1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (cycle_t) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = (u64) interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = 264 ((u64) interval * clock->mult) >> clock->shift; 265 266 /* if changing clocks, convert xtime_nsec shift units */ 267 if (old_clock) { 268 int shift_change = clock->shift - old_clock->shift; 269 if (shift_change < 0) 270 tk->tkr_mono.xtime_nsec >>= -shift_change; 271 else 272 tk->tkr_mono.xtime_nsec <<= shift_change; 273 } 274 tk->tkr_raw.xtime_nsec = 0; 275 276 tk->tkr_mono.shift = clock->shift; 277 tk->tkr_raw.shift = clock->shift; 278 279 tk->ntp_error = 0; 280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 282 283 /* 284 * The timekeeper keeps its own mult values for the currently 285 * active clocksource. These value will be adjusted via NTP 286 * to counteract clock drifting. 287 */ 288 tk->tkr_mono.mult = clock->mult; 289 tk->tkr_raw.mult = clock->mult; 290 tk->ntp_err_mult = 0; 291 } 292 293 /* Timekeeper helper functions. */ 294 295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 296 static u32 default_arch_gettimeoffset(void) { return 0; } 297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 298 #else 299 static inline u32 arch_gettimeoffset(void) { return 0; } 300 #endif 301 302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr, 303 cycle_t delta) 304 { 305 s64 nsec; 306 307 nsec = delta * tkr->mult + tkr->xtime_nsec; 308 nsec >>= tkr->shift; 309 310 /* If arch requires, add in get_arch_timeoffset() */ 311 return nsec + arch_gettimeoffset(); 312 } 313 314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 315 { 316 cycle_t delta; 317 318 delta = timekeeping_get_delta(tkr); 319 return timekeeping_delta_to_ns(tkr, delta); 320 } 321 322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, 323 cycle_t cycles) 324 { 325 cycle_t delta; 326 327 /* calculate the delta since the last update_wall_time */ 328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 329 return timekeeping_delta_to_ns(tkr, delta); 330 } 331 332 /** 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 334 * @tkr: Timekeeping readout base from which we take the update 335 * 336 * We want to use this from any context including NMI and tracing / 337 * instrumenting the timekeeping code itself. 338 * 339 * Employ the latch technique; see @raw_write_seqcount_latch. 340 * 341 * So if a NMI hits the update of base[0] then it will use base[1] 342 * which is still consistent. In the worst case this can result is a 343 * slightly wrong timestamp (a few nanoseconds). See 344 * @ktime_get_mono_fast_ns. 345 */ 346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 347 { 348 struct tk_read_base *base = tkf->base; 349 350 /* Force readers off to base[1] */ 351 raw_write_seqcount_latch(&tkf->seq); 352 353 /* Update base[0] */ 354 memcpy(base, tkr, sizeof(*base)); 355 356 /* Force readers back to base[0] */ 357 raw_write_seqcount_latch(&tkf->seq); 358 359 /* Update base[1] */ 360 memcpy(base + 1, base, sizeof(*base)); 361 } 362 363 /** 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 365 * 366 * This timestamp is not guaranteed to be monotonic across an update. 367 * The timestamp is calculated by: 368 * 369 * now = base_mono + clock_delta * slope 370 * 371 * So if the update lowers the slope, readers who are forced to the 372 * not yet updated second array are still using the old steeper slope. 373 * 374 * tmono 375 * ^ 376 * | o n 377 * | o n 378 * | u 379 * | o 380 * |o 381 * |12345678---> reader order 382 * 383 * o = old slope 384 * u = update 385 * n = new slope 386 * 387 * So reader 6 will observe time going backwards versus reader 5. 388 * 389 * While other CPUs are likely to be able observe that, the only way 390 * for a CPU local observation is when an NMI hits in the middle of 391 * the update. Timestamps taken from that NMI context might be ahead 392 * of the following timestamps. Callers need to be aware of that and 393 * deal with it. 394 */ 395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 396 { 397 struct tk_read_base *tkr; 398 unsigned int seq; 399 u64 now; 400 401 do { 402 seq = raw_read_seqcount_latch(&tkf->seq); 403 tkr = tkf->base + (seq & 0x01); 404 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 405 } while (read_seqcount_retry(&tkf->seq, seq)); 406 407 return now; 408 } 409 410 u64 ktime_get_mono_fast_ns(void) 411 { 412 return __ktime_get_fast_ns(&tk_fast_mono); 413 } 414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 415 416 u64 ktime_get_raw_fast_ns(void) 417 { 418 return __ktime_get_fast_ns(&tk_fast_raw); 419 } 420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 421 422 /* Suspend-time cycles value for halted fast timekeeper. */ 423 static cycle_t cycles_at_suspend; 424 425 static cycle_t dummy_clock_read(struct clocksource *cs) 426 { 427 return cycles_at_suspend; 428 } 429 430 /** 431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 432 * @tk: Timekeeper to snapshot. 433 * 434 * It generally is unsafe to access the clocksource after timekeeping has been 435 * suspended, so take a snapshot of the readout base of @tk and use it as the 436 * fast timekeeper's readout base while suspended. It will return the same 437 * number of cycles every time until timekeeping is resumed at which time the 438 * proper readout base for the fast timekeeper will be restored automatically. 439 */ 440 static void halt_fast_timekeeper(struct timekeeper *tk) 441 { 442 static struct tk_read_base tkr_dummy; 443 struct tk_read_base *tkr = &tk->tkr_mono; 444 445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 446 cycles_at_suspend = tkr->read(tkr->clock); 447 tkr_dummy.read = dummy_clock_read; 448 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 449 450 tkr = &tk->tkr_raw; 451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 452 tkr_dummy.read = dummy_clock_read; 453 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 454 } 455 456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 457 458 static inline void update_vsyscall(struct timekeeper *tk) 459 { 460 struct timespec xt, wm; 461 462 xt = timespec64_to_timespec(tk_xtime(tk)); 463 wm = timespec64_to_timespec(tk->wall_to_monotonic); 464 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 465 tk->tkr_mono.cycle_last); 466 } 467 468 static inline void old_vsyscall_fixup(struct timekeeper *tk) 469 { 470 s64 remainder; 471 472 /* 473 * Store only full nanoseconds into xtime_nsec after rounding 474 * it up and add the remainder to the error difference. 475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 476 * by truncating the remainder in vsyscalls. However, it causes 477 * additional work to be done in timekeeping_adjust(). Once 478 * the vsyscall implementations are converted to use xtime_nsec 479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 480 * users are removed, this can be killed. 481 */ 482 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 483 tk->tkr_mono.xtime_nsec -= remainder; 484 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 485 tk->ntp_error += remainder << tk->ntp_error_shift; 486 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 487 } 488 #else 489 #define old_vsyscall_fixup(tk) 490 #endif 491 492 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 493 494 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 495 { 496 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 497 } 498 499 /** 500 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 501 */ 502 int pvclock_gtod_register_notifier(struct notifier_block *nb) 503 { 504 struct timekeeper *tk = &tk_core.timekeeper; 505 unsigned long flags; 506 int ret; 507 508 raw_spin_lock_irqsave(&timekeeper_lock, flags); 509 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 510 update_pvclock_gtod(tk, true); 511 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 512 513 return ret; 514 } 515 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 516 517 /** 518 * pvclock_gtod_unregister_notifier - unregister a pvclock 519 * timedata update listener 520 */ 521 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 522 { 523 unsigned long flags; 524 int ret; 525 526 raw_spin_lock_irqsave(&timekeeper_lock, flags); 527 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 528 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 529 530 return ret; 531 } 532 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 533 534 /* 535 * tk_update_leap_state - helper to update the next_leap_ktime 536 */ 537 static inline void tk_update_leap_state(struct timekeeper *tk) 538 { 539 tk->next_leap_ktime = ntp_get_next_leap(); 540 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 541 /* Convert to monotonic time */ 542 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 543 } 544 545 /* 546 * Update the ktime_t based scalar nsec members of the timekeeper 547 */ 548 static inline void tk_update_ktime_data(struct timekeeper *tk) 549 { 550 u64 seconds; 551 u32 nsec; 552 553 /* 554 * The xtime based monotonic readout is: 555 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 556 * The ktime based monotonic readout is: 557 * nsec = base_mono + now(); 558 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 559 */ 560 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 561 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 562 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 563 564 /* Update the monotonic raw base */ 565 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 566 567 /* 568 * The sum of the nanoseconds portions of xtime and 569 * wall_to_monotonic can be greater/equal one second. Take 570 * this into account before updating tk->ktime_sec. 571 */ 572 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 573 if (nsec >= NSEC_PER_SEC) 574 seconds++; 575 tk->ktime_sec = seconds; 576 } 577 578 /* must hold timekeeper_lock */ 579 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 580 { 581 if (action & TK_CLEAR_NTP) { 582 tk->ntp_error = 0; 583 ntp_clear(); 584 } 585 586 tk_update_leap_state(tk); 587 tk_update_ktime_data(tk); 588 589 update_vsyscall(tk); 590 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 591 592 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 593 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 594 595 if (action & TK_CLOCK_WAS_SET) 596 tk->clock_was_set_seq++; 597 /* 598 * The mirroring of the data to the shadow-timekeeper needs 599 * to happen last here to ensure we don't over-write the 600 * timekeeper structure on the next update with stale data 601 */ 602 if (action & TK_MIRROR) 603 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 604 sizeof(tk_core.timekeeper)); 605 } 606 607 /** 608 * timekeeping_forward_now - update clock to the current time 609 * 610 * Forward the current clock to update its state since the last call to 611 * update_wall_time(). This is useful before significant clock changes, 612 * as it avoids having to deal with this time offset explicitly. 613 */ 614 static void timekeeping_forward_now(struct timekeeper *tk) 615 { 616 struct clocksource *clock = tk->tkr_mono.clock; 617 cycle_t cycle_now, delta; 618 s64 nsec; 619 620 cycle_now = tk->tkr_mono.read(clock); 621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 622 tk->tkr_mono.cycle_last = cycle_now; 623 tk->tkr_raw.cycle_last = cycle_now; 624 625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 626 627 /* If arch requires, add in get_arch_timeoffset() */ 628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 629 630 tk_normalize_xtime(tk); 631 632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 633 timespec64_add_ns(&tk->raw_time, nsec); 634 } 635 636 /** 637 * __getnstimeofday64 - Returns the time of day in a timespec64. 638 * @ts: pointer to the timespec to be set 639 * 640 * Updates the time of day in the timespec. 641 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 642 */ 643 int __getnstimeofday64(struct timespec64 *ts) 644 { 645 struct timekeeper *tk = &tk_core.timekeeper; 646 unsigned long seq; 647 s64 nsecs = 0; 648 649 do { 650 seq = read_seqcount_begin(&tk_core.seq); 651 652 ts->tv_sec = tk->xtime_sec; 653 nsecs = timekeeping_get_ns(&tk->tkr_mono); 654 655 } while (read_seqcount_retry(&tk_core.seq, seq)); 656 657 ts->tv_nsec = 0; 658 timespec64_add_ns(ts, nsecs); 659 660 /* 661 * Do not bail out early, in case there were callers still using 662 * the value, even in the face of the WARN_ON. 663 */ 664 if (unlikely(timekeeping_suspended)) 665 return -EAGAIN; 666 return 0; 667 } 668 EXPORT_SYMBOL(__getnstimeofday64); 669 670 /** 671 * getnstimeofday64 - Returns the time of day in a timespec64. 672 * @ts: pointer to the timespec64 to be set 673 * 674 * Returns the time of day in a timespec64 (WARN if suspended). 675 */ 676 void getnstimeofday64(struct timespec64 *ts) 677 { 678 WARN_ON(__getnstimeofday64(ts)); 679 } 680 EXPORT_SYMBOL(getnstimeofday64); 681 682 ktime_t ktime_get(void) 683 { 684 struct timekeeper *tk = &tk_core.timekeeper; 685 unsigned int seq; 686 ktime_t base; 687 s64 nsecs; 688 689 WARN_ON(timekeeping_suspended); 690 691 do { 692 seq = read_seqcount_begin(&tk_core.seq); 693 base = tk->tkr_mono.base; 694 nsecs = timekeeping_get_ns(&tk->tkr_mono); 695 696 } while (read_seqcount_retry(&tk_core.seq, seq)); 697 698 return ktime_add_ns(base, nsecs); 699 } 700 EXPORT_SYMBOL_GPL(ktime_get); 701 702 u32 ktime_get_resolution_ns(void) 703 { 704 struct timekeeper *tk = &tk_core.timekeeper; 705 unsigned int seq; 706 u32 nsecs; 707 708 WARN_ON(timekeeping_suspended); 709 710 do { 711 seq = read_seqcount_begin(&tk_core.seq); 712 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 713 } while (read_seqcount_retry(&tk_core.seq, seq)); 714 715 return nsecs; 716 } 717 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 718 719 static ktime_t *offsets[TK_OFFS_MAX] = { 720 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 721 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 722 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 723 }; 724 725 ktime_t ktime_get_with_offset(enum tk_offsets offs) 726 { 727 struct timekeeper *tk = &tk_core.timekeeper; 728 unsigned int seq; 729 ktime_t base, *offset = offsets[offs]; 730 s64 nsecs; 731 732 WARN_ON(timekeeping_suspended); 733 734 do { 735 seq = read_seqcount_begin(&tk_core.seq); 736 base = ktime_add(tk->tkr_mono.base, *offset); 737 nsecs = timekeeping_get_ns(&tk->tkr_mono); 738 739 } while (read_seqcount_retry(&tk_core.seq, seq)); 740 741 return ktime_add_ns(base, nsecs); 742 743 } 744 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 745 746 /** 747 * ktime_mono_to_any() - convert mononotic time to any other time 748 * @tmono: time to convert. 749 * @offs: which offset to use 750 */ 751 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 752 { 753 ktime_t *offset = offsets[offs]; 754 unsigned long seq; 755 ktime_t tconv; 756 757 do { 758 seq = read_seqcount_begin(&tk_core.seq); 759 tconv = ktime_add(tmono, *offset); 760 } while (read_seqcount_retry(&tk_core.seq, seq)); 761 762 return tconv; 763 } 764 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 765 766 /** 767 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 768 */ 769 ktime_t ktime_get_raw(void) 770 { 771 struct timekeeper *tk = &tk_core.timekeeper; 772 unsigned int seq; 773 ktime_t base; 774 s64 nsecs; 775 776 do { 777 seq = read_seqcount_begin(&tk_core.seq); 778 base = tk->tkr_raw.base; 779 nsecs = timekeeping_get_ns(&tk->tkr_raw); 780 781 } while (read_seqcount_retry(&tk_core.seq, seq)); 782 783 return ktime_add_ns(base, nsecs); 784 } 785 EXPORT_SYMBOL_GPL(ktime_get_raw); 786 787 /** 788 * ktime_get_ts64 - get the monotonic clock in timespec64 format 789 * @ts: pointer to timespec variable 790 * 791 * The function calculates the monotonic clock from the realtime 792 * clock and the wall_to_monotonic offset and stores the result 793 * in normalized timespec64 format in the variable pointed to by @ts. 794 */ 795 void ktime_get_ts64(struct timespec64 *ts) 796 { 797 struct timekeeper *tk = &tk_core.timekeeper; 798 struct timespec64 tomono; 799 s64 nsec; 800 unsigned int seq; 801 802 WARN_ON(timekeeping_suspended); 803 804 do { 805 seq = read_seqcount_begin(&tk_core.seq); 806 ts->tv_sec = tk->xtime_sec; 807 nsec = timekeeping_get_ns(&tk->tkr_mono); 808 tomono = tk->wall_to_monotonic; 809 810 } while (read_seqcount_retry(&tk_core.seq, seq)); 811 812 ts->tv_sec += tomono.tv_sec; 813 ts->tv_nsec = 0; 814 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 815 } 816 EXPORT_SYMBOL_GPL(ktime_get_ts64); 817 818 /** 819 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 820 * 821 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 822 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 823 * works on both 32 and 64 bit systems. On 32 bit systems the readout 824 * covers ~136 years of uptime which should be enough to prevent 825 * premature wrap arounds. 826 */ 827 time64_t ktime_get_seconds(void) 828 { 829 struct timekeeper *tk = &tk_core.timekeeper; 830 831 WARN_ON(timekeeping_suspended); 832 return tk->ktime_sec; 833 } 834 EXPORT_SYMBOL_GPL(ktime_get_seconds); 835 836 /** 837 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 838 * 839 * Returns the wall clock seconds since 1970. This replaces the 840 * get_seconds() interface which is not y2038 safe on 32bit systems. 841 * 842 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 843 * 32bit systems the access must be protected with the sequence 844 * counter to provide "atomic" access to the 64bit tk->xtime_sec 845 * value. 846 */ 847 time64_t ktime_get_real_seconds(void) 848 { 849 struct timekeeper *tk = &tk_core.timekeeper; 850 time64_t seconds; 851 unsigned int seq; 852 853 if (IS_ENABLED(CONFIG_64BIT)) 854 return tk->xtime_sec; 855 856 do { 857 seq = read_seqcount_begin(&tk_core.seq); 858 seconds = tk->xtime_sec; 859 860 } while (read_seqcount_retry(&tk_core.seq, seq)); 861 862 return seconds; 863 } 864 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 865 866 /** 867 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 868 * but without the sequence counter protect. This internal function 869 * is called just when timekeeping lock is already held. 870 */ 871 time64_t __ktime_get_real_seconds(void) 872 { 873 struct timekeeper *tk = &tk_core.timekeeper; 874 875 return tk->xtime_sec; 876 } 877 878 /** 879 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 880 * @systime_snapshot: pointer to struct receiving the system time snapshot 881 */ 882 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 883 { 884 struct timekeeper *tk = &tk_core.timekeeper; 885 unsigned long seq; 886 ktime_t base_raw; 887 ktime_t base_real; 888 s64 nsec_raw; 889 s64 nsec_real; 890 cycle_t now; 891 892 WARN_ON_ONCE(timekeeping_suspended); 893 894 do { 895 seq = read_seqcount_begin(&tk_core.seq); 896 897 now = tk->tkr_mono.read(tk->tkr_mono.clock); 898 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 899 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 900 base_real = ktime_add(tk->tkr_mono.base, 901 tk_core.timekeeper.offs_real); 902 base_raw = tk->tkr_raw.base; 903 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 904 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 905 } while (read_seqcount_retry(&tk_core.seq, seq)); 906 907 systime_snapshot->cycles = now; 908 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 909 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 910 } 911 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 912 913 /* Scale base by mult/div checking for overflow */ 914 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 915 { 916 u64 tmp, rem; 917 918 tmp = div64_u64_rem(*base, div, &rem); 919 920 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 921 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 922 return -EOVERFLOW; 923 tmp *= mult; 924 rem *= mult; 925 926 do_div(rem, div); 927 *base = tmp + rem; 928 return 0; 929 } 930 931 /** 932 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 933 * @history: Snapshot representing start of history 934 * @partial_history_cycles: Cycle offset into history (fractional part) 935 * @total_history_cycles: Total history length in cycles 936 * @discontinuity: True indicates clock was set on history period 937 * @ts: Cross timestamp that should be adjusted using 938 * partial/total ratio 939 * 940 * Helper function used by get_device_system_crosststamp() to correct the 941 * crosstimestamp corresponding to the start of the current interval to the 942 * system counter value (timestamp point) provided by the driver. The 943 * total_history_* quantities are the total history starting at the provided 944 * reference point and ending at the start of the current interval. The cycle 945 * count between the driver timestamp point and the start of the current 946 * interval is partial_history_cycles. 947 */ 948 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 949 cycle_t partial_history_cycles, 950 cycle_t total_history_cycles, 951 bool discontinuity, 952 struct system_device_crosststamp *ts) 953 { 954 struct timekeeper *tk = &tk_core.timekeeper; 955 u64 corr_raw, corr_real; 956 bool interp_forward; 957 int ret; 958 959 if (total_history_cycles == 0 || partial_history_cycles == 0) 960 return 0; 961 962 /* Interpolate shortest distance from beginning or end of history */ 963 interp_forward = partial_history_cycles > total_history_cycles/2 ? 964 true : false; 965 partial_history_cycles = interp_forward ? 966 total_history_cycles - partial_history_cycles : 967 partial_history_cycles; 968 969 /* 970 * Scale the monotonic raw time delta by: 971 * partial_history_cycles / total_history_cycles 972 */ 973 corr_raw = (u64)ktime_to_ns( 974 ktime_sub(ts->sys_monoraw, history->raw)); 975 ret = scale64_check_overflow(partial_history_cycles, 976 total_history_cycles, &corr_raw); 977 if (ret) 978 return ret; 979 980 /* 981 * If there is a discontinuity in the history, scale monotonic raw 982 * correction by: 983 * mult(real)/mult(raw) yielding the realtime correction 984 * Otherwise, calculate the realtime correction similar to monotonic 985 * raw calculation 986 */ 987 if (discontinuity) { 988 corr_real = mul_u64_u32_div 989 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 990 } else { 991 corr_real = (u64)ktime_to_ns( 992 ktime_sub(ts->sys_realtime, history->real)); 993 ret = scale64_check_overflow(partial_history_cycles, 994 total_history_cycles, &corr_real); 995 if (ret) 996 return ret; 997 } 998 999 /* Fixup monotonic raw and real time time values */ 1000 if (interp_forward) { 1001 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1002 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1003 } else { 1004 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1005 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1006 } 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * cycle_between - true if test occurs chronologically between before and after 1013 */ 1014 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after) 1015 { 1016 if (test > before && test < after) 1017 return true; 1018 if (test < before && before > after) 1019 return true; 1020 return false; 1021 } 1022 1023 /** 1024 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1025 * @get_time_fn: Callback to get simultaneous device time and 1026 * system counter from the device driver 1027 * @ctx: Context passed to get_time_fn() 1028 * @history_begin: Historical reference point used to interpolate system 1029 * time when counter provided by the driver is before the current interval 1030 * @xtstamp: Receives simultaneously captured system and device time 1031 * 1032 * Reads a timestamp from a device and correlates it to system time 1033 */ 1034 int get_device_system_crosststamp(int (*get_time_fn) 1035 (ktime_t *device_time, 1036 struct system_counterval_t *sys_counterval, 1037 void *ctx), 1038 void *ctx, 1039 struct system_time_snapshot *history_begin, 1040 struct system_device_crosststamp *xtstamp) 1041 { 1042 struct system_counterval_t system_counterval; 1043 struct timekeeper *tk = &tk_core.timekeeper; 1044 cycle_t cycles, now, interval_start; 1045 unsigned int clock_was_set_seq = 0; 1046 ktime_t base_real, base_raw; 1047 s64 nsec_real, nsec_raw; 1048 u8 cs_was_changed_seq; 1049 unsigned long seq; 1050 bool do_interp; 1051 int ret; 1052 1053 do { 1054 seq = read_seqcount_begin(&tk_core.seq); 1055 /* 1056 * Try to synchronously capture device time and a system 1057 * counter value calling back into the device driver 1058 */ 1059 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1060 if (ret) 1061 return ret; 1062 1063 /* 1064 * Verify that the clocksource associated with the captured 1065 * system counter value is the same as the currently installed 1066 * timekeeper clocksource 1067 */ 1068 if (tk->tkr_mono.clock != system_counterval.cs) 1069 return -ENODEV; 1070 cycles = system_counterval.cycles; 1071 1072 /* 1073 * Check whether the system counter value provided by the 1074 * device driver is on the current timekeeping interval. 1075 */ 1076 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1077 interval_start = tk->tkr_mono.cycle_last; 1078 if (!cycle_between(interval_start, cycles, now)) { 1079 clock_was_set_seq = tk->clock_was_set_seq; 1080 cs_was_changed_seq = tk->cs_was_changed_seq; 1081 cycles = interval_start; 1082 do_interp = true; 1083 } else { 1084 do_interp = false; 1085 } 1086 1087 base_real = ktime_add(tk->tkr_mono.base, 1088 tk_core.timekeeper.offs_real); 1089 base_raw = tk->tkr_raw.base; 1090 1091 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1092 system_counterval.cycles); 1093 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1094 system_counterval.cycles); 1095 } while (read_seqcount_retry(&tk_core.seq, seq)); 1096 1097 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1098 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1099 1100 /* 1101 * Interpolate if necessary, adjusting back from the start of the 1102 * current interval 1103 */ 1104 if (do_interp) { 1105 cycle_t partial_history_cycles, total_history_cycles; 1106 bool discontinuity; 1107 1108 /* 1109 * Check that the counter value occurs after the provided 1110 * history reference and that the history doesn't cross a 1111 * clocksource change 1112 */ 1113 if (!history_begin || 1114 !cycle_between(history_begin->cycles, 1115 system_counterval.cycles, cycles) || 1116 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1117 return -EINVAL; 1118 partial_history_cycles = cycles - system_counterval.cycles; 1119 total_history_cycles = cycles - history_begin->cycles; 1120 discontinuity = 1121 history_begin->clock_was_set_seq != clock_was_set_seq; 1122 1123 ret = adjust_historical_crosststamp(history_begin, 1124 partial_history_cycles, 1125 total_history_cycles, 1126 discontinuity, xtstamp); 1127 if (ret) 1128 return ret; 1129 } 1130 1131 return 0; 1132 } 1133 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1134 1135 /** 1136 * do_gettimeofday - Returns the time of day in a timeval 1137 * @tv: pointer to the timeval to be set 1138 * 1139 * NOTE: Users should be converted to using getnstimeofday() 1140 */ 1141 void do_gettimeofday(struct timeval *tv) 1142 { 1143 struct timespec64 now; 1144 1145 getnstimeofday64(&now); 1146 tv->tv_sec = now.tv_sec; 1147 tv->tv_usec = now.tv_nsec/1000; 1148 } 1149 EXPORT_SYMBOL(do_gettimeofday); 1150 1151 /** 1152 * do_settimeofday64 - Sets the time of day. 1153 * @ts: pointer to the timespec64 variable containing the new time 1154 * 1155 * Sets the time of day to the new time and update NTP and notify hrtimers 1156 */ 1157 int do_settimeofday64(const struct timespec64 *ts) 1158 { 1159 struct timekeeper *tk = &tk_core.timekeeper; 1160 struct timespec64 ts_delta, xt; 1161 unsigned long flags; 1162 int ret = 0; 1163 1164 if (!timespec64_valid_strict(ts)) 1165 return -EINVAL; 1166 1167 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1168 write_seqcount_begin(&tk_core.seq); 1169 1170 timekeeping_forward_now(tk); 1171 1172 xt = tk_xtime(tk); 1173 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1174 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1175 1176 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1177 ret = -EINVAL; 1178 goto out; 1179 } 1180 1181 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1182 1183 tk_set_xtime(tk, ts); 1184 out: 1185 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1186 1187 write_seqcount_end(&tk_core.seq); 1188 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1189 1190 /* signal hrtimers about time change */ 1191 clock_was_set(); 1192 1193 return ret; 1194 } 1195 EXPORT_SYMBOL(do_settimeofday64); 1196 1197 /** 1198 * timekeeping_inject_offset - Adds or subtracts from the current time. 1199 * @tv: pointer to the timespec variable containing the offset 1200 * 1201 * Adds or subtracts an offset value from the current time. 1202 */ 1203 int timekeeping_inject_offset(struct timespec *ts) 1204 { 1205 struct timekeeper *tk = &tk_core.timekeeper; 1206 unsigned long flags; 1207 struct timespec64 ts64, tmp; 1208 int ret = 0; 1209 1210 if (!timespec_inject_offset_valid(ts)) 1211 return -EINVAL; 1212 1213 ts64 = timespec_to_timespec64(*ts); 1214 1215 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1216 write_seqcount_begin(&tk_core.seq); 1217 1218 timekeeping_forward_now(tk); 1219 1220 /* Make sure the proposed value is valid */ 1221 tmp = timespec64_add(tk_xtime(tk), ts64); 1222 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1223 !timespec64_valid_strict(&tmp)) { 1224 ret = -EINVAL; 1225 goto error; 1226 } 1227 1228 tk_xtime_add(tk, &ts64); 1229 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1230 1231 error: /* even if we error out, we forwarded the time, so call update */ 1232 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1233 1234 write_seqcount_end(&tk_core.seq); 1235 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1236 1237 /* signal hrtimers about time change */ 1238 clock_was_set(); 1239 1240 return ret; 1241 } 1242 EXPORT_SYMBOL(timekeeping_inject_offset); 1243 1244 1245 /** 1246 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1247 * 1248 */ 1249 s32 timekeeping_get_tai_offset(void) 1250 { 1251 struct timekeeper *tk = &tk_core.timekeeper; 1252 unsigned int seq; 1253 s32 ret; 1254 1255 do { 1256 seq = read_seqcount_begin(&tk_core.seq); 1257 ret = tk->tai_offset; 1258 } while (read_seqcount_retry(&tk_core.seq, seq)); 1259 1260 return ret; 1261 } 1262 1263 /** 1264 * __timekeeping_set_tai_offset - Lock free worker function 1265 * 1266 */ 1267 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1268 { 1269 tk->tai_offset = tai_offset; 1270 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1271 } 1272 1273 /** 1274 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1275 * 1276 */ 1277 void timekeeping_set_tai_offset(s32 tai_offset) 1278 { 1279 struct timekeeper *tk = &tk_core.timekeeper; 1280 unsigned long flags; 1281 1282 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1283 write_seqcount_begin(&tk_core.seq); 1284 __timekeeping_set_tai_offset(tk, tai_offset); 1285 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1286 write_seqcount_end(&tk_core.seq); 1287 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1288 clock_was_set(); 1289 } 1290 1291 /** 1292 * change_clocksource - Swaps clocksources if a new one is available 1293 * 1294 * Accumulates current time interval and initializes new clocksource 1295 */ 1296 static int change_clocksource(void *data) 1297 { 1298 struct timekeeper *tk = &tk_core.timekeeper; 1299 struct clocksource *new, *old; 1300 unsigned long flags; 1301 1302 new = (struct clocksource *) data; 1303 1304 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1305 write_seqcount_begin(&tk_core.seq); 1306 1307 timekeeping_forward_now(tk); 1308 /* 1309 * If the cs is in module, get a module reference. Succeeds 1310 * for built-in code (owner == NULL) as well. 1311 */ 1312 if (try_module_get(new->owner)) { 1313 if (!new->enable || new->enable(new) == 0) { 1314 old = tk->tkr_mono.clock; 1315 tk_setup_internals(tk, new); 1316 if (old->disable) 1317 old->disable(old); 1318 module_put(old->owner); 1319 } else { 1320 module_put(new->owner); 1321 } 1322 } 1323 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1324 1325 write_seqcount_end(&tk_core.seq); 1326 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1327 1328 return 0; 1329 } 1330 1331 /** 1332 * timekeeping_notify - Install a new clock source 1333 * @clock: pointer to the clock source 1334 * 1335 * This function is called from clocksource.c after a new, better clock 1336 * source has been registered. The caller holds the clocksource_mutex. 1337 */ 1338 int timekeeping_notify(struct clocksource *clock) 1339 { 1340 struct timekeeper *tk = &tk_core.timekeeper; 1341 1342 if (tk->tkr_mono.clock == clock) 1343 return 0; 1344 stop_machine(change_clocksource, clock, NULL); 1345 tick_clock_notify(); 1346 return tk->tkr_mono.clock == clock ? 0 : -1; 1347 } 1348 1349 /** 1350 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1351 * @ts: pointer to the timespec64 to be set 1352 * 1353 * Returns the raw monotonic time (completely un-modified by ntp) 1354 */ 1355 void getrawmonotonic64(struct timespec64 *ts) 1356 { 1357 struct timekeeper *tk = &tk_core.timekeeper; 1358 struct timespec64 ts64; 1359 unsigned long seq; 1360 s64 nsecs; 1361 1362 do { 1363 seq = read_seqcount_begin(&tk_core.seq); 1364 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1365 ts64 = tk->raw_time; 1366 1367 } while (read_seqcount_retry(&tk_core.seq, seq)); 1368 1369 timespec64_add_ns(&ts64, nsecs); 1370 *ts = ts64; 1371 } 1372 EXPORT_SYMBOL(getrawmonotonic64); 1373 1374 1375 /** 1376 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1377 */ 1378 int timekeeping_valid_for_hres(void) 1379 { 1380 struct timekeeper *tk = &tk_core.timekeeper; 1381 unsigned long seq; 1382 int ret; 1383 1384 do { 1385 seq = read_seqcount_begin(&tk_core.seq); 1386 1387 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1388 1389 } while (read_seqcount_retry(&tk_core.seq, seq)); 1390 1391 return ret; 1392 } 1393 1394 /** 1395 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1396 */ 1397 u64 timekeeping_max_deferment(void) 1398 { 1399 struct timekeeper *tk = &tk_core.timekeeper; 1400 unsigned long seq; 1401 u64 ret; 1402 1403 do { 1404 seq = read_seqcount_begin(&tk_core.seq); 1405 1406 ret = tk->tkr_mono.clock->max_idle_ns; 1407 1408 } while (read_seqcount_retry(&tk_core.seq, seq)); 1409 1410 return ret; 1411 } 1412 1413 /** 1414 * read_persistent_clock - Return time from the persistent clock. 1415 * 1416 * Weak dummy function for arches that do not yet support it. 1417 * Reads the time from the battery backed persistent clock. 1418 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1419 * 1420 * XXX - Do be sure to remove it once all arches implement it. 1421 */ 1422 void __weak read_persistent_clock(struct timespec *ts) 1423 { 1424 ts->tv_sec = 0; 1425 ts->tv_nsec = 0; 1426 } 1427 1428 void __weak read_persistent_clock64(struct timespec64 *ts64) 1429 { 1430 struct timespec ts; 1431 1432 read_persistent_clock(&ts); 1433 *ts64 = timespec_to_timespec64(ts); 1434 } 1435 1436 /** 1437 * read_boot_clock64 - Return time of the system start. 1438 * 1439 * Weak dummy function for arches that do not yet support it. 1440 * Function to read the exact time the system has been started. 1441 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1442 * 1443 * XXX - Do be sure to remove it once all arches implement it. 1444 */ 1445 void __weak read_boot_clock64(struct timespec64 *ts) 1446 { 1447 ts->tv_sec = 0; 1448 ts->tv_nsec = 0; 1449 } 1450 1451 /* Flag for if timekeeping_resume() has injected sleeptime */ 1452 static bool sleeptime_injected; 1453 1454 /* Flag for if there is a persistent clock on this platform */ 1455 static bool persistent_clock_exists; 1456 1457 /* 1458 * timekeeping_init - Initializes the clocksource and common timekeeping values 1459 */ 1460 void __init timekeeping_init(void) 1461 { 1462 struct timekeeper *tk = &tk_core.timekeeper; 1463 struct clocksource *clock; 1464 unsigned long flags; 1465 struct timespec64 now, boot, tmp; 1466 1467 read_persistent_clock64(&now); 1468 if (!timespec64_valid_strict(&now)) { 1469 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1470 " Check your CMOS/BIOS settings.\n"); 1471 now.tv_sec = 0; 1472 now.tv_nsec = 0; 1473 } else if (now.tv_sec || now.tv_nsec) 1474 persistent_clock_exists = true; 1475 1476 read_boot_clock64(&boot); 1477 if (!timespec64_valid_strict(&boot)) { 1478 pr_warn("WARNING: Boot clock returned invalid value!\n" 1479 " Check your CMOS/BIOS settings.\n"); 1480 boot.tv_sec = 0; 1481 boot.tv_nsec = 0; 1482 } 1483 1484 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1485 write_seqcount_begin(&tk_core.seq); 1486 ntp_init(); 1487 1488 clock = clocksource_default_clock(); 1489 if (clock->enable) 1490 clock->enable(clock); 1491 tk_setup_internals(tk, clock); 1492 1493 tk_set_xtime(tk, &now); 1494 tk->raw_time.tv_sec = 0; 1495 tk->raw_time.tv_nsec = 0; 1496 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1497 boot = tk_xtime(tk); 1498 1499 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1500 tk_set_wall_to_mono(tk, tmp); 1501 1502 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1503 1504 write_seqcount_end(&tk_core.seq); 1505 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1506 } 1507 1508 /* time in seconds when suspend began for persistent clock */ 1509 static struct timespec64 timekeeping_suspend_time; 1510 1511 /** 1512 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1513 * @delta: pointer to a timespec delta value 1514 * 1515 * Takes a timespec offset measuring a suspend interval and properly 1516 * adds the sleep offset to the timekeeping variables. 1517 */ 1518 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1519 struct timespec64 *delta) 1520 { 1521 if (!timespec64_valid_strict(delta)) { 1522 printk_deferred(KERN_WARNING 1523 "__timekeeping_inject_sleeptime: Invalid " 1524 "sleep delta value!\n"); 1525 return; 1526 } 1527 tk_xtime_add(tk, delta); 1528 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1529 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1530 tk_debug_account_sleep_time(delta); 1531 } 1532 1533 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1534 /** 1535 * We have three kinds of time sources to use for sleep time 1536 * injection, the preference order is: 1537 * 1) non-stop clocksource 1538 * 2) persistent clock (ie: RTC accessible when irqs are off) 1539 * 3) RTC 1540 * 1541 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1542 * If system has neither 1) nor 2), 3) will be used finally. 1543 * 1544 * 1545 * If timekeeping has injected sleeptime via either 1) or 2), 1546 * 3) becomes needless, so in this case we don't need to call 1547 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1548 * means. 1549 */ 1550 bool timekeeping_rtc_skipresume(void) 1551 { 1552 return sleeptime_injected; 1553 } 1554 1555 /** 1556 * 1) can be determined whether to use or not only when doing 1557 * timekeeping_resume() which is invoked after rtc_suspend(), 1558 * so we can't skip rtc_suspend() surely if system has 1). 1559 * 1560 * But if system has 2), 2) will definitely be used, so in this 1561 * case we don't need to call rtc_suspend(), and this is what 1562 * timekeeping_rtc_skipsuspend() means. 1563 */ 1564 bool timekeeping_rtc_skipsuspend(void) 1565 { 1566 return persistent_clock_exists; 1567 } 1568 1569 /** 1570 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1571 * @delta: pointer to a timespec64 delta value 1572 * 1573 * This hook is for architectures that cannot support read_persistent_clock64 1574 * because their RTC/persistent clock is only accessible when irqs are enabled. 1575 * and also don't have an effective nonstop clocksource. 1576 * 1577 * This function should only be called by rtc_resume(), and allows 1578 * a suspend offset to be injected into the timekeeping values. 1579 */ 1580 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1581 { 1582 struct timekeeper *tk = &tk_core.timekeeper; 1583 unsigned long flags; 1584 1585 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1586 write_seqcount_begin(&tk_core.seq); 1587 1588 timekeeping_forward_now(tk); 1589 1590 __timekeeping_inject_sleeptime(tk, delta); 1591 1592 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1593 1594 write_seqcount_end(&tk_core.seq); 1595 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1596 1597 /* signal hrtimers about time change */ 1598 clock_was_set(); 1599 } 1600 #endif 1601 1602 /** 1603 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1604 */ 1605 void timekeeping_resume(void) 1606 { 1607 struct timekeeper *tk = &tk_core.timekeeper; 1608 struct clocksource *clock = tk->tkr_mono.clock; 1609 unsigned long flags; 1610 struct timespec64 ts_new, ts_delta; 1611 cycle_t cycle_now, cycle_delta; 1612 1613 sleeptime_injected = false; 1614 read_persistent_clock64(&ts_new); 1615 1616 clockevents_resume(); 1617 clocksource_resume(); 1618 1619 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1620 write_seqcount_begin(&tk_core.seq); 1621 1622 /* 1623 * After system resumes, we need to calculate the suspended time and 1624 * compensate it for the OS time. There are 3 sources that could be 1625 * used: Nonstop clocksource during suspend, persistent clock and rtc 1626 * device. 1627 * 1628 * One specific platform may have 1 or 2 or all of them, and the 1629 * preference will be: 1630 * suspend-nonstop clocksource -> persistent clock -> rtc 1631 * The less preferred source will only be tried if there is no better 1632 * usable source. The rtc part is handled separately in rtc core code. 1633 */ 1634 cycle_now = tk->tkr_mono.read(clock); 1635 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1636 cycle_now > tk->tkr_mono.cycle_last) { 1637 u64 num, max = ULLONG_MAX; 1638 u32 mult = clock->mult; 1639 u32 shift = clock->shift; 1640 s64 nsec = 0; 1641 1642 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1643 tk->tkr_mono.mask); 1644 1645 /* 1646 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1647 * suspended time is too long. In that case we need do the 1648 * 64 bits math carefully 1649 */ 1650 do_div(max, mult); 1651 if (cycle_delta > max) { 1652 num = div64_u64(cycle_delta, max); 1653 nsec = (((u64) max * mult) >> shift) * num; 1654 cycle_delta -= num * max; 1655 } 1656 nsec += ((u64) cycle_delta * mult) >> shift; 1657 1658 ts_delta = ns_to_timespec64(nsec); 1659 sleeptime_injected = true; 1660 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1661 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1662 sleeptime_injected = true; 1663 } 1664 1665 if (sleeptime_injected) 1666 __timekeeping_inject_sleeptime(tk, &ts_delta); 1667 1668 /* Re-base the last cycle value */ 1669 tk->tkr_mono.cycle_last = cycle_now; 1670 tk->tkr_raw.cycle_last = cycle_now; 1671 1672 tk->ntp_error = 0; 1673 timekeeping_suspended = 0; 1674 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1675 write_seqcount_end(&tk_core.seq); 1676 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1677 1678 touch_softlockup_watchdog(); 1679 1680 tick_resume(); 1681 hrtimers_resume(); 1682 } 1683 1684 int timekeeping_suspend(void) 1685 { 1686 struct timekeeper *tk = &tk_core.timekeeper; 1687 unsigned long flags; 1688 struct timespec64 delta, delta_delta; 1689 static struct timespec64 old_delta; 1690 1691 read_persistent_clock64(&timekeeping_suspend_time); 1692 1693 /* 1694 * On some systems the persistent_clock can not be detected at 1695 * timekeeping_init by its return value, so if we see a valid 1696 * value returned, update the persistent_clock_exists flag. 1697 */ 1698 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1699 persistent_clock_exists = true; 1700 1701 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1702 write_seqcount_begin(&tk_core.seq); 1703 timekeeping_forward_now(tk); 1704 timekeeping_suspended = 1; 1705 1706 if (persistent_clock_exists) { 1707 /* 1708 * To avoid drift caused by repeated suspend/resumes, 1709 * which each can add ~1 second drift error, 1710 * try to compensate so the difference in system time 1711 * and persistent_clock time stays close to constant. 1712 */ 1713 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1714 delta_delta = timespec64_sub(delta, old_delta); 1715 if (abs(delta_delta.tv_sec) >= 2) { 1716 /* 1717 * if delta_delta is too large, assume time correction 1718 * has occurred and set old_delta to the current delta. 1719 */ 1720 old_delta = delta; 1721 } else { 1722 /* Otherwise try to adjust old_system to compensate */ 1723 timekeeping_suspend_time = 1724 timespec64_add(timekeeping_suspend_time, delta_delta); 1725 } 1726 } 1727 1728 timekeeping_update(tk, TK_MIRROR); 1729 halt_fast_timekeeper(tk); 1730 write_seqcount_end(&tk_core.seq); 1731 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1732 1733 tick_suspend(); 1734 clocksource_suspend(); 1735 clockevents_suspend(); 1736 1737 return 0; 1738 } 1739 1740 /* sysfs resume/suspend bits for timekeeping */ 1741 static struct syscore_ops timekeeping_syscore_ops = { 1742 .resume = timekeeping_resume, 1743 .suspend = timekeeping_suspend, 1744 }; 1745 1746 static int __init timekeeping_init_ops(void) 1747 { 1748 register_syscore_ops(&timekeeping_syscore_ops); 1749 return 0; 1750 } 1751 device_initcall(timekeeping_init_ops); 1752 1753 /* 1754 * Apply a multiplier adjustment to the timekeeper 1755 */ 1756 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1757 s64 offset, 1758 bool negative, 1759 int adj_scale) 1760 { 1761 s64 interval = tk->cycle_interval; 1762 s32 mult_adj = 1; 1763 1764 if (negative) { 1765 mult_adj = -mult_adj; 1766 interval = -interval; 1767 offset = -offset; 1768 } 1769 mult_adj <<= adj_scale; 1770 interval <<= adj_scale; 1771 offset <<= adj_scale; 1772 1773 /* 1774 * So the following can be confusing. 1775 * 1776 * To keep things simple, lets assume mult_adj == 1 for now. 1777 * 1778 * When mult_adj != 1, remember that the interval and offset values 1779 * have been appropriately scaled so the math is the same. 1780 * 1781 * The basic idea here is that we're increasing the multiplier 1782 * by one, this causes the xtime_interval to be incremented by 1783 * one cycle_interval. This is because: 1784 * xtime_interval = cycle_interval * mult 1785 * So if mult is being incremented by one: 1786 * xtime_interval = cycle_interval * (mult + 1) 1787 * Its the same as: 1788 * xtime_interval = (cycle_interval * mult) + cycle_interval 1789 * Which can be shortened to: 1790 * xtime_interval += cycle_interval 1791 * 1792 * So offset stores the non-accumulated cycles. Thus the current 1793 * time (in shifted nanoseconds) is: 1794 * now = (offset * adj) + xtime_nsec 1795 * Now, even though we're adjusting the clock frequency, we have 1796 * to keep time consistent. In other words, we can't jump back 1797 * in time, and we also want to avoid jumping forward in time. 1798 * 1799 * So given the same offset value, we need the time to be the same 1800 * both before and after the freq adjustment. 1801 * now = (offset * adj_1) + xtime_nsec_1 1802 * now = (offset * adj_2) + xtime_nsec_2 1803 * So: 1804 * (offset * adj_1) + xtime_nsec_1 = 1805 * (offset * adj_2) + xtime_nsec_2 1806 * And we know: 1807 * adj_2 = adj_1 + 1 1808 * So: 1809 * (offset * adj_1) + xtime_nsec_1 = 1810 * (offset * (adj_1+1)) + xtime_nsec_2 1811 * (offset * adj_1) + xtime_nsec_1 = 1812 * (offset * adj_1) + offset + xtime_nsec_2 1813 * Canceling the sides: 1814 * xtime_nsec_1 = offset + xtime_nsec_2 1815 * Which gives us: 1816 * xtime_nsec_2 = xtime_nsec_1 - offset 1817 * Which simplfies to: 1818 * xtime_nsec -= offset 1819 * 1820 * XXX - TODO: Doc ntp_error calculation. 1821 */ 1822 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1823 /* NTP adjustment caused clocksource mult overflow */ 1824 WARN_ON_ONCE(1); 1825 return; 1826 } 1827 1828 tk->tkr_mono.mult += mult_adj; 1829 tk->xtime_interval += interval; 1830 tk->tkr_mono.xtime_nsec -= offset; 1831 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1832 } 1833 1834 /* 1835 * Calculate the multiplier adjustment needed to match the frequency 1836 * specified by NTP 1837 */ 1838 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1839 s64 offset) 1840 { 1841 s64 interval = tk->cycle_interval; 1842 s64 xinterval = tk->xtime_interval; 1843 u32 base = tk->tkr_mono.clock->mult; 1844 u32 max = tk->tkr_mono.clock->maxadj; 1845 u32 cur_adj = tk->tkr_mono.mult; 1846 s64 tick_error; 1847 bool negative; 1848 u32 adj_scale; 1849 1850 /* Remove any current error adj from freq calculation */ 1851 if (tk->ntp_err_mult) 1852 xinterval -= tk->cycle_interval; 1853 1854 tk->ntp_tick = ntp_tick_length(); 1855 1856 /* Calculate current error per tick */ 1857 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1858 tick_error -= (xinterval + tk->xtime_remainder); 1859 1860 /* Don't worry about correcting it if its small */ 1861 if (likely((tick_error >= 0) && (tick_error <= interval))) 1862 return; 1863 1864 /* preserve the direction of correction */ 1865 negative = (tick_error < 0); 1866 1867 /* If any adjustment would pass the max, just return */ 1868 if (negative && (cur_adj - 1) <= (base - max)) 1869 return; 1870 if (!negative && (cur_adj + 1) >= (base + max)) 1871 return; 1872 /* 1873 * Sort out the magnitude of the correction, but 1874 * avoid making so large a correction that we go 1875 * over the max adjustment. 1876 */ 1877 adj_scale = 0; 1878 tick_error = abs(tick_error); 1879 while (tick_error > interval) { 1880 u32 adj = 1 << (adj_scale + 1); 1881 1882 /* Check if adjustment gets us within 1 unit from the max */ 1883 if (negative && (cur_adj - adj) <= (base - max)) 1884 break; 1885 if (!negative && (cur_adj + adj) >= (base + max)) 1886 break; 1887 1888 adj_scale++; 1889 tick_error >>= 1; 1890 } 1891 1892 /* scale the corrections */ 1893 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1894 } 1895 1896 /* 1897 * Adjust the timekeeper's multiplier to the correct frequency 1898 * and also to reduce the accumulated error value. 1899 */ 1900 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1901 { 1902 /* Correct for the current frequency error */ 1903 timekeeping_freqadjust(tk, offset); 1904 1905 /* Next make a small adjustment to fix any cumulative error */ 1906 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1907 tk->ntp_err_mult = 1; 1908 timekeeping_apply_adjustment(tk, offset, 0, 0); 1909 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1910 /* Undo any existing error adjustment */ 1911 timekeeping_apply_adjustment(tk, offset, 1, 0); 1912 tk->ntp_err_mult = 0; 1913 } 1914 1915 if (unlikely(tk->tkr_mono.clock->maxadj && 1916 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1917 > tk->tkr_mono.clock->maxadj))) { 1918 printk_once(KERN_WARNING 1919 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1920 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1921 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1922 } 1923 1924 /* 1925 * It may be possible that when we entered this function, xtime_nsec 1926 * was very small. Further, if we're slightly speeding the clocksource 1927 * in the code above, its possible the required corrective factor to 1928 * xtime_nsec could cause it to underflow. 1929 * 1930 * Now, since we already accumulated the second, cannot simply roll 1931 * the accumulated second back, since the NTP subsystem has been 1932 * notified via second_overflow. So instead we push xtime_nsec forward 1933 * by the amount we underflowed, and add that amount into the error. 1934 * 1935 * We'll correct this error next time through this function, when 1936 * xtime_nsec is not as small. 1937 */ 1938 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1939 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1940 tk->tkr_mono.xtime_nsec = 0; 1941 tk->ntp_error += neg << tk->ntp_error_shift; 1942 } 1943 } 1944 1945 /** 1946 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1947 * 1948 * Helper function that accumulates the nsecs greater than a second 1949 * from the xtime_nsec field to the xtime_secs field. 1950 * It also calls into the NTP code to handle leapsecond processing. 1951 * 1952 */ 1953 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1954 { 1955 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1956 unsigned int clock_set = 0; 1957 1958 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1959 int leap; 1960 1961 tk->tkr_mono.xtime_nsec -= nsecps; 1962 tk->xtime_sec++; 1963 1964 /* Figure out if its a leap sec and apply if needed */ 1965 leap = second_overflow(tk->xtime_sec); 1966 if (unlikely(leap)) { 1967 struct timespec64 ts; 1968 1969 tk->xtime_sec += leap; 1970 1971 ts.tv_sec = leap; 1972 ts.tv_nsec = 0; 1973 tk_set_wall_to_mono(tk, 1974 timespec64_sub(tk->wall_to_monotonic, ts)); 1975 1976 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1977 1978 clock_set = TK_CLOCK_WAS_SET; 1979 } 1980 } 1981 return clock_set; 1982 } 1983 1984 /** 1985 * logarithmic_accumulation - shifted accumulation of cycles 1986 * 1987 * This functions accumulates a shifted interval of cycles into 1988 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1989 * loop. 1990 * 1991 * Returns the unconsumed cycles. 1992 */ 1993 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1994 u32 shift, 1995 unsigned int *clock_set) 1996 { 1997 cycle_t interval = tk->cycle_interval << shift; 1998 u64 raw_nsecs; 1999 2000 /* If the offset is smaller than a shifted interval, do nothing */ 2001 if (offset < interval) 2002 return offset; 2003 2004 /* Accumulate one shifted interval */ 2005 offset -= interval; 2006 tk->tkr_mono.cycle_last += interval; 2007 tk->tkr_raw.cycle_last += interval; 2008 2009 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2010 *clock_set |= accumulate_nsecs_to_secs(tk); 2011 2012 /* Accumulate raw time */ 2013 raw_nsecs = (u64)tk->raw_interval << shift; 2014 raw_nsecs += tk->raw_time.tv_nsec; 2015 if (raw_nsecs >= NSEC_PER_SEC) { 2016 u64 raw_secs = raw_nsecs; 2017 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2018 tk->raw_time.tv_sec += raw_secs; 2019 } 2020 tk->raw_time.tv_nsec = raw_nsecs; 2021 2022 /* Accumulate error between NTP and clock interval */ 2023 tk->ntp_error += tk->ntp_tick << shift; 2024 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2025 (tk->ntp_error_shift + shift); 2026 2027 return offset; 2028 } 2029 2030 /** 2031 * update_wall_time - Uses the current clocksource to increment the wall time 2032 * 2033 */ 2034 void update_wall_time(void) 2035 { 2036 struct timekeeper *real_tk = &tk_core.timekeeper; 2037 struct timekeeper *tk = &shadow_timekeeper; 2038 cycle_t offset; 2039 int shift = 0, maxshift; 2040 unsigned int clock_set = 0; 2041 unsigned long flags; 2042 2043 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2044 2045 /* Make sure we're fully resumed: */ 2046 if (unlikely(timekeeping_suspended)) 2047 goto out; 2048 2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2050 offset = real_tk->cycle_interval; 2051 #else 2052 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2053 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2054 #endif 2055 2056 /* Check if there's really nothing to do */ 2057 if (offset < real_tk->cycle_interval) 2058 goto out; 2059 2060 /* Do some additional sanity checking */ 2061 timekeeping_check_update(real_tk, offset); 2062 2063 /* 2064 * With NO_HZ we may have to accumulate many cycle_intervals 2065 * (think "ticks") worth of time at once. To do this efficiently, 2066 * we calculate the largest doubling multiple of cycle_intervals 2067 * that is smaller than the offset. We then accumulate that 2068 * chunk in one go, and then try to consume the next smaller 2069 * doubled multiple. 2070 */ 2071 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2072 shift = max(0, shift); 2073 /* Bound shift to one less than what overflows tick_length */ 2074 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2075 shift = min(shift, maxshift); 2076 while (offset >= tk->cycle_interval) { 2077 offset = logarithmic_accumulation(tk, offset, shift, 2078 &clock_set); 2079 if (offset < tk->cycle_interval<<shift) 2080 shift--; 2081 } 2082 2083 /* correct the clock when NTP error is too big */ 2084 timekeeping_adjust(tk, offset); 2085 2086 /* 2087 * XXX This can be killed once everyone converts 2088 * to the new update_vsyscall. 2089 */ 2090 old_vsyscall_fixup(tk); 2091 2092 /* 2093 * Finally, make sure that after the rounding 2094 * xtime_nsec isn't larger than NSEC_PER_SEC 2095 */ 2096 clock_set |= accumulate_nsecs_to_secs(tk); 2097 2098 write_seqcount_begin(&tk_core.seq); 2099 /* 2100 * Update the real timekeeper. 2101 * 2102 * We could avoid this memcpy by switching pointers, but that 2103 * requires changes to all other timekeeper usage sites as 2104 * well, i.e. move the timekeeper pointer getter into the 2105 * spinlocked/seqcount protected sections. And we trade this 2106 * memcpy under the tk_core.seq against one before we start 2107 * updating. 2108 */ 2109 timekeeping_update(tk, clock_set); 2110 memcpy(real_tk, tk, sizeof(*tk)); 2111 /* The memcpy must come last. Do not put anything here! */ 2112 write_seqcount_end(&tk_core.seq); 2113 out: 2114 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2115 if (clock_set) 2116 /* Have to call _delayed version, since in irq context*/ 2117 clock_was_set_delayed(); 2118 } 2119 2120 /** 2121 * getboottime64 - Return the real time of system boot. 2122 * @ts: pointer to the timespec64 to be set 2123 * 2124 * Returns the wall-time of boot in a timespec64. 2125 * 2126 * This is based on the wall_to_monotonic offset and the total suspend 2127 * time. Calls to settimeofday will affect the value returned (which 2128 * basically means that however wrong your real time clock is at boot time, 2129 * you get the right time here). 2130 */ 2131 void getboottime64(struct timespec64 *ts) 2132 { 2133 struct timekeeper *tk = &tk_core.timekeeper; 2134 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2135 2136 *ts = ktime_to_timespec64(t); 2137 } 2138 EXPORT_SYMBOL_GPL(getboottime64); 2139 2140 unsigned long get_seconds(void) 2141 { 2142 struct timekeeper *tk = &tk_core.timekeeper; 2143 2144 return tk->xtime_sec; 2145 } 2146 EXPORT_SYMBOL(get_seconds); 2147 2148 struct timespec __current_kernel_time(void) 2149 { 2150 struct timekeeper *tk = &tk_core.timekeeper; 2151 2152 return timespec64_to_timespec(tk_xtime(tk)); 2153 } 2154 2155 struct timespec64 current_kernel_time64(void) 2156 { 2157 struct timekeeper *tk = &tk_core.timekeeper; 2158 struct timespec64 now; 2159 unsigned long seq; 2160 2161 do { 2162 seq = read_seqcount_begin(&tk_core.seq); 2163 2164 now = tk_xtime(tk); 2165 } while (read_seqcount_retry(&tk_core.seq, seq)); 2166 2167 return now; 2168 } 2169 EXPORT_SYMBOL(current_kernel_time64); 2170 2171 struct timespec64 get_monotonic_coarse64(void) 2172 { 2173 struct timekeeper *tk = &tk_core.timekeeper; 2174 struct timespec64 now, mono; 2175 unsigned long seq; 2176 2177 do { 2178 seq = read_seqcount_begin(&tk_core.seq); 2179 2180 now = tk_xtime(tk); 2181 mono = tk->wall_to_monotonic; 2182 } while (read_seqcount_retry(&tk_core.seq, seq)); 2183 2184 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2185 now.tv_nsec + mono.tv_nsec); 2186 2187 return now; 2188 } 2189 2190 /* 2191 * Must hold jiffies_lock 2192 */ 2193 void do_timer(unsigned long ticks) 2194 { 2195 jiffies_64 += ticks; 2196 calc_global_load(ticks); 2197 } 2198 2199 /** 2200 * ktime_get_update_offsets_now - hrtimer helper 2201 * @cwsseq: pointer to check and store the clock was set sequence number 2202 * @offs_real: pointer to storage for monotonic -> realtime offset 2203 * @offs_boot: pointer to storage for monotonic -> boottime offset 2204 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2205 * 2206 * Returns current monotonic time and updates the offsets if the 2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2208 * different. 2209 * 2210 * Called from hrtimer_interrupt() or retrigger_next_event() 2211 */ 2212 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2213 ktime_t *offs_boot, ktime_t *offs_tai) 2214 { 2215 struct timekeeper *tk = &tk_core.timekeeper; 2216 unsigned int seq; 2217 ktime_t base; 2218 u64 nsecs; 2219 2220 do { 2221 seq = read_seqcount_begin(&tk_core.seq); 2222 2223 base = tk->tkr_mono.base; 2224 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2225 base = ktime_add_ns(base, nsecs); 2226 2227 if (*cwsseq != tk->clock_was_set_seq) { 2228 *cwsseq = tk->clock_was_set_seq; 2229 *offs_real = tk->offs_real; 2230 *offs_boot = tk->offs_boot; 2231 *offs_tai = tk->offs_tai; 2232 } 2233 2234 /* Handle leapsecond insertion adjustments */ 2235 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 2236 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2237 2238 } while (read_seqcount_retry(&tk_core.seq, seq)); 2239 2240 return base; 2241 } 2242 2243 /** 2244 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2245 */ 2246 int do_adjtimex(struct timex *txc) 2247 { 2248 struct timekeeper *tk = &tk_core.timekeeper; 2249 unsigned long flags; 2250 struct timespec64 ts; 2251 s32 orig_tai, tai; 2252 int ret; 2253 2254 /* Validate the data before disabling interrupts */ 2255 ret = ntp_validate_timex(txc); 2256 if (ret) 2257 return ret; 2258 2259 if (txc->modes & ADJ_SETOFFSET) { 2260 struct timespec delta; 2261 delta.tv_sec = txc->time.tv_sec; 2262 delta.tv_nsec = txc->time.tv_usec; 2263 if (!(txc->modes & ADJ_NANO)) 2264 delta.tv_nsec *= 1000; 2265 ret = timekeeping_inject_offset(&delta); 2266 if (ret) 2267 return ret; 2268 } 2269 2270 getnstimeofday64(&ts); 2271 2272 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2273 write_seqcount_begin(&tk_core.seq); 2274 2275 orig_tai = tai = tk->tai_offset; 2276 ret = __do_adjtimex(txc, &ts, &tai); 2277 2278 if (tai != orig_tai) { 2279 __timekeeping_set_tai_offset(tk, tai); 2280 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2281 } 2282 tk_update_leap_state(tk); 2283 2284 write_seqcount_end(&tk_core.seq); 2285 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2286 2287 if (tai != orig_tai) 2288 clock_was_set(); 2289 2290 ntp_notify_cmos_timer(); 2291 2292 return ret; 2293 } 2294 2295 #ifdef CONFIG_NTP_PPS 2296 /** 2297 * hardpps() - Accessor function to NTP __hardpps function 2298 */ 2299 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2300 { 2301 unsigned long flags; 2302 2303 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2304 write_seqcount_begin(&tk_core.seq); 2305 2306 __hardpps(phase_ts, raw_ts); 2307 2308 write_seqcount_end(&tk_core.seq); 2309 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2310 } 2311 EXPORT_SYMBOL(hardpps); 2312 #endif 2313 2314 /** 2315 * xtime_update() - advances the timekeeping infrastructure 2316 * @ticks: number of ticks, that have elapsed since the last call. 2317 * 2318 * Must be called with interrupts disabled. 2319 */ 2320 void xtime_update(unsigned long ticks) 2321 { 2322 write_seqlock(&jiffies_lock); 2323 do_timer(ticks); 2324 write_sequnlock(&jiffies_lock); 2325 update_wall_time(); 2326 } 2327