned int clock_was_set_seq = 0; 1123 ktime_t base_real, base_raw; 1124 u64 nsec_real, nsec_raw; 1125 u8 cs_was_changed_seq; 1126 unsigned int seq; 1127 bool do_interp; 1128 int ret; 1129 1130 do { 1131 seq = read_seqcount_begin(&tk_core.seq); 1132 /* 1133 * Try to synchronously capture device time and a system 1134 * counter value calling back into the device driver 1135 */ 1136 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1137 if (ret) 1138 return ret; 1139 1140 /* 1141 * Verify that the clocksource associated with the captured 1142 * system counter value is the same as the currently installed 1143 * timekeeper clocksource 1144 */ 1145 if (tk->tkr_mono.clock != system_counterval.cs) 1146 return -ENODEV; 1147 cycles = system_counterval.cycles; 1148 1149 /* 1150 * Check whether the system counter value provided by the 1151 * device driver is on the current timekeeping interval. 1152 */ 1153 now = tk_clock_read(&tk->tkr_mono); 1154 interval_start = tk->tkr_mono.cycle_last; 1155 if (!cycle_between(interval_start, cycles, now)) { 1156 clock_was_set_seq = tk->clock_was_set_seq; 1157 cs_was_changed_seq = tk->cs_was_changed_seq; 1158 cycles = interval_start; 1159 do_interp = true; 1160 } else { 1161 do_interp = false; 1162 } 1163 1164 base_real = ktime_add(tk->tkr_mono.base, 1165 tk_core.timekeeper.offs_real); 1166 base_raw = tk->tkr_raw.base; 1167 1168 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1169 system_counterval.cycles); 1170 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1171 system_counterval.cycles); 1172 } while (read_seqcount_retry(&tk_core.seq, seq)); 1173 1174 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1175 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1176 1177 /* 1178 * Interpolate if necessary, adjusting back from the start of the 1179 * current interval 1180 */ 1181 if (do_interp) { 1182 u64 partial_history_cycles, total_history_cycles; 1183 bool discontinuity; 1184 1185 /* 1186 * Check that the counter value occurs after the provided 1187 * history reference and that the history doesn't cross a 1188 * clocksource change 1189 */ 1190 if (!history_begin || 1191 !cycle_between(history_begin->cycles, 1192 system_counterval.cycles, cycles) || 1193 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1194 return -EINVAL; 1195 partial_history_cycles = cycles - system_counterval.cycles; 1196 total_history_cycles = cycles - history_begin->cycles; 1197 discontinuity = 1198 history_begin->clock_was_set_seq != clock_was_set_seq; 1199 1200 ret = adjust_historical_crosststamp(history_begin, 1201 partial_history_cycles, 1202 total_history_cycles, 1203 discontinuity, xtstamp); 1204 if (ret) 1205 return ret; 1206 } 1207 1208 return 0; 1209 } 1210 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1211 1212 /** 1213 * do_settimeofday64 - Sets the time of day. 1214 * @ts: pointer to the timespec64 variable containing the new time 1215 * 1216 * Sets the time of day to the new time and update NTP and notify hrtimers 1217 */ 1218 int do_settimeofday64(const struct timespec64 *ts) 1219 { 1220 struct timekeeper *tk = &tk_core.timekeeper; 1221 struct timespec64 ts_delta, xt; 1222 unsigned long flags; 1223 int ret = 0; 1224 1225 if (!timespec64_valid_settod(ts)) 1226 return -EINVAL; 1227 1228 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1229 write_seqcount_begin(&tk_core.seq); 1230 1231 timekeeping_forward_now(tk); 1232 1233 xt = tk_xtime(tk); 1234 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1235 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1236 1237 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1238 ret = -EINVAL; 1239 goto out; 1240 } 1241 1242 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1243 1244 tk_set_xtime(tk, ts); 1245 out: 1246 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1247 1248 write_seqcount_end(&tk_core.seq); 1249 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1250 1251 /* signal hrtimers about time change */ 1252 clock_was_set(); 1253 1254 if (!ret) 1255 audit_tk_injoffset(ts_delta); 1256 1257 return ret; 1258 } 1259 EXPORT_SYMBOL(do_settimeofday64); 1260 1261 /** 1262 * timekeeping_inject_offset - Adds or subtracts from the current time. 1263 * @tv: pointer to the timespec variable containing the offset 1264 * 1265 * Adds or subtracts an offset value from the current time. 1266 */ 1267 static int timekeeping_inject_offset(const struct timespec64 *ts) 1268 { 1269 struct timekeeper *tk = &tk_core.timekeeper; 1270 unsigned long flags; 1271 struct timespec64 tmp; 1272 int ret = 0; 1273 1274 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1275 return -EINVAL; 1276 1277 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1278 write_seqcount_begin(&tk_core.seq); 1279 1280 timekeeping_forward_now(tk); 1281 1282 /* Make sure the proposed value is valid */ 1283 tmp = timespec64_add(tk_xtime(tk), *ts); 1284 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1285 !timespec64_valid_settod(&tmp)) { 1286 ret = -EINVAL; 1287 goto error; 1288 } 1289 1290 tk_xtime_add(tk, ts); 1291 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1292 1293 error: /* even if we error out, we forwarded the time, so call update */ 1294 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1295 1296 write_seqcount_end(&tk_core.seq); 1297 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1298 1299 /* signal hrtimers about time change */ 1300 clock_was_set(); 1301 1302 return ret; 1303 } 1304 1305 /* 1306 * Indicates if there is an offset between the system clock and the hardware 1307 * clock/persistent clock/rtc. 1308 */ 1309 int persistent_clock_is_local; 1310 1311 /* 1312 * Adjust the time obtained from the CMOS to be UTC time instead of 1313 * local time. 1314 * 1315 * This is ugly, but preferable to the alternatives. Otherwise we 1316 * would either need to write a program to do it in /etc/rc (and risk 1317 * confusion if the program gets run more than once; it would also be 1318 * hard to make the program warp the clock precisely n hours) or 1319 * compile in the timezone information into the kernel. Bad, bad.... 1320 * 1321 * - TYT, 1992-01-01 1322 * 1323 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1324 * as real UNIX machines always do it. This avoids all headaches about 1325 * daylight saving times and warping kernel clocks. 1326 */ 1327 void timekeeping_warp_clock(void) 1328 { 1329 if (sys_tz.tz_minuteswest != 0) { 1330 struct timespec64 adjust; 1331 1332 persistent_clock_is_local = 1; 1333 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1334 adjust.tv_nsec = 0; 1335 timekeeping_inject_offset(&adjust); 1336 } 1337 } 1338 1339 /** 1340 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1341 * 1342 */ 1343 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1344 { 1345 tk->tai_offset = tai_offset; 1346 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1347 } 1348 1349 /** 1350 * change_clocksource - Swaps clocksources if a new one is available 1351 * 1352 * Accumulates current time interval and initializes new clocksource 1353 */ 1354 static int change_clocksource(void *data) 1355 { 1356 struct timekeeper *tk = &tk_core.timekeeper; 1357 struct clocksource *new, *old; 1358 unsigned long flags; 1359 1360 new = (struct clocksource *) data; 1361 1362 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1363 write_seqcount_begin(&tk_core.seq); 1364 1365 timekeeping_forward_now(tk); 1366 /* 1367 * If the cs is in module, get a module reference. Succeeds 1368 * for built-in code (owner == NULL) as well. 1369 */ 1370 if (try_module_get(new->owner)) { 1371 if (!new->enable || new->enable(new) == 0) { 1372 old = tk->tkr_mono.clock; 1373 tk_setup_internals(tk, new); 1374 if (old->disable) 1375 old->disable(old); 1376 module_put(old->owner); 1377 } else { 1378 module_put(new->owner); 1379 } 1380 } 1381 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1382 1383 write_seqcount_end(&tk_core.seq); 1384 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1385 1386 return 0; 1387 } 1388 1389 /** 1390 * timekeeping_notify - Install a new clock source 1391 * @clock: pointer to the clock source 1392 * 1393 * This function is called from clocksource.c after a new, better clock 1394 * source has been registered. The caller holds the clocksource_mutex. 1395 */ 1396 int timekeeping_notify(struct clocksource *clock) 1397 { 1398 struct timekeeper *tk = &tk_core.timekeeper; 1399 1400 if (tk->tkr_mono.clock == clock) 1401 return 0; 1402 stop_machine(change_clocksource, clock, NULL); 1403 tick_clock_notify(); 1404 return tk->tkr_mono.clock == clock ? 0 : -1; 1405 } 1406 1407 /** 1408 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1409 * @ts: pointer to the timespec64 to be set 1410 * 1411 * Returns the raw monotonic time (completely un-modified by ntp) 1412 */ 1413 void ktime_get_raw_ts64(struct timespec64 *ts) 1414 { 1415 struct timekeeper *tk = &tk_core.timekeeper; 1416 unsigned int seq; 1417 u64 nsecs; 1418 1419 do { 1420 seq = read_seqcount_begin(&tk_core.seq); 1421 ts->tv_sec = tk->raw_sec; 1422 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1423 1424 } while (read_seqcount_retry(&tk_core.seq, seq)); 1425 1426 ts->tv_nsec = 0; 1427 timespec64_add_ns(ts, nsecs); 1428 } 1429 EXPORT_SYMBOL(ktime_get_raw_ts64); 1430 1431 1432 /** 1433 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1434 */ 1435 int timekeeping_valid_for_hres(void) 1436 { 1437 struct timekeeper *tk = &tk_core.timekeeper; 1438 unsigned int seq; 1439 int ret; 1440 1441 do { 1442 seq = read_seqcount_begin(&tk_core.seq); 1443 1444 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1445 1446 } while (read_seqcount_retry(&tk_core.seq, seq)); 1447 1448 return ret; 1449 } 1450 1451 /** 1452 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1453 */ 1454 u64 timekeeping_max_deferment(void) 1455 { 1456 struct timekeeper *tk = &tk_core.timekeeper; 1457 unsigned int seq; 1458 u64 ret; 1459 1460 do { 1461 seq = read_seqcount_begin(&tk_core.seq); 1462 1463 ret = tk->tkr_mono.clock->max_idle_ns; 1464 1465 } while (read_seqcount_retry(&tk_core.seq, seq)); 1466 1467 return ret; 1468 } 1469 1470 /** 1471 * read_persistent_clock64 - Return time from the persistent clock. 1472 * 1473 * Weak dummy function for arches that do not yet support it. 1474 * Reads the time from the battery backed persistent clock. 1475 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1476 * 1477 * XXX - Do be sure to remove it once all arches implement it. 1478 */ 1479 void __weak read_persistent_clock64(struct timespec64 *ts) 1480 { 1481 ts->tv_sec = 0; 1482 ts->tv_nsec = 0; 1483 } 1484 1485 /** 1486 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1487 * from the boot. 1488 * 1489 * Weak dummy function for arches that do not yet support it. 1490 * wall_time - current time as returned by persistent clock 1491 * boot_offset - offset that is defined as wall_time - boot_time 1492 * The default function calculates offset based on the current value of 1493 * local_clock(). This way architectures that support sched_clock() but don't 1494 * support dedicated boot time clock will provide the best estimate of the 1495 * boot time. 1496 */ 1497 void __weak __init 1498 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1499 struct timespec64 *boot_offset) 1500 { 1501 read_persistent_clock64(wall_time); 1502 *boot_offset = ns_to_timespec64(local_clock()); 1503 } 1504 1505 /* 1506 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1507 * 1508 * The flag starts of false and is only set when a suspend reaches 1509 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1510 * timekeeper clocksource is not stopping across suspend and has been 1511 * used to update sleep time. If the timekeeper clocksource has stopped 1512 * then the flag stays true and is used by the RTC resume code to decide 1513 * whether sleeptime must be injected and if so the flag gets false then. 1514 * 1515 * If a suspend fails before reaching timekeeping_resume() then the flag 1516 * stays false and prevents erroneous sleeptime injection. 1517 */ 1518 static bool suspend_timing_needed; 1519 1520 /* Flag for if there is a persistent clock on this platform */ 1521 static bool persistent_clock_exists; 1522 1523 /* 1524 * timekeeping_init - Initializes the clocksource and common timekeeping values 1525 */ 1526 void __init timekeeping_init(void) 1527 { 1528 struct timespec64 wall_time, boot_offset, wall_to_mono; 1529 struct timekeeper *tk = &tk_core.timekeeper; 1530 struct clocksource *clock; 1531 unsigned long flags; 1532 1533 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1534 if (timespec64_valid_settod(&wall_time) && 1535 timespec64_to_ns(&wall_time) > 0) { 1536 persistent_clock_exists = true; 1537 } else if (timespec64_to_ns(&wall_time) != 0) { 1538 pr_warn("Persistent clock returned invalid value"); 1539 wall_time = (struct timespec64){0}; 1540 } 1541 1542 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1543 boot_offset = (struct timespec64){0}; 1544 1545 /* 1546 * We want set wall_to_mono, so the following is true: 1547 * wall time + wall_to_mono = boot time 1548 */ 1549 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1550 1551 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1552 write_seqcount_begin(&tk_core.seq); 1553 ntp_init(); 1554 1555 clock = clocksource_default_clock(); 1556 if (clock->enable) 1557 clock->enable(clock); 1558 tk_setup_internals(tk, clock); 1559 1560 tk_set_xtime(tk, &wall_time); 1561 tk->raw_sec = 0; 1562 1563 tk_set_wall_to_mono(tk, wall_to_mono); 1564 1565 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1566 1567 write_seqcount_end(&tk_core.seq); 1568 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1569 } 1570 1571 /* time in seconds when suspend began for persistent clock */ 1572 static struct timespec64 timekeeping_suspend_time; 1573 1574 /** 1575 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1576 * @delta: pointer to a timespec delta value 1577 * 1578 * Takes a timespec offset measuring a suspend interval and properly 1579 * adds the sleep offset to the timekeeping variables. 1580 */ 1581 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1582 const struct timespec64 *delta) 1583 { 1584 if (!timespec64_valid_strict(delta)) { 1585 printk_deferred(KERN_WARNING 1586 "__timekeeping_inject_sleeptime: Invalid " 1587 "sleep delta value!\n"); 1588 return; 1589 } 1590 tk_xtime_add(tk, delta); 1591 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1592 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1593 tk_debug_account_sleep_time(delta); 1594 } 1595 1596 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1597 /** 1598 * We have three kinds of time sources to use for sleep time 1599 * injection, the preference order is: 1600 * 1) non-stop clocksource 1601 * 2) persistent clock (ie: RTC accessible when irqs are off) 1602 * 3) RTC 1603 * 1604 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1605 * If system has neither 1) nor 2), 3) will be used finally. 1606 * 1607 * 1608 * If timekeeping has injected sleeptime via either 1) or 2), 1609 * 3) becomes needless, so in this case we don't need to call 1610 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1611 * means. 1612 */ 1613 bool timekeeping_rtc_skipresume(void) 1614 { 1615 return !suspend_timing_needed; 1616 } 1617 1618 /** 1619 * 1) can be determined whether to use or not only when doing 1620 * timekeeping_resume() which is invoked after rtc_suspend(), 1621 * so we can't skip rtc_suspend() surely if system has 1). 1622 * 1623 * But if system has 2), 2) will definitely be used, so in this 1624 * case we don't need to call rtc_suspend(), and this is what 1625 * timekeeping_rtc_skipsuspend() means. 1626 */ 1627 bool timekeeping_rtc_skipsuspend(void) 1628 { 1629 return persistent_clock_exists; 1630 } 1631 1632 /** 1633 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1634 * @delta: pointer to a timespec64 delta value 1635 * 1636 * This hook is for architectures that cannot support read_persistent_clock64 1637 * because their RTC/persistent clock is only accessible when irqs are enabled. 1638 * and also don't have an effective nonstop clocksource. 1639 * 1640 * This function should only be called by rtc_resume(), and allows 1641 * a suspend offset to be injected into the timekeeping values. 1642 */ 1643 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1644 { 1645 struct timekeeper *tk = &tk_core.timekeeper; 1646 unsigned long flags; 1647 1648 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1649 write_seqcount_begin(&tk_core.seq); 1650 1651 suspend_timing_needed = false; 1652 1653 timekeeping_forward_now(tk); 1654 1655 __timekeeping_inject_sleeptime(tk, delta); 1656 1657 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1658 1659 write_seqcount_end(&tk_core.seq); 1660 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1661 1662 /* signal hrtimers about time change */ 1663 clock_was_set(); 1664 } 1665 #endif 1666 1667 /** 1668 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1669 */ 1670 void timekeeping_resume(void) 1671 { 1672 struct timekeeper *tk = &tk_core.timekeeper; 1673 struct clocksource *clock = tk->tkr_mono.clock; 1674 unsigned long flags; 1675 struct timespec64 ts_new, ts_delta; 1676 u64 cycle_now, nsec; 1677 bool inject_sleeptime = false; 1678 1679 read_persistent_clock64(&ts_new); 1680 1681 clockevents_resume(); 1682 clocksource_resume(); 1683 1684 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1685 write_seqcount_begin(&tk_core.seq); 1686 1687 /* 1688 * After system resumes, we need to calculate the suspended time and 1689 * compensate it for the OS time. There are 3 sources that could be 1690 * used: Nonstop clocksource during suspend, persistent clock and rtc 1691 * device. 1692 * 1693 * One specific platform may have 1 or 2 or all of them, and the 1694 * preference will be: 1695 * suspend-nonstop clocksource -> persistent clock -> rtc 1696 * The less preferred source will only be tried if there is no better 1697 * usable source. The rtc part is handled separately in rtc core code. 1698 */ 1699 cycle_now = tk_clock_read(&tk->tkr_mono); 1700 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1701 if (nsec > 0) { 1702 ts_delta = ns_to_timespec64(nsec); 1703 inject_sleeptime = true; 1704 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1705 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1706 inject_sleeptime = true; 1707 } 1708 1709 if (inject_sleeptime) { 1710 suspend_timing_needed = false; 1711 __timekeeping_inject_sleeptime(tk, &ts_delta); 1712 } 1713 1714 /* Re-base the last cycle value */ 1715 tk->tkr_mono.cycle_last = cycle_now; 1716 tk->tkr_raw.cycle_last = cycle_now; 1717 1718 tk->ntp_error = 0; 1719 timekeeping_suspended = 0; 1720 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1721 write_seqcount_end(&tk_core.seq); 1722 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1723 1724 touch_softlockup_watchdog(); 1725 1726 tick_resume(); 1727 hrtimers_resume(); 1728 } 1729 1730 int timekeeping_suspend(void) 1731 { 1732 struct timekeeper *tk = &tk_core.timekeeper; 1733 unsigned long flags; 1734 struct timespec64 delta, delta_delta; 1735 static struct timespec64 old_delta; 1736 struct clocksource *curr_clock; 1737 u64 cycle_now; 1738 1739 read_persistent_clock64(&timekeeping_suspend_time); 1740 1741 /* 1742 * On some systems the persistent_clock can not be detected at 1743 * timekeeping_init by its return value, so if we see a valid 1744 * value returned, update the persistent_clock_exists flag. 1745 */ 1746 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1747 persistent_clock_exists = true; 1748 1749 suspend_timing_needed = true; 1750 1751 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1752 write_seqcount_begin(&tk_core.seq); 1753 timekeeping_forward_now(tk); 1754 timekeeping_suspended = 1; 1755 1756 /* 1757 * Since we've called forward_now, cycle_last stores the value 1758 * just read from the current clocksource. Save this to potentially 1759 * use in suspend timing. 1760 */ 1761 curr_clock = tk->tkr_mono.clock; 1762 cycle_now = tk->tkr_mono.cycle_last; 1763 clocksource_start_suspend_timing(curr_clock, cycle_now); 1764 1765 if (persistent_clock_exists) { 1766 /* 1767 * To avoid drift caused by repeated suspend/resumes, 1768 * which each can add ~1 second drift error, 1769 * try to compensate so the difference in system time 1770 * and persistent_clock time stays close to constant. 1771 */ 1772 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1773 delta_delta = timespec64_sub(delta, old_delta); 1774 if (abs(delta_delta.tv_sec) >= 2) { 1775 /* 1776 * if delta_delta is too large, assume time correction 1777 * has occurred and set old_delta to the current delta. 1778 */ 1779 old_delta = delta; 1780 } else { 1781 /* Otherwise try to adjust old_system to compensate */ 1782 timekeeping_suspend_time = 1783 timespec64_add(timekeeping_suspend_time, delta_delta); 1784 } 1785 } 1786 1787 timekeeping_update(tk, TK_MIRROR); 1788 halt_fast_timekeeper(tk); 1789 write_seqcount_end(&tk_core.seq); 1790 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1791 1792 tick_suspend(); 1793 clocksource_suspend(); 1794 clockevents_suspend(); 1795 1796 return 0; 1797 } 1798 1799 /* sysfs resume/suspend bits for timekeeping */ 1800 static struct syscore_ops timekeeping_syscore_ops = { 1801 .resume = timekeeping_resume, 1802 .suspend = timekeeping_suspend, 1803 }; 1804 1805 static int __init timekeeping_init_ops(void) 1806 { 1807 register_syscore_ops(&timekeeping_syscore_ops); 1808 return 0; 1809 } 1810 device_initcall(timekeeping_init_ops); 1811 1812 /* 1813 * Apply a multiplier adjustment to the timekeeper 1814 */ 1815 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1816 s64 offset, 1817 s32 mult_adj) 1818 { 1819 s64 interval = tk->cycle_interval; 1820 1821 if (mult_adj == 0) { 1822 return; 1823 } else if (mult_adj == -1) { 1824 interval = -interval; 1825 offset = -offset; 1826 } else if (mult_adj != 1) { 1827 interval *= mult_adj; 1828 offset *= mult_adj; 1829 } 1830 1831 /* 1832 * So the following can be confusing. 1833 * 1834 * To keep things simple, lets assume mult_adj == 1 for now. 1835 * 1836 * When mult_adj != 1, remember that the interval and offset values 1837 * have been appropriately scaled so the math is the same. 1838 * 1839 * The basic idea here is that we're increasing the multiplier 1840 * by one, this causes the xtime_interval to be incremented by 1841 * one cycle_interval. This is because: 1842 * xtime_interval = cycle_interval * mult 1843 * So if mult is being incremented by one: 1844 * xtime_interval = cycle_interval * (mult + 1) 1845 * Its the same as: 1846 * xtime_interval = (cycle_interval * mult) + cycle_interval 1847 * Which can be shortened to: 1848 * xtime_interval += cycle_interval 1849 * 1850 * So offset stores the non-accumulated cycles. Thus the current 1851 * time (in shifted nanoseconds) is: 1852 * now = (offset * adj) + xtime_nsec 1853 * Now, even though we're adjusting the clock frequency, we have 1854 * to keep time consistent. In other words, we can't jump back 1855 * in time, and we also want to avoid jumping forward in time. 1856 * 1857 * So given the same offset value, we need the time to be the same 1858 * both before and after the freq adjustment. 1859 * now = (offset * adj_1) + xtime_nsec_1 1860 * now = (offset * adj_2) + xtime_nsec_2 1861 * So: 1862 * (offset * adj_1) + xtime_nsec_1 = 1863 * (offset * adj_2) + xtime_nsec_2 1864 * And we know: 1865 * adj_2 = adj_1 + 1 1866 * So: 1867 * (offset * adj_1) + xtime_nsec_1 = 1868 * (offset * (adj_1+1)) + xtime_nsec_2 1869 * (offset * adj_1) + xtime_nsec_1 = 1870 * (offset * adj_1) + offset + xtime_nsec_2 1871 * Canceling the sides: 1872 * xtime_nsec_1 = offset + xtime_nsec_2 1873 * Which gives us: 1874 * xtime_nsec_2 = xtime_nsec_1 - offset 1875 * Which simplfies to: 1876 * xtime_nsec -= offset 1877 */ 1878 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1879 /* NTP adjustment caused clocksource mult overflow */ 1880 WARN_ON_ONCE(1); 1881 return; 1882 } 1883 1884 tk->tkr_mono.mult += mult_adj; 1885 tk->xtime_interval += interval; 1886 tk->tkr_mono.xtime_nsec -= offset; 1887 } 1888 1889 /* 1890 * Adjust the timekeeper's multiplier to the correct frequency 1891 * and also to reduce the accumulated error value. 1892 */ 1893 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1894 { 1895 u32 mult; 1896 1897 /* 1898 * Determine the multiplier from the current NTP tick length. 1899 * Avoid expensive division when the tick length doesn't change. 1900 */ 1901 if (likely(tk->ntp_tick == ntp_tick_length())) { 1902 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1903 } else { 1904 tk->ntp_tick = ntp_tick_length(); 1905 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1906 tk->xtime_remainder, tk->cycle_interval); 1907 } 1908 1909 /* 1910 * If the clock is behind the NTP time, increase the multiplier by 1 1911 * to catch up with it. If it's ahead and there was a remainder in the 1912 * tick division, the clock will slow down. Otherwise it will stay 1913 * ahead until the tick length changes to a non-divisible value. 1914 */ 1915 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1916 mult += tk->ntp_err_mult; 1917 1918 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1919 1920 if (unlikely(tk->tkr_mono.clock->maxadj && 1921 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1922 > tk->tkr_mono.clock->maxadj))) { 1923 printk_once(KERN_WARNING 1924 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1925 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1926 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1927 } 1928 1929 /* 1930 * It may be possible that when we entered this function, xtime_nsec 1931 * was very small. Further, if we're slightly speeding the clocksource 1932 * in the code above, its possible the required corrective factor to 1933 * xtime_nsec could cause it to underflow. 1934 * 1935 * Now, since we have already accumulated the second and the NTP 1936 * subsystem has been notified via second_overflow(), we need to skip 1937 * the next update. 1938 */ 1939 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1940 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1941 tk->tkr_mono.shift; 1942 tk->xtime_sec--; 1943 tk->skip_second_overflow = 1; 1944 } 1945 } 1946 1947 /** 1948 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1949 * 1950 * Helper function that accumulates the nsecs greater than a second 1951 * from the xtime_nsec field to the xtime_secs field. 1952 * It also calls into the NTP code to handle leapsecond processing. 1953 * 1954 */ 1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1956 { 1957 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1958 unsigned int clock_set = 0; 1959 1960 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1961 int leap; 1962 1963 tk->tkr_mono.xtime_nsec -= nsecps; 1964 tk->xtime_sec++; 1965 1966 /* 1967 * Skip NTP update if this second was accumulated before, 1968 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1969 */ 1970 if (unlikely(tk->skip_second_overflow)) { 1971 tk->skip_second_overflow = 0; 1972 continue; 1973 } 1974 1975 /* Figure out if its a leap sec and apply if needed */ 1976 leap = second_overflow(tk->xtime_sec); 1977 if (unlikely(leap)) { 1978 struct timespec64 ts; 1979 1980 tk->xtime_sec += leap; 1981 1982 ts.tv_sec = leap; 1983 ts.tv_nsec = 0; 1984 tk_set_wall_to_mono(tk, 1985 timespec64_sub(tk->wall_to_monotonic, ts)); 1986 1987 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1988 1989 clock_set = TK_CLOCK_WAS_SET; 1990 } 1991 } 1992 return clock_set; 1993 } 1994 1995 /** 1996 * logarithmic_accumulation - shifted accumulation of cycles 1997 * 1998 * This functions accumulates a shifted interval of cycles into 1999 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2000 * loop. 2001 * 2002 * Returns the unconsumed cycles. 2003 */ 2004 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2005 u32 shift, unsigned int *clock_set) 2006 { 2007 u64 interval = tk->cycle_interval << shift; 2008 u64 snsec_per_sec; 2009 2010 /* If the offset is smaller than a shifted interval, do nothing */ 2011 if (offset < interval) 2012 return offset; 2013 2014 /* Accumulate one shifted interval */ 2015 offset -= interval; 2016 tk->tkr_mono.cycle_last += interval; 2017 tk->tkr_raw.cycle_last += interval; 2018 2019 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2020 *clock_set |= accumulate_nsecs_to_secs(tk); 2021 2022 /* Accumulate raw time */ 2023 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2024 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2025 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2026 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2027 tk->raw_sec++; 2028 } 2029 2030 /* Accumulate error between NTP and clock interval */ 2031 tk->ntp_error += tk->ntp_tick << shift; 2032 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2033 (tk->ntp_error_shift + shift); 2034 2035 return offset; 2036 } 2037 2038 /* 2039 * timekeeping_advance - Updates the timekeeper to the current time and 2040 * current NTP tick length 2041 */ 2042 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2043 { 2044 struct timekeeper *real_tk = &tk_core.timekeeper; 2045 struct timekeeper *tk = &shadow_timekeeper; 2046 u64 offset; 2047 int shift = 0, maxshift; 2048 unsigned int clock_set = 0; 2049 unsigned long flags; 2050 2051 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2052 2053 /* Make sure we're fully resumed: */ 2054 if (unlikely(timekeeping_suspended)) 2055 goto out; 2056 2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2058 offset = real_tk->cycle_interval; 2059 2060 if (mode != TK_ADV_TICK) 2061 goto out; 2062 #else 2063 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2064 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2065 2066 /* Check if there's really nothing to do */ 2067 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2068 goto out; 2069 #endif 2070 2071 /* Do some additional sanity checking */ 2072 timekeeping_check_update(tk, offset); 2073 2074 /* 2075 * With NO_HZ we may have to accumulate many cycle_intervals 2076 * (think "ticks") worth of time at once. To do this efficiently, 2077 * we calculate the largest doubling multiple of cycle_intervals 2078 * that is smaller than the offset. We then accumulate that 2079 * chunk in one go, and then try to consume the next smaller 2080 * doubled multiple. 2081 */ 2082 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2083 shift = max(0, shift); 2084 /* Bound shift to one less than what overflows tick_length */ 2085 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2086 shift = min(shift, maxshift); 2087 while (offset >= tk->cycle_interval) { 2088 offset = logarithmic_accumulation(tk, offset, shift, 2089 &clock_set); 2090 if (offset < tk->cycle_interval<<shift) 2091 shift--; 2092 } 2093 2094 /* Adjust the multiplier to correct NTP error */ 2095 timekeeping_adjust(tk, offset); 2096 2097 /* 2098 * Finally, make sure that after the rounding 2099 * xtime_nsec isn't larger than NSEC_PER_SEC 2100 */ 2101 clock_set |= accumulate_nsecs_to_secs(tk); 2102 2103 write_seqcount_begin(&tk_core.seq); 2104 /* 2105 * Update the real timekeeper. 2106 * 2107 * We could avoid this memcpy by switching pointers, but that 2108 * requires changes to all other timekeeper usage sites as 2109 * well, i.e. move the timekeeper pointer getter into the 2110 * spinlocked/seqcount protected sections. And we trade this 2111 * memcpy under the tk_core.seq against one before we start 2112 * updating. 2113 */ 2114 timekeeping_update(tk, clock_set); 2115 memcpy(real_tk, tk, sizeof(*tk)); 2116 /* The memcpy must come last. Do not put anything here! */ 2117 write_seqcount_end(&tk_core.seq); 2118 out: 2119 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2120 if (clock_set) 2121 /* Have to call _delayed version, since in irq context*/ 2122 clock_was_set_delayed(); 2123 } 2124 2125 /** 2126 * update_wall_time - Uses the current clocksource to increment the wall time 2127 * 2128 */ 2129 void update_wall_time(void) 2130 { 2131 timekeeping_advance(TK_ADV_TICK); 2132 } 2133 2134 /** 2135 * getboottime64 - Return the real time of system boot. 2136 * @ts: pointer to the timespec64 to be set 2137 * 2138 * Returns the wall-time of boot in a timespec64. 2139 * 2140 * This is based on the wall_to_monotonic offset and the total suspend 2141 * time. Calls to settimeofday will affect the value returned (which 2142 * basically means that however wrong your real time clock is at boot time, 2143 * you get the right time here). 2144 */ 2145 void getboottime64(struct timespec64 *ts) 2146 { 2147 struct timekeeper *tk = &tk_core.timekeeper; 2148 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2149 2150 *ts = ktime_to_timespec64(t); 2151 } 2152 EXPORT_SYMBOL_GPL(getboottime64); 2153 2154 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2155 { 2156 struct timekeeper *tk = &tk_core.timekeeper; 2157 unsigned int seq; 2158 2159 do { 2160 seq = read_seqcount_begin(&tk_core.seq); 2161 2162 *ts = tk_xtime(tk); 2163 } while (read_seqcount_retry(&tk_core.seq, seq)); 2164 } 2165 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2166 2167 void ktime_get_coarse_ts64(struct timespec64 *ts) 2168 { 2169 struct timekeeper *tk = &tk_core.timekeeper; 2170 struct timespec64 now, mono; 2171 unsigned int seq; 2172 2173 do { 2174 seq = read_seqcount_begin(&tk_core.seq); 2175 2176 now = tk_xtime(tk); 2177 mono = tk->wall_to_monotonic; 2178 } while (read_seqcount_retry(&tk_core.seq, seq)); 2179 2180 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2181 now.tv_nsec + mono.tv_nsec); 2182 } 2183 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2184 2185 /* 2186 * Must hold jiffies_lock 2187 */ 2188 void do_timer(unsigned long ticks) 2189 { 2190 jiffies_64 += ticks; 2191 calc_global_load(ticks); 2192 } 2193 2194 /** 2195 * ktime_get_update_offsets_now - hrtimer helper 2196 * @cwsseq: pointer to check and store the clock was set sequence number 2197 * @offs_real: pointer to storage for monotonic -> realtime offset 2198 * @offs_boot: pointer to storage for monotonic -> boottime offset 2199 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2200 * 2201 * Returns current monotonic time and updates the offsets if the 2202 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2203 * different. 2204 * 2205 * Called from hrtimer_interrupt() or retrigger_next_event() 2206 */ 2207 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2208 ktime_t *offs_boot, ktime_t *offs_tai) 2209 { 2210 struct timekeeper *tk = &tk_core.timekeeper; 2211 unsigned int seq; 2212 ktime_t base; 2213 u64 nsecs; 2214 2215 do { 2216 seq = read_seqcount_begin(&tk_core.seq); 2217 2218 base = tk->tkr_mono.base; 2219 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2220 base = ktime_add_ns(base, nsecs); 2221 2222 if (*cwsseq != tk->clock_was_set_seq) { 2223 *cwsseq = tk->clock_was_set_seq; 2224 *offs_real = tk->offs_real; 2225 *offs_boot = tk->offs_boot; 2226 *offs_tai = tk->offs_tai; 2227 } 2228 2229 /* Handle leapsecond insertion adjustments */ 2230 if (unlikely(base >= tk->next_leap_ktime)) 2231 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2232 2233 } while (read_seqcount_retry(&tk_core.seq, seq)); 2234 2235 return base; 2236 } 2237 2238 /** 2239 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2240 */ 2241 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2242 { 2243 if (txc->modes & ADJ_ADJTIME) { 2244 /* singleshot must not be used with any other mode bits */ 2245 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2246 return -EINVAL; 2247 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2248 !capable(CAP_SYS_TIME)) 2249 return -EPERM; 2250 } else { 2251 /* In order to modify anything, you gotta be super-user! */ 2252 if (txc->modes && !capable(CAP_SYS_TIME)) 2253 return -EPERM; 2254 /* 2255 * if the quartz is off by more than 10% then 2256 * something is VERY wrong! 2257 */ 2258 if (txc->modes & ADJ_TICK && 2259 (txc->tick < 900000/USER_HZ || 2260 txc->tick > 1100000/USER_HZ)) 2261 return -EINVAL; 2262 } 2263 2264 if (txc->modes & ADJ_SETOFFSET) { 2265 /* In order to inject time, you gotta be super-user! */ 2266 if (!capable(CAP_SYS_TIME)) 2267 return -EPERM; 2268 2269 /* 2270 * Validate if a timespec/timeval used to inject a time 2271 * offset is valid. Offsets can be postive or negative, so 2272 * we don't check tv_sec. The value of the timeval/timespec 2273 * is the sum of its fields,but *NOTE*: 2274 * The field tv_usec/tv_nsec must always be non-negative and 2275 * we can't have more nanoseconds/microseconds than a second. 2276 */ 2277 if (txc->time.tv_usec < 0) 2278 return -EINVAL; 2279 2280 if (txc->modes & ADJ_NANO) { 2281 if (txc->time.tv_usec >= NSEC_PER_SEC) 2282 return -EINVAL; 2283 } else { 2284 if (txc->time.tv_usec >= USEC_PER_SEC) 2285 return -EINVAL; 2286 } 2287 } 2288 2289 /* 2290 * Check for potential multiplication overflows that can 2291 * only happen on 64-bit systems: 2292 */ 2293 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2294 if (LLONG_MIN / PPM_SCALE > txc->freq) 2295 return -EINVAL; 2296 if (LLONG_MAX / PPM_SCALE < txc->freq) 2297 return -EINVAL; 2298 } 2299 2300 return 0; 2301 } 2302 2303 2304 /** 2305 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2306 */ 2307 int do_adjtimex(struct __kernel_timex *txc) 2308 { 2309 struct timekeeper *tk = &tk_core.timekeeper; 2310 struct audit_ntp_data ad; 2311 unsigned long flags; 2312 struct timespec64 ts; 2313 s32 orig_tai, tai; 2314 int ret; 2315 2316 /* Validate the data before disabling interrupts */ 2317 ret = timekeeping_validate_timex(txc); 2318 if (ret) 2319 return ret; 2320 2321 if (txc->modes & ADJ_SETOFFSET) { 2322 struct timespec64 delta; 2323 delta.tv_sec = txc->time.tv_sec; 2324 delta.tv_nsec = txc->time.tv_usec; 2325 if (!(txc->modes & ADJ_NANO)) 2326 delta.tv_nsec *= 1000; 2327 ret = timekeeping_inject_offset(&delta); 2328 if (ret) 2329 return ret; 2330 2331 audit_tk_injoffset(delta); 2332 } 2333 2334 audit_ntp_init(&ad); 2335 2336 ktime_get_real_ts64(&ts); 2337 2338 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2339 write_seqcount_begin(&tk_core.seq); 2340 2341 orig_tai = tai = tk->tai_offset; 2342 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2343 2344 if (tai != orig_tai) { 2345 __timekeeping_set_tai_offset(tk, tai); 2346 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2347 } 2348 tk_update_leap_state(tk); 2349 2350 write_seqcount_end(&tk_core.seq); 2351 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2352 2353 audit_ntp_log(&ad); 2354 2355 /* Update the multiplier immediately if frequency was set directly */ 2356 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2357 timekeeping_advance(TK_ADV_FREQ); 2358 2359 if (tai != orig_tai) 2360 clock_was_set(); 2361 2362 ntp_notify_cmos_timer(); 2363 2364 return ret; 2365 } 2366 2367 #ifdef CONFIG_NTP_PPS 2368 /** 2369 * hardpps() - Accessor function to NTP __hardpps function 2370 */ 2371 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2372 { 2373 unsigned long flags; 2374 2375 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2376 write_seqcount_begin(&tk_core.seq); 2377 2378 __hardpps(phase_ts, raw_ts); 2379 2380 write_seqcount_end(&tk_core.seq); 2381 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2382 } 2383 EXPORT_SYMBOL(hardpps); 2384 #endif /* CONFIG_NTP_PPS */ 2385 2386 /** 2387 * xtime_update() - advances the timekeeping infrastructure 2388 * @ticks: number of ticks, that have elapsed since the last call. 2389 * 2390 * Must be called with interrupts disabled. 2391 */ 2392 void xtime_update(unsigned long ticks) 2393 { 2394 write_seqlock(&jiffies_lock); 2395 do_timer(ticks); 2396 write_sequnlock(&jiffies_lock); 2397 update_wall_time(); 2398 } 2399