1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 168 { 169 tk->xtime_sec = ts->tv_sec; 170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 171 } 172 173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 174 { 175 tk->xtime_sec += ts->tv_sec; 176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 177 tk_normalize_xtime(tk); 178 } 179 180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 181 { 182 struct timespec64 tmp; 183 184 /* 185 * Verify consistency of: offset_real = -wall_to_monotonic 186 * before modifying anything 187 */ 188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 189 -tk->wall_to_monotonic.tv_nsec); 190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 191 tk->wall_to_monotonic = wtm; 192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 193 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 196 } 197 198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 199 { 200 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 202 /* 203 * Timespec representation for VDSO update to avoid 64bit division 204 * on every update. 205 */ 206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 207 } 208 209 /* 210 * tk_clock_read - atomic clocksource read() helper 211 * 212 * This helper is necessary to use in the read paths because, while the 213 * seqcount ensures we don't return a bad value while structures are updated, 214 * it doesn't protect from potential crashes. There is the possibility that 215 * the tkr's clocksource may change between the read reference, and the 216 * clock reference passed to the read function. This can cause crashes if 217 * the wrong clocksource is passed to the wrong read function. 218 * This isn't necessary to use when holding the tk_core.lock or doing 219 * a read of the fast-timekeeper tkrs (which is protected by its own locking 220 * and update logic). 221 */ 222 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 223 { 224 struct clocksource *clock = READ_ONCE(tkr->clock); 225 226 return clock->read(clock); 227 } 228 229 /** 230 * tk_setup_internals - Set up internals to use clocksource clock. 231 * 232 * @tk: The target timekeeper to setup. 233 * @clock: Pointer to clocksource. 234 * 235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 236 * pair and interval request. 237 * 238 * Unless you're the timekeeping code, you should not be using this! 239 */ 240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 241 { 242 u64 interval; 243 u64 tmp, ntpinterval; 244 struct clocksource *old_clock; 245 246 ++tk->cs_was_changed_seq; 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.mask = clock->mask; 250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 251 252 tk->tkr_raw.clock = clock; 253 tk->tkr_raw.mask = clock->mask; 254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 255 256 /* Do the ns -> cycle conversion first, using original mult */ 257 tmp = NTP_INTERVAL_LENGTH; 258 tmp <<= clock->shift; 259 ntpinterval = tmp; 260 tmp += clock->mult/2; 261 do_div(tmp, clock->mult); 262 if (tmp == 0) 263 tmp = 1; 264 265 interval = (u64) tmp; 266 tk->cycle_interval = interval; 267 268 /* Go back from cycles -> shifted ns */ 269 tk->xtime_interval = interval * clock->mult; 270 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 271 tk->raw_interval = interval * clock->mult; 272 273 /* if changing clocks, convert xtime_nsec shift units */ 274 if (old_clock) { 275 int shift_change = clock->shift - old_clock->shift; 276 if (shift_change < 0) { 277 tk->tkr_mono.xtime_nsec >>= -shift_change; 278 tk->tkr_raw.xtime_nsec >>= -shift_change; 279 } else { 280 tk->tkr_mono.xtime_nsec <<= shift_change; 281 tk->tkr_raw.xtime_nsec <<= shift_change; 282 } 283 } 284 285 tk->tkr_mono.shift = clock->shift; 286 tk->tkr_raw.shift = clock->shift; 287 288 tk->ntp_error = 0; 289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 291 292 /* 293 * The timekeeper keeps its own mult values for the currently 294 * active clocksource. These value will be adjusted via NTP 295 * to counteract clock drifting. 296 */ 297 tk->tkr_mono.mult = clock->mult; 298 tk->tkr_raw.mult = clock->mult; 299 tk->ntp_err_mult = 0; 300 tk->skip_second_overflow = 0; 301 } 302 303 /* Timekeeper helper functions. */ 304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 305 { 306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 307 } 308 309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 310 { 311 /* Calculate the delta since the last update_wall_time() */ 312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 313 314 /* 315 * This detects both negative motion and the case where the delta 316 * overflows the multiplication with tkr->mult. 317 */ 318 if (unlikely(delta > tkr->clock->max_cycles)) { 319 /* 320 * Handle clocksource inconsistency between CPUs to prevent 321 * time from going backwards by checking for the MSB of the 322 * mask being set in the delta. 323 */ 324 if (delta & ~(mask >> 1)) 325 return tkr->xtime_nsec >> tkr->shift; 326 327 return delta_to_ns_safe(tkr, delta); 328 } 329 330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 331 } 332 333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 334 { 335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 336 } 337 338 /** 339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 340 * @tkr: Timekeeping readout base from which we take the update 341 * @tkf: Pointer to NMI safe timekeeper 342 * 343 * We want to use this from any context including NMI and tracing / 344 * instrumenting the timekeeping code itself. 345 * 346 * Employ the latch technique; see @write_seqcount_latch. 347 * 348 * So if a NMI hits the update of base[0] then it will use base[1] 349 * which is still consistent. In the worst case this can result is a 350 * slightly wrong timestamp (a few nanoseconds). See 351 * @ktime_get_mono_fast_ns. 352 */ 353 static void update_fast_timekeeper(const struct tk_read_base *tkr, 354 struct tk_fast *tkf) 355 { 356 struct tk_read_base *base = tkf->base; 357 358 /* Force readers off to base[1] */ 359 write_seqcount_latch_begin(&tkf->seq); 360 361 /* Update base[0] */ 362 memcpy(base, tkr, sizeof(*base)); 363 364 /* Force readers back to base[0] */ 365 write_seqcount_latch(&tkf->seq); 366 367 /* Update base[1] */ 368 memcpy(base + 1, base, sizeof(*base)); 369 370 write_seqcount_latch_end(&tkf->seq); 371 } 372 373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 374 { 375 struct tk_read_base *tkr; 376 unsigned int seq; 377 u64 now; 378 379 do { 380 seq = read_seqcount_latch(&tkf->seq); 381 tkr = tkf->base + (seq & 0x01); 382 now = ktime_to_ns(tkr->base); 383 now += timekeeping_get_ns(tkr); 384 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 385 386 return now; 387 } 388 389 /** 390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 391 * 392 * This timestamp is not guaranteed to be monotonic across an update. 393 * The timestamp is calculated by: 394 * 395 * now = base_mono + clock_delta * slope 396 * 397 * So if the update lowers the slope, readers who are forced to the 398 * not yet updated second array are still using the old steeper slope. 399 * 400 * tmono 401 * ^ 402 * | o n 403 * | o n 404 * | u 405 * | o 406 * |o 407 * |12345678---> reader order 408 * 409 * o = old slope 410 * u = update 411 * n = new slope 412 * 413 * So reader 6 will observe time going backwards versus reader 5. 414 * 415 * While other CPUs are likely to be able to observe that, the only way 416 * for a CPU local observation is when an NMI hits in the middle of 417 * the update. Timestamps taken from that NMI context might be ahead 418 * of the following timestamps. Callers need to be aware of that and 419 * deal with it. 420 */ 421 u64 notrace ktime_get_mono_fast_ns(void) 422 { 423 return __ktime_get_fast_ns(&tk_fast_mono); 424 } 425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 426 427 /** 428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 429 * 430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 431 * conversion factor is not affected by NTP/PTP correction. 432 */ 433 u64 notrace ktime_get_raw_fast_ns(void) 434 { 435 return __ktime_get_fast_ns(&tk_fast_raw); 436 } 437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 438 439 /** 440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 441 * 442 * To keep it NMI safe since we're accessing from tracing, we're not using a 443 * separate timekeeper with updates to monotonic clock and boot offset 444 * protected with seqcounts. This has the following minor side effects: 445 * 446 * (1) Its possible that a timestamp be taken after the boot offset is updated 447 * but before the timekeeper is updated. If this happens, the new boot offset 448 * is added to the old timekeeping making the clock appear to update slightly 449 * earlier: 450 * CPU 0 CPU 1 451 * timekeeping_inject_sleeptime64() 452 * __timekeeping_inject_sleeptime(tk, delta); 453 * timestamp(); 454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 455 * 456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 457 * partially updated. Since the tk->offs_boot update is a rare event, this 458 * should be a rare occurrence which postprocessing should be able to handle. 459 * 460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 461 * apply as well. 462 */ 463 u64 notrace ktime_get_boot_fast_ns(void) 464 { 465 struct timekeeper *tk = &tk_core.timekeeper; 466 467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 468 } 469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 470 471 /** 472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 473 * 474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 475 * mono time and the TAI offset are not read atomically which may yield wrong 476 * readouts. However, an update of the TAI offset is an rare event e.g., caused 477 * by settime or adjtimex with an offset. The user of this function has to deal 478 * with the possibility of wrong timestamps in post processing. 479 */ 480 u64 notrace ktime_get_tai_fast_ns(void) 481 { 482 struct timekeeper *tk = &tk_core.timekeeper; 483 484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 485 } 486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 487 488 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 489 { 490 struct tk_read_base *tkr; 491 u64 basem, baser, delta; 492 unsigned int seq; 493 494 do { 495 seq = raw_read_seqcount_latch(&tkf->seq); 496 tkr = tkf->base + (seq & 0x01); 497 basem = ktime_to_ns(tkr->base); 498 baser = ktime_to_ns(tkr->base_real); 499 delta = timekeeping_get_ns(tkr); 500 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 501 502 if (mono) 503 *mono = basem + delta; 504 return baser + delta; 505 } 506 507 /** 508 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 509 * 510 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 511 */ 512 u64 ktime_get_real_fast_ns(void) 513 { 514 return __ktime_get_real_fast(&tk_fast_mono, NULL); 515 } 516 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 517 518 /** 519 * ktime_get_fast_timestamps: - NMI safe timestamps 520 * @snapshot: Pointer to timestamp storage 521 * 522 * Stores clock monotonic, boottime and realtime timestamps. 523 * 524 * Boot time is a racy access on 32bit systems if the sleep time injection 525 * happens late during resume and not in timekeeping_resume(). That could 526 * be avoided by expanding struct tk_read_base with boot offset for 32bit 527 * and adding more overhead to the update. As this is a hard to observe 528 * once per resume event which can be filtered with reasonable effort using 529 * the accurate mono/real timestamps, it's probably not worth the trouble. 530 * 531 * Aside of that it might be possible on 32 and 64 bit to observe the 532 * following when the sleep time injection happens late: 533 * 534 * CPU 0 CPU 1 535 * timekeeping_resume() 536 * ktime_get_fast_timestamps() 537 * mono, real = __ktime_get_real_fast() 538 * inject_sleep_time() 539 * update boot offset 540 * boot = mono + bootoffset; 541 * 542 * That means that boot time already has the sleep time adjustment, but 543 * real time does not. On the next readout both are in sync again. 544 * 545 * Preventing this for 64bit is not really feasible without destroying the 546 * careful cache layout of the timekeeper because the sequence count and 547 * struct tk_read_base would then need two cache lines instead of one. 548 * 549 * Access to the time keeper clock source is disabled across the innermost 550 * steps of suspend/resume. The accessors still work, but the timestamps 551 * are frozen until time keeping is resumed which happens very early. 552 * 553 * For regular suspend/resume there is no observable difference vs. sched 554 * clock, but it might affect some of the nasty low level debug printks. 555 * 556 * OTOH, access to sched clock is not guaranteed across suspend/resume on 557 * all systems either so it depends on the hardware in use. 558 * 559 * If that turns out to be a real problem then this could be mitigated by 560 * using sched clock in a similar way as during early boot. But it's not as 561 * trivial as on early boot because it needs some careful protection 562 * against the clock monotonic timestamp jumping backwards on resume. 563 */ 564 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 565 { 566 struct timekeeper *tk = &tk_core.timekeeper; 567 568 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 569 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 570 } 571 572 /** 573 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 574 * @tk: Timekeeper to snapshot. 575 * 576 * It generally is unsafe to access the clocksource after timekeeping has been 577 * suspended, so take a snapshot of the readout base of @tk and use it as the 578 * fast timekeeper's readout base while suspended. It will return the same 579 * number of cycles every time until timekeeping is resumed at which time the 580 * proper readout base for the fast timekeeper will be restored automatically. 581 */ 582 static void halt_fast_timekeeper(const struct timekeeper *tk) 583 { 584 static struct tk_read_base tkr_dummy; 585 const struct tk_read_base *tkr = &tk->tkr_mono; 586 587 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 588 cycles_at_suspend = tk_clock_read(tkr); 589 tkr_dummy.clock = &dummy_clock; 590 tkr_dummy.base_real = tkr->base + tk->offs_real; 591 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 592 593 tkr = &tk->tkr_raw; 594 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 595 tkr_dummy.clock = &dummy_clock; 596 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 597 } 598 599 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 600 601 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 602 { 603 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 604 } 605 606 /** 607 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 608 * @nb: Pointer to the notifier block to register 609 */ 610 int pvclock_gtod_register_notifier(struct notifier_block *nb) 611 { 612 struct timekeeper *tk = &tk_core.timekeeper; 613 int ret; 614 615 guard(raw_spinlock_irqsave)(&tk_core.lock); 616 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 617 update_pvclock_gtod(tk, true); 618 619 return ret; 620 } 621 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 622 623 /** 624 * pvclock_gtod_unregister_notifier - unregister a pvclock 625 * timedata update listener 626 * @nb: Pointer to the notifier block to unregister 627 */ 628 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 629 { 630 guard(raw_spinlock_irqsave)(&tk_core.lock); 631 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 632 } 633 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 634 635 /* 636 * tk_update_leap_state - helper to update the next_leap_ktime 637 */ 638 static inline void tk_update_leap_state(struct timekeeper *tk) 639 { 640 tk->next_leap_ktime = ntp_get_next_leap(); 641 if (tk->next_leap_ktime != KTIME_MAX) 642 /* Convert to monotonic time */ 643 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 644 } 645 646 /* 647 * Leap state update for both shadow and the real timekeeper 648 * Separate to spare a full memcpy() of the timekeeper. 649 */ 650 static void tk_update_leap_state_all(struct tk_data *tkd) 651 { 652 write_seqcount_begin(&tkd->seq); 653 tk_update_leap_state(&tkd->shadow_timekeeper); 654 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 655 write_seqcount_end(&tkd->seq); 656 } 657 658 /* 659 * Update the ktime_t based scalar nsec members of the timekeeper 660 */ 661 static inline void tk_update_ktime_data(struct timekeeper *tk) 662 { 663 u64 seconds; 664 u32 nsec; 665 666 /* 667 * The xtime based monotonic readout is: 668 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 669 * The ktime based monotonic readout is: 670 * nsec = base_mono + now(); 671 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 672 */ 673 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 674 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 675 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 676 677 /* 678 * The sum of the nanoseconds portions of xtime and 679 * wall_to_monotonic can be greater/equal one second. Take 680 * this into account before updating tk->ktime_sec. 681 */ 682 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 683 if (nsec >= NSEC_PER_SEC) 684 seconds++; 685 tk->ktime_sec = seconds; 686 687 /* Update the monotonic raw base */ 688 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 689 } 690 691 /* 692 * Restore the shadow timekeeper from the real timekeeper. 693 */ 694 static void timekeeping_restore_shadow(struct tk_data *tkd) 695 { 696 lockdep_assert_held(&tkd->lock); 697 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 698 } 699 700 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 701 { 702 struct timekeeper *tk = &tk_core.shadow_timekeeper; 703 704 lockdep_assert_held(&tkd->lock); 705 706 /* 707 * Block out readers before running the updates below because that 708 * updates VDSO and other time related infrastructure. Not blocking 709 * the readers might let a reader see time going backwards when 710 * reading from the VDSO after the VDSO update and then reading in 711 * the kernel from the timekeeper before that got updated. 712 */ 713 write_seqcount_begin(&tkd->seq); 714 715 if (action & TK_CLEAR_NTP) { 716 tk->ntp_error = 0; 717 ntp_clear(); 718 } 719 720 tk_update_leap_state(tk); 721 tk_update_ktime_data(tk); 722 723 update_vsyscall(tk); 724 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 725 726 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 727 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 728 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 729 730 if (action & TK_CLOCK_WAS_SET) 731 tk->clock_was_set_seq++; 732 733 /* 734 * Update the real timekeeper. 735 * 736 * We could avoid this memcpy() by switching pointers, but that has 737 * the downside that the reader side does not longer benefit from 738 * the cacheline optimized data layout of the timekeeper and requires 739 * another indirection. 740 */ 741 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 742 write_seqcount_end(&tkd->seq); 743 } 744 745 /** 746 * timekeeping_forward_now - update clock to the current time 747 * @tk: Pointer to the timekeeper to update 748 * 749 * Forward the current clock to update its state since the last call to 750 * update_wall_time(). This is useful before significant clock changes, 751 * as it avoids having to deal with this time offset explicitly. 752 */ 753 static void timekeeping_forward_now(struct timekeeper *tk) 754 { 755 u64 cycle_now, delta; 756 757 cycle_now = tk_clock_read(&tk->tkr_mono); 758 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 759 tk->tkr_mono.clock->max_raw_delta); 760 tk->tkr_mono.cycle_last = cycle_now; 761 tk->tkr_raw.cycle_last = cycle_now; 762 763 while (delta > 0) { 764 u64 max = tk->tkr_mono.clock->max_cycles; 765 u64 incr = delta < max ? delta : max; 766 767 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 768 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 769 tk_normalize_xtime(tk); 770 delta -= incr; 771 } 772 } 773 774 /** 775 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 776 * @ts: pointer to the timespec to be set 777 * 778 * Returns the time of day in a timespec64 (WARN if suspended). 779 */ 780 void ktime_get_real_ts64(struct timespec64 *ts) 781 { 782 struct timekeeper *tk = &tk_core.timekeeper; 783 unsigned int seq; 784 u64 nsecs; 785 786 WARN_ON(timekeeping_suspended); 787 788 do { 789 seq = read_seqcount_begin(&tk_core.seq); 790 791 ts->tv_sec = tk->xtime_sec; 792 nsecs = timekeeping_get_ns(&tk->tkr_mono); 793 794 } while (read_seqcount_retry(&tk_core.seq, seq)); 795 796 ts->tv_nsec = 0; 797 timespec64_add_ns(ts, nsecs); 798 } 799 EXPORT_SYMBOL(ktime_get_real_ts64); 800 801 ktime_t ktime_get(void) 802 { 803 struct timekeeper *tk = &tk_core.timekeeper; 804 unsigned int seq; 805 ktime_t base; 806 u64 nsecs; 807 808 WARN_ON(timekeeping_suspended); 809 810 do { 811 seq = read_seqcount_begin(&tk_core.seq); 812 base = tk->tkr_mono.base; 813 nsecs = timekeeping_get_ns(&tk->tkr_mono); 814 815 } while (read_seqcount_retry(&tk_core.seq, seq)); 816 817 return ktime_add_ns(base, nsecs); 818 } 819 EXPORT_SYMBOL_GPL(ktime_get); 820 821 u32 ktime_get_resolution_ns(void) 822 { 823 struct timekeeper *tk = &tk_core.timekeeper; 824 unsigned int seq; 825 u32 nsecs; 826 827 WARN_ON(timekeeping_suspended); 828 829 do { 830 seq = read_seqcount_begin(&tk_core.seq); 831 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 832 } while (read_seqcount_retry(&tk_core.seq, seq)); 833 834 return nsecs; 835 } 836 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 837 838 static ktime_t *offsets[TK_OFFS_MAX] = { 839 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 840 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 841 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 842 }; 843 844 ktime_t ktime_get_with_offset(enum tk_offsets offs) 845 { 846 struct timekeeper *tk = &tk_core.timekeeper; 847 unsigned int seq; 848 ktime_t base, *offset = offsets[offs]; 849 u64 nsecs; 850 851 WARN_ON(timekeeping_suspended); 852 853 do { 854 seq = read_seqcount_begin(&tk_core.seq); 855 base = ktime_add(tk->tkr_mono.base, *offset); 856 nsecs = timekeeping_get_ns(&tk->tkr_mono); 857 858 } while (read_seqcount_retry(&tk_core.seq, seq)); 859 860 return ktime_add_ns(base, nsecs); 861 862 } 863 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 864 865 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 866 { 867 struct timekeeper *tk = &tk_core.timekeeper; 868 unsigned int seq; 869 ktime_t base, *offset = offsets[offs]; 870 u64 nsecs; 871 872 WARN_ON(timekeeping_suspended); 873 874 do { 875 seq = read_seqcount_begin(&tk_core.seq); 876 base = ktime_add(tk->tkr_mono.base, *offset); 877 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 878 879 } while (read_seqcount_retry(&tk_core.seq, seq)); 880 881 return ktime_add_ns(base, nsecs); 882 } 883 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 884 885 /** 886 * ktime_mono_to_any() - convert monotonic time to any other time 887 * @tmono: time to convert. 888 * @offs: which offset to use 889 */ 890 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 891 { 892 ktime_t *offset = offsets[offs]; 893 unsigned int seq; 894 ktime_t tconv; 895 896 if (IS_ENABLED(CONFIG_64BIT)) { 897 /* 898 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 899 * tk_update_sleep_time(). 900 */ 901 return ktime_add(tmono, READ_ONCE(*offset)); 902 } 903 904 do { 905 seq = read_seqcount_begin(&tk_core.seq); 906 tconv = ktime_add(tmono, *offset); 907 } while (read_seqcount_retry(&tk_core.seq, seq)); 908 909 return tconv; 910 } 911 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 912 913 /** 914 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 915 */ 916 ktime_t ktime_get_raw(void) 917 { 918 struct timekeeper *tk = &tk_core.timekeeper; 919 unsigned int seq; 920 ktime_t base; 921 u64 nsecs; 922 923 do { 924 seq = read_seqcount_begin(&tk_core.seq); 925 base = tk->tkr_raw.base; 926 nsecs = timekeeping_get_ns(&tk->tkr_raw); 927 928 } while (read_seqcount_retry(&tk_core.seq, seq)); 929 930 return ktime_add_ns(base, nsecs); 931 } 932 EXPORT_SYMBOL_GPL(ktime_get_raw); 933 934 /** 935 * ktime_get_ts64 - get the monotonic clock in timespec64 format 936 * @ts: pointer to timespec variable 937 * 938 * The function calculates the monotonic clock from the realtime 939 * clock and the wall_to_monotonic offset and stores the result 940 * in normalized timespec64 format in the variable pointed to by @ts. 941 */ 942 void ktime_get_ts64(struct timespec64 *ts) 943 { 944 struct timekeeper *tk = &tk_core.timekeeper; 945 struct timespec64 tomono; 946 unsigned int seq; 947 u64 nsec; 948 949 WARN_ON(timekeeping_suspended); 950 951 do { 952 seq = read_seqcount_begin(&tk_core.seq); 953 ts->tv_sec = tk->xtime_sec; 954 nsec = timekeeping_get_ns(&tk->tkr_mono); 955 tomono = tk->wall_to_monotonic; 956 957 } while (read_seqcount_retry(&tk_core.seq, seq)); 958 959 ts->tv_sec += tomono.tv_sec; 960 ts->tv_nsec = 0; 961 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 962 } 963 EXPORT_SYMBOL_GPL(ktime_get_ts64); 964 965 /** 966 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 967 * 968 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 969 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 970 * works on both 32 and 64 bit systems. On 32 bit systems the readout 971 * covers ~136 years of uptime which should be enough to prevent 972 * premature wrap arounds. 973 */ 974 time64_t ktime_get_seconds(void) 975 { 976 struct timekeeper *tk = &tk_core.timekeeper; 977 978 WARN_ON(timekeeping_suspended); 979 return tk->ktime_sec; 980 } 981 EXPORT_SYMBOL_GPL(ktime_get_seconds); 982 983 /** 984 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 985 * 986 * Returns the wall clock seconds since 1970. 987 * 988 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 989 * 32bit systems the access must be protected with the sequence 990 * counter to provide "atomic" access to the 64bit tk->xtime_sec 991 * value. 992 */ 993 time64_t ktime_get_real_seconds(void) 994 { 995 struct timekeeper *tk = &tk_core.timekeeper; 996 time64_t seconds; 997 unsigned int seq; 998 999 if (IS_ENABLED(CONFIG_64BIT)) 1000 return tk->xtime_sec; 1001 1002 do { 1003 seq = read_seqcount_begin(&tk_core.seq); 1004 seconds = tk->xtime_sec; 1005 1006 } while (read_seqcount_retry(&tk_core.seq, seq)); 1007 1008 return seconds; 1009 } 1010 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1011 1012 /** 1013 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1014 * but without the sequence counter protect. This internal function 1015 * is called just when timekeeping lock is already held. 1016 */ 1017 noinstr time64_t __ktime_get_real_seconds(void) 1018 { 1019 struct timekeeper *tk = &tk_core.timekeeper; 1020 1021 return tk->xtime_sec; 1022 } 1023 1024 /** 1025 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1026 * @systime_snapshot: pointer to struct receiving the system time snapshot 1027 */ 1028 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1029 { 1030 struct timekeeper *tk = &tk_core.timekeeper; 1031 unsigned int seq; 1032 ktime_t base_raw; 1033 ktime_t base_real; 1034 ktime_t base_boot; 1035 u64 nsec_raw; 1036 u64 nsec_real; 1037 u64 now; 1038 1039 WARN_ON_ONCE(timekeeping_suspended); 1040 1041 do { 1042 seq = read_seqcount_begin(&tk_core.seq); 1043 now = tk_clock_read(&tk->tkr_mono); 1044 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1045 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1046 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1047 base_real = ktime_add(tk->tkr_mono.base, 1048 tk_core.timekeeper.offs_real); 1049 base_boot = ktime_add(tk->tkr_mono.base, 1050 tk_core.timekeeper.offs_boot); 1051 base_raw = tk->tkr_raw.base; 1052 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1053 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1054 } while (read_seqcount_retry(&tk_core.seq, seq)); 1055 1056 systime_snapshot->cycles = now; 1057 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1058 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1059 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1060 } 1061 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1062 1063 /* Scale base by mult/div checking for overflow */ 1064 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1065 { 1066 u64 tmp, rem; 1067 1068 tmp = div64_u64_rem(*base, div, &rem); 1069 1070 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1071 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1072 return -EOVERFLOW; 1073 tmp *= mult; 1074 1075 rem = div64_u64(rem * mult, div); 1076 *base = tmp + rem; 1077 return 0; 1078 } 1079 1080 /** 1081 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1082 * @history: Snapshot representing start of history 1083 * @partial_history_cycles: Cycle offset into history (fractional part) 1084 * @total_history_cycles: Total history length in cycles 1085 * @discontinuity: True indicates clock was set on history period 1086 * @ts: Cross timestamp that should be adjusted using 1087 * partial/total ratio 1088 * 1089 * Helper function used by get_device_system_crosststamp() to correct the 1090 * crosstimestamp corresponding to the start of the current interval to the 1091 * system counter value (timestamp point) provided by the driver. The 1092 * total_history_* quantities are the total history starting at the provided 1093 * reference point and ending at the start of the current interval. The cycle 1094 * count between the driver timestamp point and the start of the current 1095 * interval is partial_history_cycles. 1096 */ 1097 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1098 u64 partial_history_cycles, 1099 u64 total_history_cycles, 1100 bool discontinuity, 1101 struct system_device_crosststamp *ts) 1102 { 1103 struct timekeeper *tk = &tk_core.timekeeper; 1104 u64 corr_raw, corr_real; 1105 bool interp_forward; 1106 int ret; 1107 1108 if (total_history_cycles == 0 || partial_history_cycles == 0) 1109 return 0; 1110 1111 /* Interpolate shortest distance from beginning or end of history */ 1112 interp_forward = partial_history_cycles > total_history_cycles / 2; 1113 partial_history_cycles = interp_forward ? 1114 total_history_cycles - partial_history_cycles : 1115 partial_history_cycles; 1116 1117 /* 1118 * Scale the monotonic raw time delta by: 1119 * partial_history_cycles / total_history_cycles 1120 */ 1121 corr_raw = (u64)ktime_to_ns( 1122 ktime_sub(ts->sys_monoraw, history->raw)); 1123 ret = scale64_check_overflow(partial_history_cycles, 1124 total_history_cycles, &corr_raw); 1125 if (ret) 1126 return ret; 1127 1128 /* 1129 * If there is a discontinuity in the history, scale monotonic raw 1130 * correction by: 1131 * mult(real)/mult(raw) yielding the realtime correction 1132 * Otherwise, calculate the realtime correction similar to monotonic 1133 * raw calculation 1134 */ 1135 if (discontinuity) { 1136 corr_real = mul_u64_u32_div 1137 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1138 } else { 1139 corr_real = (u64)ktime_to_ns( 1140 ktime_sub(ts->sys_realtime, history->real)); 1141 ret = scale64_check_overflow(partial_history_cycles, 1142 total_history_cycles, &corr_real); 1143 if (ret) 1144 return ret; 1145 } 1146 1147 /* Fixup monotonic raw and real time time values */ 1148 if (interp_forward) { 1149 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1150 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1151 } else { 1152 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1153 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1154 } 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * timestamp_in_interval - true if ts is chronologically in [start, end] 1161 * 1162 * True if ts occurs chronologically at or after start, and before or at end. 1163 */ 1164 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1165 { 1166 if (ts >= start && ts <= end) 1167 return true; 1168 if (start > end && (ts >= start || ts <= end)) 1169 return true; 1170 return false; 1171 } 1172 1173 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1174 { 1175 u64 rem, res; 1176 1177 if (!numerator || !denominator) 1178 return false; 1179 1180 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1181 *val = res + div_u64(rem * numerator, denominator); 1182 return true; 1183 } 1184 1185 static bool convert_base_to_cs(struct system_counterval_t *scv) 1186 { 1187 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1188 struct clocksource_base *base; 1189 u32 num, den; 1190 1191 /* The timestamp was taken from the time keeper clock source */ 1192 if (cs->id == scv->cs_id) 1193 return true; 1194 1195 /* 1196 * Check whether cs_id matches the base clock. Prevent the compiler from 1197 * re-evaluating @base as the clocksource might change concurrently. 1198 */ 1199 base = READ_ONCE(cs->base); 1200 if (!base || base->id != scv->cs_id) 1201 return false; 1202 1203 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1204 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1205 1206 if (!convert_clock(&scv->cycles, num, den)) 1207 return false; 1208 1209 scv->cycles += base->offset; 1210 return true; 1211 } 1212 1213 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1214 { 1215 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1216 struct clocksource_base *base; 1217 1218 /* 1219 * Check whether base_id matches the base clock. Prevent the compiler from 1220 * re-evaluating @base as the clocksource might change concurrently. 1221 */ 1222 base = READ_ONCE(cs->base); 1223 if (!base || base->id != base_id) 1224 return false; 1225 1226 *cycles -= base->offset; 1227 if (!convert_clock(cycles, base->denominator, base->numerator)) 1228 return false; 1229 return true; 1230 } 1231 1232 static bool convert_ns_to_cs(u64 *delta) 1233 { 1234 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1235 1236 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1237 return false; 1238 1239 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1240 return true; 1241 } 1242 1243 /** 1244 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1245 * @treal: CLOCK_REALTIME timestamp to convert 1246 * @base_id: base clocksource id 1247 * @cycles: pointer to store the converted base clock timestamp 1248 * 1249 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1250 * 1251 * Return: true if the conversion is successful, false otherwise. 1252 */ 1253 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1254 { 1255 struct timekeeper *tk = &tk_core.timekeeper; 1256 unsigned int seq; 1257 u64 delta; 1258 1259 do { 1260 seq = read_seqcount_begin(&tk_core.seq); 1261 if ((u64)treal < tk->tkr_mono.base_real) 1262 return false; 1263 delta = (u64)treal - tk->tkr_mono.base_real; 1264 if (!convert_ns_to_cs(&delta)) 1265 return false; 1266 *cycles = tk->tkr_mono.cycle_last + delta; 1267 if (!convert_cs_to_base(cycles, base_id)) 1268 return false; 1269 } while (read_seqcount_retry(&tk_core.seq, seq)); 1270 1271 return true; 1272 } 1273 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1274 1275 /** 1276 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1277 * @get_time_fn: Callback to get simultaneous device time and 1278 * system counter from the device driver 1279 * @ctx: Context passed to get_time_fn() 1280 * @history_begin: Historical reference point used to interpolate system 1281 * time when counter provided by the driver is before the current interval 1282 * @xtstamp: Receives simultaneously captured system and device time 1283 * 1284 * Reads a timestamp from a device and correlates it to system time 1285 */ 1286 int get_device_system_crosststamp(int (*get_time_fn) 1287 (ktime_t *device_time, 1288 struct system_counterval_t *sys_counterval, 1289 void *ctx), 1290 void *ctx, 1291 struct system_time_snapshot *history_begin, 1292 struct system_device_crosststamp *xtstamp) 1293 { 1294 struct system_counterval_t system_counterval; 1295 struct timekeeper *tk = &tk_core.timekeeper; 1296 u64 cycles, now, interval_start; 1297 unsigned int clock_was_set_seq = 0; 1298 ktime_t base_real, base_raw; 1299 u64 nsec_real, nsec_raw; 1300 u8 cs_was_changed_seq; 1301 unsigned int seq; 1302 bool do_interp; 1303 int ret; 1304 1305 do { 1306 seq = read_seqcount_begin(&tk_core.seq); 1307 /* 1308 * Try to synchronously capture device time and a system 1309 * counter value calling back into the device driver 1310 */ 1311 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1312 if (ret) 1313 return ret; 1314 1315 /* 1316 * Verify that the clocksource ID associated with the captured 1317 * system counter value is the same as for the currently 1318 * installed timekeeper clocksource 1319 */ 1320 if (system_counterval.cs_id == CSID_GENERIC || 1321 !convert_base_to_cs(&system_counterval)) 1322 return -ENODEV; 1323 cycles = system_counterval.cycles; 1324 1325 /* 1326 * Check whether the system counter value provided by the 1327 * device driver is on the current timekeeping interval. 1328 */ 1329 now = tk_clock_read(&tk->tkr_mono); 1330 interval_start = tk->tkr_mono.cycle_last; 1331 if (!timestamp_in_interval(interval_start, now, cycles)) { 1332 clock_was_set_seq = tk->clock_was_set_seq; 1333 cs_was_changed_seq = tk->cs_was_changed_seq; 1334 cycles = interval_start; 1335 do_interp = true; 1336 } else { 1337 do_interp = false; 1338 } 1339 1340 base_real = ktime_add(tk->tkr_mono.base, 1341 tk_core.timekeeper.offs_real); 1342 base_raw = tk->tkr_raw.base; 1343 1344 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1345 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1346 } while (read_seqcount_retry(&tk_core.seq, seq)); 1347 1348 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1349 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1350 1351 /* 1352 * Interpolate if necessary, adjusting back from the start of the 1353 * current interval 1354 */ 1355 if (do_interp) { 1356 u64 partial_history_cycles, total_history_cycles; 1357 bool discontinuity; 1358 1359 /* 1360 * Check that the counter value is not before the provided 1361 * history reference and that the history doesn't cross a 1362 * clocksource change 1363 */ 1364 if (!history_begin || 1365 !timestamp_in_interval(history_begin->cycles, 1366 cycles, system_counterval.cycles) || 1367 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1368 return -EINVAL; 1369 partial_history_cycles = cycles - system_counterval.cycles; 1370 total_history_cycles = cycles - history_begin->cycles; 1371 discontinuity = 1372 history_begin->clock_was_set_seq != clock_was_set_seq; 1373 1374 ret = adjust_historical_crosststamp(history_begin, 1375 partial_history_cycles, 1376 total_history_cycles, 1377 discontinuity, xtstamp); 1378 if (ret) 1379 return ret; 1380 } 1381 1382 return 0; 1383 } 1384 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1385 1386 /** 1387 * timekeeping_clocksource_has_base - Check whether the current clocksource 1388 * is based on given a base clock 1389 * @id: base clocksource ID 1390 * 1391 * Note: The return value is a snapshot which can become invalid right 1392 * after the function returns. 1393 * 1394 * Return: true if the timekeeper clocksource has a base clock with @id, 1395 * false otherwise 1396 */ 1397 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1398 { 1399 /* 1400 * This is a snapshot, so no point in using the sequence 1401 * count. Just prevent the compiler from re-evaluating @base as the 1402 * clocksource might change concurrently. 1403 */ 1404 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1405 1406 return base ? base->id == id : false; 1407 } 1408 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1409 1410 /** 1411 * do_settimeofday64 - Sets the time of day. 1412 * @ts: pointer to the timespec64 variable containing the new time 1413 * 1414 * Sets the time of day to the new time and update NTP and notify hrtimers 1415 */ 1416 int do_settimeofday64(const struct timespec64 *ts) 1417 { 1418 struct timespec64 ts_delta, xt; 1419 1420 if (!timespec64_valid_settod(ts)) 1421 return -EINVAL; 1422 1423 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1424 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1425 1426 timekeeping_forward_now(tks); 1427 1428 xt = tk_xtime(tks); 1429 ts_delta = timespec64_sub(*ts, xt); 1430 1431 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1432 timekeeping_restore_shadow(&tk_core); 1433 return -EINVAL; 1434 } 1435 1436 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1437 tk_set_xtime(tks, ts); 1438 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1439 } 1440 1441 /* Signal hrtimers about time change */ 1442 clock_was_set(CLOCK_SET_WALL); 1443 1444 audit_tk_injoffset(ts_delta); 1445 add_device_randomness(ts, sizeof(*ts)); 1446 return 0; 1447 } 1448 EXPORT_SYMBOL(do_settimeofday64); 1449 1450 /** 1451 * timekeeping_inject_offset - Adds or subtracts from the current time. 1452 * @ts: Pointer to the timespec variable containing the offset 1453 * 1454 * Adds or subtracts an offset value from the current time. 1455 */ 1456 static int timekeeping_inject_offset(const struct timespec64 *ts) 1457 { 1458 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1459 return -EINVAL; 1460 1461 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1462 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1463 struct timespec64 tmp; 1464 1465 timekeeping_forward_now(tks); 1466 1467 /* Make sure the proposed value is valid */ 1468 tmp = timespec64_add(tk_xtime(tks), *ts); 1469 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1470 !timespec64_valid_settod(&tmp)) { 1471 timekeeping_restore_shadow(&tk_core); 1472 return -EINVAL; 1473 } 1474 1475 tk_xtime_add(tks, ts); 1476 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1477 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1478 } 1479 1480 /* Signal hrtimers about time change */ 1481 clock_was_set(CLOCK_SET_WALL); 1482 return 0; 1483 } 1484 1485 /* 1486 * Indicates if there is an offset between the system clock and the hardware 1487 * clock/persistent clock/rtc. 1488 */ 1489 int persistent_clock_is_local; 1490 1491 /* 1492 * Adjust the time obtained from the CMOS to be UTC time instead of 1493 * local time. 1494 * 1495 * This is ugly, but preferable to the alternatives. Otherwise we 1496 * would either need to write a program to do it in /etc/rc (and risk 1497 * confusion if the program gets run more than once; it would also be 1498 * hard to make the program warp the clock precisely n hours) or 1499 * compile in the timezone information into the kernel. Bad, bad.... 1500 * 1501 * - TYT, 1992-01-01 1502 * 1503 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1504 * as real UNIX machines always do it. This avoids all headaches about 1505 * daylight saving times and warping kernel clocks. 1506 */ 1507 void timekeeping_warp_clock(void) 1508 { 1509 if (sys_tz.tz_minuteswest != 0) { 1510 struct timespec64 adjust; 1511 1512 persistent_clock_is_local = 1; 1513 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1514 adjust.tv_nsec = 0; 1515 timekeeping_inject_offset(&adjust); 1516 } 1517 } 1518 1519 /* 1520 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1521 */ 1522 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1523 { 1524 tk->tai_offset = tai_offset; 1525 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1526 } 1527 1528 /* 1529 * change_clocksource - Swaps clocksources if a new one is available 1530 * 1531 * Accumulates current time interval and initializes new clocksource 1532 */ 1533 static int change_clocksource(void *data) 1534 { 1535 struct clocksource *new = data, *old = NULL; 1536 1537 /* 1538 * If the clocksource is in a module, get a module reference. 1539 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1540 * reference can't be acquired. 1541 */ 1542 if (!try_module_get(new->owner)) 1543 return 0; 1544 1545 /* Abort if the device can't be enabled */ 1546 if (new->enable && new->enable(new) != 0) { 1547 module_put(new->owner); 1548 return 0; 1549 } 1550 1551 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1552 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1553 1554 timekeeping_forward_now(tks); 1555 old = tks->tkr_mono.clock; 1556 tk_setup_internals(tks, new); 1557 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1558 } 1559 1560 if (old) { 1561 if (old->disable) 1562 old->disable(old); 1563 module_put(old->owner); 1564 } 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * timekeeping_notify - Install a new clock source 1571 * @clock: pointer to the clock source 1572 * 1573 * This function is called from clocksource.c after a new, better clock 1574 * source has been registered. The caller holds the clocksource_mutex. 1575 */ 1576 int timekeeping_notify(struct clocksource *clock) 1577 { 1578 struct timekeeper *tk = &tk_core.timekeeper; 1579 1580 if (tk->tkr_mono.clock == clock) 1581 return 0; 1582 stop_machine(change_clocksource, clock, NULL); 1583 tick_clock_notify(); 1584 return tk->tkr_mono.clock == clock ? 0 : -1; 1585 } 1586 1587 /** 1588 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1589 * @ts: pointer to the timespec64 to be set 1590 * 1591 * Returns the raw monotonic time (completely un-modified by ntp) 1592 */ 1593 void ktime_get_raw_ts64(struct timespec64 *ts) 1594 { 1595 struct timekeeper *tk = &tk_core.timekeeper; 1596 unsigned int seq; 1597 u64 nsecs; 1598 1599 do { 1600 seq = read_seqcount_begin(&tk_core.seq); 1601 ts->tv_sec = tk->raw_sec; 1602 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1603 1604 } while (read_seqcount_retry(&tk_core.seq, seq)); 1605 1606 ts->tv_nsec = 0; 1607 timespec64_add_ns(ts, nsecs); 1608 } 1609 EXPORT_SYMBOL(ktime_get_raw_ts64); 1610 1611 1612 /** 1613 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1614 */ 1615 int timekeeping_valid_for_hres(void) 1616 { 1617 struct timekeeper *tk = &tk_core.timekeeper; 1618 unsigned int seq; 1619 int ret; 1620 1621 do { 1622 seq = read_seqcount_begin(&tk_core.seq); 1623 1624 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1625 1626 } while (read_seqcount_retry(&tk_core.seq, seq)); 1627 1628 return ret; 1629 } 1630 1631 /** 1632 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1633 */ 1634 u64 timekeeping_max_deferment(void) 1635 { 1636 struct timekeeper *tk = &tk_core.timekeeper; 1637 unsigned int seq; 1638 u64 ret; 1639 1640 do { 1641 seq = read_seqcount_begin(&tk_core.seq); 1642 1643 ret = tk->tkr_mono.clock->max_idle_ns; 1644 1645 } while (read_seqcount_retry(&tk_core.seq, seq)); 1646 1647 return ret; 1648 } 1649 1650 /** 1651 * read_persistent_clock64 - Return time from the persistent clock. 1652 * @ts: Pointer to the storage for the readout value 1653 * 1654 * Weak dummy function for arches that do not yet support it. 1655 * Reads the time from the battery backed persistent clock. 1656 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1657 * 1658 * XXX - Do be sure to remove it once all arches implement it. 1659 */ 1660 void __weak read_persistent_clock64(struct timespec64 *ts) 1661 { 1662 ts->tv_sec = 0; 1663 ts->tv_nsec = 0; 1664 } 1665 1666 /** 1667 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1668 * from the boot. 1669 * @wall_time: current time as returned by persistent clock 1670 * @boot_offset: offset that is defined as wall_time - boot_time 1671 * 1672 * Weak dummy function for arches that do not yet support it. 1673 * 1674 * The default function calculates offset based on the current value of 1675 * local_clock(). This way architectures that support sched_clock() but don't 1676 * support dedicated boot time clock will provide the best estimate of the 1677 * boot time. 1678 */ 1679 void __weak __init 1680 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1681 struct timespec64 *boot_offset) 1682 { 1683 read_persistent_clock64(wall_time); 1684 *boot_offset = ns_to_timespec64(local_clock()); 1685 } 1686 1687 static __init void tkd_basic_setup(struct tk_data *tkd) 1688 { 1689 raw_spin_lock_init(&tkd->lock); 1690 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1691 } 1692 1693 /* 1694 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1695 * 1696 * The flag starts of false and is only set when a suspend reaches 1697 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1698 * timekeeper clocksource is not stopping across suspend and has been 1699 * used to update sleep time. If the timekeeper clocksource has stopped 1700 * then the flag stays true and is used by the RTC resume code to decide 1701 * whether sleeptime must be injected and if so the flag gets false then. 1702 * 1703 * If a suspend fails before reaching timekeeping_resume() then the flag 1704 * stays false and prevents erroneous sleeptime injection. 1705 */ 1706 static bool suspend_timing_needed; 1707 1708 /* Flag for if there is a persistent clock on this platform */ 1709 static bool persistent_clock_exists; 1710 1711 /* 1712 * timekeeping_init - Initializes the clocksource and common timekeeping values 1713 */ 1714 void __init timekeeping_init(void) 1715 { 1716 struct timespec64 wall_time, boot_offset, wall_to_mono; 1717 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1718 struct clocksource *clock; 1719 1720 tkd_basic_setup(&tk_core); 1721 1722 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1723 if (timespec64_valid_settod(&wall_time) && 1724 timespec64_to_ns(&wall_time) > 0) { 1725 persistent_clock_exists = true; 1726 } else if (timespec64_to_ns(&wall_time) != 0) { 1727 pr_warn("Persistent clock returned invalid value"); 1728 wall_time = (struct timespec64){0}; 1729 } 1730 1731 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1732 boot_offset = (struct timespec64){0}; 1733 1734 /* 1735 * We want set wall_to_mono, so the following is true: 1736 * wall time + wall_to_mono = boot time 1737 */ 1738 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1739 1740 guard(raw_spinlock_irqsave)(&tk_core.lock); 1741 1742 ntp_init(); 1743 1744 clock = clocksource_default_clock(); 1745 if (clock->enable) 1746 clock->enable(clock); 1747 tk_setup_internals(tks, clock); 1748 1749 tk_set_xtime(tks, &wall_time); 1750 tks->raw_sec = 0; 1751 1752 tk_set_wall_to_mono(tks, wall_to_mono); 1753 1754 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1755 } 1756 1757 /* time in seconds when suspend began for persistent clock */ 1758 static struct timespec64 timekeeping_suspend_time; 1759 1760 /** 1761 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1762 * @tk: Pointer to the timekeeper to be updated 1763 * @delta: Pointer to the delta value in timespec64 format 1764 * 1765 * Takes a timespec offset measuring a suspend interval and properly 1766 * adds the sleep offset to the timekeeping variables. 1767 */ 1768 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1769 const struct timespec64 *delta) 1770 { 1771 if (!timespec64_valid_strict(delta)) { 1772 printk_deferred(KERN_WARNING 1773 "__timekeeping_inject_sleeptime: Invalid " 1774 "sleep delta value!\n"); 1775 return; 1776 } 1777 tk_xtime_add(tk, delta); 1778 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1779 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1780 tk_debug_account_sleep_time(delta); 1781 } 1782 1783 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1784 /* 1785 * We have three kinds of time sources to use for sleep time 1786 * injection, the preference order is: 1787 * 1) non-stop clocksource 1788 * 2) persistent clock (ie: RTC accessible when irqs are off) 1789 * 3) RTC 1790 * 1791 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1792 * If system has neither 1) nor 2), 3) will be used finally. 1793 * 1794 * 1795 * If timekeeping has injected sleeptime via either 1) or 2), 1796 * 3) becomes needless, so in this case we don't need to call 1797 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1798 * means. 1799 */ 1800 bool timekeeping_rtc_skipresume(void) 1801 { 1802 return !suspend_timing_needed; 1803 } 1804 1805 /* 1806 * 1) can be determined whether to use or not only when doing 1807 * timekeeping_resume() which is invoked after rtc_suspend(), 1808 * so we can't skip rtc_suspend() surely if system has 1). 1809 * 1810 * But if system has 2), 2) will definitely be used, so in this 1811 * case we don't need to call rtc_suspend(), and this is what 1812 * timekeeping_rtc_skipsuspend() means. 1813 */ 1814 bool timekeeping_rtc_skipsuspend(void) 1815 { 1816 return persistent_clock_exists; 1817 } 1818 1819 /** 1820 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1821 * @delta: pointer to a timespec64 delta value 1822 * 1823 * This hook is for architectures that cannot support read_persistent_clock64 1824 * because their RTC/persistent clock is only accessible when irqs are enabled. 1825 * and also don't have an effective nonstop clocksource. 1826 * 1827 * This function should only be called by rtc_resume(), and allows 1828 * a suspend offset to be injected into the timekeeping values. 1829 */ 1830 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1831 { 1832 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1833 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1834 1835 suspend_timing_needed = false; 1836 timekeeping_forward_now(tks); 1837 __timekeeping_inject_sleeptime(tks, delta); 1838 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1839 } 1840 1841 /* Signal hrtimers about time change */ 1842 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1843 } 1844 #endif 1845 1846 /** 1847 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1848 */ 1849 void timekeeping_resume(void) 1850 { 1851 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1852 struct clocksource *clock = tks->tkr_mono.clock; 1853 struct timespec64 ts_new, ts_delta; 1854 bool inject_sleeptime = false; 1855 u64 cycle_now, nsec; 1856 unsigned long flags; 1857 1858 read_persistent_clock64(&ts_new); 1859 1860 clockevents_resume(); 1861 clocksource_resume(); 1862 1863 raw_spin_lock_irqsave(&tk_core.lock, flags); 1864 1865 /* 1866 * After system resumes, we need to calculate the suspended time and 1867 * compensate it for the OS time. There are 3 sources that could be 1868 * used: Nonstop clocksource during suspend, persistent clock and rtc 1869 * device. 1870 * 1871 * One specific platform may have 1 or 2 or all of them, and the 1872 * preference will be: 1873 * suspend-nonstop clocksource -> persistent clock -> rtc 1874 * The less preferred source will only be tried if there is no better 1875 * usable source. The rtc part is handled separately in rtc core code. 1876 */ 1877 cycle_now = tk_clock_read(&tks->tkr_mono); 1878 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1879 if (nsec > 0) { 1880 ts_delta = ns_to_timespec64(nsec); 1881 inject_sleeptime = true; 1882 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1883 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1884 inject_sleeptime = true; 1885 } 1886 1887 if (inject_sleeptime) { 1888 suspend_timing_needed = false; 1889 __timekeeping_inject_sleeptime(tks, &ts_delta); 1890 } 1891 1892 /* Re-base the last cycle value */ 1893 tks->tkr_mono.cycle_last = cycle_now; 1894 tks->tkr_raw.cycle_last = cycle_now; 1895 1896 tks->ntp_error = 0; 1897 timekeeping_suspended = 0; 1898 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1899 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1900 1901 touch_softlockup_watchdog(); 1902 1903 /* Resume the clockevent device(s) and hrtimers */ 1904 tick_resume(); 1905 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1906 timerfd_resume(); 1907 } 1908 1909 int timekeeping_suspend(void) 1910 { 1911 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1912 struct timespec64 delta, delta_delta; 1913 static struct timespec64 old_delta; 1914 struct clocksource *curr_clock; 1915 unsigned long flags; 1916 u64 cycle_now; 1917 1918 read_persistent_clock64(&timekeeping_suspend_time); 1919 1920 /* 1921 * On some systems the persistent_clock can not be detected at 1922 * timekeeping_init by its return value, so if we see a valid 1923 * value returned, update the persistent_clock_exists flag. 1924 */ 1925 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1926 persistent_clock_exists = true; 1927 1928 suspend_timing_needed = true; 1929 1930 raw_spin_lock_irqsave(&tk_core.lock, flags); 1931 timekeeping_forward_now(tks); 1932 timekeeping_suspended = 1; 1933 1934 /* 1935 * Since we've called forward_now, cycle_last stores the value 1936 * just read from the current clocksource. Save this to potentially 1937 * use in suspend timing. 1938 */ 1939 curr_clock = tks->tkr_mono.clock; 1940 cycle_now = tks->tkr_mono.cycle_last; 1941 clocksource_start_suspend_timing(curr_clock, cycle_now); 1942 1943 if (persistent_clock_exists) { 1944 /* 1945 * To avoid drift caused by repeated suspend/resumes, 1946 * which each can add ~1 second drift error, 1947 * try to compensate so the difference in system time 1948 * and persistent_clock time stays close to constant. 1949 */ 1950 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1951 delta_delta = timespec64_sub(delta, old_delta); 1952 if (abs(delta_delta.tv_sec) >= 2) { 1953 /* 1954 * if delta_delta is too large, assume time correction 1955 * has occurred and set old_delta to the current delta. 1956 */ 1957 old_delta = delta; 1958 } else { 1959 /* Otherwise try to adjust old_system to compensate */ 1960 timekeeping_suspend_time = 1961 timespec64_add(timekeeping_suspend_time, delta_delta); 1962 } 1963 } 1964 1965 timekeeping_update_from_shadow(&tk_core, 0); 1966 halt_fast_timekeeper(tks); 1967 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1968 1969 tick_suspend(); 1970 clocksource_suspend(); 1971 clockevents_suspend(); 1972 1973 return 0; 1974 } 1975 1976 /* sysfs resume/suspend bits for timekeeping */ 1977 static struct syscore_ops timekeeping_syscore_ops = { 1978 .resume = timekeeping_resume, 1979 .suspend = timekeeping_suspend, 1980 }; 1981 1982 static int __init timekeeping_init_ops(void) 1983 { 1984 register_syscore_ops(&timekeeping_syscore_ops); 1985 return 0; 1986 } 1987 device_initcall(timekeeping_init_ops); 1988 1989 /* 1990 * Apply a multiplier adjustment to the timekeeper 1991 */ 1992 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1993 s64 offset, 1994 s32 mult_adj) 1995 { 1996 s64 interval = tk->cycle_interval; 1997 1998 if (mult_adj == 0) { 1999 return; 2000 } else if (mult_adj == -1) { 2001 interval = -interval; 2002 offset = -offset; 2003 } else if (mult_adj != 1) { 2004 interval *= mult_adj; 2005 offset *= mult_adj; 2006 } 2007 2008 /* 2009 * So the following can be confusing. 2010 * 2011 * To keep things simple, lets assume mult_adj == 1 for now. 2012 * 2013 * When mult_adj != 1, remember that the interval and offset values 2014 * have been appropriately scaled so the math is the same. 2015 * 2016 * The basic idea here is that we're increasing the multiplier 2017 * by one, this causes the xtime_interval to be incremented by 2018 * one cycle_interval. This is because: 2019 * xtime_interval = cycle_interval * mult 2020 * So if mult is being incremented by one: 2021 * xtime_interval = cycle_interval * (mult + 1) 2022 * Its the same as: 2023 * xtime_interval = (cycle_interval * mult) + cycle_interval 2024 * Which can be shortened to: 2025 * xtime_interval += cycle_interval 2026 * 2027 * So offset stores the non-accumulated cycles. Thus the current 2028 * time (in shifted nanoseconds) is: 2029 * now = (offset * adj) + xtime_nsec 2030 * Now, even though we're adjusting the clock frequency, we have 2031 * to keep time consistent. In other words, we can't jump back 2032 * in time, and we also want to avoid jumping forward in time. 2033 * 2034 * So given the same offset value, we need the time to be the same 2035 * both before and after the freq adjustment. 2036 * now = (offset * adj_1) + xtime_nsec_1 2037 * now = (offset * adj_2) + xtime_nsec_2 2038 * So: 2039 * (offset * adj_1) + xtime_nsec_1 = 2040 * (offset * adj_2) + xtime_nsec_2 2041 * And we know: 2042 * adj_2 = adj_1 + 1 2043 * So: 2044 * (offset * adj_1) + xtime_nsec_1 = 2045 * (offset * (adj_1+1)) + xtime_nsec_2 2046 * (offset * adj_1) + xtime_nsec_1 = 2047 * (offset * adj_1) + offset + xtime_nsec_2 2048 * Canceling the sides: 2049 * xtime_nsec_1 = offset + xtime_nsec_2 2050 * Which gives us: 2051 * xtime_nsec_2 = xtime_nsec_1 - offset 2052 * Which simplifies to: 2053 * xtime_nsec -= offset 2054 */ 2055 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2056 /* NTP adjustment caused clocksource mult overflow */ 2057 WARN_ON_ONCE(1); 2058 return; 2059 } 2060 2061 tk->tkr_mono.mult += mult_adj; 2062 tk->xtime_interval += interval; 2063 tk->tkr_mono.xtime_nsec -= offset; 2064 } 2065 2066 /* 2067 * Adjust the timekeeper's multiplier to the correct frequency 2068 * and also to reduce the accumulated error value. 2069 */ 2070 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2071 { 2072 u64 ntp_tl = ntp_tick_length(); 2073 u32 mult; 2074 2075 /* 2076 * Determine the multiplier from the current NTP tick length. 2077 * Avoid expensive division when the tick length doesn't change. 2078 */ 2079 if (likely(tk->ntp_tick == ntp_tl)) { 2080 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2081 } else { 2082 tk->ntp_tick = ntp_tl; 2083 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2084 tk->xtime_remainder, tk->cycle_interval); 2085 } 2086 2087 /* 2088 * If the clock is behind the NTP time, increase the multiplier by 1 2089 * to catch up with it. If it's ahead and there was a remainder in the 2090 * tick division, the clock will slow down. Otherwise it will stay 2091 * ahead until the tick length changes to a non-divisible value. 2092 */ 2093 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2094 mult += tk->ntp_err_mult; 2095 2096 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2097 2098 if (unlikely(tk->tkr_mono.clock->maxadj && 2099 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2100 > tk->tkr_mono.clock->maxadj))) { 2101 printk_once(KERN_WARNING 2102 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2103 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2104 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2105 } 2106 2107 /* 2108 * It may be possible that when we entered this function, xtime_nsec 2109 * was very small. Further, if we're slightly speeding the clocksource 2110 * in the code above, its possible the required corrective factor to 2111 * xtime_nsec could cause it to underflow. 2112 * 2113 * Now, since we have already accumulated the second and the NTP 2114 * subsystem has been notified via second_overflow(), we need to skip 2115 * the next update. 2116 */ 2117 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2118 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2119 tk->tkr_mono.shift; 2120 tk->xtime_sec--; 2121 tk->skip_second_overflow = 1; 2122 } 2123 } 2124 2125 /* 2126 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2127 * 2128 * Helper function that accumulates the nsecs greater than a second 2129 * from the xtime_nsec field to the xtime_secs field. 2130 * It also calls into the NTP code to handle leapsecond processing. 2131 */ 2132 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2133 { 2134 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2135 unsigned int clock_set = 0; 2136 2137 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2138 int leap; 2139 2140 tk->tkr_mono.xtime_nsec -= nsecps; 2141 tk->xtime_sec++; 2142 2143 /* 2144 * Skip NTP update if this second was accumulated before, 2145 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2146 */ 2147 if (unlikely(tk->skip_second_overflow)) { 2148 tk->skip_second_overflow = 0; 2149 continue; 2150 } 2151 2152 /* Figure out if its a leap sec and apply if needed */ 2153 leap = second_overflow(tk->xtime_sec); 2154 if (unlikely(leap)) { 2155 struct timespec64 ts; 2156 2157 tk->xtime_sec += leap; 2158 2159 ts.tv_sec = leap; 2160 ts.tv_nsec = 0; 2161 tk_set_wall_to_mono(tk, 2162 timespec64_sub(tk->wall_to_monotonic, ts)); 2163 2164 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2165 2166 clock_set = TK_CLOCK_WAS_SET; 2167 } 2168 } 2169 return clock_set; 2170 } 2171 2172 /* 2173 * logarithmic_accumulation - shifted accumulation of cycles 2174 * 2175 * This functions accumulates a shifted interval of cycles into 2176 * a shifted interval nanoseconds. Allows for O(log) accumulation 2177 * loop. 2178 * 2179 * Returns the unconsumed cycles. 2180 */ 2181 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2182 u32 shift, unsigned int *clock_set) 2183 { 2184 u64 interval = tk->cycle_interval << shift; 2185 u64 snsec_per_sec; 2186 2187 /* If the offset is smaller than a shifted interval, do nothing */ 2188 if (offset < interval) 2189 return offset; 2190 2191 /* Accumulate one shifted interval */ 2192 offset -= interval; 2193 tk->tkr_mono.cycle_last += interval; 2194 tk->tkr_raw.cycle_last += interval; 2195 2196 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2197 *clock_set |= accumulate_nsecs_to_secs(tk); 2198 2199 /* Accumulate raw time */ 2200 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2201 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2202 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2203 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2204 tk->raw_sec++; 2205 } 2206 2207 /* Accumulate error between NTP and clock interval */ 2208 tk->ntp_error += tk->ntp_tick << shift; 2209 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2210 (tk->ntp_error_shift + shift); 2211 2212 return offset; 2213 } 2214 2215 /* 2216 * timekeeping_advance - Updates the timekeeper to the current time and 2217 * current NTP tick length 2218 */ 2219 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2220 { 2221 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2222 struct timekeeper *real_tk = &tk_core.timekeeper; 2223 unsigned int clock_set = 0; 2224 int shift = 0, maxshift; 2225 u64 offset; 2226 2227 guard(raw_spinlock_irqsave)(&tk_core.lock); 2228 2229 /* Make sure we're fully resumed: */ 2230 if (unlikely(timekeeping_suspended)) 2231 return false; 2232 2233 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2234 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2235 tk->tkr_mono.clock->max_raw_delta); 2236 2237 /* Check if there's really nothing to do */ 2238 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2239 return false; 2240 2241 /* 2242 * With NO_HZ we may have to accumulate many cycle_intervals 2243 * (think "ticks") worth of time at once. To do this efficiently, 2244 * we calculate the largest doubling multiple of cycle_intervals 2245 * that is smaller than the offset. We then accumulate that 2246 * chunk in one go, and then try to consume the next smaller 2247 * doubled multiple. 2248 */ 2249 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2250 shift = max(0, shift); 2251 /* Bound shift to one less than what overflows tick_length */ 2252 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2253 shift = min(shift, maxshift); 2254 while (offset >= tk->cycle_interval) { 2255 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2256 if (offset < tk->cycle_interval<<shift) 2257 shift--; 2258 } 2259 2260 /* Adjust the multiplier to correct NTP error */ 2261 timekeeping_adjust(tk, offset); 2262 2263 /* 2264 * Finally, make sure that after the rounding 2265 * xtime_nsec isn't larger than NSEC_PER_SEC 2266 */ 2267 clock_set |= accumulate_nsecs_to_secs(tk); 2268 2269 timekeeping_update_from_shadow(&tk_core, clock_set); 2270 2271 return !!clock_set; 2272 } 2273 2274 /** 2275 * update_wall_time - Uses the current clocksource to increment the wall time 2276 * 2277 */ 2278 void update_wall_time(void) 2279 { 2280 if (timekeeping_advance(TK_ADV_TICK)) 2281 clock_was_set_delayed(); 2282 } 2283 2284 /** 2285 * getboottime64 - Return the real time of system boot. 2286 * @ts: pointer to the timespec64 to be set 2287 * 2288 * Returns the wall-time of boot in a timespec64. 2289 * 2290 * This is based on the wall_to_monotonic offset and the total suspend 2291 * time. Calls to settimeofday will affect the value returned (which 2292 * basically means that however wrong your real time clock is at boot time, 2293 * you get the right time here). 2294 */ 2295 void getboottime64(struct timespec64 *ts) 2296 { 2297 struct timekeeper *tk = &tk_core.timekeeper; 2298 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2299 2300 *ts = ktime_to_timespec64(t); 2301 } 2302 EXPORT_SYMBOL_GPL(getboottime64); 2303 2304 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2305 { 2306 struct timekeeper *tk = &tk_core.timekeeper; 2307 unsigned int seq; 2308 2309 do { 2310 seq = read_seqcount_begin(&tk_core.seq); 2311 2312 *ts = tk_xtime(tk); 2313 } while (read_seqcount_retry(&tk_core.seq, seq)); 2314 } 2315 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2316 2317 /** 2318 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2319 * @ts: timespec64 to be filled 2320 * 2321 * Fetch the global mg_floor value, convert it to realtime and compare it 2322 * to the current coarse-grained time. Fill @ts with whichever is 2323 * latest. Note that this is a filesystem-specific interface and should be 2324 * avoided outside of that context. 2325 */ 2326 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2327 { 2328 struct timekeeper *tk = &tk_core.timekeeper; 2329 u64 floor = atomic64_read(&mg_floor); 2330 ktime_t f_real, offset, coarse; 2331 unsigned int seq; 2332 2333 do { 2334 seq = read_seqcount_begin(&tk_core.seq); 2335 *ts = tk_xtime(tk); 2336 offset = tk_core.timekeeper.offs_real; 2337 } while (read_seqcount_retry(&tk_core.seq, seq)); 2338 2339 coarse = timespec64_to_ktime(*ts); 2340 f_real = ktime_add(floor, offset); 2341 if (ktime_after(f_real, coarse)) 2342 *ts = ktime_to_timespec64(f_real); 2343 } 2344 2345 /** 2346 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2347 * @ts: pointer to the timespec to be set 2348 * 2349 * Get a monotonic fine-grained time value and attempt to swap it into 2350 * mg_floor. If that succeeds then accept the new floor value. If it fails 2351 * then another task raced in during the interim time and updated the 2352 * floor. Since any update to the floor must be later than the previous 2353 * floor, either outcome is acceptable. 2354 * 2355 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2356 * and determining that the resulting coarse-grained timestamp did not effect 2357 * a change in ctime. Any more recent floor value would effect a change to 2358 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2359 * 2360 * @ts will be filled with the latest floor value, regardless of the outcome of 2361 * the cmpxchg. Note that this is a filesystem specific interface and should be 2362 * avoided outside of that context. 2363 */ 2364 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2365 { 2366 struct timekeeper *tk = &tk_core.timekeeper; 2367 ktime_t old = atomic64_read(&mg_floor); 2368 ktime_t offset, mono; 2369 unsigned int seq; 2370 u64 nsecs; 2371 2372 do { 2373 seq = read_seqcount_begin(&tk_core.seq); 2374 2375 ts->tv_sec = tk->xtime_sec; 2376 mono = tk->tkr_mono.base; 2377 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2378 offset = tk_core.timekeeper.offs_real; 2379 } while (read_seqcount_retry(&tk_core.seq, seq)); 2380 2381 mono = ktime_add_ns(mono, nsecs); 2382 2383 /* 2384 * Attempt to update the floor with the new time value. As any 2385 * update must be later then the existing floor, and would effect 2386 * a change to ctime from the perspective of the current task, 2387 * accept the resulting floor value regardless of the outcome of 2388 * the swap. 2389 */ 2390 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2391 ts->tv_nsec = 0; 2392 timespec64_add_ns(ts, nsecs); 2393 timekeeping_inc_mg_floor_swaps(); 2394 } else { 2395 /* 2396 * Another task changed mg_floor since "old" was fetched. 2397 * "old" has been updated with the latest value of "mg_floor". 2398 * That value is newer than the previous floor value, which 2399 * is enough to effect a change to ctime. Accept it. 2400 */ 2401 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2402 } 2403 } 2404 2405 void ktime_get_coarse_ts64(struct timespec64 *ts) 2406 { 2407 struct timekeeper *tk = &tk_core.timekeeper; 2408 struct timespec64 now, mono; 2409 unsigned int seq; 2410 2411 do { 2412 seq = read_seqcount_begin(&tk_core.seq); 2413 2414 now = tk_xtime(tk); 2415 mono = tk->wall_to_monotonic; 2416 } while (read_seqcount_retry(&tk_core.seq, seq)); 2417 2418 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2419 now.tv_nsec + mono.tv_nsec); 2420 } 2421 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2422 2423 /* 2424 * Must hold jiffies_lock 2425 */ 2426 void do_timer(unsigned long ticks) 2427 { 2428 jiffies_64 += ticks; 2429 calc_global_load(); 2430 } 2431 2432 /** 2433 * ktime_get_update_offsets_now - hrtimer helper 2434 * @cwsseq: pointer to check and store the clock was set sequence number 2435 * @offs_real: pointer to storage for monotonic -> realtime offset 2436 * @offs_boot: pointer to storage for monotonic -> boottime offset 2437 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2438 * 2439 * Returns current monotonic time and updates the offsets if the 2440 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2441 * different. 2442 * 2443 * Called from hrtimer_interrupt() or retrigger_next_event() 2444 */ 2445 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2446 ktime_t *offs_boot, ktime_t *offs_tai) 2447 { 2448 struct timekeeper *tk = &tk_core.timekeeper; 2449 unsigned int seq; 2450 ktime_t base; 2451 u64 nsecs; 2452 2453 do { 2454 seq = read_seqcount_begin(&tk_core.seq); 2455 2456 base = tk->tkr_mono.base; 2457 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2458 base = ktime_add_ns(base, nsecs); 2459 2460 if (*cwsseq != tk->clock_was_set_seq) { 2461 *cwsseq = tk->clock_was_set_seq; 2462 *offs_real = tk->offs_real; 2463 *offs_boot = tk->offs_boot; 2464 *offs_tai = tk->offs_tai; 2465 } 2466 2467 /* Handle leapsecond insertion adjustments */ 2468 if (unlikely(base >= tk->next_leap_ktime)) 2469 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2470 2471 } while (read_seqcount_retry(&tk_core.seq, seq)); 2472 2473 return base; 2474 } 2475 2476 /* 2477 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2478 */ 2479 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2480 { 2481 if (txc->modes & ADJ_ADJTIME) { 2482 /* singleshot must not be used with any other mode bits */ 2483 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2484 return -EINVAL; 2485 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2486 !capable(CAP_SYS_TIME)) 2487 return -EPERM; 2488 } else { 2489 /* In order to modify anything, you gotta be super-user! */ 2490 if (txc->modes && !capable(CAP_SYS_TIME)) 2491 return -EPERM; 2492 /* 2493 * if the quartz is off by more than 10% then 2494 * something is VERY wrong! 2495 */ 2496 if (txc->modes & ADJ_TICK && 2497 (txc->tick < 900000/USER_HZ || 2498 txc->tick > 1100000/USER_HZ)) 2499 return -EINVAL; 2500 } 2501 2502 if (txc->modes & ADJ_SETOFFSET) { 2503 /* In order to inject time, you gotta be super-user! */ 2504 if (!capable(CAP_SYS_TIME)) 2505 return -EPERM; 2506 2507 /* 2508 * Validate if a timespec/timeval used to inject a time 2509 * offset is valid. Offsets can be positive or negative, so 2510 * we don't check tv_sec. The value of the timeval/timespec 2511 * is the sum of its fields,but *NOTE*: 2512 * The field tv_usec/tv_nsec must always be non-negative and 2513 * we can't have more nanoseconds/microseconds than a second. 2514 */ 2515 if (txc->time.tv_usec < 0) 2516 return -EINVAL; 2517 2518 if (txc->modes & ADJ_NANO) { 2519 if (txc->time.tv_usec >= NSEC_PER_SEC) 2520 return -EINVAL; 2521 } else { 2522 if (txc->time.tv_usec >= USEC_PER_SEC) 2523 return -EINVAL; 2524 } 2525 } 2526 2527 /* 2528 * Check for potential multiplication overflows that can 2529 * only happen on 64-bit systems: 2530 */ 2531 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2532 if (LLONG_MIN / PPM_SCALE > txc->freq) 2533 return -EINVAL; 2534 if (LLONG_MAX / PPM_SCALE < txc->freq) 2535 return -EINVAL; 2536 } 2537 2538 return 0; 2539 } 2540 2541 /** 2542 * random_get_entropy_fallback - Returns the raw clock source value, 2543 * used by random.c for platforms with no valid random_get_entropy(). 2544 */ 2545 unsigned long random_get_entropy_fallback(void) 2546 { 2547 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2548 struct clocksource *clock = READ_ONCE(tkr->clock); 2549 2550 if (unlikely(timekeeping_suspended || !clock)) 2551 return 0; 2552 return clock->read(clock); 2553 } 2554 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2555 2556 /** 2557 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2558 * @txc: Pointer to kernel_timex structure containing NTP parameters 2559 */ 2560 int do_adjtimex(struct __kernel_timex *txc) 2561 { 2562 struct audit_ntp_data ad; 2563 bool offset_set = false; 2564 bool clock_set = false; 2565 struct timespec64 ts; 2566 int ret; 2567 2568 /* Validate the data before disabling interrupts */ 2569 ret = timekeeping_validate_timex(txc); 2570 if (ret) 2571 return ret; 2572 add_device_randomness(txc, sizeof(*txc)); 2573 2574 if (txc->modes & ADJ_SETOFFSET) { 2575 struct timespec64 delta; 2576 2577 delta.tv_sec = txc->time.tv_sec; 2578 delta.tv_nsec = txc->time.tv_usec; 2579 if (!(txc->modes & ADJ_NANO)) 2580 delta.tv_nsec *= 1000; 2581 ret = timekeeping_inject_offset(&delta); 2582 if (ret) 2583 return ret; 2584 2585 offset_set = delta.tv_sec != 0; 2586 audit_tk_injoffset(delta); 2587 } 2588 2589 audit_ntp_init(&ad); 2590 2591 ktime_get_real_ts64(&ts); 2592 add_device_randomness(&ts, sizeof(ts)); 2593 2594 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2595 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2596 s32 orig_tai, tai; 2597 2598 orig_tai = tai = tks->tai_offset; 2599 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2600 2601 if (tai != orig_tai) { 2602 __timekeeping_set_tai_offset(tks, tai); 2603 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2604 clock_set = true; 2605 } else { 2606 tk_update_leap_state_all(&tk_core); 2607 } 2608 } 2609 2610 audit_ntp_log(&ad); 2611 2612 /* Update the multiplier immediately if frequency was set directly */ 2613 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2614 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2615 2616 if (clock_set) 2617 clock_was_set(CLOCK_SET_WALL); 2618 2619 ntp_notify_cmos_timer(offset_set); 2620 2621 return ret; 2622 } 2623 2624 #ifdef CONFIG_NTP_PPS 2625 /** 2626 * hardpps() - Accessor function to NTP __hardpps function 2627 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2628 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2629 */ 2630 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2631 { 2632 guard(raw_spinlock_irqsave)(&tk_core.lock); 2633 __hardpps(phase_ts, raw_ts); 2634 } 2635 EXPORT_SYMBOL(hardpps); 2636 #endif /* CONFIG_NTP_PPS */ 2637