1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 static inline void tk_normalize_xtime(struct timekeeper *tk) 118 { 119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 121 tk->xtime_sec++; 122 } 123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 125 tk->raw_sec++; 126 } 127 } 128 129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 130 { 131 struct timespec64 ts; 132 133 ts.tv_sec = tk->xtime_sec; 134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 135 return ts; 136 } 137 138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 139 { 140 tk->xtime_sec = ts->tv_sec; 141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 142 } 143 144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 145 { 146 tk->xtime_sec += ts->tv_sec; 147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 148 tk_normalize_xtime(tk); 149 } 150 151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 152 { 153 struct timespec64 tmp; 154 155 /* 156 * Verify consistency of: offset_real = -wall_to_monotonic 157 * before modifying anything 158 */ 159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 160 -tk->wall_to_monotonic.tv_nsec); 161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 162 tk->wall_to_monotonic = wtm; 163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 164 tk->offs_real = timespec64_to_ktime(tmp); 165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 166 } 167 168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 169 { 170 tk->offs_boot = ktime_add(tk->offs_boot, delta); 171 /* 172 * Timespec representation for VDSO update to avoid 64bit division 173 * on every update. 174 */ 175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 176 } 177 178 /* 179 * tk_clock_read - atomic clocksource read() helper 180 * 181 * This helper is necessary to use in the read paths because, while the 182 * seqcount ensures we don't return a bad value while structures are updated, 183 * it doesn't protect from potential crashes. There is the possibility that 184 * the tkr's clocksource may change between the read reference, and the 185 * clock reference passed to the read function. This can cause crashes if 186 * the wrong clocksource is passed to the wrong read function. 187 * This isn't necessary to use when holding the timekeeper_lock or doing 188 * a read of the fast-timekeeper tkrs (which is protected by its own locking 189 * and update logic). 190 */ 191 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 192 { 193 struct clocksource *clock = READ_ONCE(tkr->clock); 194 195 return clock->read(clock); 196 } 197 198 #ifdef CONFIG_DEBUG_TIMEKEEPING 199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 200 201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 202 { 203 204 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 205 const char *name = tk->tkr_mono.clock->name; 206 207 if (offset > max_cycles) { 208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 209 offset, name, max_cycles); 210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 211 } else { 212 if (offset > (max_cycles >> 1)) { 213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 214 offset, name, max_cycles >> 1); 215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 216 } 217 } 218 219 if (tk->underflow_seen) { 220 if (jiffies - tk->last_warning > WARNING_FREQ) { 221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 223 printk_deferred(" Your kernel is probably still fine.\n"); 224 tk->last_warning = jiffies; 225 } 226 tk->underflow_seen = 0; 227 } 228 229 if (tk->overflow_seen) { 230 if (jiffies - tk->last_warning > WARNING_FREQ) { 231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 233 printk_deferred(" Your kernel is probably still fine.\n"); 234 tk->last_warning = jiffies; 235 } 236 tk->overflow_seen = 0; 237 } 238 } 239 240 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 241 { 242 struct timekeeper *tk = &tk_core.timekeeper; 243 u64 now, last, mask, max, delta; 244 unsigned int seq; 245 246 /* 247 * Since we're called holding a seqcount, the data may shift 248 * under us while we're doing the calculation. This can cause 249 * false positives, since we'd note a problem but throw the 250 * results away. So nest another seqcount here to atomically 251 * grab the points we are checking with. 252 */ 253 do { 254 seq = read_seqcount_begin(&tk_core.seq); 255 now = tk_clock_read(tkr); 256 last = tkr->cycle_last; 257 mask = tkr->mask; 258 max = tkr->clock->max_cycles; 259 } while (read_seqcount_retry(&tk_core.seq, seq)); 260 261 delta = clocksource_delta(now, last, mask); 262 263 /* 264 * Try to catch underflows by checking if we are seeing small 265 * mask-relative negative values. 266 */ 267 if (unlikely((~delta & mask) < (mask >> 3))) { 268 tk->underflow_seen = 1; 269 delta = 0; 270 } 271 272 /* Cap delta value to the max_cycles values to avoid mult overflows */ 273 if (unlikely(delta > max)) { 274 tk->overflow_seen = 1; 275 delta = tkr->clock->max_cycles; 276 } 277 278 return delta; 279 } 280 #else 281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 282 { 283 } 284 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 285 { 286 u64 cycle_now, delta; 287 288 /* read clocksource */ 289 cycle_now = tk_clock_read(tkr); 290 291 /* calculate the delta since the last update_wall_time */ 292 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 293 294 return delta; 295 } 296 #endif 297 298 /** 299 * tk_setup_internals - Set up internals to use clocksource clock. 300 * 301 * @tk: The target timekeeper to setup. 302 * @clock: Pointer to clocksource. 303 * 304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 305 * pair and interval request. 306 * 307 * Unless you're the timekeeping code, you should not be using this! 308 */ 309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 310 { 311 u64 interval; 312 u64 tmp, ntpinterval; 313 struct clocksource *old_clock; 314 315 ++tk->cs_was_changed_seq; 316 old_clock = tk->tkr_mono.clock; 317 tk->tkr_mono.clock = clock; 318 tk->tkr_mono.mask = clock->mask; 319 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 320 321 tk->tkr_raw.clock = clock; 322 tk->tkr_raw.mask = clock->mask; 323 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 324 325 /* Do the ns -> cycle conversion first, using original mult */ 326 tmp = NTP_INTERVAL_LENGTH; 327 tmp <<= clock->shift; 328 ntpinterval = tmp; 329 tmp += clock->mult/2; 330 do_div(tmp, clock->mult); 331 if (tmp == 0) 332 tmp = 1; 333 334 interval = (u64) tmp; 335 tk->cycle_interval = interval; 336 337 /* Go back from cycles -> shifted ns */ 338 tk->xtime_interval = interval * clock->mult; 339 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 340 tk->raw_interval = interval * clock->mult; 341 342 /* if changing clocks, convert xtime_nsec shift units */ 343 if (old_clock) { 344 int shift_change = clock->shift - old_clock->shift; 345 if (shift_change < 0) { 346 tk->tkr_mono.xtime_nsec >>= -shift_change; 347 tk->tkr_raw.xtime_nsec >>= -shift_change; 348 } else { 349 tk->tkr_mono.xtime_nsec <<= shift_change; 350 tk->tkr_raw.xtime_nsec <<= shift_change; 351 } 352 } 353 354 tk->tkr_mono.shift = clock->shift; 355 tk->tkr_raw.shift = clock->shift; 356 357 tk->ntp_error = 0; 358 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 359 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 360 361 /* 362 * The timekeeper keeps its own mult values for the currently 363 * active clocksource. These value will be adjusted via NTP 364 * to counteract clock drifting. 365 */ 366 tk->tkr_mono.mult = clock->mult; 367 tk->tkr_raw.mult = clock->mult; 368 tk->ntp_err_mult = 0; 369 tk->skip_second_overflow = 0; 370 } 371 372 /* Timekeeper helper functions. */ 373 374 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 375 { 376 u64 nsec; 377 378 nsec = delta * tkr->mult + tkr->xtime_nsec; 379 nsec >>= tkr->shift; 380 381 return nsec; 382 } 383 384 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 385 { 386 u64 delta; 387 388 delta = timekeeping_get_delta(tkr); 389 return timekeeping_delta_to_ns(tkr, delta); 390 } 391 392 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 393 { 394 u64 delta; 395 396 /* calculate the delta since the last update_wall_time */ 397 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 398 return timekeeping_delta_to_ns(tkr, delta); 399 } 400 401 /** 402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 403 * @tkr: Timekeeping readout base from which we take the update 404 * @tkf: Pointer to NMI safe timekeeper 405 * 406 * We want to use this from any context including NMI and tracing / 407 * instrumenting the timekeeping code itself. 408 * 409 * Employ the latch technique; see @raw_write_seqcount_latch. 410 * 411 * So if a NMI hits the update of base[0] then it will use base[1] 412 * which is still consistent. In the worst case this can result is a 413 * slightly wrong timestamp (a few nanoseconds). See 414 * @ktime_get_mono_fast_ns. 415 */ 416 static void update_fast_timekeeper(const struct tk_read_base *tkr, 417 struct tk_fast *tkf) 418 { 419 struct tk_read_base *base = tkf->base; 420 421 /* Force readers off to base[1] */ 422 raw_write_seqcount_latch(&tkf->seq); 423 424 /* Update base[0] */ 425 memcpy(base, tkr, sizeof(*base)); 426 427 /* Force readers back to base[0] */ 428 raw_write_seqcount_latch(&tkf->seq); 429 430 /* Update base[1] */ 431 memcpy(base + 1, base, sizeof(*base)); 432 } 433 434 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr) 435 { 436 u64 delta, cycles = tk_clock_read(tkr); 437 438 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 439 return timekeeping_delta_to_ns(tkr, delta); 440 } 441 442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 443 { 444 struct tk_read_base *tkr; 445 unsigned int seq; 446 u64 now; 447 448 do { 449 seq = raw_read_seqcount_latch(&tkf->seq); 450 tkr = tkf->base + (seq & 0x01); 451 now = ktime_to_ns(tkr->base); 452 now += fast_tk_get_delta_ns(tkr); 453 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 454 455 return now; 456 } 457 458 /** 459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 460 * 461 * This timestamp is not guaranteed to be monotonic across an update. 462 * The timestamp is calculated by: 463 * 464 * now = base_mono + clock_delta * slope 465 * 466 * So if the update lowers the slope, readers who are forced to the 467 * not yet updated second array are still using the old steeper slope. 468 * 469 * tmono 470 * ^ 471 * | o n 472 * | o n 473 * | u 474 * | o 475 * |o 476 * |12345678---> reader order 477 * 478 * o = old slope 479 * u = update 480 * n = new slope 481 * 482 * So reader 6 will observe time going backwards versus reader 5. 483 * 484 * While other CPUs are likely to be able to observe that, the only way 485 * for a CPU local observation is when an NMI hits in the middle of 486 * the update. Timestamps taken from that NMI context might be ahead 487 * of the following timestamps. Callers need to be aware of that and 488 * deal with it. 489 */ 490 u64 notrace ktime_get_mono_fast_ns(void) 491 { 492 return __ktime_get_fast_ns(&tk_fast_mono); 493 } 494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 495 496 /** 497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 498 * 499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 500 * conversion factor is not affected by NTP/PTP correction. 501 */ 502 u64 notrace ktime_get_raw_fast_ns(void) 503 { 504 return __ktime_get_fast_ns(&tk_fast_raw); 505 } 506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 507 508 /** 509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 510 * 511 * To keep it NMI safe since we're accessing from tracing, we're not using a 512 * separate timekeeper with updates to monotonic clock and boot offset 513 * protected with seqcounts. This has the following minor side effects: 514 * 515 * (1) Its possible that a timestamp be taken after the boot offset is updated 516 * but before the timekeeper is updated. If this happens, the new boot offset 517 * is added to the old timekeeping making the clock appear to update slightly 518 * earlier: 519 * CPU 0 CPU 1 520 * timekeeping_inject_sleeptime64() 521 * __timekeeping_inject_sleeptime(tk, delta); 522 * timestamp(); 523 * timekeeping_update(tk, TK_CLEAR_NTP...); 524 * 525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 526 * partially updated. Since the tk->offs_boot update is a rare event, this 527 * should be a rare occurrence which postprocessing should be able to handle. 528 * 529 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns() 530 * apply as well. 531 */ 532 u64 notrace ktime_get_boot_fast_ns(void) 533 { 534 struct timekeeper *tk = &tk_core.timekeeper; 535 536 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 537 } 538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 539 540 /** 541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 542 * 543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 544 * mono time and the TAI offset are not read atomically which may yield wrong 545 * readouts. However, an update of the TAI offset is an rare event e.g., caused 546 * by settime or adjtimex with an offset. The user of this function has to deal 547 * with the possibility of wrong timestamps in post processing. 548 */ 549 u64 notrace ktime_get_tai_fast_ns(void) 550 { 551 struct timekeeper *tk = &tk_core.timekeeper; 552 553 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 554 } 555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 556 557 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 558 { 559 struct tk_read_base *tkr; 560 u64 basem, baser, delta; 561 unsigned int seq; 562 563 do { 564 seq = raw_read_seqcount_latch(&tkf->seq); 565 tkr = tkf->base + (seq & 0x01); 566 basem = ktime_to_ns(tkr->base); 567 baser = ktime_to_ns(tkr->base_real); 568 delta = fast_tk_get_delta_ns(tkr); 569 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 570 571 if (mono) 572 *mono = basem + delta; 573 return baser + delta; 574 } 575 576 /** 577 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 578 * 579 * See ktime_get_fast_ns() for documentation of the time stamp ordering. 580 */ 581 u64 ktime_get_real_fast_ns(void) 582 { 583 return __ktime_get_real_fast(&tk_fast_mono, NULL); 584 } 585 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 586 587 /** 588 * ktime_get_fast_timestamps: - NMI safe timestamps 589 * @snapshot: Pointer to timestamp storage 590 * 591 * Stores clock monotonic, boottime and realtime timestamps. 592 * 593 * Boot time is a racy access on 32bit systems if the sleep time injection 594 * happens late during resume and not in timekeeping_resume(). That could 595 * be avoided by expanding struct tk_read_base with boot offset for 32bit 596 * and adding more overhead to the update. As this is a hard to observe 597 * once per resume event which can be filtered with reasonable effort using 598 * the accurate mono/real timestamps, it's probably not worth the trouble. 599 * 600 * Aside of that it might be possible on 32 and 64 bit to observe the 601 * following when the sleep time injection happens late: 602 * 603 * CPU 0 CPU 1 604 * timekeeping_resume() 605 * ktime_get_fast_timestamps() 606 * mono, real = __ktime_get_real_fast() 607 * inject_sleep_time() 608 * update boot offset 609 * boot = mono + bootoffset; 610 * 611 * That means that boot time already has the sleep time adjustment, but 612 * real time does not. On the next readout both are in sync again. 613 * 614 * Preventing this for 64bit is not really feasible without destroying the 615 * careful cache layout of the timekeeper because the sequence count and 616 * struct tk_read_base would then need two cache lines instead of one. 617 * 618 * Access to the time keeper clock source is disabled across the innermost 619 * steps of suspend/resume. The accessors still work, but the timestamps 620 * are frozen until time keeping is resumed which happens very early. 621 * 622 * For regular suspend/resume there is no observable difference vs. sched 623 * clock, but it might affect some of the nasty low level debug printks. 624 * 625 * OTOH, access to sched clock is not guaranteed across suspend/resume on 626 * all systems either so it depends on the hardware in use. 627 * 628 * If that turns out to be a real problem then this could be mitigated by 629 * using sched clock in a similar way as during early boot. But it's not as 630 * trivial as on early boot because it needs some careful protection 631 * against the clock monotonic timestamp jumping backwards on resume. 632 */ 633 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 634 { 635 struct timekeeper *tk = &tk_core.timekeeper; 636 637 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 638 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 639 } 640 641 /** 642 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 643 * @tk: Timekeeper to snapshot. 644 * 645 * It generally is unsafe to access the clocksource after timekeeping has been 646 * suspended, so take a snapshot of the readout base of @tk and use it as the 647 * fast timekeeper's readout base while suspended. It will return the same 648 * number of cycles every time until timekeeping is resumed at which time the 649 * proper readout base for the fast timekeeper will be restored automatically. 650 */ 651 static void halt_fast_timekeeper(const struct timekeeper *tk) 652 { 653 static struct tk_read_base tkr_dummy; 654 const struct tk_read_base *tkr = &tk->tkr_mono; 655 656 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 657 cycles_at_suspend = tk_clock_read(tkr); 658 tkr_dummy.clock = &dummy_clock; 659 tkr_dummy.base_real = tkr->base + tk->offs_real; 660 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 661 662 tkr = &tk->tkr_raw; 663 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 664 tkr_dummy.clock = &dummy_clock; 665 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 666 } 667 668 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 669 670 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 671 { 672 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 673 } 674 675 /** 676 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 677 * @nb: Pointer to the notifier block to register 678 */ 679 int pvclock_gtod_register_notifier(struct notifier_block *nb) 680 { 681 struct timekeeper *tk = &tk_core.timekeeper; 682 unsigned long flags; 683 int ret; 684 685 raw_spin_lock_irqsave(&timekeeper_lock, flags); 686 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 687 update_pvclock_gtod(tk, true); 688 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 689 690 return ret; 691 } 692 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 693 694 /** 695 * pvclock_gtod_unregister_notifier - unregister a pvclock 696 * timedata update listener 697 * @nb: Pointer to the notifier block to unregister 698 */ 699 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 700 { 701 unsigned long flags; 702 int ret; 703 704 raw_spin_lock_irqsave(&timekeeper_lock, flags); 705 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 706 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 707 708 return ret; 709 } 710 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 711 712 /* 713 * tk_update_leap_state - helper to update the next_leap_ktime 714 */ 715 static inline void tk_update_leap_state(struct timekeeper *tk) 716 { 717 tk->next_leap_ktime = ntp_get_next_leap(); 718 if (tk->next_leap_ktime != KTIME_MAX) 719 /* Convert to monotonic time */ 720 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 721 } 722 723 /* 724 * Update the ktime_t based scalar nsec members of the timekeeper 725 */ 726 static inline void tk_update_ktime_data(struct timekeeper *tk) 727 { 728 u64 seconds; 729 u32 nsec; 730 731 /* 732 * The xtime based monotonic readout is: 733 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 734 * The ktime based monotonic readout is: 735 * nsec = base_mono + now(); 736 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 737 */ 738 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 739 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 740 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 741 742 /* 743 * The sum of the nanoseconds portions of xtime and 744 * wall_to_monotonic can be greater/equal one second. Take 745 * this into account before updating tk->ktime_sec. 746 */ 747 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 748 if (nsec >= NSEC_PER_SEC) 749 seconds++; 750 tk->ktime_sec = seconds; 751 752 /* Update the monotonic raw base */ 753 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 754 } 755 756 /* must hold timekeeper_lock */ 757 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 758 { 759 if (action & TK_CLEAR_NTP) { 760 tk->ntp_error = 0; 761 ntp_clear(); 762 } 763 764 tk_update_leap_state(tk); 765 tk_update_ktime_data(tk); 766 767 update_vsyscall(tk); 768 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 769 770 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 771 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 772 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 773 774 if (action & TK_CLOCK_WAS_SET) 775 tk->clock_was_set_seq++; 776 /* 777 * The mirroring of the data to the shadow-timekeeper needs 778 * to happen last here to ensure we don't over-write the 779 * timekeeper structure on the next update with stale data 780 */ 781 if (action & TK_MIRROR) 782 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 783 sizeof(tk_core.timekeeper)); 784 } 785 786 /** 787 * timekeeping_forward_now - update clock to the current time 788 * @tk: Pointer to the timekeeper to update 789 * 790 * Forward the current clock to update its state since the last call to 791 * update_wall_time(). This is useful before significant clock changes, 792 * as it avoids having to deal with this time offset explicitly. 793 */ 794 static void timekeeping_forward_now(struct timekeeper *tk) 795 { 796 u64 cycle_now, delta; 797 798 cycle_now = tk_clock_read(&tk->tkr_mono); 799 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 800 tk->tkr_mono.cycle_last = cycle_now; 801 tk->tkr_raw.cycle_last = cycle_now; 802 803 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 804 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 805 806 tk_normalize_xtime(tk); 807 } 808 809 /** 810 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 811 * @ts: pointer to the timespec to be set 812 * 813 * Returns the time of day in a timespec64 (WARN if suspended). 814 */ 815 void ktime_get_real_ts64(struct timespec64 *ts) 816 { 817 struct timekeeper *tk = &tk_core.timekeeper; 818 unsigned int seq; 819 u64 nsecs; 820 821 WARN_ON(timekeeping_suspended); 822 823 do { 824 seq = read_seqcount_begin(&tk_core.seq); 825 826 ts->tv_sec = tk->xtime_sec; 827 nsecs = timekeeping_get_ns(&tk->tkr_mono); 828 829 } while (read_seqcount_retry(&tk_core.seq, seq)); 830 831 ts->tv_nsec = 0; 832 timespec64_add_ns(ts, nsecs); 833 } 834 EXPORT_SYMBOL(ktime_get_real_ts64); 835 836 ktime_t ktime_get(void) 837 { 838 struct timekeeper *tk = &tk_core.timekeeper; 839 unsigned int seq; 840 ktime_t base; 841 u64 nsecs; 842 843 WARN_ON(timekeeping_suspended); 844 845 do { 846 seq = read_seqcount_begin(&tk_core.seq); 847 base = tk->tkr_mono.base; 848 nsecs = timekeeping_get_ns(&tk->tkr_mono); 849 850 } while (read_seqcount_retry(&tk_core.seq, seq)); 851 852 return ktime_add_ns(base, nsecs); 853 } 854 EXPORT_SYMBOL_GPL(ktime_get); 855 856 u32 ktime_get_resolution_ns(void) 857 { 858 struct timekeeper *tk = &tk_core.timekeeper; 859 unsigned int seq; 860 u32 nsecs; 861 862 WARN_ON(timekeeping_suspended); 863 864 do { 865 seq = read_seqcount_begin(&tk_core.seq); 866 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 867 } while (read_seqcount_retry(&tk_core.seq, seq)); 868 869 return nsecs; 870 } 871 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 872 873 static ktime_t *offsets[TK_OFFS_MAX] = { 874 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 875 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 876 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 877 }; 878 879 ktime_t ktime_get_with_offset(enum tk_offsets offs) 880 { 881 struct timekeeper *tk = &tk_core.timekeeper; 882 unsigned int seq; 883 ktime_t base, *offset = offsets[offs]; 884 u64 nsecs; 885 886 WARN_ON(timekeeping_suspended); 887 888 do { 889 seq = read_seqcount_begin(&tk_core.seq); 890 base = ktime_add(tk->tkr_mono.base, *offset); 891 nsecs = timekeeping_get_ns(&tk->tkr_mono); 892 893 } while (read_seqcount_retry(&tk_core.seq, seq)); 894 895 return ktime_add_ns(base, nsecs); 896 897 } 898 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 899 900 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 901 { 902 struct timekeeper *tk = &tk_core.timekeeper; 903 unsigned int seq; 904 ktime_t base, *offset = offsets[offs]; 905 u64 nsecs; 906 907 WARN_ON(timekeeping_suspended); 908 909 do { 910 seq = read_seqcount_begin(&tk_core.seq); 911 base = ktime_add(tk->tkr_mono.base, *offset); 912 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 913 914 } while (read_seqcount_retry(&tk_core.seq, seq)); 915 916 return ktime_add_ns(base, nsecs); 917 } 918 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 919 920 /** 921 * ktime_mono_to_any() - convert monotonic time to any other time 922 * @tmono: time to convert. 923 * @offs: which offset to use 924 */ 925 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 926 { 927 ktime_t *offset = offsets[offs]; 928 unsigned int seq; 929 ktime_t tconv; 930 931 do { 932 seq = read_seqcount_begin(&tk_core.seq); 933 tconv = ktime_add(tmono, *offset); 934 } while (read_seqcount_retry(&tk_core.seq, seq)); 935 936 return tconv; 937 } 938 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 939 940 /** 941 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 942 */ 943 ktime_t ktime_get_raw(void) 944 { 945 struct timekeeper *tk = &tk_core.timekeeper; 946 unsigned int seq; 947 ktime_t base; 948 u64 nsecs; 949 950 do { 951 seq = read_seqcount_begin(&tk_core.seq); 952 base = tk->tkr_raw.base; 953 nsecs = timekeeping_get_ns(&tk->tkr_raw); 954 955 } while (read_seqcount_retry(&tk_core.seq, seq)); 956 957 return ktime_add_ns(base, nsecs); 958 } 959 EXPORT_SYMBOL_GPL(ktime_get_raw); 960 961 /** 962 * ktime_get_ts64 - get the monotonic clock in timespec64 format 963 * @ts: pointer to timespec variable 964 * 965 * The function calculates the monotonic clock from the realtime 966 * clock and the wall_to_monotonic offset and stores the result 967 * in normalized timespec64 format in the variable pointed to by @ts. 968 */ 969 void ktime_get_ts64(struct timespec64 *ts) 970 { 971 struct timekeeper *tk = &tk_core.timekeeper; 972 struct timespec64 tomono; 973 unsigned int seq; 974 u64 nsec; 975 976 WARN_ON(timekeeping_suspended); 977 978 do { 979 seq = read_seqcount_begin(&tk_core.seq); 980 ts->tv_sec = tk->xtime_sec; 981 nsec = timekeeping_get_ns(&tk->tkr_mono); 982 tomono = tk->wall_to_monotonic; 983 984 } while (read_seqcount_retry(&tk_core.seq, seq)); 985 986 ts->tv_sec += tomono.tv_sec; 987 ts->tv_nsec = 0; 988 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 989 } 990 EXPORT_SYMBOL_GPL(ktime_get_ts64); 991 992 /** 993 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 994 * 995 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 996 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 997 * works on both 32 and 64 bit systems. On 32 bit systems the readout 998 * covers ~136 years of uptime which should be enough to prevent 999 * premature wrap arounds. 1000 */ 1001 time64_t ktime_get_seconds(void) 1002 { 1003 struct timekeeper *tk = &tk_core.timekeeper; 1004 1005 WARN_ON(timekeeping_suspended); 1006 return tk->ktime_sec; 1007 } 1008 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1009 1010 /** 1011 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1012 * 1013 * Returns the wall clock seconds since 1970. 1014 * 1015 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1016 * 32bit systems the access must be protected with the sequence 1017 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1018 * value. 1019 */ 1020 time64_t ktime_get_real_seconds(void) 1021 { 1022 struct timekeeper *tk = &tk_core.timekeeper; 1023 time64_t seconds; 1024 unsigned int seq; 1025 1026 if (IS_ENABLED(CONFIG_64BIT)) 1027 return tk->xtime_sec; 1028 1029 do { 1030 seq = read_seqcount_begin(&tk_core.seq); 1031 seconds = tk->xtime_sec; 1032 1033 } while (read_seqcount_retry(&tk_core.seq, seq)); 1034 1035 return seconds; 1036 } 1037 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1038 1039 /** 1040 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1041 * but without the sequence counter protect. This internal function 1042 * is called just when timekeeping lock is already held. 1043 */ 1044 noinstr time64_t __ktime_get_real_seconds(void) 1045 { 1046 struct timekeeper *tk = &tk_core.timekeeper; 1047 1048 return tk->xtime_sec; 1049 } 1050 1051 /** 1052 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1053 * @systime_snapshot: pointer to struct receiving the system time snapshot 1054 */ 1055 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1056 { 1057 struct timekeeper *tk = &tk_core.timekeeper; 1058 unsigned int seq; 1059 ktime_t base_raw; 1060 ktime_t base_real; 1061 u64 nsec_raw; 1062 u64 nsec_real; 1063 u64 now; 1064 1065 WARN_ON_ONCE(timekeeping_suspended); 1066 1067 do { 1068 seq = read_seqcount_begin(&tk_core.seq); 1069 now = tk_clock_read(&tk->tkr_mono); 1070 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1071 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1072 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1073 base_real = ktime_add(tk->tkr_mono.base, 1074 tk_core.timekeeper.offs_real); 1075 base_raw = tk->tkr_raw.base; 1076 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1077 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1078 } while (read_seqcount_retry(&tk_core.seq, seq)); 1079 1080 systime_snapshot->cycles = now; 1081 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1082 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1083 } 1084 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1085 1086 /* Scale base by mult/div checking for overflow */ 1087 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1088 { 1089 u64 tmp, rem; 1090 1091 tmp = div64_u64_rem(*base, div, &rem); 1092 1093 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1094 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1095 return -EOVERFLOW; 1096 tmp *= mult; 1097 1098 rem = div64_u64(rem * mult, div); 1099 *base = tmp + rem; 1100 return 0; 1101 } 1102 1103 /** 1104 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1105 * @history: Snapshot representing start of history 1106 * @partial_history_cycles: Cycle offset into history (fractional part) 1107 * @total_history_cycles: Total history length in cycles 1108 * @discontinuity: True indicates clock was set on history period 1109 * @ts: Cross timestamp that should be adjusted using 1110 * partial/total ratio 1111 * 1112 * Helper function used by get_device_system_crosststamp() to correct the 1113 * crosstimestamp corresponding to the start of the current interval to the 1114 * system counter value (timestamp point) provided by the driver. The 1115 * total_history_* quantities are the total history starting at the provided 1116 * reference point and ending at the start of the current interval. The cycle 1117 * count between the driver timestamp point and the start of the current 1118 * interval is partial_history_cycles. 1119 */ 1120 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1121 u64 partial_history_cycles, 1122 u64 total_history_cycles, 1123 bool discontinuity, 1124 struct system_device_crosststamp *ts) 1125 { 1126 struct timekeeper *tk = &tk_core.timekeeper; 1127 u64 corr_raw, corr_real; 1128 bool interp_forward; 1129 int ret; 1130 1131 if (total_history_cycles == 0 || partial_history_cycles == 0) 1132 return 0; 1133 1134 /* Interpolate shortest distance from beginning or end of history */ 1135 interp_forward = partial_history_cycles > total_history_cycles / 2; 1136 partial_history_cycles = interp_forward ? 1137 total_history_cycles - partial_history_cycles : 1138 partial_history_cycles; 1139 1140 /* 1141 * Scale the monotonic raw time delta by: 1142 * partial_history_cycles / total_history_cycles 1143 */ 1144 corr_raw = (u64)ktime_to_ns( 1145 ktime_sub(ts->sys_monoraw, history->raw)); 1146 ret = scale64_check_overflow(partial_history_cycles, 1147 total_history_cycles, &corr_raw); 1148 if (ret) 1149 return ret; 1150 1151 /* 1152 * If there is a discontinuity in the history, scale monotonic raw 1153 * correction by: 1154 * mult(real)/mult(raw) yielding the realtime correction 1155 * Otherwise, calculate the realtime correction similar to monotonic 1156 * raw calculation 1157 */ 1158 if (discontinuity) { 1159 corr_real = mul_u64_u32_div 1160 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1161 } else { 1162 corr_real = (u64)ktime_to_ns( 1163 ktime_sub(ts->sys_realtime, history->real)); 1164 ret = scale64_check_overflow(partial_history_cycles, 1165 total_history_cycles, &corr_real); 1166 if (ret) 1167 return ret; 1168 } 1169 1170 /* Fixup monotonic raw and real time time values */ 1171 if (interp_forward) { 1172 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1173 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1174 } else { 1175 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1176 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1177 } 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * cycle_between - true if test occurs chronologically between before and after 1184 */ 1185 static bool cycle_between(u64 before, u64 test, u64 after) 1186 { 1187 if (test > before && test < after) 1188 return true; 1189 if (test < before && before > after) 1190 return true; 1191 return false; 1192 } 1193 1194 /** 1195 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1196 * @get_time_fn: Callback to get simultaneous device time and 1197 * system counter from the device driver 1198 * @ctx: Context passed to get_time_fn() 1199 * @history_begin: Historical reference point used to interpolate system 1200 * time when counter provided by the driver is before the current interval 1201 * @xtstamp: Receives simultaneously captured system and device time 1202 * 1203 * Reads a timestamp from a device and correlates it to system time 1204 */ 1205 int get_device_system_crosststamp(int (*get_time_fn) 1206 (ktime_t *device_time, 1207 struct system_counterval_t *sys_counterval, 1208 void *ctx), 1209 void *ctx, 1210 struct system_time_snapshot *history_begin, 1211 struct system_device_crosststamp *xtstamp) 1212 { 1213 struct system_counterval_t system_counterval; 1214 struct timekeeper *tk = &tk_core.timekeeper; 1215 u64 cycles, now, interval_start; 1216 unsigned int clock_was_set_seq = 0; 1217 ktime_t base_real, base_raw; 1218 u64 nsec_real, nsec_raw; 1219 u8 cs_was_changed_seq; 1220 unsigned int seq; 1221 bool do_interp; 1222 int ret; 1223 1224 do { 1225 seq = read_seqcount_begin(&tk_core.seq); 1226 /* 1227 * Try to synchronously capture device time and a system 1228 * counter value calling back into the device driver 1229 */ 1230 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1231 if (ret) 1232 return ret; 1233 1234 /* 1235 * Verify that the clocksource associated with the captured 1236 * system counter value is the same as the currently installed 1237 * timekeeper clocksource 1238 */ 1239 if (tk->tkr_mono.clock != system_counterval.cs) 1240 return -ENODEV; 1241 cycles = system_counterval.cycles; 1242 1243 /* 1244 * Check whether the system counter value provided by the 1245 * device driver is on the current timekeeping interval. 1246 */ 1247 now = tk_clock_read(&tk->tkr_mono); 1248 interval_start = tk->tkr_mono.cycle_last; 1249 if (!cycle_between(interval_start, cycles, now)) { 1250 clock_was_set_seq = tk->clock_was_set_seq; 1251 cs_was_changed_seq = tk->cs_was_changed_seq; 1252 cycles = interval_start; 1253 do_interp = true; 1254 } else { 1255 do_interp = false; 1256 } 1257 1258 base_real = ktime_add(tk->tkr_mono.base, 1259 tk_core.timekeeper.offs_real); 1260 base_raw = tk->tkr_raw.base; 1261 1262 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1263 system_counterval.cycles); 1264 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1265 system_counterval.cycles); 1266 } while (read_seqcount_retry(&tk_core.seq, seq)); 1267 1268 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1269 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1270 1271 /* 1272 * Interpolate if necessary, adjusting back from the start of the 1273 * current interval 1274 */ 1275 if (do_interp) { 1276 u64 partial_history_cycles, total_history_cycles; 1277 bool discontinuity; 1278 1279 /* 1280 * Check that the counter value occurs after the provided 1281 * history reference and that the history doesn't cross a 1282 * clocksource change 1283 */ 1284 if (!history_begin || 1285 !cycle_between(history_begin->cycles, 1286 system_counterval.cycles, cycles) || 1287 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1288 return -EINVAL; 1289 partial_history_cycles = cycles - system_counterval.cycles; 1290 total_history_cycles = cycles - history_begin->cycles; 1291 discontinuity = 1292 history_begin->clock_was_set_seq != clock_was_set_seq; 1293 1294 ret = adjust_historical_crosststamp(history_begin, 1295 partial_history_cycles, 1296 total_history_cycles, 1297 discontinuity, xtstamp); 1298 if (ret) 1299 return ret; 1300 } 1301 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1305 1306 /** 1307 * do_settimeofday64 - Sets the time of day. 1308 * @ts: pointer to the timespec64 variable containing the new time 1309 * 1310 * Sets the time of day to the new time and update NTP and notify hrtimers 1311 */ 1312 int do_settimeofday64(const struct timespec64 *ts) 1313 { 1314 struct timekeeper *tk = &tk_core.timekeeper; 1315 struct timespec64 ts_delta, xt; 1316 unsigned long flags; 1317 int ret = 0; 1318 1319 if (!timespec64_valid_settod(ts)) 1320 return -EINVAL; 1321 1322 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1323 write_seqcount_begin(&tk_core.seq); 1324 1325 timekeeping_forward_now(tk); 1326 1327 xt = tk_xtime(tk); 1328 ts_delta = timespec64_sub(*ts, xt); 1329 1330 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1331 ret = -EINVAL; 1332 goto out; 1333 } 1334 1335 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1336 1337 tk_set_xtime(tk, ts); 1338 out: 1339 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1340 1341 write_seqcount_end(&tk_core.seq); 1342 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1343 1344 /* Signal hrtimers about time change */ 1345 clock_was_set(CLOCK_SET_WALL); 1346 1347 if (!ret) { 1348 audit_tk_injoffset(ts_delta); 1349 add_device_randomness(ts, sizeof(*ts)); 1350 } 1351 1352 return ret; 1353 } 1354 EXPORT_SYMBOL(do_settimeofday64); 1355 1356 /** 1357 * timekeeping_inject_offset - Adds or subtracts from the current time. 1358 * @ts: Pointer to the timespec variable containing the offset 1359 * 1360 * Adds or subtracts an offset value from the current time. 1361 */ 1362 static int timekeeping_inject_offset(const struct timespec64 *ts) 1363 { 1364 struct timekeeper *tk = &tk_core.timekeeper; 1365 unsigned long flags; 1366 struct timespec64 tmp; 1367 int ret = 0; 1368 1369 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1370 return -EINVAL; 1371 1372 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1373 write_seqcount_begin(&tk_core.seq); 1374 1375 timekeeping_forward_now(tk); 1376 1377 /* Make sure the proposed value is valid */ 1378 tmp = timespec64_add(tk_xtime(tk), *ts); 1379 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1380 !timespec64_valid_settod(&tmp)) { 1381 ret = -EINVAL; 1382 goto error; 1383 } 1384 1385 tk_xtime_add(tk, ts); 1386 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1387 1388 error: /* even if we error out, we forwarded the time, so call update */ 1389 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1390 1391 write_seqcount_end(&tk_core.seq); 1392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1393 1394 /* Signal hrtimers about time change */ 1395 clock_was_set(CLOCK_SET_WALL); 1396 1397 return ret; 1398 } 1399 1400 /* 1401 * Indicates if there is an offset between the system clock and the hardware 1402 * clock/persistent clock/rtc. 1403 */ 1404 int persistent_clock_is_local; 1405 1406 /* 1407 * Adjust the time obtained from the CMOS to be UTC time instead of 1408 * local time. 1409 * 1410 * This is ugly, but preferable to the alternatives. Otherwise we 1411 * would either need to write a program to do it in /etc/rc (and risk 1412 * confusion if the program gets run more than once; it would also be 1413 * hard to make the program warp the clock precisely n hours) or 1414 * compile in the timezone information into the kernel. Bad, bad.... 1415 * 1416 * - TYT, 1992-01-01 1417 * 1418 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1419 * as real UNIX machines always do it. This avoids all headaches about 1420 * daylight saving times and warping kernel clocks. 1421 */ 1422 void timekeeping_warp_clock(void) 1423 { 1424 if (sys_tz.tz_minuteswest != 0) { 1425 struct timespec64 adjust; 1426 1427 persistent_clock_is_local = 1; 1428 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1429 adjust.tv_nsec = 0; 1430 timekeeping_inject_offset(&adjust); 1431 } 1432 } 1433 1434 /* 1435 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1436 */ 1437 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1438 { 1439 tk->tai_offset = tai_offset; 1440 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1441 } 1442 1443 /* 1444 * change_clocksource - Swaps clocksources if a new one is available 1445 * 1446 * Accumulates current time interval and initializes new clocksource 1447 */ 1448 static int change_clocksource(void *data) 1449 { 1450 struct timekeeper *tk = &tk_core.timekeeper; 1451 struct clocksource *new, *old = NULL; 1452 unsigned long flags; 1453 bool change = false; 1454 1455 new = (struct clocksource *) data; 1456 1457 /* 1458 * If the cs is in module, get a module reference. Succeeds 1459 * for built-in code (owner == NULL) as well. 1460 */ 1461 if (try_module_get(new->owner)) { 1462 if (!new->enable || new->enable(new) == 0) 1463 change = true; 1464 else 1465 module_put(new->owner); 1466 } 1467 1468 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1469 write_seqcount_begin(&tk_core.seq); 1470 1471 timekeeping_forward_now(tk); 1472 1473 if (change) { 1474 old = tk->tkr_mono.clock; 1475 tk_setup_internals(tk, new); 1476 } 1477 1478 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1479 1480 write_seqcount_end(&tk_core.seq); 1481 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1482 1483 if (old) { 1484 if (old->disable) 1485 old->disable(old); 1486 1487 module_put(old->owner); 1488 } 1489 1490 return 0; 1491 } 1492 1493 /** 1494 * timekeeping_notify - Install a new clock source 1495 * @clock: pointer to the clock source 1496 * 1497 * This function is called from clocksource.c after a new, better clock 1498 * source has been registered. The caller holds the clocksource_mutex. 1499 */ 1500 int timekeeping_notify(struct clocksource *clock) 1501 { 1502 struct timekeeper *tk = &tk_core.timekeeper; 1503 1504 if (tk->tkr_mono.clock == clock) 1505 return 0; 1506 stop_machine(change_clocksource, clock, NULL); 1507 tick_clock_notify(); 1508 return tk->tkr_mono.clock == clock ? 0 : -1; 1509 } 1510 1511 /** 1512 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1513 * @ts: pointer to the timespec64 to be set 1514 * 1515 * Returns the raw monotonic time (completely un-modified by ntp) 1516 */ 1517 void ktime_get_raw_ts64(struct timespec64 *ts) 1518 { 1519 struct timekeeper *tk = &tk_core.timekeeper; 1520 unsigned int seq; 1521 u64 nsecs; 1522 1523 do { 1524 seq = read_seqcount_begin(&tk_core.seq); 1525 ts->tv_sec = tk->raw_sec; 1526 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1527 1528 } while (read_seqcount_retry(&tk_core.seq, seq)); 1529 1530 ts->tv_nsec = 0; 1531 timespec64_add_ns(ts, nsecs); 1532 } 1533 EXPORT_SYMBOL(ktime_get_raw_ts64); 1534 1535 1536 /** 1537 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1538 */ 1539 int timekeeping_valid_for_hres(void) 1540 { 1541 struct timekeeper *tk = &tk_core.timekeeper; 1542 unsigned int seq; 1543 int ret; 1544 1545 do { 1546 seq = read_seqcount_begin(&tk_core.seq); 1547 1548 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1549 1550 } while (read_seqcount_retry(&tk_core.seq, seq)); 1551 1552 return ret; 1553 } 1554 1555 /** 1556 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1557 */ 1558 u64 timekeeping_max_deferment(void) 1559 { 1560 struct timekeeper *tk = &tk_core.timekeeper; 1561 unsigned int seq; 1562 u64 ret; 1563 1564 do { 1565 seq = read_seqcount_begin(&tk_core.seq); 1566 1567 ret = tk->tkr_mono.clock->max_idle_ns; 1568 1569 } while (read_seqcount_retry(&tk_core.seq, seq)); 1570 1571 return ret; 1572 } 1573 1574 /** 1575 * read_persistent_clock64 - Return time from the persistent clock. 1576 * @ts: Pointer to the storage for the readout value 1577 * 1578 * Weak dummy function for arches that do not yet support it. 1579 * Reads the time from the battery backed persistent clock. 1580 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1581 * 1582 * XXX - Do be sure to remove it once all arches implement it. 1583 */ 1584 void __weak read_persistent_clock64(struct timespec64 *ts) 1585 { 1586 ts->tv_sec = 0; 1587 ts->tv_nsec = 0; 1588 } 1589 1590 /** 1591 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1592 * from the boot. 1593 * @wall_time: current time as returned by persistent clock 1594 * @boot_offset: offset that is defined as wall_time - boot_time 1595 * 1596 * Weak dummy function for arches that do not yet support it. 1597 * 1598 * The default function calculates offset based on the current value of 1599 * local_clock(). This way architectures that support sched_clock() but don't 1600 * support dedicated boot time clock will provide the best estimate of the 1601 * boot time. 1602 */ 1603 void __weak __init 1604 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1605 struct timespec64 *boot_offset) 1606 { 1607 read_persistent_clock64(wall_time); 1608 *boot_offset = ns_to_timespec64(local_clock()); 1609 } 1610 1611 /* 1612 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1613 * 1614 * The flag starts of false and is only set when a suspend reaches 1615 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1616 * timekeeper clocksource is not stopping across suspend and has been 1617 * used to update sleep time. If the timekeeper clocksource has stopped 1618 * then the flag stays true and is used by the RTC resume code to decide 1619 * whether sleeptime must be injected and if so the flag gets false then. 1620 * 1621 * If a suspend fails before reaching timekeeping_resume() then the flag 1622 * stays false and prevents erroneous sleeptime injection. 1623 */ 1624 static bool suspend_timing_needed; 1625 1626 /* Flag for if there is a persistent clock on this platform */ 1627 static bool persistent_clock_exists; 1628 1629 /* 1630 * timekeeping_init - Initializes the clocksource and common timekeeping values 1631 */ 1632 void __init timekeeping_init(void) 1633 { 1634 struct timespec64 wall_time, boot_offset, wall_to_mono; 1635 struct timekeeper *tk = &tk_core.timekeeper; 1636 struct clocksource *clock; 1637 unsigned long flags; 1638 1639 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1640 if (timespec64_valid_settod(&wall_time) && 1641 timespec64_to_ns(&wall_time) > 0) { 1642 persistent_clock_exists = true; 1643 } else if (timespec64_to_ns(&wall_time) != 0) { 1644 pr_warn("Persistent clock returned invalid value"); 1645 wall_time = (struct timespec64){0}; 1646 } 1647 1648 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1649 boot_offset = (struct timespec64){0}; 1650 1651 /* 1652 * We want set wall_to_mono, so the following is true: 1653 * wall time + wall_to_mono = boot time 1654 */ 1655 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1656 1657 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1658 write_seqcount_begin(&tk_core.seq); 1659 ntp_init(); 1660 1661 clock = clocksource_default_clock(); 1662 if (clock->enable) 1663 clock->enable(clock); 1664 tk_setup_internals(tk, clock); 1665 1666 tk_set_xtime(tk, &wall_time); 1667 tk->raw_sec = 0; 1668 1669 tk_set_wall_to_mono(tk, wall_to_mono); 1670 1671 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1672 1673 write_seqcount_end(&tk_core.seq); 1674 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1675 } 1676 1677 /* time in seconds when suspend began for persistent clock */ 1678 static struct timespec64 timekeeping_suspend_time; 1679 1680 /** 1681 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1682 * @tk: Pointer to the timekeeper to be updated 1683 * @delta: Pointer to the delta value in timespec64 format 1684 * 1685 * Takes a timespec offset measuring a suspend interval and properly 1686 * adds the sleep offset to the timekeeping variables. 1687 */ 1688 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1689 const struct timespec64 *delta) 1690 { 1691 if (!timespec64_valid_strict(delta)) { 1692 printk_deferred(KERN_WARNING 1693 "__timekeeping_inject_sleeptime: Invalid " 1694 "sleep delta value!\n"); 1695 return; 1696 } 1697 tk_xtime_add(tk, delta); 1698 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1699 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1700 tk_debug_account_sleep_time(delta); 1701 } 1702 1703 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1704 /* 1705 * We have three kinds of time sources to use for sleep time 1706 * injection, the preference order is: 1707 * 1) non-stop clocksource 1708 * 2) persistent clock (ie: RTC accessible when irqs are off) 1709 * 3) RTC 1710 * 1711 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1712 * If system has neither 1) nor 2), 3) will be used finally. 1713 * 1714 * 1715 * If timekeeping has injected sleeptime via either 1) or 2), 1716 * 3) becomes needless, so in this case we don't need to call 1717 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1718 * means. 1719 */ 1720 bool timekeeping_rtc_skipresume(void) 1721 { 1722 return !suspend_timing_needed; 1723 } 1724 1725 /* 1726 * 1) can be determined whether to use or not only when doing 1727 * timekeeping_resume() which is invoked after rtc_suspend(), 1728 * so we can't skip rtc_suspend() surely if system has 1). 1729 * 1730 * But if system has 2), 2) will definitely be used, so in this 1731 * case we don't need to call rtc_suspend(), and this is what 1732 * timekeeping_rtc_skipsuspend() means. 1733 */ 1734 bool timekeeping_rtc_skipsuspend(void) 1735 { 1736 return persistent_clock_exists; 1737 } 1738 1739 /** 1740 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1741 * @delta: pointer to a timespec64 delta value 1742 * 1743 * This hook is for architectures that cannot support read_persistent_clock64 1744 * because their RTC/persistent clock is only accessible when irqs are enabled. 1745 * and also don't have an effective nonstop clocksource. 1746 * 1747 * This function should only be called by rtc_resume(), and allows 1748 * a suspend offset to be injected into the timekeeping values. 1749 */ 1750 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1751 { 1752 struct timekeeper *tk = &tk_core.timekeeper; 1753 unsigned long flags; 1754 1755 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1756 write_seqcount_begin(&tk_core.seq); 1757 1758 suspend_timing_needed = false; 1759 1760 timekeeping_forward_now(tk); 1761 1762 __timekeeping_inject_sleeptime(tk, delta); 1763 1764 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1765 1766 write_seqcount_end(&tk_core.seq); 1767 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1768 1769 /* Signal hrtimers about time change */ 1770 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1771 } 1772 #endif 1773 1774 /** 1775 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1776 */ 1777 void timekeeping_resume(void) 1778 { 1779 struct timekeeper *tk = &tk_core.timekeeper; 1780 struct clocksource *clock = tk->tkr_mono.clock; 1781 unsigned long flags; 1782 struct timespec64 ts_new, ts_delta; 1783 u64 cycle_now, nsec; 1784 bool inject_sleeptime = false; 1785 1786 read_persistent_clock64(&ts_new); 1787 1788 clockevents_resume(); 1789 clocksource_resume(); 1790 1791 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1792 write_seqcount_begin(&tk_core.seq); 1793 1794 /* 1795 * After system resumes, we need to calculate the suspended time and 1796 * compensate it for the OS time. There are 3 sources that could be 1797 * used: Nonstop clocksource during suspend, persistent clock and rtc 1798 * device. 1799 * 1800 * One specific platform may have 1 or 2 or all of them, and the 1801 * preference will be: 1802 * suspend-nonstop clocksource -> persistent clock -> rtc 1803 * The less preferred source will only be tried if there is no better 1804 * usable source. The rtc part is handled separately in rtc core code. 1805 */ 1806 cycle_now = tk_clock_read(&tk->tkr_mono); 1807 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1808 if (nsec > 0) { 1809 ts_delta = ns_to_timespec64(nsec); 1810 inject_sleeptime = true; 1811 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1812 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1813 inject_sleeptime = true; 1814 } 1815 1816 if (inject_sleeptime) { 1817 suspend_timing_needed = false; 1818 __timekeeping_inject_sleeptime(tk, &ts_delta); 1819 } 1820 1821 /* Re-base the last cycle value */ 1822 tk->tkr_mono.cycle_last = cycle_now; 1823 tk->tkr_raw.cycle_last = cycle_now; 1824 1825 tk->ntp_error = 0; 1826 timekeeping_suspended = 0; 1827 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1828 write_seqcount_end(&tk_core.seq); 1829 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1830 1831 touch_softlockup_watchdog(); 1832 1833 /* Resume the clockevent device(s) and hrtimers */ 1834 tick_resume(); 1835 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1836 timerfd_resume(); 1837 } 1838 1839 int timekeeping_suspend(void) 1840 { 1841 struct timekeeper *tk = &tk_core.timekeeper; 1842 unsigned long flags; 1843 struct timespec64 delta, delta_delta; 1844 static struct timespec64 old_delta; 1845 struct clocksource *curr_clock; 1846 u64 cycle_now; 1847 1848 read_persistent_clock64(&timekeeping_suspend_time); 1849 1850 /* 1851 * On some systems the persistent_clock can not be detected at 1852 * timekeeping_init by its return value, so if we see a valid 1853 * value returned, update the persistent_clock_exists flag. 1854 */ 1855 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1856 persistent_clock_exists = true; 1857 1858 suspend_timing_needed = true; 1859 1860 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1861 write_seqcount_begin(&tk_core.seq); 1862 timekeeping_forward_now(tk); 1863 timekeeping_suspended = 1; 1864 1865 /* 1866 * Since we've called forward_now, cycle_last stores the value 1867 * just read from the current clocksource. Save this to potentially 1868 * use in suspend timing. 1869 */ 1870 curr_clock = tk->tkr_mono.clock; 1871 cycle_now = tk->tkr_mono.cycle_last; 1872 clocksource_start_suspend_timing(curr_clock, cycle_now); 1873 1874 if (persistent_clock_exists) { 1875 /* 1876 * To avoid drift caused by repeated suspend/resumes, 1877 * which each can add ~1 second drift error, 1878 * try to compensate so the difference in system time 1879 * and persistent_clock time stays close to constant. 1880 */ 1881 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1882 delta_delta = timespec64_sub(delta, old_delta); 1883 if (abs(delta_delta.tv_sec) >= 2) { 1884 /* 1885 * if delta_delta is too large, assume time correction 1886 * has occurred and set old_delta to the current delta. 1887 */ 1888 old_delta = delta; 1889 } else { 1890 /* Otherwise try to adjust old_system to compensate */ 1891 timekeeping_suspend_time = 1892 timespec64_add(timekeeping_suspend_time, delta_delta); 1893 } 1894 } 1895 1896 timekeeping_update(tk, TK_MIRROR); 1897 halt_fast_timekeeper(tk); 1898 write_seqcount_end(&tk_core.seq); 1899 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1900 1901 tick_suspend(); 1902 clocksource_suspend(); 1903 clockevents_suspend(); 1904 1905 return 0; 1906 } 1907 1908 /* sysfs resume/suspend bits for timekeeping */ 1909 static struct syscore_ops timekeeping_syscore_ops = { 1910 .resume = timekeeping_resume, 1911 .suspend = timekeeping_suspend, 1912 }; 1913 1914 static int __init timekeeping_init_ops(void) 1915 { 1916 register_syscore_ops(&timekeeping_syscore_ops); 1917 return 0; 1918 } 1919 device_initcall(timekeeping_init_ops); 1920 1921 /* 1922 * Apply a multiplier adjustment to the timekeeper 1923 */ 1924 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1925 s64 offset, 1926 s32 mult_adj) 1927 { 1928 s64 interval = tk->cycle_interval; 1929 1930 if (mult_adj == 0) { 1931 return; 1932 } else if (mult_adj == -1) { 1933 interval = -interval; 1934 offset = -offset; 1935 } else if (mult_adj != 1) { 1936 interval *= mult_adj; 1937 offset *= mult_adj; 1938 } 1939 1940 /* 1941 * So the following can be confusing. 1942 * 1943 * To keep things simple, lets assume mult_adj == 1 for now. 1944 * 1945 * When mult_adj != 1, remember that the interval and offset values 1946 * have been appropriately scaled so the math is the same. 1947 * 1948 * The basic idea here is that we're increasing the multiplier 1949 * by one, this causes the xtime_interval to be incremented by 1950 * one cycle_interval. This is because: 1951 * xtime_interval = cycle_interval * mult 1952 * So if mult is being incremented by one: 1953 * xtime_interval = cycle_interval * (mult + 1) 1954 * Its the same as: 1955 * xtime_interval = (cycle_interval * mult) + cycle_interval 1956 * Which can be shortened to: 1957 * xtime_interval += cycle_interval 1958 * 1959 * So offset stores the non-accumulated cycles. Thus the current 1960 * time (in shifted nanoseconds) is: 1961 * now = (offset * adj) + xtime_nsec 1962 * Now, even though we're adjusting the clock frequency, we have 1963 * to keep time consistent. In other words, we can't jump back 1964 * in time, and we also want to avoid jumping forward in time. 1965 * 1966 * So given the same offset value, we need the time to be the same 1967 * both before and after the freq adjustment. 1968 * now = (offset * adj_1) + xtime_nsec_1 1969 * now = (offset * adj_2) + xtime_nsec_2 1970 * So: 1971 * (offset * adj_1) + xtime_nsec_1 = 1972 * (offset * adj_2) + xtime_nsec_2 1973 * And we know: 1974 * adj_2 = adj_1 + 1 1975 * So: 1976 * (offset * adj_1) + xtime_nsec_1 = 1977 * (offset * (adj_1+1)) + xtime_nsec_2 1978 * (offset * adj_1) + xtime_nsec_1 = 1979 * (offset * adj_1) + offset + xtime_nsec_2 1980 * Canceling the sides: 1981 * xtime_nsec_1 = offset + xtime_nsec_2 1982 * Which gives us: 1983 * xtime_nsec_2 = xtime_nsec_1 - offset 1984 * Which simplifies to: 1985 * xtime_nsec -= offset 1986 */ 1987 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1988 /* NTP adjustment caused clocksource mult overflow */ 1989 WARN_ON_ONCE(1); 1990 return; 1991 } 1992 1993 tk->tkr_mono.mult += mult_adj; 1994 tk->xtime_interval += interval; 1995 tk->tkr_mono.xtime_nsec -= offset; 1996 } 1997 1998 /* 1999 * Adjust the timekeeper's multiplier to the correct frequency 2000 * and also to reduce the accumulated error value. 2001 */ 2002 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2003 { 2004 u32 mult; 2005 2006 /* 2007 * Determine the multiplier from the current NTP tick length. 2008 * Avoid expensive division when the tick length doesn't change. 2009 */ 2010 if (likely(tk->ntp_tick == ntp_tick_length())) { 2011 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2012 } else { 2013 tk->ntp_tick = ntp_tick_length(); 2014 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2015 tk->xtime_remainder, tk->cycle_interval); 2016 } 2017 2018 /* 2019 * If the clock is behind the NTP time, increase the multiplier by 1 2020 * to catch up with it. If it's ahead and there was a remainder in the 2021 * tick division, the clock will slow down. Otherwise it will stay 2022 * ahead until the tick length changes to a non-divisible value. 2023 */ 2024 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2025 mult += tk->ntp_err_mult; 2026 2027 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2028 2029 if (unlikely(tk->tkr_mono.clock->maxadj && 2030 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2031 > tk->tkr_mono.clock->maxadj))) { 2032 printk_once(KERN_WARNING 2033 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2034 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2035 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2036 } 2037 2038 /* 2039 * It may be possible that when we entered this function, xtime_nsec 2040 * was very small. Further, if we're slightly speeding the clocksource 2041 * in the code above, its possible the required corrective factor to 2042 * xtime_nsec could cause it to underflow. 2043 * 2044 * Now, since we have already accumulated the second and the NTP 2045 * subsystem has been notified via second_overflow(), we need to skip 2046 * the next update. 2047 */ 2048 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2049 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2050 tk->tkr_mono.shift; 2051 tk->xtime_sec--; 2052 tk->skip_second_overflow = 1; 2053 } 2054 } 2055 2056 /* 2057 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2058 * 2059 * Helper function that accumulates the nsecs greater than a second 2060 * from the xtime_nsec field to the xtime_secs field. 2061 * It also calls into the NTP code to handle leapsecond processing. 2062 */ 2063 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2064 { 2065 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2066 unsigned int clock_set = 0; 2067 2068 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2069 int leap; 2070 2071 tk->tkr_mono.xtime_nsec -= nsecps; 2072 tk->xtime_sec++; 2073 2074 /* 2075 * Skip NTP update if this second was accumulated before, 2076 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2077 */ 2078 if (unlikely(tk->skip_second_overflow)) { 2079 tk->skip_second_overflow = 0; 2080 continue; 2081 } 2082 2083 /* Figure out if its a leap sec and apply if needed */ 2084 leap = second_overflow(tk->xtime_sec); 2085 if (unlikely(leap)) { 2086 struct timespec64 ts; 2087 2088 tk->xtime_sec += leap; 2089 2090 ts.tv_sec = leap; 2091 ts.tv_nsec = 0; 2092 tk_set_wall_to_mono(tk, 2093 timespec64_sub(tk->wall_to_monotonic, ts)); 2094 2095 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2096 2097 clock_set = TK_CLOCK_WAS_SET; 2098 } 2099 } 2100 return clock_set; 2101 } 2102 2103 /* 2104 * logarithmic_accumulation - shifted accumulation of cycles 2105 * 2106 * This functions accumulates a shifted interval of cycles into 2107 * a shifted interval nanoseconds. Allows for O(log) accumulation 2108 * loop. 2109 * 2110 * Returns the unconsumed cycles. 2111 */ 2112 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2113 u32 shift, unsigned int *clock_set) 2114 { 2115 u64 interval = tk->cycle_interval << shift; 2116 u64 snsec_per_sec; 2117 2118 /* If the offset is smaller than a shifted interval, do nothing */ 2119 if (offset < interval) 2120 return offset; 2121 2122 /* Accumulate one shifted interval */ 2123 offset -= interval; 2124 tk->tkr_mono.cycle_last += interval; 2125 tk->tkr_raw.cycle_last += interval; 2126 2127 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2128 *clock_set |= accumulate_nsecs_to_secs(tk); 2129 2130 /* Accumulate raw time */ 2131 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2132 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2133 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2134 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2135 tk->raw_sec++; 2136 } 2137 2138 /* Accumulate error between NTP and clock interval */ 2139 tk->ntp_error += tk->ntp_tick << shift; 2140 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2141 (tk->ntp_error_shift + shift); 2142 2143 return offset; 2144 } 2145 2146 /* 2147 * timekeeping_advance - Updates the timekeeper to the current time and 2148 * current NTP tick length 2149 */ 2150 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2151 { 2152 struct timekeeper *real_tk = &tk_core.timekeeper; 2153 struct timekeeper *tk = &shadow_timekeeper; 2154 u64 offset; 2155 int shift = 0, maxshift; 2156 unsigned int clock_set = 0; 2157 unsigned long flags; 2158 2159 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2160 2161 /* Make sure we're fully resumed: */ 2162 if (unlikely(timekeeping_suspended)) 2163 goto out; 2164 2165 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2166 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2167 2168 /* Check if there's really nothing to do */ 2169 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2170 goto out; 2171 2172 /* Do some additional sanity checking */ 2173 timekeeping_check_update(tk, offset); 2174 2175 /* 2176 * With NO_HZ we may have to accumulate many cycle_intervals 2177 * (think "ticks") worth of time at once. To do this efficiently, 2178 * we calculate the largest doubling multiple of cycle_intervals 2179 * that is smaller than the offset. We then accumulate that 2180 * chunk in one go, and then try to consume the next smaller 2181 * doubled multiple. 2182 */ 2183 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2184 shift = max(0, shift); 2185 /* Bound shift to one less than what overflows tick_length */ 2186 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2187 shift = min(shift, maxshift); 2188 while (offset >= tk->cycle_interval) { 2189 offset = logarithmic_accumulation(tk, offset, shift, 2190 &clock_set); 2191 if (offset < tk->cycle_interval<<shift) 2192 shift--; 2193 } 2194 2195 /* Adjust the multiplier to correct NTP error */ 2196 timekeeping_adjust(tk, offset); 2197 2198 /* 2199 * Finally, make sure that after the rounding 2200 * xtime_nsec isn't larger than NSEC_PER_SEC 2201 */ 2202 clock_set |= accumulate_nsecs_to_secs(tk); 2203 2204 write_seqcount_begin(&tk_core.seq); 2205 /* 2206 * Update the real timekeeper. 2207 * 2208 * We could avoid this memcpy by switching pointers, but that 2209 * requires changes to all other timekeeper usage sites as 2210 * well, i.e. move the timekeeper pointer getter into the 2211 * spinlocked/seqcount protected sections. And we trade this 2212 * memcpy under the tk_core.seq against one before we start 2213 * updating. 2214 */ 2215 timekeeping_update(tk, clock_set); 2216 memcpy(real_tk, tk, sizeof(*tk)); 2217 /* The memcpy must come last. Do not put anything here! */ 2218 write_seqcount_end(&tk_core.seq); 2219 out: 2220 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2221 2222 return !!clock_set; 2223 } 2224 2225 /** 2226 * update_wall_time - Uses the current clocksource to increment the wall time 2227 * 2228 */ 2229 void update_wall_time(void) 2230 { 2231 if (timekeeping_advance(TK_ADV_TICK)) 2232 clock_was_set_delayed(); 2233 } 2234 2235 /** 2236 * getboottime64 - Return the real time of system boot. 2237 * @ts: pointer to the timespec64 to be set 2238 * 2239 * Returns the wall-time of boot in a timespec64. 2240 * 2241 * This is based on the wall_to_monotonic offset and the total suspend 2242 * time. Calls to settimeofday will affect the value returned (which 2243 * basically means that however wrong your real time clock is at boot time, 2244 * you get the right time here). 2245 */ 2246 void getboottime64(struct timespec64 *ts) 2247 { 2248 struct timekeeper *tk = &tk_core.timekeeper; 2249 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2250 2251 *ts = ktime_to_timespec64(t); 2252 } 2253 EXPORT_SYMBOL_GPL(getboottime64); 2254 2255 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2256 { 2257 struct timekeeper *tk = &tk_core.timekeeper; 2258 unsigned int seq; 2259 2260 do { 2261 seq = read_seqcount_begin(&tk_core.seq); 2262 2263 *ts = tk_xtime(tk); 2264 } while (read_seqcount_retry(&tk_core.seq, seq)); 2265 } 2266 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2267 2268 void ktime_get_coarse_ts64(struct timespec64 *ts) 2269 { 2270 struct timekeeper *tk = &tk_core.timekeeper; 2271 struct timespec64 now, mono; 2272 unsigned int seq; 2273 2274 do { 2275 seq = read_seqcount_begin(&tk_core.seq); 2276 2277 now = tk_xtime(tk); 2278 mono = tk->wall_to_monotonic; 2279 } while (read_seqcount_retry(&tk_core.seq, seq)); 2280 2281 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2282 now.tv_nsec + mono.tv_nsec); 2283 } 2284 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2285 2286 /* 2287 * Must hold jiffies_lock 2288 */ 2289 void do_timer(unsigned long ticks) 2290 { 2291 jiffies_64 += ticks; 2292 calc_global_load(); 2293 } 2294 2295 /** 2296 * ktime_get_update_offsets_now - hrtimer helper 2297 * @cwsseq: pointer to check and store the clock was set sequence number 2298 * @offs_real: pointer to storage for monotonic -> realtime offset 2299 * @offs_boot: pointer to storage for monotonic -> boottime offset 2300 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2301 * 2302 * Returns current monotonic time and updates the offsets if the 2303 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2304 * different. 2305 * 2306 * Called from hrtimer_interrupt() or retrigger_next_event() 2307 */ 2308 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2309 ktime_t *offs_boot, ktime_t *offs_tai) 2310 { 2311 struct timekeeper *tk = &tk_core.timekeeper; 2312 unsigned int seq; 2313 ktime_t base; 2314 u64 nsecs; 2315 2316 do { 2317 seq = read_seqcount_begin(&tk_core.seq); 2318 2319 base = tk->tkr_mono.base; 2320 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2321 base = ktime_add_ns(base, nsecs); 2322 2323 if (*cwsseq != tk->clock_was_set_seq) { 2324 *cwsseq = tk->clock_was_set_seq; 2325 *offs_real = tk->offs_real; 2326 *offs_boot = tk->offs_boot; 2327 *offs_tai = tk->offs_tai; 2328 } 2329 2330 /* Handle leapsecond insertion adjustments */ 2331 if (unlikely(base >= tk->next_leap_ktime)) 2332 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2333 2334 } while (read_seqcount_retry(&tk_core.seq, seq)); 2335 2336 return base; 2337 } 2338 2339 /* 2340 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2341 */ 2342 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2343 { 2344 if (txc->modes & ADJ_ADJTIME) { 2345 /* singleshot must not be used with any other mode bits */ 2346 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2347 return -EINVAL; 2348 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2349 !capable(CAP_SYS_TIME)) 2350 return -EPERM; 2351 } else { 2352 /* In order to modify anything, you gotta be super-user! */ 2353 if (txc->modes && !capable(CAP_SYS_TIME)) 2354 return -EPERM; 2355 /* 2356 * if the quartz is off by more than 10% then 2357 * something is VERY wrong! 2358 */ 2359 if (txc->modes & ADJ_TICK && 2360 (txc->tick < 900000/USER_HZ || 2361 txc->tick > 1100000/USER_HZ)) 2362 return -EINVAL; 2363 } 2364 2365 if (txc->modes & ADJ_SETOFFSET) { 2366 /* In order to inject time, you gotta be super-user! */ 2367 if (!capable(CAP_SYS_TIME)) 2368 return -EPERM; 2369 2370 /* 2371 * Validate if a timespec/timeval used to inject a time 2372 * offset is valid. Offsets can be positive or negative, so 2373 * we don't check tv_sec. The value of the timeval/timespec 2374 * is the sum of its fields,but *NOTE*: 2375 * The field tv_usec/tv_nsec must always be non-negative and 2376 * we can't have more nanoseconds/microseconds than a second. 2377 */ 2378 if (txc->time.tv_usec < 0) 2379 return -EINVAL; 2380 2381 if (txc->modes & ADJ_NANO) { 2382 if (txc->time.tv_usec >= NSEC_PER_SEC) 2383 return -EINVAL; 2384 } else { 2385 if (txc->time.tv_usec >= USEC_PER_SEC) 2386 return -EINVAL; 2387 } 2388 } 2389 2390 /* 2391 * Check for potential multiplication overflows that can 2392 * only happen on 64-bit systems: 2393 */ 2394 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2395 if (LLONG_MIN / PPM_SCALE > txc->freq) 2396 return -EINVAL; 2397 if (LLONG_MAX / PPM_SCALE < txc->freq) 2398 return -EINVAL; 2399 } 2400 2401 return 0; 2402 } 2403 2404 /** 2405 * random_get_entropy_fallback - Returns the raw clock source value, 2406 * used by random.c for platforms with no valid random_get_entropy(). 2407 */ 2408 unsigned long random_get_entropy_fallback(void) 2409 { 2410 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2411 struct clocksource *clock = READ_ONCE(tkr->clock); 2412 2413 if (unlikely(timekeeping_suspended || !clock)) 2414 return 0; 2415 return clock->read(clock); 2416 } 2417 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2418 2419 /** 2420 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2421 */ 2422 int do_adjtimex(struct __kernel_timex *txc) 2423 { 2424 struct timekeeper *tk = &tk_core.timekeeper; 2425 struct audit_ntp_data ad; 2426 bool clock_set = false; 2427 struct timespec64 ts; 2428 unsigned long flags; 2429 s32 orig_tai, tai; 2430 int ret; 2431 2432 /* Validate the data before disabling interrupts */ 2433 ret = timekeeping_validate_timex(txc); 2434 if (ret) 2435 return ret; 2436 add_device_randomness(txc, sizeof(*txc)); 2437 2438 if (txc->modes & ADJ_SETOFFSET) { 2439 struct timespec64 delta; 2440 delta.tv_sec = txc->time.tv_sec; 2441 delta.tv_nsec = txc->time.tv_usec; 2442 if (!(txc->modes & ADJ_NANO)) 2443 delta.tv_nsec *= 1000; 2444 ret = timekeeping_inject_offset(&delta); 2445 if (ret) 2446 return ret; 2447 2448 audit_tk_injoffset(delta); 2449 } 2450 2451 audit_ntp_init(&ad); 2452 2453 ktime_get_real_ts64(&ts); 2454 add_device_randomness(&ts, sizeof(ts)); 2455 2456 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2457 write_seqcount_begin(&tk_core.seq); 2458 2459 orig_tai = tai = tk->tai_offset; 2460 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2461 2462 if (tai != orig_tai) { 2463 __timekeeping_set_tai_offset(tk, tai); 2464 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2465 clock_set = true; 2466 } 2467 tk_update_leap_state(tk); 2468 2469 write_seqcount_end(&tk_core.seq); 2470 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2471 2472 audit_ntp_log(&ad); 2473 2474 /* Update the multiplier immediately if frequency was set directly */ 2475 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2476 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2477 2478 if (clock_set) 2479 clock_was_set(CLOCK_REALTIME); 2480 2481 ntp_notify_cmos_timer(); 2482 2483 return ret; 2484 } 2485 2486 #ifdef CONFIG_NTP_PPS 2487 /** 2488 * hardpps() - Accessor function to NTP __hardpps function 2489 */ 2490 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2491 { 2492 unsigned long flags; 2493 2494 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2495 write_seqcount_begin(&tk_core.seq); 2496 2497 __hardpps(phase_ts, raw_ts); 2498 2499 write_seqcount_end(&tk_core.seq); 2500 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2501 } 2502 EXPORT_SYMBOL(hardpps); 2503 #endif /* CONFIG_NTP_PPS */ 2504