xref: /linux/kernel/time/timekeeping.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124 
125 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	cycle_t now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	cycle_t cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	cycle_t interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	++tk->cs_was_changed_seq;
237 	old_clock = tk->tkr_mono.clock;
238 	tk->tkr_mono.clock = clock;
239 	tk->tkr_mono.read = clock->read;
240 	tk->tkr_mono.mask = clock->mask;
241 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242 
243 	tk->tkr_raw.clock = clock;
244 	tk->tkr_raw.read = clock->read;
245 	tk->tkr_raw.mask = clock->mask;
246 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247 
248 	/* Do the ns -> cycle conversion first, using original mult */
249 	tmp = NTP_INTERVAL_LENGTH;
250 	tmp <<= clock->shift;
251 	ntpinterval = tmp;
252 	tmp += clock->mult/2;
253 	do_div(tmp, clock->mult);
254 	if (tmp == 0)
255 		tmp = 1;
256 
257 	interval = (cycle_t) tmp;
258 	tk->cycle_interval = interval;
259 
260 	/* Go back from cycles -> shifted ns */
261 	tk->xtime_interval = (u64) interval * clock->mult;
262 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 	tk->raw_interval =
264 		((u64) interval * clock->mult) >> clock->shift;
265 
266 	 /* if changing clocks, convert xtime_nsec shift units */
267 	if (old_clock) {
268 		int shift_change = clock->shift - old_clock->shift;
269 		if (shift_change < 0)
270 			tk->tkr_mono.xtime_nsec >>= -shift_change;
271 		else
272 			tk->tkr_mono.xtime_nsec <<= shift_change;
273 	}
274 	tk->tkr_raw.xtime_nsec = 0;
275 
276 	tk->tkr_mono.shift = clock->shift;
277 	tk->tkr_raw.shift = clock->shift;
278 
279 	tk->ntp_error = 0;
280 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 
283 	/*
284 	 * The timekeeper keeps its own mult values for the currently
285 	 * active clocksource. These value will be adjusted via NTP
286 	 * to counteract clock drifting.
287 	 */
288 	tk->tkr_mono.mult = clock->mult;
289 	tk->tkr_raw.mult = clock->mult;
290 	tk->ntp_err_mult = 0;
291 }
292 
293 /* Timekeeper helper functions. */
294 
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301 
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 					  cycle_t delta)
304 {
305 	s64 nsec;
306 
307 	nsec = delta * tkr->mult + tkr->xtime_nsec;
308 	nsec >>= tkr->shift;
309 
310 	/* If arch requires, add in get_arch_timeoffset() */
311 	return nsec + arch_gettimeoffset();
312 }
313 
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 	cycle_t delta;
317 
318 	delta = timekeeping_get_delta(tkr);
319 	return timekeeping_delta_to_ns(tkr, delta);
320 }
321 
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 					    cycle_t cycles)
324 {
325 	cycle_t delta;
326 
327 	/* calculate the delta since the last update_wall_time */
328 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 	return timekeeping_delta_to_ns(tkr, delta);
330 }
331 
332 /**
333  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334  * @tkr: Timekeeping readout base from which we take the update
335  *
336  * We want to use this from any context including NMI and tracing /
337  * instrumenting the timekeeping code itself.
338  *
339  * Employ the latch technique; see @raw_write_seqcount_latch.
340  *
341  * So if a NMI hits the update of base[0] then it will use base[1]
342  * which is still consistent. In the worst case this can result is a
343  * slightly wrong timestamp (a few nanoseconds). See
344  * @ktime_get_mono_fast_ns.
345  */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 	struct tk_read_base *base = tkf->base;
349 
350 	/* Force readers off to base[1] */
351 	raw_write_seqcount_latch(&tkf->seq);
352 
353 	/* Update base[0] */
354 	memcpy(base, tkr, sizeof(*base));
355 
356 	/* Force readers back to base[0] */
357 	raw_write_seqcount_latch(&tkf->seq);
358 
359 	/* Update base[1] */
360 	memcpy(base + 1, base, sizeof(*base));
361 }
362 
363 /**
364  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365  *
366  * This timestamp is not guaranteed to be monotonic across an update.
367  * The timestamp is calculated by:
368  *
369  *	now = base_mono + clock_delta * slope
370  *
371  * So if the update lowers the slope, readers who are forced to the
372  * not yet updated second array are still using the old steeper slope.
373  *
374  * tmono
375  * ^
376  * |    o  n
377  * |   o n
378  * |  u
379  * | o
380  * |o
381  * |12345678---> reader order
382  *
383  * o = old slope
384  * u = update
385  * n = new slope
386  *
387  * So reader 6 will observe time going backwards versus reader 5.
388  *
389  * While other CPUs are likely to be able observe that, the only way
390  * for a CPU local observation is when an NMI hits in the middle of
391  * the update. Timestamps taken from that NMI context might be ahead
392  * of the following timestamps. Callers need to be aware of that and
393  * deal with it.
394  */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 	struct tk_read_base *tkr;
398 	unsigned int seq;
399 	u64 now;
400 
401 	do {
402 		seq = raw_read_seqcount_latch(&tkf->seq);
403 		tkr = tkf->base + (seq & 0x01);
404 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405 	} while (read_seqcount_retry(&tkf->seq, seq));
406 
407 	return now;
408 }
409 
410 u64 ktime_get_mono_fast_ns(void)
411 {
412 	return __ktime_get_fast_ns(&tk_fast_mono);
413 }
414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
415 
416 u64 ktime_get_raw_fast_ns(void)
417 {
418 	return __ktime_get_fast_ns(&tk_fast_raw);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
421 
422 /* Suspend-time cycles value for halted fast timekeeper. */
423 static cycle_t cycles_at_suspend;
424 
425 static cycle_t dummy_clock_read(struct clocksource *cs)
426 {
427 	return cycles_at_suspend;
428 }
429 
430 /**
431  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432  * @tk: Timekeeper to snapshot.
433  *
434  * It generally is unsafe to access the clocksource after timekeeping has been
435  * suspended, so take a snapshot of the readout base of @tk and use it as the
436  * fast timekeeper's readout base while suspended.  It will return the same
437  * number of cycles every time until timekeeping is resumed at which time the
438  * proper readout base for the fast timekeeper will be restored automatically.
439  */
440 static void halt_fast_timekeeper(struct timekeeper *tk)
441 {
442 	static struct tk_read_base tkr_dummy;
443 	struct tk_read_base *tkr = &tk->tkr_mono;
444 
445 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 	cycles_at_suspend = tkr->read(tkr->clock);
447 	tkr_dummy.read = dummy_clock_read;
448 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
449 
450 	tkr = &tk->tkr_raw;
451 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 	tkr_dummy.read = dummy_clock_read;
453 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
454 }
455 
456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
457 
458 static inline void update_vsyscall(struct timekeeper *tk)
459 {
460 	struct timespec xt, wm;
461 
462 	xt = timespec64_to_timespec(tk_xtime(tk));
463 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
465 			    tk->tkr_mono.cycle_last);
466 }
467 
468 static inline void old_vsyscall_fixup(struct timekeeper *tk)
469 {
470 	s64 remainder;
471 
472 	/*
473 	* Store only full nanoseconds into xtime_nsec after rounding
474 	* it up and add the remainder to the error difference.
475 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 	* by truncating the remainder in vsyscalls. However, it causes
477 	* additional work to be done in timekeeping_adjust(). Once
478 	* the vsyscall implementations are converted to use xtime_nsec
479 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 	* users are removed, this can be killed.
481 	*/
482 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
483 	tk->tkr_mono.xtime_nsec -= remainder;
484 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
485 	tk->ntp_error += remainder << tk->ntp_error_shift;
486 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
487 }
488 #else
489 #define old_vsyscall_fixup(tk)
490 #endif
491 
492 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
493 
494 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
495 {
496 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
497 }
498 
499 /**
500  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
501  */
502 int pvclock_gtod_register_notifier(struct notifier_block *nb)
503 {
504 	struct timekeeper *tk = &tk_core.timekeeper;
505 	unsigned long flags;
506 	int ret;
507 
508 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
509 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
510 	update_pvclock_gtod(tk, true);
511 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
512 
513 	return ret;
514 }
515 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
516 
517 /**
518  * pvclock_gtod_unregister_notifier - unregister a pvclock
519  * timedata update listener
520  */
521 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
522 {
523 	unsigned long flags;
524 	int ret;
525 
526 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
527 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
528 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
529 
530 	return ret;
531 }
532 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
533 
534 /*
535  * tk_update_leap_state - helper to update the next_leap_ktime
536  */
537 static inline void tk_update_leap_state(struct timekeeper *tk)
538 {
539 	tk->next_leap_ktime = ntp_get_next_leap();
540 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
541 		/* Convert to monotonic time */
542 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
543 }
544 
545 /*
546  * Update the ktime_t based scalar nsec members of the timekeeper
547  */
548 static inline void tk_update_ktime_data(struct timekeeper *tk)
549 {
550 	u64 seconds;
551 	u32 nsec;
552 
553 	/*
554 	 * The xtime based monotonic readout is:
555 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
556 	 * The ktime based monotonic readout is:
557 	 *	nsec = base_mono + now();
558 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
559 	 */
560 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
561 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
562 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
563 
564 	/* Update the monotonic raw base */
565 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
566 
567 	/*
568 	 * The sum of the nanoseconds portions of xtime and
569 	 * wall_to_monotonic can be greater/equal one second. Take
570 	 * this into account before updating tk->ktime_sec.
571 	 */
572 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
573 	if (nsec >= NSEC_PER_SEC)
574 		seconds++;
575 	tk->ktime_sec = seconds;
576 }
577 
578 /* must hold timekeeper_lock */
579 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
580 {
581 	if (action & TK_CLEAR_NTP) {
582 		tk->ntp_error = 0;
583 		ntp_clear();
584 	}
585 
586 	tk_update_leap_state(tk);
587 	tk_update_ktime_data(tk);
588 
589 	update_vsyscall(tk);
590 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
591 
592 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
593 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
594 
595 	if (action & TK_CLOCK_WAS_SET)
596 		tk->clock_was_set_seq++;
597 	/*
598 	 * The mirroring of the data to the shadow-timekeeper needs
599 	 * to happen last here to ensure we don't over-write the
600 	 * timekeeper structure on the next update with stale data
601 	 */
602 	if (action & TK_MIRROR)
603 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
604 		       sizeof(tk_core.timekeeper));
605 }
606 
607 /**
608  * timekeeping_forward_now - update clock to the current time
609  *
610  * Forward the current clock to update its state since the last call to
611  * update_wall_time(). This is useful before significant clock changes,
612  * as it avoids having to deal with this time offset explicitly.
613  */
614 static void timekeeping_forward_now(struct timekeeper *tk)
615 {
616 	struct clocksource *clock = tk->tkr_mono.clock;
617 	cycle_t cycle_now, delta;
618 	s64 nsec;
619 
620 	cycle_now = tk->tkr_mono.read(clock);
621 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 	tk->tkr_mono.cycle_last = cycle_now;
623 	tk->tkr_raw.cycle_last  = cycle_now;
624 
625 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626 
627 	/* If arch requires, add in get_arch_timeoffset() */
628 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629 
630 	tk_normalize_xtime(tk);
631 
632 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633 	timespec64_add_ns(&tk->raw_time, nsec);
634 }
635 
636 /**
637  * __getnstimeofday64 - Returns the time of day in a timespec64.
638  * @ts:		pointer to the timespec to be set
639  *
640  * Updates the time of day in the timespec.
641  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642  */
643 int __getnstimeofday64(struct timespec64 *ts)
644 {
645 	struct timekeeper *tk = &tk_core.timekeeper;
646 	unsigned long seq;
647 	s64 nsecs = 0;
648 
649 	do {
650 		seq = read_seqcount_begin(&tk_core.seq);
651 
652 		ts->tv_sec = tk->xtime_sec;
653 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
654 
655 	} while (read_seqcount_retry(&tk_core.seq, seq));
656 
657 	ts->tv_nsec = 0;
658 	timespec64_add_ns(ts, nsecs);
659 
660 	/*
661 	 * Do not bail out early, in case there were callers still using
662 	 * the value, even in the face of the WARN_ON.
663 	 */
664 	if (unlikely(timekeeping_suspended))
665 		return -EAGAIN;
666 	return 0;
667 }
668 EXPORT_SYMBOL(__getnstimeofday64);
669 
670 /**
671  * getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:		pointer to the timespec64 to be set
673  *
674  * Returns the time of day in a timespec64 (WARN if suspended).
675  */
676 void getnstimeofday64(struct timespec64 *ts)
677 {
678 	WARN_ON(__getnstimeofday64(ts));
679 }
680 EXPORT_SYMBOL(getnstimeofday64);
681 
682 ktime_t ktime_get(void)
683 {
684 	struct timekeeper *tk = &tk_core.timekeeper;
685 	unsigned int seq;
686 	ktime_t base;
687 	s64 nsecs;
688 
689 	WARN_ON(timekeeping_suspended);
690 
691 	do {
692 		seq = read_seqcount_begin(&tk_core.seq);
693 		base = tk->tkr_mono.base;
694 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
695 
696 	} while (read_seqcount_retry(&tk_core.seq, seq));
697 
698 	return ktime_add_ns(base, nsecs);
699 }
700 EXPORT_SYMBOL_GPL(ktime_get);
701 
702 u32 ktime_get_resolution_ns(void)
703 {
704 	struct timekeeper *tk = &tk_core.timekeeper;
705 	unsigned int seq;
706 	u32 nsecs;
707 
708 	WARN_ON(timekeeping_suspended);
709 
710 	do {
711 		seq = read_seqcount_begin(&tk_core.seq);
712 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
713 	} while (read_seqcount_retry(&tk_core.seq, seq));
714 
715 	return nsecs;
716 }
717 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
718 
719 static ktime_t *offsets[TK_OFFS_MAX] = {
720 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
721 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
722 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
723 };
724 
725 ktime_t ktime_get_with_offset(enum tk_offsets offs)
726 {
727 	struct timekeeper *tk = &tk_core.timekeeper;
728 	unsigned int seq;
729 	ktime_t base, *offset = offsets[offs];
730 	s64 nsecs;
731 
732 	WARN_ON(timekeeping_suspended);
733 
734 	do {
735 		seq = read_seqcount_begin(&tk_core.seq);
736 		base = ktime_add(tk->tkr_mono.base, *offset);
737 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
738 
739 	} while (read_seqcount_retry(&tk_core.seq, seq));
740 
741 	return ktime_add_ns(base, nsecs);
742 
743 }
744 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
745 
746 /**
747  * ktime_mono_to_any() - convert mononotic time to any other time
748  * @tmono:	time to convert.
749  * @offs:	which offset to use
750  */
751 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
752 {
753 	ktime_t *offset = offsets[offs];
754 	unsigned long seq;
755 	ktime_t tconv;
756 
757 	do {
758 		seq = read_seqcount_begin(&tk_core.seq);
759 		tconv = ktime_add(tmono, *offset);
760 	} while (read_seqcount_retry(&tk_core.seq, seq));
761 
762 	return tconv;
763 }
764 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
765 
766 /**
767  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
768  */
769 ktime_t ktime_get_raw(void)
770 {
771 	struct timekeeper *tk = &tk_core.timekeeper;
772 	unsigned int seq;
773 	ktime_t base;
774 	s64 nsecs;
775 
776 	do {
777 		seq = read_seqcount_begin(&tk_core.seq);
778 		base = tk->tkr_raw.base;
779 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
780 
781 	} while (read_seqcount_retry(&tk_core.seq, seq));
782 
783 	return ktime_add_ns(base, nsecs);
784 }
785 EXPORT_SYMBOL_GPL(ktime_get_raw);
786 
787 /**
788  * ktime_get_ts64 - get the monotonic clock in timespec64 format
789  * @ts:		pointer to timespec variable
790  *
791  * The function calculates the monotonic clock from the realtime
792  * clock and the wall_to_monotonic offset and stores the result
793  * in normalized timespec64 format in the variable pointed to by @ts.
794  */
795 void ktime_get_ts64(struct timespec64 *ts)
796 {
797 	struct timekeeper *tk = &tk_core.timekeeper;
798 	struct timespec64 tomono;
799 	s64 nsec;
800 	unsigned int seq;
801 
802 	WARN_ON(timekeeping_suspended);
803 
804 	do {
805 		seq = read_seqcount_begin(&tk_core.seq);
806 		ts->tv_sec = tk->xtime_sec;
807 		nsec = timekeeping_get_ns(&tk->tkr_mono);
808 		tomono = tk->wall_to_monotonic;
809 
810 	} while (read_seqcount_retry(&tk_core.seq, seq));
811 
812 	ts->tv_sec += tomono.tv_sec;
813 	ts->tv_nsec = 0;
814 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_ts64);
817 
818 /**
819  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
820  *
821  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
822  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
823  * works on both 32 and 64 bit systems. On 32 bit systems the readout
824  * covers ~136 years of uptime which should be enough to prevent
825  * premature wrap arounds.
826  */
827 time64_t ktime_get_seconds(void)
828 {
829 	struct timekeeper *tk = &tk_core.timekeeper;
830 
831 	WARN_ON(timekeeping_suspended);
832 	return tk->ktime_sec;
833 }
834 EXPORT_SYMBOL_GPL(ktime_get_seconds);
835 
836 /**
837  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
838  *
839  * Returns the wall clock seconds since 1970. This replaces the
840  * get_seconds() interface which is not y2038 safe on 32bit systems.
841  *
842  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
843  * 32bit systems the access must be protected with the sequence
844  * counter to provide "atomic" access to the 64bit tk->xtime_sec
845  * value.
846  */
847 time64_t ktime_get_real_seconds(void)
848 {
849 	struct timekeeper *tk = &tk_core.timekeeper;
850 	time64_t seconds;
851 	unsigned int seq;
852 
853 	if (IS_ENABLED(CONFIG_64BIT))
854 		return tk->xtime_sec;
855 
856 	do {
857 		seq = read_seqcount_begin(&tk_core.seq);
858 		seconds = tk->xtime_sec;
859 
860 	} while (read_seqcount_retry(&tk_core.seq, seq));
861 
862 	return seconds;
863 }
864 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
865 
866 /**
867  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
868  * but without the sequence counter protect. This internal function
869  * is called just when timekeeping lock is already held.
870  */
871 time64_t __ktime_get_real_seconds(void)
872 {
873 	struct timekeeper *tk = &tk_core.timekeeper;
874 
875 	return tk->xtime_sec;
876 }
877 
878 /**
879  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
880  * @systime_snapshot:	pointer to struct receiving the system time snapshot
881  */
882 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
883 {
884 	struct timekeeper *tk = &tk_core.timekeeper;
885 	unsigned long seq;
886 	ktime_t base_raw;
887 	ktime_t base_real;
888 	s64 nsec_raw;
889 	s64 nsec_real;
890 	cycle_t now;
891 
892 	WARN_ON_ONCE(timekeeping_suspended);
893 
894 	do {
895 		seq = read_seqcount_begin(&tk_core.seq);
896 
897 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
898 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
899 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
900 		base_real = ktime_add(tk->tkr_mono.base,
901 				      tk_core.timekeeper.offs_real);
902 		base_raw = tk->tkr_raw.base;
903 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
904 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
905 	} while (read_seqcount_retry(&tk_core.seq, seq));
906 
907 	systime_snapshot->cycles = now;
908 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
909 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
910 }
911 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
912 
913 /* Scale base by mult/div checking for overflow */
914 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
915 {
916 	u64 tmp, rem;
917 
918 	tmp = div64_u64_rem(*base, div, &rem);
919 
920 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
921 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
922 		return -EOVERFLOW;
923 	tmp *= mult;
924 	rem *= mult;
925 
926 	do_div(rem, div);
927 	*base = tmp + rem;
928 	return 0;
929 }
930 
931 /**
932  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
933  * @history:			Snapshot representing start of history
934  * @partial_history_cycles:	Cycle offset into history (fractional part)
935  * @total_history_cycles:	Total history length in cycles
936  * @discontinuity:		True indicates clock was set on history period
937  * @ts:				Cross timestamp that should be adjusted using
938  *	partial/total ratio
939  *
940  * Helper function used by get_device_system_crosststamp() to correct the
941  * crosstimestamp corresponding to the start of the current interval to the
942  * system counter value (timestamp point) provided by the driver. The
943  * total_history_* quantities are the total history starting at the provided
944  * reference point and ending at the start of the current interval. The cycle
945  * count between the driver timestamp point and the start of the current
946  * interval is partial_history_cycles.
947  */
948 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
949 					 cycle_t partial_history_cycles,
950 					 cycle_t total_history_cycles,
951 					 bool discontinuity,
952 					 struct system_device_crosststamp *ts)
953 {
954 	struct timekeeper *tk = &tk_core.timekeeper;
955 	u64 corr_raw, corr_real;
956 	bool interp_forward;
957 	int ret;
958 
959 	if (total_history_cycles == 0 || partial_history_cycles == 0)
960 		return 0;
961 
962 	/* Interpolate shortest distance from beginning or end of history */
963 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
964 		true : false;
965 	partial_history_cycles = interp_forward ?
966 		total_history_cycles - partial_history_cycles :
967 		partial_history_cycles;
968 
969 	/*
970 	 * Scale the monotonic raw time delta by:
971 	 *	partial_history_cycles / total_history_cycles
972 	 */
973 	corr_raw = (u64)ktime_to_ns(
974 		ktime_sub(ts->sys_monoraw, history->raw));
975 	ret = scale64_check_overflow(partial_history_cycles,
976 				     total_history_cycles, &corr_raw);
977 	if (ret)
978 		return ret;
979 
980 	/*
981 	 * If there is a discontinuity in the history, scale monotonic raw
982 	 *	correction by:
983 	 *	mult(real)/mult(raw) yielding the realtime correction
984 	 * Otherwise, calculate the realtime correction similar to monotonic
985 	 *	raw calculation
986 	 */
987 	if (discontinuity) {
988 		corr_real = mul_u64_u32_div
989 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
990 	} else {
991 		corr_real = (u64)ktime_to_ns(
992 			ktime_sub(ts->sys_realtime, history->real));
993 		ret = scale64_check_overflow(partial_history_cycles,
994 					     total_history_cycles, &corr_real);
995 		if (ret)
996 			return ret;
997 	}
998 
999 	/* Fixup monotonic raw and real time time values */
1000 	if (interp_forward) {
1001 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1002 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1003 	} else {
1004 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1005 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 /*
1012  * cycle_between - true if test occurs chronologically between before and after
1013  */
1014 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1015 {
1016 	if (test > before && test < after)
1017 		return true;
1018 	if (test < before && before > after)
1019 		return true;
1020 	return false;
1021 }
1022 
1023 /**
1024  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1025  * @get_time_fn:	Callback to get simultaneous device time and
1026  *	system counter from the device driver
1027  * @ctx:		Context passed to get_time_fn()
1028  * @history_begin:	Historical reference point used to interpolate system
1029  *	time when counter provided by the driver is before the current interval
1030  * @xtstamp:		Receives simultaneously captured system and device time
1031  *
1032  * Reads a timestamp from a device and correlates it to system time
1033  */
1034 int get_device_system_crosststamp(int (*get_time_fn)
1035 				  (ktime_t *device_time,
1036 				   struct system_counterval_t *sys_counterval,
1037 				   void *ctx),
1038 				  void *ctx,
1039 				  struct system_time_snapshot *history_begin,
1040 				  struct system_device_crosststamp *xtstamp)
1041 {
1042 	struct system_counterval_t system_counterval;
1043 	struct timekeeper *tk = &tk_core.timekeeper;
1044 	cycle_t cycles, now, interval_start;
1045 	unsigned int clock_was_set_seq = 0;
1046 	ktime_t base_real, base_raw;
1047 	s64 nsec_real, nsec_raw;
1048 	u8 cs_was_changed_seq;
1049 	unsigned long seq;
1050 	bool do_interp;
1051 	int ret;
1052 
1053 	do {
1054 		seq = read_seqcount_begin(&tk_core.seq);
1055 		/*
1056 		 * Try to synchronously capture device time and a system
1057 		 * counter value calling back into the device driver
1058 		 */
1059 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1060 		if (ret)
1061 			return ret;
1062 
1063 		/*
1064 		 * Verify that the clocksource associated with the captured
1065 		 * system counter value is the same as the currently installed
1066 		 * timekeeper clocksource
1067 		 */
1068 		if (tk->tkr_mono.clock != system_counterval.cs)
1069 			return -ENODEV;
1070 		cycles = system_counterval.cycles;
1071 
1072 		/*
1073 		 * Check whether the system counter value provided by the
1074 		 * device driver is on the current timekeeping interval.
1075 		 */
1076 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1077 		interval_start = tk->tkr_mono.cycle_last;
1078 		if (!cycle_between(interval_start, cycles, now)) {
1079 			clock_was_set_seq = tk->clock_was_set_seq;
1080 			cs_was_changed_seq = tk->cs_was_changed_seq;
1081 			cycles = interval_start;
1082 			do_interp = true;
1083 		} else {
1084 			do_interp = false;
1085 		}
1086 
1087 		base_real = ktime_add(tk->tkr_mono.base,
1088 				      tk_core.timekeeper.offs_real);
1089 		base_raw = tk->tkr_raw.base;
1090 
1091 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1092 						     system_counterval.cycles);
1093 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1094 						    system_counterval.cycles);
1095 	} while (read_seqcount_retry(&tk_core.seq, seq));
1096 
1097 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1098 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1099 
1100 	/*
1101 	 * Interpolate if necessary, adjusting back from the start of the
1102 	 * current interval
1103 	 */
1104 	if (do_interp) {
1105 		cycle_t partial_history_cycles, total_history_cycles;
1106 		bool discontinuity;
1107 
1108 		/*
1109 		 * Check that the counter value occurs after the provided
1110 		 * history reference and that the history doesn't cross a
1111 		 * clocksource change
1112 		 */
1113 		if (!history_begin ||
1114 		    !cycle_between(history_begin->cycles,
1115 				   system_counterval.cycles, cycles) ||
1116 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1117 			return -EINVAL;
1118 		partial_history_cycles = cycles - system_counterval.cycles;
1119 		total_history_cycles = cycles - history_begin->cycles;
1120 		discontinuity =
1121 			history_begin->clock_was_set_seq != clock_was_set_seq;
1122 
1123 		ret = adjust_historical_crosststamp(history_begin,
1124 						    partial_history_cycles,
1125 						    total_history_cycles,
1126 						    discontinuity, xtstamp);
1127 		if (ret)
1128 			return ret;
1129 	}
1130 
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1134 
1135 /**
1136  * do_gettimeofday - Returns the time of day in a timeval
1137  * @tv:		pointer to the timeval to be set
1138  *
1139  * NOTE: Users should be converted to using getnstimeofday()
1140  */
1141 void do_gettimeofday(struct timeval *tv)
1142 {
1143 	struct timespec64 now;
1144 
1145 	getnstimeofday64(&now);
1146 	tv->tv_sec = now.tv_sec;
1147 	tv->tv_usec = now.tv_nsec/1000;
1148 }
1149 EXPORT_SYMBOL(do_gettimeofday);
1150 
1151 /**
1152  * do_settimeofday64 - Sets the time of day.
1153  * @ts:     pointer to the timespec64 variable containing the new time
1154  *
1155  * Sets the time of day to the new time and update NTP and notify hrtimers
1156  */
1157 int do_settimeofday64(const struct timespec64 *ts)
1158 {
1159 	struct timekeeper *tk = &tk_core.timekeeper;
1160 	struct timespec64 ts_delta, xt;
1161 	unsigned long flags;
1162 	int ret = 0;
1163 
1164 	if (!timespec64_valid_strict(ts))
1165 		return -EINVAL;
1166 
1167 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1168 	write_seqcount_begin(&tk_core.seq);
1169 
1170 	timekeeping_forward_now(tk);
1171 
1172 	xt = tk_xtime(tk);
1173 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1174 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1175 
1176 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1177 		ret = -EINVAL;
1178 		goto out;
1179 	}
1180 
1181 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1182 
1183 	tk_set_xtime(tk, ts);
1184 out:
1185 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1186 
1187 	write_seqcount_end(&tk_core.seq);
1188 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189 
1190 	/* signal hrtimers about time change */
1191 	clock_was_set();
1192 
1193 	return ret;
1194 }
1195 EXPORT_SYMBOL(do_settimeofday64);
1196 
1197 /**
1198  * timekeeping_inject_offset - Adds or subtracts from the current time.
1199  * @tv:		pointer to the timespec variable containing the offset
1200  *
1201  * Adds or subtracts an offset value from the current time.
1202  */
1203 int timekeeping_inject_offset(struct timespec *ts)
1204 {
1205 	struct timekeeper *tk = &tk_core.timekeeper;
1206 	unsigned long flags;
1207 	struct timespec64 ts64, tmp;
1208 	int ret = 0;
1209 
1210 	if (!timespec_inject_offset_valid(ts))
1211 		return -EINVAL;
1212 
1213 	ts64 = timespec_to_timespec64(*ts);
1214 
1215 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216 	write_seqcount_begin(&tk_core.seq);
1217 
1218 	timekeeping_forward_now(tk);
1219 
1220 	/* Make sure the proposed value is valid */
1221 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1222 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1223 	    !timespec64_valid_strict(&tmp)) {
1224 		ret = -EINVAL;
1225 		goto error;
1226 	}
1227 
1228 	tk_xtime_add(tk, &ts64);
1229 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1230 
1231 error: /* even if we error out, we forwarded the time, so call update */
1232 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1233 
1234 	write_seqcount_end(&tk_core.seq);
1235 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1236 
1237 	/* signal hrtimers about time change */
1238 	clock_was_set();
1239 
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(timekeeping_inject_offset);
1243 
1244 
1245 /**
1246  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1247  *
1248  */
1249 s32 timekeeping_get_tai_offset(void)
1250 {
1251 	struct timekeeper *tk = &tk_core.timekeeper;
1252 	unsigned int seq;
1253 	s32 ret;
1254 
1255 	do {
1256 		seq = read_seqcount_begin(&tk_core.seq);
1257 		ret = tk->tai_offset;
1258 	} while (read_seqcount_retry(&tk_core.seq, seq));
1259 
1260 	return ret;
1261 }
1262 
1263 /**
1264  * __timekeeping_set_tai_offset - Lock free worker function
1265  *
1266  */
1267 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1268 {
1269 	tk->tai_offset = tai_offset;
1270 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1271 }
1272 
1273 /**
1274  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1275  *
1276  */
1277 void timekeeping_set_tai_offset(s32 tai_offset)
1278 {
1279 	struct timekeeper *tk = &tk_core.timekeeper;
1280 	unsigned long flags;
1281 
1282 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283 	write_seqcount_begin(&tk_core.seq);
1284 	__timekeeping_set_tai_offset(tk, tai_offset);
1285 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1286 	write_seqcount_end(&tk_core.seq);
1287 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1288 	clock_was_set();
1289 }
1290 
1291 /**
1292  * change_clocksource - Swaps clocksources if a new one is available
1293  *
1294  * Accumulates current time interval and initializes new clocksource
1295  */
1296 static int change_clocksource(void *data)
1297 {
1298 	struct timekeeper *tk = &tk_core.timekeeper;
1299 	struct clocksource *new, *old;
1300 	unsigned long flags;
1301 
1302 	new = (struct clocksource *) data;
1303 
1304 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1305 	write_seqcount_begin(&tk_core.seq);
1306 
1307 	timekeeping_forward_now(tk);
1308 	/*
1309 	 * If the cs is in module, get a module reference. Succeeds
1310 	 * for built-in code (owner == NULL) as well.
1311 	 */
1312 	if (try_module_get(new->owner)) {
1313 		if (!new->enable || new->enable(new) == 0) {
1314 			old = tk->tkr_mono.clock;
1315 			tk_setup_internals(tk, new);
1316 			if (old->disable)
1317 				old->disable(old);
1318 			module_put(old->owner);
1319 		} else {
1320 			module_put(new->owner);
1321 		}
1322 	}
1323 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324 
1325 	write_seqcount_end(&tk_core.seq);
1326 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * timekeeping_notify - Install a new clock source
1333  * @clock:		pointer to the clock source
1334  *
1335  * This function is called from clocksource.c after a new, better clock
1336  * source has been registered. The caller holds the clocksource_mutex.
1337  */
1338 int timekeeping_notify(struct clocksource *clock)
1339 {
1340 	struct timekeeper *tk = &tk_core.timekeeper;
1341 
1342 	if (tk->tkr_mono.clock == clock)
1343 		return 0;
1344 	stop_machine(change_clocksource, clock, NULL);
1345 	tick_clock_notify();
1346 	return tk->tkr_mono.clock == clock ? 0 : -1;
1347 }
1348 
1349 /**
1350  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1351  * @ts:		pointer to the timespec64 to be set
1352  *
1353  * Returns the raw monotonic time (completely un-modified by ntp)
1354  */
1355 void getrawmonotonic64(struct timespec64 *ts)
1356 {
1357 	struct timekeeper *tk = &tk_core.timekeeper;
1358 	struct timespec64 ts64;
1359 	unsigned long seq;
1360 	s64 nsecs;
1361 
1362 	do {
1363 		seq = read_seqcount_begin(&tk_core.seq);
1364 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1365 		ts64 = tk->raw_time;
1366 
1367 	} while (read_seqcount_retry(&tk_core.seq, seq));
1368 
1369 	timespec64_add_ns(&ts64, nsecs);
1370 	*ts = ts64;
1371 }
1372 EXPORT_SYMBOL(getrawmonotonic64);
1373 
1374 
1375 /**
1376  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1377  */
1378 int timekeeping_valid_for_hres(void)
1379 {
1380 	struct timekeeper *tk = &tk_core.timekeeper;
1381 	unsigned long seq;
1382 	int ret;
1383 
1384 	do {
1385 		seq = read_seqcount_begin(&tk_core.seq);
1386 
1387 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1388 
1389 	} while (read_seqcount_retry(&tk_core.seq, seq));
1390 
1391 	return ret;
1392 }
1393 
1394 /**
1395  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1396  */
1397 u64 timekeeping_max_deferment(void)
1398 {
1399 	struct timekeeper *tk = &tk_core.timekeeper;
1400 	unsigned long seq;
1401 	u64 ret;
1402 
1403 	do {
1404 		seq = read_seqcount_begin(&tk_core.seq);
1405 
1406 		ret = tk->tkr_mono.clock->max_idle_ns;
1407 
1408 	} while (read_seqcount_retry(&tk_core.seq, seq));
1409 
1410 	return ret;
1411 }
1412 
1413 /**
1414  * read_persistent_clock -  Return time from the persistent clock.
1415  *
1416  * Weak dummy function for arches that do not yet support it.
1417  * Reads the time from the battery backed persistent clock.
1418  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1419  *
1420  *  XXX - Do be sure to remove it once all arches implement it.
1421  */
1422 void __weak read_persistent_clock(struct timespec *ts)
1423 {
1424 	ts->tv_sec = 0;
1425 	ts->tv_nsec = 0;
1426 }
1427 
1428 void __weak read_persistent_clock64(struct timespec64 *ts64)
1429 {
1430 	struct timespec ts;
1431 
1432 	read_persistent_clock(&ts);
1433 	*ts64 = timespec_to_timespec64(ts);
1434 }
1435 
1436 /**
1437  * read_boot_clock64 -  Return time of the system start.
1438  *
1439  * Weak dummy function for arches that do not yet support it.
1440  * Function to read the exact time the system has been started.
1441  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1442  *
1443  *  XXX - Do be sure to remove it once all arches implement it.
1444  */
1445 void __weak read_boot_clock64(struct timespec64 *ts)
1446 {
1447 	ts->tv_sec = 0;
1448 	ts->tv_nsec = 0;
1449 }
1450 
1451 /* Flag for if timekeeping_resume() has injected sleeptime */
1452 static bool sleeptime_injected;
1453 
1454 /* Flag for if there is a persistent clock on this platform */
1455 static bool persistent_clock_exists;
1456 
1457 /*
1458  * timekeeping_init - Initializes the clocksource and common timekeeping values
1459  */
1460 void __init timekeeping_init(void)
1461 {
1462 	struct timekeeper *tk = &tk_core.timekeeper;
1463 	struct clocksource *clock;
1464 	unsigned long flags;
1465 	struct timespec64 now, boot, tmp;
1466 
1467 	read_persistent_clock64(&now);
1468 	if (!timespec64_valid_strict(&now)) {
1469 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1470 			"         Check your CMOS/BIOS settings.\n");
1471 		now.tv_sec = 0;
1472 		now.tv_nsec = 0;
1473 	} else if (now.tv_sec || now.tv_nsec)
1474 		persistent_clock_exists = true;
1475 
1476 	read_boot_clock64(&boot);
1477 	if (!timespec64_valid_strict(&boot)) {
1478 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1479 			"         Check your CMOS/BIOS settings.\n");
1480 		boot.tv_sec = 0;
1481 		boot.tv_nsec = 0;
1482 	}
1483 
1484 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1485 	write_seqcount_begin(&tk_core.seq);
1486 	ntp_init();
1487 
1488 	clock = clocksource_default_clock();
1489 	if (clock->enable)
1490 		clock->enable(clock);
1491 	tk_setup_internals(tk, clock);
1492 
1493 	tk_set_xtime(tk, &now);
1494 	tk->raw_time.tv_sec = 0;
1495 	tk->raw_time.tv_nsec = 0;
1496 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1497 		boot = tk_xtime(tk);
1498 
1499 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1500 	tk_set_wall_to_mono(tk, tmp);
1501 
1502 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1503 
1504 	write_seqcount_end(&tk_core.seq);
1505 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1506 }
1507 
1508 /* time in seconds when suspend began for persistent clock */
1509 static struct timespec64 timekeeping_suspend_time;
1510 
1511 /**
1512  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1513  * @delta: pointer to a timespec delta value
1514  *
1515  * Takes a timespec offset measuring a suspend interval and properly
1516  * adds the sleep offset to the timekeeping variables.
1517  */
1518 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1519 					   struct timespec64 *delta)
1520 {
1521 	if (!timespec64_valid_strict(delta)) {
1522 		printk_deferred(KERN_WARNING
1523 				"__timekeeping_inject_sleeptime: Invalid "
1524 				"sleep delta value!\n");
1525 		return;
1526 	}
1527 	tk_xtime_add(tk, delta);
1528 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1529 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1530 	tk_debug_account_sleep_time(delta);
1531 }
1532 
1533 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1534 /**
1535  * We have three kinds of time sources to use for sleep time
1536  * injection, the preference order is:
1537  * 1) non-stop clocksource
1538  * 2) persistent clock (ie: RTC accessible when irqs are off)
1539  * 3) RTC
1540  *
1541  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1542  * If system has neither 1) nor 2), 3) will be used finally.
1543  *
1544  *
1545  * If timekeeping has injected sleeptime via either 1) or 2),
1546  * 3) becomes needless, so in this case we don't need to call
1547  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1548  * means.
1549  */
1550 bool timekeeping_rtc_skipresume(void)
1551 {
1552 	return sleeptime_injected;
1553 }
1554 
1555 /**
1556  * 1) can be determined whether to use or not only when doing
1557  * timekeeping_resume() which is invoked after rtc_suspend(),
1558  * so we can't skip rtc_suspend() surely if system has 1).
1559  *
1560  * But if system has 2), 2) will definitely be used, so in this
1561  * case we don't need to call rtc_suspend(), and this is what
1562  * timekeeping_rtc_skipsuspend() means.
1563  */
1564 bool timekeeping_rtc_skipsuspend(void)
1565 {
1566 	return persistent_clock_exists;
1567 }
1568 
1569 /**
1570  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1571  * @delta: pointer to a timespec64 delta value
1572  *
1573  * This hook is for architectures that cannot support read_persistent_clock64
1574  * because their RTC/persistent clock is only accessible when irqs are enabled.
1575  * and also don't have an effective nonstop clocksource.
1576  *
1577  * This function should only be called by rtc_resume(), and allows
1578  * a suspend offset to be injected into the timekeeping values.
1579  */
1580 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1581 {
1582 	struct timekeeper *tk = &tk_core.timekeeper;
1583 	unsigned long flags;
1584 
1585 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1586 	write_seqcount_begin(&tk_core.seq);
1587 
1588 	timekeeping_forward_now(tk);
1589 
1590 	__timekeeping_inject_sleeptime(tk, delta);
1591 
1592 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1593 
1594 	write_seqcount_end(&tk_core.seq);
1595 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1596 
1597 	/* signal hrtimers about time change */
1598 	clock_was_set();
1599 }
1600 #endif
1601 
1602 /**
1603  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1604  */
1605 void timekeeping_resume(void)
1606 {
1607 	struct timekeeper *tk = &tk_core.timekeeper;
1608 	struct clocksource *clock = tk->tkr_mono.clock;
1609 	unsigned long flags;
1610 	struct timespec64 ts_new, ts_delta;
1611 	cycle_t cycle_now, cycle_delta;
1612 
1613 	sleeptime_injected = false;
1614 	read_persistent_clock64(&ts_new);
1615 
1616 	clockevents_resume();
1617 	clocksource_resume();
1618 
1619 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620 	write_seqcount_begin(&tk_core.seq);
1621 
1622 	/*
1623 	 * After system resumes, we need to calculate the suspended time and
1624 	 * compensate it for the OS time. There are 3 sources that could be
1625 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1626 	 * device.
1627 	 *
1628 	 * One specific platform may have 1 or 2 or all of them, and the
1629 	 * preference will be:
1630 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1631 	 * The less preferred source will only be tried if there is no better
1632 	 * usable source. The rtc part is handled separately in rtc core code.
1633 	 */
1634 	cycle_now = tk->tkr_mono.read(clock);
1635 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1636 		cycle_now > tk->tkr_mono.cycle_last) {
1637 		u64 num, max = ULLONG_MAX;
1638 		u32 mult = clock->mult;
1639 		u32 shift = clock->shift;
1640 		s64 nsec = 0;
1641 
1642 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1643 						tk->tkr_mono.mask);
1644 
1645 		/*
1646 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1647 		 * suspended time is too long. In that case we need do the
1648 		 * 64 bits math carefully
1649 		 */
1650 		do_div(max, mult);
1651 		if (cycle_delta > max) {
1652 			num = div64_u64(cycle_delta, max);
1653 			nsec = (((u64) max * mult) >> shift) * num;
1654 			cycle_delta -= num * max;
1655 		}
1656 		nsec += ((u64) cycle_delta * mult) >> shift;
1657 
1658 		ts_delta = ns_to_timespec64(nsec);
1659 		sleeptime_injected = true;
1660 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1661 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1662 		sleeptime_injected = true;
1663 	}
1664 
1665 	if (sleeptime_injected)
1666 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1667 
1668 	/* Re-base the last cycle value */
1669 	tk->tkr_mono.cycle_last = cycle_now;
1670 	tk->tkr_raw.cycle_last  = cycle_now;
1671 
1672 	tk->ntp_error = 0;
1673 	timekeeping_suspended = 0;
1674 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1675 	write_seqcount_end(&tk_core.seq);
1676 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1677 
1678 	touch_softlockup_watchdog();
1679 
1680 	tick_resume();
1681 	hrtimers_resume();
1682 }
1683 
1684 int timekeeping_suspend(void)
1685 {
1686 	struct timekeeper *tk = &tk_core.timekeeper;
1687 	unsigned long flags;
1688 	struct timespec64		delta, delta_delta;
1689 	static struct timespec64	old_delta;
1690 
1691 	read_persistent_clock64(&timekeeping_suspend_time);
1692 
1693 	/*
1694 	 * On some systems the persistent_clock can not be detected at
1695 	 * timekeeping_init by its return value, so if we see a valid
1696 	 * value returned, update the persistent_clock_exists flag.
1697 	 */
1698 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1699 		persistent_clock_exists = true;
1700 
1701 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1702 	write_seqcount_begin(&tk_core.seq);
1703 	timekeeping_forward_now(tk);
1704 	timekeeping_suspended = 1;
1705 
1706 	if (persistent_clock_exists) {
1707 		/*
1708 		 * To avoid drift caused by repeated suspend/resumes,
1709 		 * which each can add ~1 second drift error,
1710 		 * try to compensate so the difference in system time
1711 		 * and persistent_clock time stays close to constant.
1712 		 */
1713 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1714 		delta_delta = timespec64_sub(delta, old_delta);
1715 		if (abs(delta_delta.tv_sec) >= 2) {
1716 			/*
1717 			 * if delta_delta is too large, assume time correction
1718 			 * has occurred and set old_delta to the current delta.
1719 			 */
1720 			old_delta = delta;
1721 		} else {
1722 			/* Otherwise try to adjust old_system to compensate */
1723 			timekeeping_suspend_time =
1724 				timespec64_add(timekeeping_suspend_time, delta_delta);
1725 		}
1726 	}
1727 
1728 	timekeeping_update(tk, TK_MIRROR);
1729 	halt_fast_timekeeper(tk);
1730 	write_seqcount_end(&tk_core.seq);
1731 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1732 
1733 	tick_suspend();
1734 	clocksource_suspend();
1735 	clockevents_suspend();
1736 
1737 	return 0;
1738 }
1739 
1740 /* sysfs resume/suspend bits for timekeeping */
1741 static struct syscore_ops timekeeping_syscore_ops = {
1742 	.resume		= timekeeping_resume,
1743 	.suspend	= timekeeping_suspend,
1744 };
1745 
1746 static int __init timekeeping_init_ops(void)
1747 {
1748 	register_syscore_ops(&timekeeping_syscore_ops);
1749 	return 0;
1750 }
1751 device_initcall(timekeeping_init_ops);
1752 
1753 /*
1754  * Apply a multiplier adjustment to the timekeeper
1755  */
1756 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1757 							 s64 offset,
1758 							 bool negative,
1759 							 int adj_scale)
1760 {
1761 	s64 interval = tk->cycle_interval;
1762 	s32 mult_adj = 1;
1763 
1764 	if (negative) {
1765 		mult_adj = -mult_adj;
1766 		interval = -interval;
1767 		offset  = -offset;
1768 	}
1769 	mult_adj <<= adj_scale;
1770 	interval <<= adj_scale;
1771 	offset <<= adj_scale;
1772 
1773 	/*
1774 	 * So the following can be confusing.
1775 	 *
1776 	 * To keep things simple, lets assume mult_adj == 1 for now.
1777 	 *
1778 	 * When mult_adj != 1, remember that the interval and offset values
1779 	 * have been appropriately scaled so the math is the same.
1780 	 *
1781 	 * The basic idea here is that we're increasing the multiplier
1782 	 * by one, this causes the xtime_interval to be incremented by
1783 	 * one cycle_interval. This is because:
1784 	 *	xtime_interval = cycle_interval * mult
1785 	 * So if mult is being incremented by one:
1786 	 *	xtime_interval = cycle_interval * (mult + 1)
1787 	 * Its the same as:
1788 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1789 	 * Which can be shortened to:
1790 	 *	xtime_interval += cycle_interval
1791 	 *
1792 	 * So offset stores the non-accumulated cycles. Thus the current
1793 	 * time (in shifted nanoseconds) is:
1794 	 *	now = (offset * adj) + xtime_nsec
1795 	 * Now, even though we're adjusting the clock frequency, we have
1796 	 * to keep time consistent. In other words, we can't jump back
1797 	 * in time, and we also want to avoid jumping forward in time.
1798 	 *
1799 	 * So given the same offset value, we need the time to be the same
1800 	 * both before and after the freq adjustment.
1801 	 *	now = (offset * adj_1) + xtime_nsec_1
1802 	 *	now = (offset * adj_2) + xtime_nsec_2
1803 	 * So:
1804 	 *	(offset * adj_1) + xtime_nsec_1 =
1805 	 *		(offset * adj_2) + xtime_nsec_2
1806 	 * And we know:
1807 	 *	adj_2 = adj_1 + 1
1808 	 * So:
1809 	 *	(offset * adj_1) + xtime_nsec_1 =
1810 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1811 	 *	(offset * adj_1) + xtime_nsec_1 =
1812 	 *		(offset * adj_1) + offset + xtime_nsec_2
1813 	 * Canceling the sides:
1814 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1815 	 * Which gives us:
1816 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1817 	 * Which simplfies to:
1818 	 *	xtime_nsec -= offset
1819 	 *
1820 	 * XXX - TODO: Doc ntp_error calculation.
1821 	 */
1822 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1823 		/* NTP adjustment caused clocksource mult overflow */
1824 		WARN_ON_ONCE(1);
1825 		return;
1826 	}
1827 
1828 	tk->tkr_mono.mult += mult_adj;
1829 	tk->xtime_interval += interval;
1830 	tk->tkr_mono.xtime_nsec -= offset;
1831 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1832 }
1833 
1834 /*
1835  * Calculate the multiplier adjustment needed to match the frequency
1836  * specified by NTP
1837  */
1838 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1839 							s64 offset)
1840 {
1841 	s64 interval = tk->cycle_interval;
1842 	s64 xinterval = tk->xtime_interval;
1843 	u32 base = tk->tkr_mono.clock->mult;
1844 	u32 max = tk->tkr_mono.clock->maxadj;
1845 	u32 cur_adj = tk->tkr_mono.mult;
1846 	s64 tick_error;
1847 	bool negative;
1848 	u32 adj_scale;
1849 
1850 	/* Remove any current error adj from freq calculation */
1851 	if (tk->ntp_err_mult)
1852 		xinterval -= tk->cycle_interval;
1853 
1854 	tk->ntp_tick = ntp_tick_length();
1855 
1856 	/* Calculate current error per tick */
1857 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1858 	tick_error -= (xinterval + tk->xtime_remainder);
1859 
1860 	/* Don't worry about correcting it if its small */
1861 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1862 		return;
1863 
1864 	/* preserve the direction of correction */
1865 	negative = (tick_error < 0);
1866 
1867 	/* If any adjustment would pass the max, just return */
1868 	if (negative && (cur_adj - 1) <= (base - max))
1869 		return;
1870 	if (!negative && (cur_adj + 1) >= (base + max))
1871 		return;
1872 	/*
1873 	 * Sort out the magnitude of the correction, but
1874 	 * avoid making so large a correction that we go
1875 	 * over the max adjustment.
1876 	 */
1877 	adj_scale = 0;
1878 	tick_error = abs(tick_error);
1879 	while (tick_error > interval) {
1880 		u32 adj = 1 << (adj_scale + 1);
1881 
1882 		/* Check if adjustment gets us within 1 unit from the max */
1883 		if (negative && (cur_adj - adj) <= (base - max))
1884 			break;
1885 		if (!negative && (cur_adj + adj) >= (base + max))
1886 			break;
1887 
1888 		adj_scale++;
1889 		tick_error >>= 1;
1890 	}
1891 
1892 	/* scale the corrections */
1893 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1894 }
1895 
1896 /*
1897  * Adjust the timekeeper's multiplier to the correct frequency
1898  * and also to reduce the accumulated error value.
1899  */
1900 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1901 {
1902 	/* Correct for the current frequency error */
1903 	timekeeping_freqadjust(tk, offset);
1904 
1905 	/* Next make a small adjustment to fix any cumulative error */
1906 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1907 		tk->ntp_err_mult = 1;
1908 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1909 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1910 		/* Undo any existing error adjustment */
1911 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1912 		tk->ntp_err_mult = 0;
1913 	}
1914 
1915 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1916 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1917 			> tk->tkr_mono.clock->maxadj))) {
1918 		printk_once(KERN_WARNING
1919 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1920 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1921 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1922 	}
1923 
1924 	/*
1925 	 * It may be possible that when we entered this function, xtime_nsec
1926 	 * was very small.  Further, if we're slightly speeding the clocksource
1927 	 * in the code above, its possible the required corrective factor to
1928 	 * xtime_nsec could cause it to underflow.
1929 	 *
1930 	 * Now, since we already accumulated the second, cannot simply roll
1931 	 * the accumulated second back, since the NTP subsystem has been
1932 	 * notified via second_overflow. So instead we push xtime_nsec forward
1933 	 * by the amount we underflowed, and add that amount into the error.
1934 	 *
1935 	 * We'll correct this error next time through this function, when
1936 	 * xtime_nsec is not as small.
1937 	 */
1938 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1939 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1940 		tk->tkr_mono.xtime_nsec = 0;
1941 		tk->ntp_error += neg << tk->ntp_error_shift;
1942 	}
1943 }
1944 
1945 /**
1946  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1947  *
1948  * Helper function that accumulates the nsecs greater than a second
1949  * from the xtime_nsec field to the xtime_secs field.
1950  * It also calls into the NTP code to handle leapsecond processing.
1951  *
1952  */
1953 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1954 {
1955 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1956 	unsigned int clock_set = 0;
1957 
1958 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1959 		int leap;
1960 
1961 		tk->tkr_mono.xtime_nsec -= nsecps;
1962 		tk->xtime_sec++;
1963 
1964 		/* Figure out if its a leap sec and apply if needed */
1965 		leap = second_overflow(tk->xtime_sec);
1966 		if (unlikely(leap)) {
1967 			struct timespec64 ts;
1968 
1969 			tk->xtime_sec += leap;
1970 
1971 			ts.tv_sec = leap;
1972 			ts.tv_nsec = 0;
1973 			tk_set_wall_to_mono(tk,
1974 				timespec64_sub(tk->wall_to_monotonic, ts));
1975 
1976 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1977 
1978 			clock_set = TK_CLOCK_WAS_SET;
1979 		}
1980 	}
1981 	return clock_set;
1982 }
1983 
1984 /**
1985  * logarithmic_accumulation - shifted accumulation of cycles
1986  *
1987  * This functions accumulates a shifted interval of cycles into
1988  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1989  * loop.
1990  *
1991  * Returns the unconsumed cycles.
1992  */
1993 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1994 						u32 shift,
1995 						unsigned int *clock_set)
1996 {
1997 	cycle_t interval = tk->cycle_interval << shift;
1998 	u64 raw_nsecs;
1999 
2000 	/* If the offset is smaller than a shifted interval, do nothing */
2001 	if (offset < interval)
2002 		return offset;
2003 
2004 	/* Accumulate one shifted interval */
2005 	offset -= interval;
2006 	tk->tkr_mono.cycle_last += interval;
2007 	tk->tkr_raw.cycle_last  += interval;
2008 
2009 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2010 	*clock_set |= accumulate_nsecs_to_secs(tk);
2011 
2012 	/* Accumulate raw time */
2013 	raw_nsecs = (u64)tk->raw_interval << shift;
2014 	raw_nsecs += tk->raw_time.tv_nsec;
2015 	if (raw_nsecs >= NSEC_PER_SEC) {
2016 		u64 raw_secs = raw_nsecs;
2017 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2018 		tk->raw_time.tv_sec += raw_secs;
2019 	}
2020 	tk->raw_time.tv_nsec = raw_nsecs;
2021 
2022 	/* Accumulate error between NTP and clock interval */
2023 	tk->ntp_error += tk->ntp_tick << shift;
2024 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025 						(tk->ntp_error_shift + shift);
2026 
2027 	return offset;
2028 }
2029 
2030 /**
2031  * update_wall_time - Uses the current clocksource to increment the wall time
2032  *
2033  */
2034 void update_wall_time(void)
2035 {
2036 	struct timekeeper *real_tk = &tk_core.timekeeper;
2037 	struct timekeeper *tk = &shadow_timekeeper;
2038 	cycle_t offset;
2039 	int shift = 0, maxshift;
2040 	unsigned int clock_set = 0;
2041 	unsigned long flags;
2042 
2043 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044 
2045 	/* Make sure we're fully resumed: */
2046 	if (unlikely(timekeeping_suspended))
2047 		goto out;
2048 
2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050 	offset = real_tk->cycle_interval;
2051 #else
2052 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2053 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054 #endif
2055 
2056 	/* Check if there's really nothing to do */
2057 	if (offset < real_tk->cycle_interval)
2058 		goto out;
2059 
2060 	/* Do some additional sanity checking */
2061 	timekeeping_check_update(real_tk, offset);
2062 
2063 	/*
2064 	 * With NO_HZ we may have to accumulate many cycle_intervals
2065 	 * (think "ticks") worth of time at once. To do this efficiently,
2066 	 * we calculate the largest doubling multiple of cycle_intervals
2067 	 * that is smaller than the offset.  We then accumulate that
2068 	 * chunk in one go, and then try to consume the next smaller
2069 	 * doubled multiple.
2070 	 */
2071 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072 	shift = max(0, shift);
2073 	/* Bound shift to one less than what overflows tick_length */
2074 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075 	shift = min(shift, maxshift);
2076 	while (offset >= tk->cycle_interval) {
2077 		offset = logarithmic_accumulation(tk, offset, shift,
2078 							&clock_set);
2079 		if (offset < tk->cycle_interval<<shift)
2080 			shift--;
2081 	}
2082 
2083 	/* correct the clock when NTP error is too big */
2084 	timekeeping_adjust(tk, offset);
2085 
2086 	/*
2087 	 * XXX This can be killed once everyone converts
2088 	 * to the new update_vsyscall.
2089 	 */
2090 	old_vsyscall_fixup(tk);
2091 
2092 	/*
2093 	 * Finally, make sure that after the rounding
2094 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2095 	 */
2096 	clock_set |= accumulate_nsecs_to_secs(tk);
2097 
2098 	write_seqcount_begin(&tk_core.seq);
2099 	/*
2100 	 * Update the real timekeeper.
2101 	 *
2102 	 * We could avoid this memcpy by switching pointers, but that
2103 	 * requires changes to all other timekeeper usage sites as
2104 	 * well, i.e. move the timekeeper pointer getter into the
2105 	 * spinlocked/seqcount protected sections. And we trade this
2106 	 * memcpy under the tk_core.seq against one before we start
2107 	 * updating.
2108 	 */
2109 	timekeeping_update(tk, clock_set);
2110 	memcpy(real_tk, tk, sizeof(*tk));
2111 	/* The memcpy must come last. Do not put anything here! */
2112 	write_seqcount_end(&tk_core.seq);
2113 out:
2114 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115 	if (clock_set)
2116 		/* Have to call _delayed version, since in irq context*/
2117 		clock_was_set_delayed();
2118 }
2119 
2120 /**
2121  * getboottime64 - Return the real time of system boot.
2122  * @ts:		pointer to the timespec64 to be set
2123  *
2124  * Returns the wall-time of boot in a timespec64.
2125  *
2126  * This is based on the wall_to_monotonic offset and the total suspend
2127  * time. Calls to settimeofday will affect the value returned (which
2128  * basically means that however wrong your real time clock is at boot time,
2129  * you get the right time here).
2130  */
2131 void getboottime64(struct timespec64 *ts)
2132 {
2133 	struct timekeeper *tk = &tk_core.timekeeper;
2134 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2135 
2136 	*ts = ktime_to_timespec64(t);
2137 }
2138 EXPORT_SYMBOL_GPL(getboottime64);
2139 
2140 unsigned long get_seconds(void)
2141 {
2142 	struct timekeeper *tk = &tk_core.timekeeper;
2143 
2144 	return tk->xtime_sec;
2145 }
2146 EXPORT_SYMBOL(get_seconds);
2147 
2148 struct timespec __current_kernel_time(void)
2149 {
2150 	struct timekeeper *tk = &tk_core.timekeeper;
2151 
2152 	return timespec64_to_timespec(tk_xtime(tk));
2153 }
2154 
2155 struct timespec64 current_kernel_time64(void)
2156 {
2157 	struct timekeeper *tk = &tk_core.timekeeper;
2158 	struct timespec64 now;
2159 	unsigned long seq;
2160 
2161 	do {
2162 		seq = read_seqcount_begin(&tk_core.seq);
2163 
2164 		now = tk_xtime(tk);
2165 	} while (read_seqcount_retry(&tk_core.seq, seq));
2166 
2167 	return now;
2168 }
2169 EXPORT_SYMBOL(current_kernel_time64);
2170 
2171 struct timespec64 get_monotonic_coarse64(void)
2172 {
2173 	struct timekeeper *tk = &tk_core.timekeeper;
2174 	struct timespec64 now, mono;
2175 	unsigned long seq;
2176 
2177 	do {
2178 		seq = read_seqcount_begin(&tk_core.seq);
2179 
2180 		now = tk_xtime(tk);
2181 		mono = tk->wall_to_monotonic;
2182 	} while (read_seqcount_retry(&tk_core.seq, seq));
2183 
2184 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2185 				now.tv_nsec + mono.tv_nsec);
2186 
2187 	return now;
2188 }
2189 
2190 /*
2191  * Must hold jiffies_lock
2192  */
2193 void do_timer(unsigned long ticks)
2194 {
2195 	jiffies_64 += ticks;
2196 	calc_global_load(ticks);
2197 }
2198 
2199 /**
2200  * ktime_get_update_offsets_now - hrtimer helper
2201  * @cwsseq:	pointer to check and store the clock was set sequence number
2202  * @offs_real:	pointer to storage for monotonic -> realtime offset
2203  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2204  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2205  *
2206  * Returns current monotonic time and updates the offsets if the
2207  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2208  * different.
2209  *
2210  * Called from hrtimer_interrupt() or retrigger_next_event()
2211  */
2212 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2213 				     ktime_t *offs_boot, ktime_t *offs_tai)
2214 {
2215 	struct timekeeper *tk = &tk_core.timekeeper;
2216 	unsigned int seq;
2217 	ktime_t base;
2218 	u64 nsecs;
2219 
2220 	do {
2221 		seq = read_seqcount_begin(&tk_core.seq);
2222 
2223 		base = tk->tkr_mono.base;
2224 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225 		base = ktime_add_ns(base, nsecs);
2226 
2227 		if (*cwsseq != tk->clock_was_set_seq) {
2228 			*cwsseq = tk->clock_was_set_seq;
2229 			*offs_real = tk->offs_real;
2230 			*offs_boot = tk->offs_boot;
2231 			*offs_tai = tk->offs_tai;
2232 		}
2233 
2234 		/* Handle leapsecond insertion adjustments */
2235 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2236 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2237 
2238 	} while (read_seqcount_retry(&tk_core.seq, seq));
2239 
2240 	return base;
2241 }
2242 
2243 /**
2244  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2245  */
2246 int do_adjtimex(struct timex *txc)
2247 {
2248 	struct timekeeper *tk = &tk_core.timekeeper;
2249 	unsigned long flags;
2250 	struct timespec64 ts;
2251 	s32 orig_tai, tai;
2252 	int ret;
2253 
2254 	/* Validate the data before disabling interrupts */
2255 	ret = ntp_validate_timex(txc);
2256 	if (ret)
2257 		return ret;
2258 
2259 	if (txc->modes & ADJ_SETOFFSET) {
2260 		struct timespec delta;
2261 		delta.tv_sec  = txc->time.tv_sec;
2262 		delta.tv_nsec = txc->time.tv_usec;
2263 		if (!(txc->modes & ADJ_NANO))
2264 			delta.tv_nsec *= 1000;
2265 		ret = timekeeping_inject_offset(&delta);
2266 		if (ret)
2267 			return ret;
2268 	}
2269 
2270 	getnstimeofday64(&ts);
2271 
2272 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2273 	write_seqcount_begin(&tk_core.seq);
2274 
2275 	orig_tai = tai = tk->tai_offset;
2276 	ret = __do_adjtimex(txc, &ts, &tai);
2277 
2278 	if (tai != orig_tai) {
2279 		__timekeeping_set_tai_offset(tk, tai);
2280 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2281 	}
2282 	tk_update_leap_state(tk);
2283 
2284 	write_seqcount_end(&tk_core.seq);
2285 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2286 
2287 	if (tai != orig_tai)
2288 		clock_was_set();
2289 
2290 	ntp_notify_cmos_timer();
2291 
2292 	return ret;
2293 }
2294 
2295 #ifdef CONFIG_NTP_PPS
2296 /**
2297  * hardpps() - Accessor function to NTP __hardpps function
2298  */
2299 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2300 {
2301 	unsigned long flags;
2302 
2303 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2304 	write_seqcount_begin(&tk_core.seq);
2305 
2306 	__hardpps(phase_ts, raw_ts);
2307 
2308 	write_seqcount_end(&tk_core.seq);
2309 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2310 }
2311 EXPORT_SYMBOL(hardpps);
2312 #endif
2313 
2314 /**
2315  * xtime_update() - advances the timekeeping infrastructure
2316  * @ticks:	number of ticks, that have elapsed since the last call.
2317  *
2318  * Must be called with interrupts disabled.
2319  */
2320 void xtime_update(unsigned long ticks)
2321 {
2322 	write_seqlock(&jiffies_lock);
2323 	do_timer(ticks);
2324 	write_sequnlock(&jiffies_lock);
2325 	update_wall_time();
2326 }
2327