xref: /linux/kernel/time/timekeeping.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124 
125 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	cycle_t now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	cycle_t cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	cycle_t interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	++tk->cs_was_changed_seq;
237 	old_clock = tk->tkr_mono.clock;
238 	tk->tkr_mono.clock = clock;
239 	tk->tkr_mono.read = clock->read;
240 	tk->tkr_mono.mask = clock->mask;
241 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242 
243 	tk->tkr_raw.clock = clock;
244 	tk->tkr_raw.read = clock->read;
245 	tk->tkr_raw.mask = clock->mask;
246 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247 
248 	/* Do the ns -> cycle conversion first, using original mult */
249 	tmp = NTP_INTERVAL_LENGTH;
250 	tmp <<= clock->shift;
251 	ntpinterval = tmp;
252 	tmp += clock->mult/2;
253 	do_div(tmp, clock->mult);
254 	if (tmp == 0)
255 		tmp = 1;
256 
257 	interval = (cycle_t) tmp;
258 	tk->cycle_interval = interval;
259 
260 	/* Go back from cycles -> shifted ns */
261 	tk->xtime_interval = (u64) interval * clock->mult;
262 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 	tk->raw_interval =
264 		((u64) interval * clock->mult) >> clock->shift;
265 
266 	 /* if changing clocks, convert xtime_nsec shift units */
267 	if (old_clock) {
268 		int shift_change = clock->shift - old_clock->shift;
269 		if (shift_change < 0)
270 			tk->tkr_mono.xtime_nsec >>= -shift_change;
271 		else
272 			tk->tkr_mono.xtime_nsec <<= shift_change;
273 	}
274 	tk->tkr_raw.xtime_nsec = 0;
275 
276 	tk->tkr_mono.shift = clock->shift;
277 	tk->tkr_raw.shift = clock->shift;
278 
279 	tk->ntp_error = 0;
280 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 
283 	/*
284 	 * The timekeeper keeps its own mult values for the currently
285 	 * active clocksource. These value will be adjusted via NTP
286 	 * to counteract clock drifting.
287 	 */
288 	tk->tkr_mono.mult = clock->mult;
289 	tk->tkr_raw.mult = clock->mult;
290 	tk->ntp_err_mult = 0;
291 }
292 
293 /* Timekeeper helper functions. */
294 
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301 
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 					  cycle_t delta)
304 {
305 	s64 nsec;
306 
307 	nsec = delta * tkr->mult + tkr->xtime_nsec;
308 	nsec >>= tkr->shift;
309 
310 	/* If arch requires, add in get_arch_timeoffset() */
311 	return nsec + arch_gettimeoffset();
312 }
313 
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 	cycle_t delta;
317 
318 	delta = timekeeping_get_delta(tkr);
319 	return timekeeping_delta_to_ns(tkr, delta);
320 }
321 
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 					    cycle_t cycles)
324 {
325 	cycle_t delta;
326 
327 	/* calculate the delta since the last update_wall_time */
328 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 	return timekeeping_delta_to_ns(tkr, delta);
330 }
331 
332 /**
333  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334  * @tkr: Timekeeping readout base from which we take the update
335  *
336  * We want to use this from any context including NMI and tracing /
337  * instrumenting the timekeeping code itself.
338  *
339  * Employ the latch technique; see @raw_write_seqcount_latch.
340  *
341  * So if a NMI hits the update of base[0] then it will use base[1]
342  * which is still consistent. In the worst case this can result is a
343  * slightly wrong timestamp (a few nanoseconds). See
344  * @ktime_get_mono_fast_ns.
345  */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 	struct tk_read_base *base = tkf->base;
349 
350 	/* Force readers off to base[1] */
351 	raw_write_seqcount_latch(&tkf->seq);
352 
353 	/* Update base[0] */
354 	memcpy(base, tkr, sizeof(*base));
355 
356 	/* Force readers back to base[0] */
357 	raw_write_seqcount_latch(&tkf->seq);
358 
359 	/* Update base[1] */
360 	memcpy(base + 1, base, sizeof(*base));
361 }
362 
363 /**
364  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365  *
366  * This timestamp is not guaranteed to be monotonic across an update.
367  * The timestamp is calculated by:
368  *
369  *	now = base_mono + clock_delta * slope
370  *
371  * So if the update lowers the slope, readers who are forced to the
372  * not yet updated second array are still using the old steeper slope.
373  *
374  * tmono
375  * ^
376  * |    o  n
377  * |   o n
378  * |  u
379  * | o
380  * |o
381  * |12345678---> reader order
382  *
383  * o = old slope
384  * u = update
385  * n = new slope
386  *
387  * So reader 6 will observe time going backwards versus reader 5.
388  *
389  * While other CPUs are likely to be able observe that, the only way
390  * for a CPU local observation is when an NMI hits in the middle of
391  * the update. Timestamps taken from that NMI context might be ahead
392  * of the following timestamps. Callers need to be aware of that and
393  * deal with it.
394  */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 	struct tk_read_base *tkr;
398 	unsigned int seq;
399 	u64 now;
400 
401 	do {
402 		seq = raw_read_seqcount_latch(&tkf->seq);
403 		tkr = tkf->base + (seq & 0x01);
404 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405 	} while (read_seqcount_retry(&tkf->seq, seq));
406 
407 	return now;
408 }
409 
410 u64 ktime_get_mono_fast_ns(void)
411 {
412 	return __ktime_get_fast_ns(&tk_fast_mono);
413 }
414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
415 
416 u64 ktime_get_raw_fast_ns(void)
417 {
418 	return __ktime_get_fast_ns(&tk_fast_raw);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
421 
422 /* Suspend-time cycles value for halted fast timekeeper. */
423 static cycle_t cycles_at_suspend;
424 
425 static cycle_t dummy_clock_read(struct clocksource *cs)
426 {
427 	return cycles_at_suspend;
428 }
429 
430 /**
431  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432  * @tk: Timekeeper to snapshot.
433  *
434  * It generally is unsafe to access the clocksource after timekeeping has been
435  * suspended, so take a snapshot of the readout base of @tk and use it as the
436  * fast timekeeper's readout base while suspended.  It will return the same
437  * number of cycles every time until timekeeping is resumed at which time the
438  * proper readout base for the fast timekeeper will be restored automatically.
439  */
440 static void halt_fast_timekeeper(struct timekeeper *tk)
441 {
442 	static struct tk_read_base tkr_dummy;
443 	struct tk_read_base *tkr = &tk->tkr_mono;
444 
445 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 	cycles_at_suspend = tkr->read(tkr->clock);
447 	tkr_dummy.read = dummy_clock_read;
448 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
449 
450 	tkr = &tk->tkr_raw;
451 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 	tkr_dummy.read = dummy_clock_read;
453 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
454 }
455 
456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
457 
458 static inline void update_vsyscall(struct timekeeper *tk)
459 {
460 	struct timespec xt, wm;
461 
462 	xt = timespec64_to_timespec(tk_xtime(tk));
463 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
465 			    tk->tkr_mono.cycle_last);
466 }
467 
468 static inline void old_vsyscall_fixup(struct timekeeper *tk)
469 {
470 	s64 remainder;
471 
472 	/*
473 	* Store only full nanoseconds into xtime_nsec after rounding
474 	* it up and add the remainder to the error difference.
475 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 	* by truncating the remainder in vsyscalls. However, it causes
477 	* additional work to be done in timekeeping_adjust(). Once
478 	* the vsyscall implementations are converted to use xtime_nsec
479 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 	* users are removed, this can be killed.
481 	*/
482 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
483 	if (remainder != 0) {
484 		tk->tkr_mono.xtime_nsec -= remainder;
485 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
486 		tk->ntp_error += remainder << tk->ntp_error_shift;
487 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
488 	}
489 }
490 #else
491 #define old_vsyscall_fixup(tk)
492 #endif
493 
494 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
495 
496 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
497 {
498 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
499 }
500 
501 /**
502  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
503  */
504 int pvclock_gtod_register_notifier(struct notifier_block *nb)
505 {
506 	struct timekeeper *tk = &tk_core.timekeeper;
507 	unsigned long flags;
508 	int ret;
509 
510 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
511 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
512 	update_pvclock_gtod(tk, true);
513 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
514 
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
518 
519 /**
520  * pvclock_gtod_unregister_notifier - unregister a pvclock
521  * timedata update listener
522  */
523 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
524 {
525 	unsigned long flags;
526 	int ret;
527 
528 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
529 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
530 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
535 
536 /*
537  * tk_update_leap_state - helper to update the next_leap_ktime
538  */
539 static inline void tk_update_leap_state(struct timekeeper *tk)
540 {
541 	tk->next_leap_ktime = ntp_get_next_leap();
542 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
543 		/* Convert to monotonic time */
544 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
545 }
546 
547 /*
548  * Update the ktime_t based scalar nsec members of the timekeeper
549  */
550 static inline void tk_update_ktime_data(struct timekeeper *tk)
551 {
552 	u64 seconds;
553 	u32 nsec;
554 
555 	/*
556 	 * The xtime based monotonic readout is:
557 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
558 	 * The ktime based monotonic readout is:
559 	 *	nsec = base_mono + now();
560 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
561 	 */
562 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
563 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
564 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
565 
566 	/* Update the monotonic raw base */
567 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
568 
569 	/*
570 	 * The sum of the nanoseconds portions of xtime and
571 	 * wall_to_monotonic can be greater/equal one second. Take
572 	 * this into account before updating tk->ktime_sec.
573 	 */
574 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
575 	if (nsec >= NSEC_PER_SEC)
576 		seconds++;
577 	tk->ktime_sec = seconds;
578 }
579 
580 /* must hold timekeeper_lock */
581 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
582 {
583 	if (action & TK_CLEAR_NTP) {
584 		tk->ntp_error = 0;
585 		ntp_clear();
586 	}
587 
588 	tk_update_leap_state(tk);
589 	tk_update_ktime_data(tk);
590 
591 	update_vsyscall(tk);
592 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
593 
594 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
595 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
596 
597 	if (action & TK_CLOCK_WAS_SET)
598 		tk->clock_was_set_seq++;
599 	/*
600 	 * The mirroring of the data to the shadow-timekeeper needs
601 	 * to happen last here to ensure we don't over-write the
602 	 * timekeeper structure on the next update with stale data
603 	 */
604 	if (action & TK_MIRROR)
605 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
606 		       sizeof(tk_core.timekeeper));
607 }
608 
609 /**
610  * timekeeping_forward_now - update clock to the current time
611  *
612  * Forward the current clock to update its state since the last call to
613  * update_wall_time(). This is useful before significant clock changes,
614  * as it avoids having to deal with this time offset explicitly.
615  */
616 static void timekeeping_forward_now(struct timekeeper *tk)
617 {
618 	struct clocksource *clock = tk->tkr_mono.clock;
619 	cycle_t cycle_now, delta;
620 	s64 nsec;
621 
622 	cycle_now = tk->tkr_mono.read(clock);
623 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
624 	tk->tkr_mono.cycle_last = cycle_now;
625 	tk->tkr_raw.cycle_last  = cycle_now;
626 
627 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
628 
629 	/* If arch requires, add in get_arch_timeoffset() */
630 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
631 
632 	tk_normalize_xtime(tk);
633 
634 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
635 	timespec64_add_ns(&tk->raw_time, nsec);
636 }
637 
638 /**
639  * __getnstimeofday64 - Returns the time of day in a timespec64.
640  * @ts:		pointer to the timespec to be set
641  *
642  * Updates the time of day in the timespec.
643  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
644  */
645 int __getnstimeofday64(struct timespec64 *ts)
646 {
647 	struct timekeeper *tk = &tk_core.timekeeper;
648 	unsigned long seq;
649 	s64 nsecs = 0;
650 
651 	do {
652 		seq = read_seqcount_begin(&tk_core.seq);
653 
654 		ts->tv_sec = tk->xtime_sec;
655 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
656 
657 	} while (read_seqcount_retry(&tk_core.seq, seq));
658 
659 	ts->tv_nsec = 0;
660 	timespec64_add_ns(ts, nsecs);
661 
662 	/*
663 	 * Do not bail out early, in case there were callers still using
664 	 * the value, even in the face of the WARN_ON.
665 	 */
666 	if (unlikely(timekeeping_suspended))
667 		return -EAGAIN;
668 	return 0;
669 }
670 EXPORT_SYMBOL(__getnstimeofday64);
671 
672 /**
673  * getnstimeofday64 - Returns the time of day in a timespec64.
674  * @ts:		pointer to the timespec64 to be set
675  *
676  * Returns the time of day in a timespec64 (WARN if suspended).
677  */
678 void getnstimeofday64(struct timespec64 *ts)
679 {
680 	WARN_ON(__getnstimeofday64(ts));
681 }
682 EXPORT_SYMBOL(getnstimeofday64);
683 
684 ktime_t ktime_get(void)
685 {
686 	struct timekeeper *tk = &tk_core.timekeeper;
687 	unsigned int seq;
688 	ktime_t base;
689 	s64 nsecs;
690 
691 	WARN_ON(timekeeping_suspended);
692 
693 	do {
694 		seq = read_seqcount_begin(&tk_core.seq);
695 		base = tk->tkr_mono.base;
696 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
697 
698 	} while (read_seqcount_retry(&tk_core.seq, seq));
699 
700 	return ktime_add_ns(base, nsecs);
701 }
702 EXPORT_SYMBOL_GPL(ktime_get);
703 
704 u32 ktime_get_resolution_ns(void)
705 {
706 	struct timekeeper *tk = &tk_core.timekeeper;
707 	unsigned int seq;
708 	u32 nsecs;
709 
710 	WARN_ON(timekeeping_suspended);
711 
712 	do {
713 		seq = read_seqcount_begin(&tk_core.seq);
714 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
715 	} while (read_seqcount_retry(&tk_core.seq, seq));
716 
717 	return nsecs;
718 }
719 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
720 
721 static ktime_t *offsets[TK_OFFS_MAX] = {
722 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
723 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
724 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
725 };
726 
727 ktime_t ktime_get_with_offset(enum tk_offsets offs)
728 {
729 	struct timekeeper *tk = &tk_core.timekeeper;
730 	unsigned int seq;
731 	ktime_t base, *offset = offsets[offs];
732 	s64 nsecs;
733 
734 	WARN_ON(timekeeping_suspended);
735 
736 	do {
737 		seq = read_seqcount_begin(&tk_core.seq);
738 		base = ktime_add(tk->tkr_mono.base, *offset);
739 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
740 
741 	} while (read_seqcount_retry(&tk_core.seq, seq));
742 
743 	return ktime_add_ns(base, nsecs);
744 
745 }
746 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
747 
748 /**
749  * ktime_mono_to_any() - convert mononotic time to any other time
750  * @tmono:	time to convert.
751  * @offs:	which offset to use
752  */
753 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
754 {
755 	ktime_t *offset = offsets[offs];
756 	unsigned long seq;
757 	ktime_t tconv;
758 
759 	do {
760 		seq = read_seqcount_begin(&tk_core.seq);
761 		tconv = ktime_add(tmono, *offset);
762 	} while (read_seqcount_retry(&tk_core.seq, seq));
763 
764 	return tconv;
765 }
766 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
767 
768 /**
769  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
770  */
771 ktime_t ktime_get_raw(void)
772 {
773 	struct timekeeper *tk = &tk_core.timekeeper;
774 	unsigned int seq;
775 	ktime_t base;
776 	s64 nsecs;
777 
778 	do {
779 		seq = read_seqcount_begin(&tk_core.seq);
780 		base = tk->tkr_raw.base;
781 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
782 
783 	} while (read_seqcount_retry(&tk_core.seq, seq));
784 
785 	return ktime_add_ns(base, nsecs);
786 }
787 EXPORT_SYMBOL_GPL(ktime_get_raw);
788 
789 /**
790  * ktime_get_ts64 - get the monotonic clock in timespec64 format
791  * @ts:		pointer to timespec variable
792  *
793  * The function calculates the monotonic clock from the realtime
794  * clock and the wall_to_monotonic offset and stores the result
795  * in normalized timespec64 format in the variable pointed to by @ts.
796  */
797 void ktime_get_ts64(struct timespec64 *ts)
798 {
799 	struct timekeeper *tk = &tk_core.timekeeper;
800 	struct timespec64 tomono;
801 	s64 nsec;
802 	unsigned int seq;
803 
804 	WARN_ON(timekeeping_suspended);
805 
806 	do {
807 		seq = read_seqcount_begin(&tk_core.seq);
808 		ts->tv_sec = tk->xtime_sec;
809 		nsec = timekeeping_get_ns(&tk->tkr_mono);
810 		tomono = tk->wall_to_monotonic;
811 
812 	} while (read_seqcount_retry(&tk_core.seq, seq));
813 
814 	ts->tv_sec += tomono.tv_sec;
815 	ts->tv_nsec = 0;
816 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
817 }
818 EXPORT_SYMBOL_GPL(ktime_get_ts64);
819 
820 /**
821  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
822  *
823  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
824  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
825  * works on both 32 and 64 bit systems. On 32 bit systems the readout
826  * covers ~136 years of uptime which should be enough to prevent
827  * premature wrap arounds.
828  */
829 time64_t ktime_get_seconds(void)
830 {
831 	struct timekeeper *tk = &tk_core.timekeeper;
832 
833 	WARN_ON(timekeeping_suspended);
834 	return tk->ktime_sec;
835 }
836 EXPORT_SYMBOL_GPL(ktime_get_seconds);
837 
838 /**
839  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
840  *
841  * Returns the wall clock seconds since 1970. This replaces the
842  * get_seconds() interface which is not y2038 safe on 32bit systems.
843  *
844  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
845  * 32bit systems the access must be protected with the sequence
846  * counter to provide "atomic" access to the 64bit tk->xtime_sec
847  * value.
848  */
849 time64_t ktime_get_real_seconds(void)
850 {
851 	struct timekeeper *tk = &tk_core.timekeeper;
852 	time64_t seconds;
853 	unsigned int seq;
854 
855 	if (IS_ENABLED(CONFIG_64BIT))
856 		return tk->xtime_sec;
857 
858 	do {
859 		seq = read_seqcount_begin(&tk_core.seq);
860 		seconds = tk->xtime_sec;
861 
862 	} while (read_seqcount_retry(&tk_core.seq, seq));
863 
864 	return seconds;
865 }
866 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
867 
868 /**
869  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
870  * but without the sequence counter protect. This internal function
871  * is called just when timekeeping lock is already held.
872  */
873 time64_t __ktime_get_real_seconds(void)
874 {
875 	struct timekeeper *tk = &tk_core.timekeeper;
876 
877 	return tk->xtime_sec;
878 }
879 
880 /**
881  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
882  * @systime_snapshot:	pointer to struct receiving the system time snapshot
883  */
884 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
885 {
886 	struct timekeeper *tk = &tk_core.timekeeper;
887 	unsigned long seq;
888 	ktime_t base_raw;
889 	ktime_t base_real;
890 	s64 nsec_raw;
891 	s64 nsec_real;
892 	cycle_t now;
893 
894 	WARN_ON_ONCE(timekeeping_suspended);
895 
896 	do {
897 		seq = read_seqcount_begin(&tk_core.seq);
898 
899 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
900 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
901 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
902 		base_real = ktime_add(tk->tkr_mono.base,
903 				      tk_core.timekeeper.offs_real);
904 		base_raw = tk->tkr_raw.base;
905 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
906 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
907 	} while (read_seqcount_retry(&tk_core.seq, seq));
908 
909 	systime_snapshot->cycles = now;
910 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
911 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
912 }
913 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
914 
915 /* Scale base by mult/div checking for overflow */
916 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
917 {
918 	u64 tmp, rem;
919 
920 	tmp = div64_u64_rem(*base, div, &rem);
921 
922 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
923 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
924 		return -EOVERFLOW;
925 	tmp *= mult;
926 	rem *= mult;
927 
928 	do_div(rem, div);
929 	*base = tmp + rem;
930 	return 0;
931 }
932 
933 /**
934  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
935  * @history:			Snapshot representing start of history
936  * @partial_history_cycles:	Cycle offset into history (fractional part)
937  * @total_history_cycles:	Total history length in cycles
938  * @discontinuity:		True indicates clock was set on history period
939  * @ts:				Cross timestamp that should be adjusted using
940  *	partial/total ratio
941  *
942  * Helper function used by get_device_system_crosststamp() to correct the
943  * crosstimestamp corresponding to the start of the current interval to the
944  * system counter value (timestamp point) provided by the driver. The
945  * total_history_* quantities are the total history starting at the provided
946  * reference point and ending at the start of the current interval. The cycle
947  * count between the driver timestamp point and the start of the current
948  * interval is partial_history_cycles.
949  */
950 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
951 					 cycle_t partial_history_cycles,
952 					 cycle_t total_history_cycles,
953 					 bool discontinuity,
954 					 struct system_device_crosststamp *ts)
955 {
956 	struct timekeeper *tk = &tk_core.timekeeper;
957 	u64 corr_raw, corr_real;
958 	bool interp_forward;
959 	int ret;
960 
961 	if (total_history_cycles == 0 || partial_history_cycles == 0)
962 		return 0;
963 
964 	/* Interpolate shortest distance from beginning or end of history */
965 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
966 		true : false;
967 	partial_history_cycles = interp_forward ?
968 		total_history_cycles - partial_history_cycles :
969 		partial_history_cycles;
970 
971 	/*
972 	 * Scale the monotonic raw time delta by:
973 	 *	partial_history_cycles / total_history_cycles
974 	 */
975 	corr_raw = (u64)ktime_to_ns(
976 		ktime_sub(ts->sys_monoraw, history->raw));
977 	ret = scale64_check_overflow(partial_history_cycles,
978 				     total_history_cycles, &corr_raw);
979 	if (ret)
980 		return ret;
981 
982 	/*
983 	 * If there is a discontinuity in the history, scale monotonic raw
984 	 *	correction by:
985 	 *	mult(real)/mult(raw) yielding the realtime correction
986 	 * Otherwise, calculate the realtime correction similar to monotonic
987 	 *	raw calculation
988 	 */
989 	if (discontinuity) {
990 		corr_real = mul_u64_u32_div
991 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
992 	} else {
993 		corr_real = (u64)ktime_to_ns(
994 			ktime_sub(ts->sys_realtime, history->real));
995 		ret = scale64_check_overflow(partial_history_cycles,
996 					     total_history_cycles, &corr_real);
997 		if (ret)
998 			return ret;
999 	}
1000 
1001 	/* Fixup monotonic raw and real time time values */
1002 	if (interp_forward) {
1003 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1004 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1005 	} else {
1006 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1007 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * cycle_between - true if test occurs chronologically between before and after
1015  */
1016 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1017 {
1018 	if (test > before && test < after)
1019 		return true;
1020 	if (test < before && before > after)
1021 		return true;
1022 	return false;
1023 }
1024 
1025 /**
1026  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1027  * @get_time_fn:	Callback to get simultaneous device time and
1028  *	system counter from the device driver
1029  * @ctx:		Context passed to get_time_fn()
1030  * @history_begin:	Historical reference point used to interpolate system
1031  *	time when counter provided by the driver is before the current interval
1032  * @xtstamp:		Receives simultaneously captured system and device time
1033  *
1034  * Reads a timestamp from a device and correlates it to system time
1035  */
1036 int get_device_system_crosststamp(int (*get_time_fn)
1037 				  (ktime_t *device_time,
1038 				   struct system_counterval_t *sys_counterval,
1039 				   void *ctx),
1040 				  void *ctx,
1041 				  struct system_time_snapshot *history_begin,
1042 				  struct system_device_crosststamp *xtstamp)
1043 {
1044 	struct system_counterval_t system_counterval;
1045 	struct timekeeper *tk = &tk_core.timekeeper;
1046 	cycle_t cycles, now, interval_start;
1047 	unsigned int clock_was_set_seq = 0;
1048 	ktime_t base_real, base_raw;
1049 	s64 nsec_real, nsec_raw;
1050 	u8 cs_was_changed_seq;
1051 	unsigned long seq;
1052 	bool do_interp;
1053 	int ret;
1054 
1055 	do {
1056 		seq = read_seqcount_begin(&tk_core.seq);
1057 		/*
1058 		 * Try to synchronously capture device time and a system
1059 		 * counter value calling back into the device driver
1060 		 */
1061 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1062 		if (ret)
1063 			return ret;
1064 
1065 		/*
1066 		 * Verify that the clocksource associated with the captured
1067 		 * system counter value is the same as the currently installed
1068 		 * timekeeper clocksource
1069 		 */
1070 		if (tk->tkr_mono.clock != system_counterval.cs)
1071 			return -ENODEV;
1072 		cycles = system_counterval.cycles;
1073 
1074 		/*
1075 		 * Check whether the system counter value provided by the
1076 		 * device driver is on the current timekeeping interval.
1077 		 */
1078 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1079 		interval_start = tk->tkr_mono.cycle_last;
1080 		if (!cycle_between(interval_start, cycles, now)) {
1081 			clock_was_set_seq = tk->clock_was_set_seq;
1082 			cs_was_changed_seq = tk->cs_was_changed_seq;
1083 			cycles = interval_start;
1084 			do_interp = true;
1085 		} else {
1086 			do_interp = false;
1087 		}
1088 
1089 		base_real = ktime_add(tk->tkr_mono.base,
1090 				      tk_core.timekeeper.offs_real);
1091 		base_raw = tk->tkr_raw.base;
1092 
1093 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1094 						     system_counterval.cycles);
1095 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1096 						    system_counterval.cycles);
1097 	} while (read_seqcount_retry(&tk_core.seq, seq));
1098 
1099 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1100 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1101 
1102 	/*
1103 	 * Interpolate if necessary, adjusting back from the start of the
1104 	 * current interval
1105 	 */
1106 	if (do_interp) {
1107 		cycle_t partial_history_cycles, total_history_cycles;
1108 		bool discontinuity;
1109 
1110 		/*
1111 		 * Check that the counter value occurs after the provided
1112 		 * history reference and that the history doesn't cross a
1113 		 * clocksource change
1114 		 */
1115 		if (!history_begin ||
1116 		    !cycle_between(history_begin->cycles,
1117 				   system_counterval.cycles, cycles) ||
1118 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1119 			return -EINVAL;
1120 		partial_history_cycles = cycles - system_counterval.cycles;
1121 		total_history_cycles = cycles - history_begin->cycles;
1122 		discontinuity =
1123 			history_begin->clock_was_set_seq != clock_was_set_seq;
1124 
1125 		ret = adjust_historical_crosststamp(history_begin,
1126 						    partial_history_cycles,
1127 						    total_history_cycles,
1128 						    discontinuity, xtstamp);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1136 
1137 /**
1138  * do_gettimeofday - Returns the time of day in a timeval
1139  * @tv:		pointer to the timeval to be set
1140  *
1141  * NOTE: Users should be converted to using getnstimeofday()
1142  */
1143 void do_gettimeofday(struct timeval *tv)
1144 {
1145 	struct timespec64 now;
1146 
1147 	getnstimeofday64(&now);
1148 	tv->tv_sec = now.tv_sec;
1149 	tv->tv_usec = now.tv_nsec/1000;
1150 }
1151 EXPORT_SYMBOL(do_gettimeofday);
1152 
1153 /**
1154  * do_settimeofday64 - Sets the time of day.
1155  * @ts:     pointer to the timespec64 variable containing the new time
1156  *
1157  * Sets the time of day to the new time and update NTP and notify hrtimers
1158  */
1159 int do_settimeofday64(const struct timespec64 *ts)
1160 {
1161 	struct timekeeper *tk = &tk_core.timekeeper;
1162 	struct timespec64 ts_delta, xt;
1163 	unsigned long flags;
1164 	int ret = 0;
1165 
1166 	if (!timespec64_valid_strict(ts))
1167 		return -EINVAL;
1168 
1169 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1170 	write_seqcount_begin(&tk_core.seq);
1171 
1172 	timekeeping_forward_now(tk);
1173 
1174 	xt = tk_xtime(tk);
1175 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1176 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1177 
1178 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1179 		ret = -EINVAL;
1180 		goto out;
1181 	}
1182 
1183 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1184 
1185 	tk_set_xtime(tk, ts);
1186 out:
1187 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1188 
1189 	write_seqcount_end(&tk_core.seq);
1190 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1191 
1192 	/* signal hrtimers about time change */
1193 	clock_was_set();
1194 
1195 	return ret;
1196 }
1197 EXPORT_SYMBOL(do_settimeofday64);
1198 
1199 /**
1200  * timekeeping_inject_offset - Adds or subtracts from the current time.
1201  * @tv:		pointer to the timespec variable containing the offset
1202  *
1203  * Adds or subtracts an offset value from the current time.
1204  */
1205 int timekeeping_inject_offset(struct timespec *ts)
1206 {
1207 	struct timekeeper *tk = &tk_core.timekeeper;
1208 	unsigned long flags;
1209 	struct timespec64 ts64, tmp;
1210 	int ret = 0;
1211 
1212 	if (!timespec_inject_offset_valid(ts))
1213 		return -EINVAL;
1214 
1215 	ts64 = timespec_to_timespec64(*ts);
1216 
1217 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218 	write_seqcount_begin(&tk_core.seq);
1219 
1220 	timekeeping_forward_now(tk);
1221 
1222 	/* Make sure the proposed value is valid */
1223 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1224 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1225 	    !timespec64_valid_strict(&tmp)) {
1226 		ret = -EINVAL;
1227 		goto error;
1228 	}
1229 
1230 	tk_xtime_add(tk, &ts64);
1231 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1232 
1233 error: /* even if we error out, we forwarded the time, so call update */
1234 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1235 
1236 	write_seqcount_end(&tk_core.seq);
1237 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1238 
1239 	/* signal hrtimers about time change */
1240 	clock_was_set();
1241 
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL(timekeeping_inject_offset);
1245 
1246 
1247 /**
1248  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1249  *
1250  */
1251 s32 timekeeping_get_tai_offset(void)
1252 {
1253 	struct timekeeper *tk = &tk_core.timekeeper;
1254 	unsigned int seq;
1255 	s32 ret;
1256 
1257 	do {
1258 		seq = read_seqcount_begin(&tk_core.seq);
1259 		ret = tk->tai_offset;
1260 	} while (read_seqcount_retry(&tk_core.seq, seq));
1261 
1262 	return ret;
1263 }
1264 
1265 /**
1266  * __timekeeping_set_tai_offset - Lock free worker function
1267  *
1268  */
1269 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1270 {
1271 	tk->tai_offset = tai_offset;
1272 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1273 }
1274 
1275 /**
1276  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1277  *
1278  */
1279 void timekeeping_set_tai_offset(s32 tai_offset)
1280 {
1281 	struct timekeeper *tk = &tk_core.timekeeper;
1282 	unsigned long flags;
1283 
1284 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1285 	write_seqcount_begin(&tk_core.seq);
1286 	__timekeeping_set_tai_offset(tk, tai_offset);
1287 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1288 	write_seqcount_end(&tk_core.seq);
1289 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1290 	clock_was_set();
1291 }
1292 
1293 /**
1294  * change_clocksource - Swaps clocksources if a new one is available
1295  *
1296  * Accumulates current time interval and initializes new clocksource
1297  */
1298 static int change_clocksource(void *data)
1299 {
1300 	struct timekeeper *tk = &tk_core.timekeeper;
1301 	struct clocksource *new, *old;
1302 	unsigned long flags;
1303 
1304 	new = (struct clocksource *) data;
1305 
1306 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1307 	write_seqcount_begin(&tk_core.seq);
1308 
1309 	timekeeping_forward_now(tk);
1310 	/*
1311 	 * If the cs is in module, get a module reference. Succeeds
1312 	 * for built-in code (owner == NULL) as well.
1313 	 */
1314 	if (try_module_get(new->owner)) {
1315 		if (!new->enable || new->enable(new) == 0) {
1316 			old = tk->tkr_mono.clock;
1317 			tk_setup_internals(tk, new);
1318 			if (old->disable)
1319 				old->disable(old);
1320 			module_put(old->owner);
1321 		} else {
1322 			module_put(new->owner);
1323 		}
1324 	}
1325 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1326 
1327 	write_seqcount_end(&tk_core.seq);
1328 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329 
1330 	return 0;
1331 }
1332 
1333 /**
1334  * timekeeping_notify - Install a new clock source
1335  * @clock:		pointer to the clock source
1336  *
1337  * This function is called from clocksource.c after a new, better clock
1338  * source has been registered. The caller holds the clocksource_mutex.
1339  */
1340 int timekeeping_notify(struct clocksource *clock)
1341 {
1342 	struct timekeeper *tk = &tk_core.timekeeper;
1343 
1344 	if (tk->tkr_mono.clock == clock)
1345 		return 0;
1346 	stop_machine(change_clocksource, clock, NULL);
1347 	tick_clock_notify();
1348 	return tk->tkr_mono.clock == clock ? 0 : -1;
1349 }
1350 
1351 /**
1352  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1353  * @ts:		pointer to the timespec64 to be set
1354  *
1355  * Returns the raw monotonic time (completely un-modified by ntp)
1356  */
1357 void getrawmonotonic64(struct timespec64 *ts)
1358 {
1359 	struct timekeeper *tk = &tk_core.timekeeper;
1360 	struct timespec64 ts64;
1361 	unsigned long seq;
1362 	s64 nsecs;
1363 
1364 	do {
1365 		seq = read_seqcount_begin(&tk_core.seq);
1366 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1367 		ts64 = tk->raw_time;
1368 
1369 	} while (read_seqcount_retry(&tk_core.seq, seq));
1370 
1371 	timespec64_add_ns(&ts64, nsecs);
1372 	*ts = ts64;
1373 }
1374 EXPORT_SYMBOL(getrawmonotonic64);
1375 
1376 
1377 /**
1378  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1379  */
1380 int timekeeping_valid_for_hres(void)
1381 {
1382 	struct timekeeper *tk = &tk_core.timekeeper;
1383 	unsigned long seq;
1384 	int ret;
1385 
1386 	do {
1387 		seq = read_seqcount_begin(&tk_core.seq);
1388 
1389 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1390 
1391 	} while (read_seqcount_retry(&tk_core.seq, seq));
1392 
1393 	return ret;
1394 }
1395 
1396 /**
1397  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1398  */
1399 u64 timekeeping_max_deferment(void)
1400 {
1401 	struct timekeeper *tk = &tk_core.timekeeper;
1402 	unsigned long seq;
1403 	u64 ret;
1404 
1405 	do {
1406 		seq = read_seqcount_begin(&tk_core.seq);
1407 
1408 		ret = tk->tkr_mono.clock->max_idle_ns;
1409 
1410 	} while (read_seqcount_retry(&tk_core.seq, seq));
1411 
1412 	return ret;
1413 }
1414 
1415 /**
1416  * read_persistent_clock -  Return time from the persistent clock.
1417  *
1418  * Weak dummy function for arches that do not yet support it.
1419  * Reads the time from the battery backed persistent clock.
1420  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1421  *
1422  *  XXX - Do be sure to remove it once all arches implement it.
1423  */
1424 void __weak read_persistent_clock(struct timespec *ts)
1425 {
1426 	ts->tv_sec = 0;
1427 	ts->tv_nsec = 0;
1428 }
1429 
1430 void __weak read_persistent_clock64(struct timespec64 *ts64)
1431 {
1432 	struct timespec ts;
1433 
1434 	read_persistent_clock(&ts);
1435 	*ts64 = timespec_to_timespec64(ts);
1436 }
1437 
1438 /**
1439  * read_boot_clock64 -  Return time of the system start.
1440  *
1441  * Weak dummy function for arches that do not yet support it.
1442  * Function to read the exact time the system has been started.
1443  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1444  *
1445  *  XXX - Do be sure to remove it once all arches implement it.
1446  */
1447 void __weak read_boot_clock64(struct timespec64 *ts)
1448 {
1449 	ts->tv_sec = 0;
1450 	ts->tv_nsec = 0;
1451 }
1452 
1453 /* Flag for if timekeeping_resume() has injected sleeptime */
1454 static bool sleeptime_injected;
1455 
1456 /* Flag for if there is a persistent clock on this platform */
1457 static bool persistent_clock_exists;
1458 
1459 /*
1460  * timekeeping_init - Initializes the clocksource and common timekeeping values
1461  */
1462 void __init timekeeping_init(void)
1463 {
1464 	struct timekeeper *tk = &tk_core.timekeeper;
1465 	struct clocksource *clock;
1466 	unsigned long flags;
1467 	struct timespec64 now, boot, tmp;
1468 
1469 	read_persistent_clock64(&now);
1470 	if (!timespec64_valid_strict(&now)) {
1471 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1472 			"         Check your CMOS/BIOS settings.\n");
1473 		now.tv_sec = 0;
1474 		now.tv_nsec = 0;
1475 	} else if (now.tv_sec || now.tv_nsec)
1476 		persistent_clock_exists = true;
1477 
1478 	read_boot_clock64(&boot);
1479 	if (!timespec64_valid_strict(&boot)) {
1480 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1481 			"         Check your CMOS/BIOS settings.\n");
1482 		boot.tv_sec = 0;
1483 		boot.tv_nsec = 0;
1484 	}
1485 
1486 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1487 	write_seqcount_begin(&tk_core.seq);
1488 	ntp_init();
1489 
1490 	clock = clocksource_default_clock();
1491 	if (clock->enable)
1492 		clock->enable(clock);
1493 	tk_setup_internals(tk, clock);
1494 
1495 	tk_set_xtime(tk, &now);
1496 	tk->raw_time.tv_sec = 0;
1497 	tk->raw_time.tv_nsec = 0;
1498 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1499 		boot = tk_xtime(tk);
1500 
1501 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1502 	tk_set_wall_to_mono(tk, tmp);
1503 
1504 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1505 
1506 	write_seqcount_end(&tk_core.seq);
1507 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1508 }
1509 
1510 /* time in seconds when suspend began for persistent clock */
1511 static struct timespec64 timekeeping_suspend_time;
1512 
1513 /**
1514  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1515  * @delta: pointer to a timespec delta value
1516  *
1517  * Takes a timespec offset measuring a suspend interval and properly
1518  * adds the sleep offset to the timekeeping variables.
1519  */
1520 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1521 					   struct timespec64 *delta)
1522 {
1523 	if (!timespec64_valid_strict(delta)) {
1524 		printk_deferred(KERN_WARNING
1525 				"__timekeeping_inject_sleeptime: Invalid "
1526 				"sleep delta value!\n");
1527 		return;
1528 	}
1529 	tk_xtime_add(tk, delta);
1530 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1531 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1532 	tk_debug_account_sleep_time(delta);
1533 }
1534 
1535 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1536 /**
1537  * We have three kinds of time sources to use for sleep time
1538  * injection, the preference order is:
1539  * 1) non-stop clocksource
1540  * 2) persistent clock (ie: RTC accessible when irqs are off)
1541  * 3) RTC
1542  *
1543  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1544  * If system has neither 1) nor 2), 3) will be used finally.
1545  *
1546  *
1547  * If timekeeping has injected sleeptime via either 1) or 2),
1548  * 3) becomes needless, so in this case we don't need to call
1549  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1550  * means.
1551  */
1552 bool timekeeping_rtc_skipresume(void)
1553 {
1554 	return sleeptime_injected;
1555 }
1556 
1557 /**
1558  * 1) can be determined whether to use or not only when doing
1559  * timekeeping_resume() which is invoked after rtc_suspend(),
1560  * so we can't skip rtc_suspend() surely if system has 1).
1561  *
1562  * But if system has 2), 2) will definitely be used, so in this
1563  * case we don't need to call rtc_suspend(), and this is what
1564  * timekeeping_rtc_skipsuspend() means.
1565  */
1566 bool timekeeping_rtc_skipsuspend(void)
1567 {
1568 	return persistent_clock_exists;
1569 }
1570 
1571 /**
1572  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1573  * @delta: pointer to a timespec64 delta value
1574  *
1575  * This hook is for architectures that cannot support read_persistent_clock64
1576  * because their RTC/persistent clock is only accessible when irqs are enabled.
1577  * and also don't have an effective nonstop clocksource.
1578  *
1579  * This function should only be called by rtc_resume(), and allows
1580  * a suspend offset to be injected into the timekeeping values.
1581  */
1582 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1583 {
1584 	struct timekeeper *tk = &tk_core.timekeeper;
1585 	unsigned long flags;
1586 
1587 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1588 	write_seqcount_begin(&tk_core.seq);
1589 
1590 	timekeeping_forward_now(tk);
1591 
1592 	__timekeeping_inject_sleeptime(tk, delta);
1593 
1594 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1595 
1596 	write_seqcount_end(&tk_core.seq);
1597 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1598 
1599 	/* signal hrtimers about time change */
1600 	clock_was_set();
1601 }
1602 #endif
1603 
1604 /**
1605  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1606  */
1607 void timekeeping_resume(void)
1608 {
1609 	struct timekeeper *tk = &tk_core.timekeeper;
1610 	struct clocksource *clock = tk->tkr_mono.clock;
1611 	unsigned long flags;
1612 	struct timespec64 ts_new, ts_delta;
1613 	cycle_t cycle_now, cycle_delta;
1614 
1615 	sleeptime_injected = false;
1616 	read_persistent_clock64(&ts_new);
1617 
1618 	clockevents_resume();
1619 	clocksource_resume();
1620 
1621 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1622 	write_seqcount_begin(&tk_core.seq);
1623 
1624 	/*
1625 	 * After system resumes, we need to calculate the suspended time and
1626 	 * compensate it for the OS time. There are 3 sources that could be
1627 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1628 	 * device.
1629 	 *
1630 	 * One specific platform may have 1 or 2 or all of them, and the
1631 	 * preference will be:
1632 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1633 	 * The less preferred source will only be tried if there is no better
1634 	 * usable source. The rtc part is handled separately in rtc core code.
1635 	 */
1636 	cycle_now = tk->tkr_mono.read(clock);
1637 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1638 		cycle_now > tk->tkr_mono.cycle_last) {
1639 		u64 num, max = ULLONG_MAX;
1640 		u32 mult = clock->mult;
1641 		u32 shift = clock->shift;
1642 		s64 nsec = 0;
1643 
1644 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1645 						tk->tkr_mono.mask);
1646 
1647 		/*
1648 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1649 		 * suspended time is too long. In that case we need do the
1650 		 * 64 bits math carefully
1651 		 */
1652 		do_div(max, mult);
1653 		if (cycle_delta > max) {
1654 			num = div64_u64(cycle_delta, max);
1655 			nsec = (((u64) max * mult) >> shift) * num;
1656 			cycle_delta -= num * max;
1657 		}
1658 		nsec += ((u64) cycle_delta * mult) >> shift;
1659 
1660 		ts_delta = ns_to_timespec64(nsec);
1661 		sleeptime_injected = true;
1662 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1663 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1664 		sleeptime_injected = true;
1665 	}
1666 
1667 	if (sleeptime_injected)
1668 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1669 
1670 	/* Re-base the last cycle value */
1671 	tk->tkr_mono.cycle_last = cycle_now;
1672 	tk->tkr_raw.cycle_last  = cycle_now;
1673 
1674 	tk->ntp_error = 0;
1675 	timekeeping_suspended = 0;
1676 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1677 	write_seqcount_end(&tk_core.seq);
1678 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1679 
1680 	touch_softlockup_watchdog();
1681 
1682 	tick_resume();
1683 	hrtimers_resume();
1684 }
1685 
1686 int timekeeping_suspend(void)
1687 {
1688 	struct timekeeper *tk = &tk_core.timekeeper;
1689 	unsigned long flags;
1690 	struct timespec64		delta, delta_delta;
1691 	static struct timespec64	old_delta;
1692 
1693 	read_persistent_clock64(&timekeeping_suspend_time);
1694 
1695 	/*
1696 	 * On some systems the persistent_clock can not be detected at
1697 	 * timekeeping_init by its return value, so if we see a valid
1698 	 * value returned, update the persistent_clock_exists flag.
1699 	 */
1700 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1701 		persistent_clock_exists = true;
1702 
1703 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1704 	write_seqcount_begin(&tk_core.seq);
1705 	timekeeping_forward_now(tk);
1706 	timekeeping_suspended = 1;
1707 
1708 	if (persistent_clock_exists) {
1709 		/*
1710 		 * To avoid drift caused by repeated suspend/resumes,
1711 		 * which each can add ~1 second drift error,
1712 		 * try to compensate so the difference in system time
1713 		 * and persistent_clock time stays close to constant.
1714 		 */
1715 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1716 		delta_delta = timespec64_sub(delta, old_delta);
1717 		if (abs(delta_delta.tv_sec) >= 2) {
1718 			/*
1719 			 * if delta_delta is too large, assume time correction
1720 			 * has occurred and set old_delta to the current delta.
1721 			 */
1722 			old_delta = delta;
1723 		} else {
1724 			/* Otherwise try to adjust old_system to compensate */
1725 			timekeeping_suspend_time =
1726 				timespec64_add(timekeeping_suspend_time, delta_delta);
1727 		}
1728 	}
1729 
1730 	timekeeping_update(tk, TK_MIRROR);
1731 	halt_fast_timekeeper(tk);
1732 	write_seqcount_end(&tk_core.seq);
1733 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1734 
1735 	tick_suspend();
1736 	clocksource_suspend();
1737 	clockevents_suspend();
1738 
1739 	return 0;
1740 }
1741 
1742 /* sysfs resume/suspend bits for timekeeping */
1743 static struct syscore_ops timekeeping_syscore_ops = {
1744 	.resume		= timekeeping_resume,
1745 	.suspend	= timekeeping_suspend,
1746 };
1747 
1748 static int __init timekeeping_init_ops(void)
1749 {
1750 	register_syscore_ops(&timekeeping_syscore_ops);
1751 	return 0;
1752 }
1753 device_initcall(timekeeping_init_ops);
1754 
1755 /*
1756  * Apply a multiplier adjustment to the timekeeper
1757  */
1758 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1759 							 s64 offset,
1760 							 bool negative,
1761 							 int adj_scale)
1762 {
1763 	s64 interval = tk->cycle_interval;
1764 	s32 mult_adj = 1;
1765 
1766 	if (negative) {
1767 		mult_adj = -mult_adj;
1768 		interval = -interval;
1769 		offset  = -offset;
1770 	}
1771 	mult_adj <<= adj_scale;
1772 	interval <<= adj_scale;
1773 	offset <<= adj_scale;
1774 
1775 	/*
1776 	 * So the following can be confusing.
1777 	 *
1778 	 * To keep things simple, lets assume mult_adj == 1 for now.
1779 	 *
1780 	 * When mult_adj != 1, remember that the interval and offset values
1781 	 * have been appropriately scaled so the math is the same.
1782 	 *
1783 	 * The basic idea here is that we're increasing the multiplier
1784 	 * by one, this causes the xtime_interval to be incremented by
1785 	 * one cycle_interval. This is because:
1786 	 *	xtime_interval = cycle_interval * mult
1787 	 * So if mult is being incremented by one:
1788 	 *	xtime_interval = cycle_interval * (mult + 1)
1789 	 * Its the same as:
1790 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1791 	 * Which can be shortened to:
1792 	 *	xtime_interval += cycle_interval
1793 	 *
1794 	 * So offset stores the non-accumulated cycles. Thus the current
1795 	 * time (in shifted nanoseconds) is:
1796 	 *	now = (offset * adj) + xtime_nsec
1797 	 * Now, even though we're adjusting the clock frequency, we have
1798 	 * to keep time consistent. In other words, we can't jump back
1799 	 * in time, and we also want to avoid jumping forward in time.
1800 	 *
1801 	 * So given the same offset value, we need the time to be the same
1802 	 * both before and after the freq adjustment.
1803 	 *	now = (offset * adj_1) + xtime_nsec_1
1804 	 *	now = (offset * adj_2) + xtime_nsec_2
1805 	 * So:
1806 	 *	(offset * adj_1) + xtime_nsec_1 =
1807 	 *		(offset * adj_2) + xtime_nsec_2
1808 	 * And we know:
1809 	 *	adj_2 = adj_1 + 1
1810 	 * So:
1811 	 *	(offset * adj_1) + xtime_nsec_1 =
1812 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1813 	 *	(offset * adj_1) + xtime_nsec_1 =
1814 	 *		(offset * adj_1) + offset + xtime_nsec_2
1815 	 * Canceling the sides:
1816 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1817 	 * Which gives us:
1818 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1819 	 * Which simplfies to:
1820 	 *	xtime_nsec -= offset
1821 	 *
1822 	 * XXX - TODO: Doc ntp_error calculation.
1823 	 */
1824 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1825 		/* NTP adjustment caused clocksource mult overflow */
1826 		WARN_ON_ONCE(1);
1827 		return;
1828 	}
1829 
1830 	tk->tkr_mono.mult += mult_adj;
1831 	tk->xtime_interval += interval;
1832 	tk->tkr_mono.xtime_nsec -= offset;
1833 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1834 }
1835 
1836 /*
1837  * Calculate the multiplier adjustment needed to match the frequency
1838  * specified by NTP
1839  */
1840 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1841 							s64 offset)
1842 {
1843 	s64 interval = tk->cycle_interval;
1844 	s64 xinterval = tk->xtime_interval;
1845 	u32 base = tk->tkr_mono.clock->mult;
1846 	u32 max = tk->tkr_mono.clock->maxadj;
1847 	u32 cur_adj = tk->tkr_mono.mult;
1848 	s64 tick_error;
1849 	bool negative;
1850 	u32 adj_scale;
1851 
1852 	/* Remove any current error adj from freq calculation */
1853 	if (tk->ntp_err_mult)
1854 		xinterval -= tk->cycle_interval;
1855 
1856 	tk->ntp_tick = ntp_tick_length();
1857 
1858 	/* Calculate current error per tick */
1859 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1860 	tick_error -= (xinterval + tk->xtime_remainder);
1861 
1862 	/* Don't worry about correcting it if its small */
1863 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1864 		return;
1865 
1866 	/* preserve the direction of correction */
1867 	negative = (tick_error < 0);
1868 
1869 	/* If any adjustment would pass the max, just return */
1870 	if (negative && (cur_adj - 1) <= (base - max))
1871 		return;
1872 	if (!negative && (cur_adj + 1) >= (base + max))
1873 		return;
1874 	/*
1875 	 * Sort out the magnitude of the correction, but
1876 	 * avoid making so large a correction that we go
1877 	 * over the max adjustment.
1878 	 */
1879 	adj_scale = 0;
1880 	tick_error = abs(tick_error);
1881 	while (tick_error > interval) {
1882 		u32 adj = 1 << (adj_scale + 1);
1883 
1884 		/* Check if adjustment gets us within 1 unit from the max */
1885 		if (negative && (cur_adj - adj) <= (base - max))
1886 			break;
1887 		if (!negative && (cur_adj + adj) >= (base + max))
1888 			break;
1889 
1890 		adj_scale++;
1891 		tick_error >>= 1;
1892 	}
1893 
1894 	/* scale the corrections */
1895 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1896 }
1897 
1898 /*
1899  * Adjust the timekeeper's multiplier to the correct frequency
1900  * and also to reduce the accumulated error value.
1901  */
1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903 {
1904 	/* Correct for the current frequency error */
1905 	timekeeping_freqadjust(tk, offset);
1906 
1907 	/* Next make a small adjustment to fix any cumulative error */
1908 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1909 		tk->ntp_err_mult = 1;
1910 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1911 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1912 		/* Undo any existing error adjustment */
1913 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1914 		tk->ntp_err_mult = 0;
1915 	}
1916 
1917 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1918 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1919 			> tk->tkr_mono.clock->maxadj))) {
1920 		printk_once(KERN_WARNING
1921 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1922 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1923 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1924 	}
1925 
1926 	/*
1927 	 * It may be possible that when we entered this function, xtime_nsec
1928 	 * was very small.  Further, if we're slightly speeding the clocksource
1929 	 * in the code above, its possible the required corrective factor to
1930 	 * xtime_nsec could cause it to underflow.
1931 	 *
1932 	 * Now, since we already accumulated the second, cannot simply roll
1933 	 * the accumulated second back, since the NTP subsystem has been
1934 	 * notified via second_overflow. So instead we push xtime_nsec forward
1935 	 * by the amount we underflowed, and add that amount into the error.
1936 	 *
1937 	 * We'll correct this error next time through this function, when
1938 	 * xtime_nsec is not as small.
1939 	 */
1940 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1942 		tk->tkr_mono.xtime_nsec = 0;
1943 		tk->ntp_error += neg << tk->ntp_error_shift;
1944 	}
1945 }
1946 
1947 /**
1948  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949  *
1950  * Helper function that accumulates the nsecs greater than a second
1951  * from the xtime_nsec field to the xtime_secs field.
1952  * It also calls into the NTP code to handle leapsecond processing.
1953  *
1954  */
1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956 {
1957 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958 	unsigned int clock_set = 0;
1959 
1960 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961 		int leap;
1962 
1963 		tk->tkr_mono.xtime_nsec -= nsecps;
1964 		tk->xtime_sec++;
1965 
1966 		/* Figure out if its a leap sec and apply if needed */
1967 		leap = second_overflow(tk->xtime_sec);
1968 		if (unlikely(leap)) {
1969 			struct timespec64 ts;
1970 
1971 			tk->xtime_sec += leap;
1972 
1973 			ts.tv_sec = leap;
1974 			ts.tv_nsec = 0;
1975 			tk_set_wall_to_mono(tk,
1976 				timespec64_sub(tk->wall_to_monotonic, ts));
1977 
1978 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1979 
1980 			clock_set = TK_CLOCK_WAS_SET;
1981 		}
1982 	}
1983 	return clock_set;
1984 }
1985 
1986 /**
1987  * logarithmic_accumulation - shifted accumulation of cycles
1988  *
1989  * This functions accumulates a shifted interval of cycles into
1990  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991  * loop.
1992  *
1993  * Returns the unconsumed cycles.
1994  */
1995 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1996 						u32 shift,
1997 						unsigned int *clock_set)
1998 {
1999 	cycle_t interval = tk->cycle_interval << shift;
2000 	u64 raw_nsecs;
2001 
2002 	/* If the offset is smaller than a shifted interval, do nothing */
2003 	if (offset < interval)
2004 		return offset;
2005 
2006 	/* Accumulate one shifted interval */
2007 	offset -= interval;
2008 	tk->tkr_mono.cycle_last += interval;
2009 	tk->tkr_raw.cycle_last  += interval;
2010 
2011 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2012 	*clock_set |= accumulate_nsecs_to_secs(tk);
2013 
2014 	/* Accumulate raw time */
2015 	raw_nsecs = (u64)tk->raw_interval << shift;
2016 	raw_nsecs += tk->raw_time.tv_nsec;
2017 	if (raw_nsecs >= NSEC_PER_SEC) {
2018 		u64 raw_secs = raw_nsecs;
2019 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2020 		tk->raw_time.tv_sec += raw_secs;
2021 	}
2022 	tk->raw_time.tv_nsec = raw_nsecs;
2023 
2024 	/* Accumulate error between NTP and clock interval */
2025 	tk->ntp_error += tk->ntp_tick << shift;
2026 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2027 						(tk->ntp_error_shift + shift);
2028 
2029 	return offset;
2030 }
2031 
2032 /**
2033  * update_wall_time - Uses the current clocksource to increment the wall time
2034  *
2035  */
2036 void update_wall_time(void)
2037 {
2038 	struct timekeeper *real_tk = &tk_core.timekeeper;
2039 	struct timekeeper *tk = &shadow_timekeeper;
2040 	cycle_t offset;
2041 	int shift = 0, maxshift;
2042 	unsigned int clock_set = 0;
2043 	unsigned long flags;
2044 
2045 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2046 
2047 	/* Make sure we're fully resumed: */
2048 	if (unlikely(timekeeping_suspended))
2049 		goto out;
2050 
2051 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2052 	offset = real_tk->cycle_interval;
2053 #else
2054 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2055 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2056 #endif
2057 
2058 	/* Check if there's really nothing to do */
2059 	if (offset < real_tk->cycle_interval)
2060 		goto out;
2061 
2062 	/* Do some additional sanity checking */
2063 	timekeeping_check_update(real_tk, offset);
2064 
2065 	/*
2066 	 * With NO_HZ we may have to accumulate many cycle_intervals
2067 	 * (think "ticks") worth of time at once. To do this efficiently,
2068 	 * we calculate the largest doubling multiple of cycle_intervals
2069 	 * that is smaller than the offset.  We then accumulate that
2070 	 * chunk in one go, and then try to consume the next smaller
2071 	 * doubled multiple.
2072 	 */
2073 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2074 	shift = max(0, shift);
2075 	/* Bound shift to one less than what overflows tick_length */
2076 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2077 	shift = min(shift, maxshift);
2078 	while (offset >= tk->cycle_interval) {
2079 		offset = logarithmic_accumulation(tk, offset, shift,
2080 							&clock_set);
2081 		if (offset < tk->cycle_interval<<shift)
2082 			shift--;
2083 	}
2084 
2085 	/* correct the clock when NTP error is too big */
2086 	timekeeping_adjust(tk, offset);
2087 
2088 	/*
2089 	 * XXX This can be killed once everyone converts
2090 	 * to the new update_vsyscall.
2091 	 */
2092 	old_vsyscall_fixup(tk);
2093 
2094 	/*
2095 	 * Finally, make sure that after the rounding
2096 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2097 	 */
2098 	clock_set |= accumulate_nsecs_to_secs(tk);
2099 
2100 	write_seqcount_begin(&tk_core.seq);
2101 	/*
2102 	 * Update the real timekeeper.
2103 	 *
2104 	 * We could avoid this memcpy by switching pointers, but that
2105 	 * requires changes to all other timekeeper usage sites as
2106 	 * well, i.e. move the timekeeper pointer getter into the
2107 	 * spinlocked/seqcount protected sections. And we trade this
2108 	 * memcpy under the tk_core.seq against one before we start
2109 	 * updating.
2110 	 */
2111 	timekeeping_update(tk, clock_set);
2112 	memcpy(real_tk, tk, sizeof(*tk));
2113 	/* The memcpy must come last. Do not put anything here! */
2114 	write_seqcount_end(&tk_core.seq);
2115 out:
2116 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2117 	if (clock_set)
2118 		/* Have to call _delayed version, since in irq context*/
2119 		clock_was_set_delayed();
2120 }
2121 
2122 /**
2123  * getboottime64 - Return the real time of system boot.
2124  * @ts:		pointer to the timespec64 to be set
2125  *
2126  * Returns the wall-time of boot in a timespec64.
2127  *
2128  * This is based on the wall_to_monotonic offset and the total suspend
2129  * time. Calls to settimeofday will affect the value returned (which
2130  * basically means that however wrong your real time clock is at boot time,
2131  * you get the right time here).
2132  */
2133 void getboottime64(struct timespec64 *ts)
2134 {
2135 	struct timekeeper *tk = &tk_core.timekeeper;
2136 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2137 
2138 	*ts = ktime_to_timespec64(t);
2139 }
2140 EXPORT_SYMBOL_GPL(getboottime64);
2141 
2142 unsigned long get_seconds(void)
2143 {
2144 	struct timekeeper *tk = &tk_core.timekeeper;
2145 
2146 	return tk->xtime_sec;
2147 }
2148 EXPORT_SYMBOL(get_seconds);
2149 
2150 struct timespec __current_kernel_time(void)
2151 {
2152 	struct timekeeper *tk = &tk_core.timekeeper;
2153 
2154 	return timespec64_to_timespec(tk_xtime(tk));
2155 }
2156 
2157 struct timespec64 current_kernel_time64(void)
2158 {
2159 	struct timekeeper *tk = &tk_core.timekeeper;
2160 	struct timespec64 now;
2161 	unsigned long seq;
2162 
2163 	do {
2164 		seq = read_seqcount_begin(&tk_core.seq);
2165 
2166 		now = tk_xtime(tk);
2167 	} while (read_seqcount_retry(&tk_core.seq, seq));
2168 
2169 	return now;
2170 }
2171 EXPORT_SYMBOL(current_kernel_time64);
2172 
2173 struct timespec64 get_monotonic_coarse64(void)
2174 {
2175 	struct timekeeper *tk = &tk_core.timekeeper;
2176 	struct timespec64 now, mono;
2177 	unsigned long seq;
2178 
2179 	do {
2180 		seq = read_seqcount_begin(&tk_core.seq);
2181 
2182 		now = tk_xtime(tk);
2183 		mono = tk->wall_to_monotonic;
2184 	} while (read_seqcount_retry(&tk_core.seq, seq));
2185 
2186 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2187 				now.tv_nsec + mono.tv_nsec);
2188 
2189 	return now;
2190 }
2191 EXPORT_SYMBOL(get_monotonic_coarse64);
2192 
2193 /*
2194  * Must hold jiffies_lock
2195  */
2196 void do_timer(unsigned long ticks)
2197 {
2198 	jiffies_64 += ticks;
2199 	calc_global_load(ticks);
2200 }
2201 
2202 /**
2203  * ktime_get_update_offsets_now - hrtimer helper
2204  * @cwsseq:	pointer to check and store the clock was set sequence number
2205  * @offs_real:	pointer to storage for monotonic -> realtime offset
2206  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2207  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2208  *
2209  * Returns current monotonic time and updates the offsets if the
2210  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211  * different.
2212  *
2213  * Called from hrtimer_interrupt() or retrigger_next_event()
2214  */
2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216 				     ktime_t *offs_boot, ktime_t *offs_tai)
2217 {
2218 	struct timekeeper *tk = &tk_core.timekeeper;
2219 	unsigned int seq;
2220 	ktime_t base;
2221 	u64 nsecs;
2222 
2223 	do {
2224 		seq = read_seqcount_begin(&tk_core.seq);
2225 
2226 		base = tk->tkr_mono.base;
2227 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228 		base = ktime_add_ns(base, nsecs);
2229 
2230 		if (*cwsseq != tk->clock_was_set_seq) {
2231 			*cwsseq = tk->clock_was_set_seq;
2232 			*offs_real = tk->offs_real;
2233 			*offs_boot = tk->offs_boot;
2234 			*offs_tai = tk->offs_tai;
2235 		}
2236 
2237 		/* Handle leapsecond insertion adjustments */
2238 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2239 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240 
2241 	} while (read_seqcount_retry(&tk_core.seq, seq));
2242 
2243 	return base;
2244 }
2245 
2246 /**
2247  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2248  */
2249 int do_adjtimex(struct timex *txc)
2250 {
2251 	struct timekeeper *tk = &tk_core.timekeeper;
2252 	unsigned long flags;
2253 	struct timespec64 ts;
2254 	s32 orig_tai, tai;
2255 	int ret;
2256 
2257 	/* Validate the data before disabling interrupts */
2258 	ret = ntp_validate_timex(txc);
2259 	if (ret)
2260 		return ret;
2261 
2262 	if (txc->modes & ADJ_SETOFFSET) {
2263 		struct timespec delta;
2264 		delta.tv_sec  = txc->time.tv_sec;
2265 		delta.tv_nsec = txc->time.tv_usec;
2266 		if (!(txc->modes & ADJ_NANO))
2267 			delta.tv_nsec *= 1000;
2268 		ret = timekeeping_inject_offset(&delta);
2269 		if (ret)
2270 			return ret;
2271 	}
2272 
2273 	getnstimeofday64(&ts);
2274 
2275 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2276 	write_seqcount_begin(&tk_core.seq);
2277 
2278 	orig_tai = tai = tk->tai_offset;
2279 	ret = __do_adjtimex(txc, &ts, &tai);
2280 
2281 	if (tai != orig_tai) {
2282 		__timekeeping_set_tai_offset(tk, tai);
2283 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2284 	}
2285 	tk_update_leap_state(tk);
2286 
2287 	write_seqcount_end(&tk_core.seq);
2288 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2289 
2290 	if (tai != orig_tai)
2291 		clock_was_set();
2292 
2293 	ntp_notify_cmos_timer();
2294 
2295 	return ret;
2296 }
2297 
2298 #ifdef CONFIG_NTP_PPS
2299 /**
2300  * hardpps() - Accessor function to NTP __hardpps function
2301  */
2302 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2303 {
2304 	unsigned long flags;
2305 
2306 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2307 	write_seqcount_begin(&tk_core.seq);
2308 
2309 	__hardpps(phase_ts, raw_ts);
2310 
2311 	write_seqcount_end(&tk_core.seq);
2312 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2313 }
2314 EXPORT_SYMBOL(hardpps);
2315 #endif
2316 
2317 /**
2318  * xtime_update() - advances the timekeeping infrastructure
2319  * @ticks:	number of ticks, that have elapsed since the last call.
2320  *
2321  * Must be called with interrupts disabled.
2322  */
2323 void xtime_update(unsigned long ticks)
2324 {
2325 	write_seqlock(&jiffies_lock);
2326 	do_timer(ticks);
2327 	write_sequnlock(&jiffies_lock);
2328 	update_wall_time();
2329 }
2330