1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (cycle_t) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = (u64) interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = 264 ((u64) interval * clock->mult) >> clock->shift; 265 266 /* if changing clocks, convert xtime_nsec shift units */ 267 if (old_clock) { 268 int shift_change = clock->shift - old_clock->shift; 269 if (shift_change < 0) 270 tk->tkr_mono.xtime_nsec >>= -shift_change; 271 else 272 tk->tkr_mono.xtime_nsec <<= shift_change; 273 } 274 tk->tkr_raw.xtime_nsec = 0; 275 276 tk->tkr_mono.shift = clock->shift; 277 tk->tkr_raw.shift = clock->shift; 278 279 tk->ntp_error = 0; 280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 282 283 /* 284 * The timekeeper keeps its own mult values for the currently 285 * active clocksource. These value will be adjusted via NTP 286 * to counteract clock drifting. 287 */ 288 tk->tkr_mono.mult = clock->mult; 289 tk->tkr_raw.mult = clock->mult; 290 tk->ntp_err_mult = 0; 291 } 292 293 /* Timekeeper helper functions. */ 294 295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 296 static u32 default_arch_gettimeoffset(void) { return 0; } 297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 298 #else 299 static inline u32 arch_gettimeoffset(void) { return 0; } 300 #endif 301 302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr, 303 cycle_t delta) 304 { 305 s64 nsec; 306 307 nsec = delta * tkr->mult + tkr->xtime_nsec; 308 nsec >>= tkr->shift; 309 310 /* If arch requires, add in get_arch_timeoffset() */ 311 return nsec + arch_gettimeoffset(); 312 } 313 314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 315 { 316 cycle_t delta; 317 318 delta = timekeeping_get_delta(tkr); 319 return timekeeping_delta_to_ns(tkr, delta); 320 } 321 322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, 323 cycle_t cycles) 324 { 325 cycle_t delta; 326 327 /* calculate the delta since the last update_wall_time */ 328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 329 return timekeeping_delta_to_ns(tkr, delta); 330 } 331 332 /** 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 334 * @tkr: Timekeeping readout base from which we take the update 335 * 336 * We want to use this from any context including NMI and tracing / 337 * instrumenting the timekeeping code itself. 338 * 339 * Employ the latch technique; see @raw_write_seqcount_latch. 340 * 341 * So if a NMI hits the update of base[0] then it will use base[1] 342 * which is still consistent. In the worst case this can result is a 343 * slightly wrong timestamp (a few nanoseconds). See 344 * @ktime_get_mono_fast_ns. 345 */ 346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 347 { 348 struct tk_read_base *base = tkf->base; 349 350 /* Force readers off to base[1] */ 351 raw_write_seqcount_latch(&tkf->seq); 352 353 /* Update base[0] */ 354 memcpy(base, tkr, sizeof(*base)); 355 356 /* Force readers back to base[0] */ 357 raw_write_seqcount_latch(&tkf->seq); 358 359 /* Update base[1] */ 360 memcpy(base + 1, base, sizeof(*base)); 361 } 362 363 /** 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 365 * 366 * This timestamp is not guaranteed to be monotonic across an update. 367 * The timestamp is calculated by: 368 * 369 * now = base_mono + clock_delta * slope 370 * 371 * So if the update lowers the slope, readers who are forced to the 372 * not yet updated second array are still using the old steeper slope. 373 * 374 * tmono 375 * ^ 376 * | o n 377 * | o n 378 * | u 379 * | o 380 * |o 381 * |12345678---> reader order 382 * 383 * o = old slope 384 * u = update 385 * n = new slope 386 * 387 * So reader 6 will observe time going backwards versus reader 5. 388 * 389 * While other CPUs are likely to be able observe that, the only way 390 * for a CPU local observation is when an NMI hits in the middle of 391 * the update. Timestamps taken from that NMI context might be ahead 392 * of the following timestamps. Callers need to be aware of that and 393 * deal with it. 394 */ 395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 396 { 397 struct tk_read_base *tkr; 398 unsigned int seq; 399 u64 now; 400 401 do { 402 seq = raw_read_seqcount_latch(&tkf->seq); 403 tkr = tkf->base + (seq & 0x01); 404 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 405 } while (read_seqcount_retry(&tkf->seq, seq)); 406 407 return now; 408 } 409 410 u64 ktime_get_mono_fast_ns(void) 411 { 412 return __ktime_get_fast_ns(&tk_fast_mono); 413 } 414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 415 416 u64 ktime_get_raw_fast_ns(void) 417 { 418 return __ktime_get_fast_ns(&tk_fast_raw); 419 } 420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 421 422 /* Suspend-time cycles value for halted fast timekeeper. */ 423 static cycle_t cycles_at_suspend; 424 425 static cycle_t dummy_clock_read(struct clocksource *cs) 426 { 427 return cycles_at_suspend; 428 } 429 430 /** 431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 432 * @tk: Timekeeper to snapshot. 433 * 434 * It generally is unsafe to access the clocksource after timekeeping has been 435 * suspended, so take a snapshot of the readout base of @tk and use it as the 436 * fast timekeeper's readout base while suspended. It will return the same 437 * number of cycles every time until timekeeping is resumed at which time the 438 * proper readout base for the fast timekeeper will be restored automatically. 439 */ 440 static void halt_fast_timekeeper(struct timekeeper *tk) 441 { 442 static struct tk_read_base tkr_dummy; 443 struct tk_read_base *tkr = &tk->tkr_mono; 444 445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 446 cycles_at_suspend = tkr->read(tkr->clock); 447 tkr_dummy.read = dummy_clock_read; 448 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 449 450 tkr = &tk->tkr_raw; 451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 452 tkr_dummy.read = dummy_clock_read; 453 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 454 } 455 456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 457 458 static inline void update_vsyscall(struct timekeeper *tk) 459 { 460 struct timespec xt, wm; 461 462 xt = timespec64_to_timespec(tk_xtime(tk)); 463 wm = timespec64_to_timespec(tk->wall_to_monotonic); 464 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 465 tk->tkr_mono.cycle_last); 466 } 467 468 static inline void old_vsyscall_fixup(struct timekeeper *tk) 469 { 470 s64 remainder; 471 472 /* 473 * Store only full nanoseconds into xtime_nsec after rounding 474 * it up and add the remainder to the error difference. 475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 476 * by truncating the remainder in vsyscalls. However, it causes 477 * additional work to be done in timekeeping_adjust(). Once 478 * the vsyscall implementations are converted to use xtime_nsec 479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 480 * users are removed, this can be killed. 481 */ 482 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 483 if (remainder != 0) { 484 tk->tkr_mono.xtime_nsec -= remainder; 485 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 486 tk->ntp_error += remainder << tk->ntp_error_shift; 487 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 488 } 489 } 490 #else 491 #define old_vsyscall_fixup(tk) 492 #endif 493 494 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 495 496 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 497 { 498 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 499 } 500 501 /** 502 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 503 */ 504 int pvclock_gtod_register_notifier(struct notifier_block *nb) 505 { 506 struct timekeeper *tk = &tk_core.timekeeper; 507 unsigned long flags; 508 int ret; 509 510 raw_spin_lock_irqsave(&timekeeper_lock, flags); 511 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 512 update_pvclock_gtod(tk, true); 513 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 514 515 return ret; 516 } 517 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 518 519 /** 520 * pvclock_gtod_unregister_notifier - unregister a pvclock 521 * timedata update listener 522 */ 523 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 524 { 525 unsigned long flags; 526 int ret; 527 528 raw_spin_lock_irqsave(&timekeeper_lock, flags); 529 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 535 536 /* 537 * tk_update_leap_state - helper to update the next_leap_ktime 538 */ 539 static inline void tk_update_leap_state(struct timekeeper *tk) 540 { 541 tk->next_leap_ktime = ntp_get_next_leap(); 542 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 543 /* Convert to monotonic time */ 544 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 545 } 546 547 /* 548 * Update the ktime_t based scalar nsec members of the timekeeper 549 */ 550 static inline void tk_update_ktime_data(struct timekeeper *tk) 551 { 552 u64 seconds; 553 u32 nsec; 554 555 /* 556 * The xtime based monotonic readout is: 557 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 558 * The ktime based monotonic readout is: 559 * nsec = base_mono + now(); 560 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 561 */ 562 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 563 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 564 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 565 566 /* Update the monotonic raw base */ 567 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 568 569 /* 570 * The sum of the nanoseconds portions of xtime and 571 * wall_to_monotonic can be greater/equal one second. Take 572 * this into account before updating tk->ktime_sec. 573 */ 574 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 575 if (nsec >= NSEC_PER_SEC) 576 seconds++; 577 tk->ktime_sec = seconds; 578 } 579 580 /* must hold timekeeper_lock */ 581 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 582 { 583 if (action & TK_CLEAR_NTP) { 584 tk->ntp_error = 0; 585 ntp_clear(); 586 } 587 588 tk_update_leap_state(tk); 589 tk_update_ktime_data(tk); 590 591 update_vsyscall(tk); 592 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 593 594 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 595 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 596 597 if (action & TK_CLOCK_WAS_SET) 598 tk->clock_was_set_seq++; 599 /* 600 * The mirroring of the data to the shadow-timekeeper needs 601 * to happen last here to ensure we don't over-write the 602 * timekeeper structure on the next update with stale data 603 */ 604 if (action & TK_MIRROR) 605 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 606 sizeof(tk_core.timekeeper)); 607 } 608 609 /** 610 * timekeeping_forward_now - update clock to the current time 611 * 612 * Forward the current clock to update its state since the last call to 613 * update_wall_time(). This is useful before significant clock changes, 614 * as it avoids having to deal with this time offset explicitly. 615 */ 616 static void timekeeping_forward_now(struct timekeeper *tk) 617 { 618 struct clocksource *clock = tk->tkr_mono.clock; 619 cycle_t cycle_now, delta; 620 s64 nsec; 621 622 cycle_now = tk->tkr_mono.read(clock); 623 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 624 tk->tkr_mono.cycle_last = cycle_now; 625 tk->tkr_raw.cycle_last = cycle_now; 626 627 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 628 629 /* If arch requires, add in get_arch_timeoffset() */ 630 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 631 632 tk_normalize_xtime(tk); 633 634 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 635 timespec64_add_ns(&tk->raw_time, nsec); 636 } 637 638 /** 639 * __getnstimeofday64 - Returns the time of day in a timespec64. 640 * @ts: pointer to the timespec to be set 641 * 642 * Updates the time of day in the timespec. 643 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 644 */ 645 int __getnstimeofday64(struct timespec64 *ts) 646 { 647 struct timekeeper *tk = &tk_core.timekeeper; 648 unsigned long seq; 649 s64 nsecs = 0; 650 651 do { 652 seq = read_seqcount_begin(&tk_core.seq); 653 654 ts->tv_sec = tk->xtime_sec; 655 nsecs = timekeeping_get_ns(&tk->tkr_mono); 656 657 } while (read_seqcount_retry(&tk_core.seq, seq)); 658 659 ts->tv_nsec = 0; 660 timespec64_add_ns(ts, nsecs); 661 662 /* 663 * Do not bail out early, in case there were callers still using 664 * the value, even in the face of the WARN_ON. 665 */ 666 if (unlikely(timekeeping_suspended)) 667 return -EAGAIN; 668 return 0; 669 } 670 EXPORT_SYMBOL(__getnstimeofday64); 671 672 /** 673 * getnstimeofday64 - Returns the time of day in a timespec64. 674 * @ts: pointer to the timespec64 to be set 675 * 676 * Returns the time of day in a timespec64 (WARN if suspended). 677 */ 678 void getnstimeofday64(struct timespec64 *ts) 679 { 680 WARN_ON(__getnstimeofday64(ts)); 681 } 682 EXPORT_SYMBOL(getnstimeofday64); 683 684 ktime_t ktime_get(void) 685 { 686 struct timekeeper *tk = &tk_core.timekeeper; 687 unsigned int seq; 688 ktime_t base; 689 s64 nsecs; 690 691 WARN_ON(timekeeping_suspended); 692 693 do { 694 seq = read_seqcount_begin(&tk_core.seq); 695 base = tk->tkr_mono.base; 696 nsecs = timekeeping_get_ns(&tk->tkr_mono); 697 698 } while (read_seqcount_retry(&tk_core.seq, seq)); 699 700 return ktime_add_ns(base, nsecs); 701 } 702 EXPORT_SYMBOL_GPL(ktime_get); 703 704 u32 ktime_get_resolution_ns(void) 705 { 706 struct timekeeper *tk = &tk_core.timekeeper; 707 unsigned int seq; 708 u32 nsecs; 709 710 WARN_ON(timekeeping_suspended); 711 712 do { 713 seq = read_seqcount_begin(&tk_core.seq); 714 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 715 } while (read_seqcount_retry(&tk_core.seq, seq)); 716 717 return nsecs; 718 } 719 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 720 721 static ktime_t *offsets[TK_OFFS_MAX] = { 722 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 723 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 724 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 725 }; 726 727 ktime_t ktime_get_with_offset(enum tk_offsets offs) 728 { 729 struct timekeeper *tk = &tk_core.timekeeper; 730 unsigned int seq; 731 ktime_t base, *offset = offsets[offs]; 732 s64 nsecs; 733 734 WARN_ON(timekeeping_suspended); 735 736 do { 737 seq = read_seqcount_begin(&tk_core.seq); 738 base = ktime_add(tk->tkr_mono.base, *offset); 739 nsecs = timekeeping_get_ns(&tk->tkr_mono); 740 741 } while (read_seqcount_retry(&tk_core.seq, seq)); 742 743 return ktime_add_ns(base, nsecs); 744 745 } 746 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 747 748 /** 749 * ktime_mono_to_any() - convert mononotic time to any other time 750 * @tmono: time to convert. 751 * @offs: which offset to use 752 */ 753 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 754 { 755 ktime_t *offset = offsets[offs]; 756 unsigned long seq; 757 ktime_t tconv; 758 759 do { 760 seq = read_seqcount_begin(&tk_core.seq); 761 tconv = ktime_add(tmono, *offset); 762 } while (read_seqcount_retry(&tk_core.seq, seq)); 763 764 return tconv; 765 } 766 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 767 768 /** 769 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 770 */ 771 ktime_t ktime_get_raw(void) 772 { 773 struct timekeeper *tk = &tk_core.timekeeper; 774 unsigned int seq; 775 ktime_t base; 776 s64 nsecs; 777 778 do { 779 seq = read_seqcount_begin(&tk_core.seq); 780 base = tk->tkr_raw.base; 781 nsecs = timekeeping_get_ns(&tk->tkr_raw); 782 783 } while (read_seqcount_retry(&tk_core.seq, seq)); 784 785 return ktime_add_ns(base, nsecs); 786 } 787 EXPORT_SYMBOL_GPL(ktime_get_raw); 788 789 /** 790 * ktime_get_ts64 - get the monotonic clock in timespec64 format 791 * @ts: pointer to timespec variable 792 * 793 * The function calculates the monotonic clock from the realtime 794 * clock and the wall_to_monotonic offset and stores the result 795 * in normalized timespec64 format in the variable pointed to by @ts. 796 */ 797 void ktime_get_ts64(struct timespec64 *ts) 798 { 799 struct timekeeper *tk = &tk_core.timekeeper; 800 struct timespec64 tomono; 801 s64 nsec; 802 unsigned int seq; 803 804 WARN_ON(timekeeping_suspended); 805 806 do { 807 seq = read_seqcount_begin(&tk_core.seq); 808 ts->tv_sec = tk->xtime_sec; 809 nsec = timekeeping_get_ns(&tk->tkr_mono); 810 tomono = tk->wall_to_monotonic; 811 812 } while (read_seqcount_retry(&tk_core.seq, seq)); 813 814 ts->tv_sec += tomono.tv_sec; 815 ts->tv_nsec = 0; 816 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 817 } 818 EXPORT_SYMBOL_GPL(ktime_get_ts64); 819 820 /** 821 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 822 * 823 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 824 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 825 * works on both 32 and 64 bit systems. On 32 bit systems the readout 826 * covers ~136 years of uptime which should be enough to prevent 827 * premature wrap arounds. 828 */ 829 time64_t ktime_get_seconds(void) 830 { 831 struct timekeeper *tk = &tk_core.timekeeper; 832 833 WARN_ON(timekeeping_suspended); 834 return tk->ktime_sec; 835 } 836 EXPORT_SYMBOL_GPL(ktime_get_seconds); 837 838 /** 839 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 840 * 841 * Returns the wall clock seconds since 1970. This replaces the 842 * get_seconds() interface which is not y2038 safe on 32bit systems. 843 * 844 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 845 * 32bit systems the access must be protected with the sequence 846 * counter to provide "atomic" access to the 64bit tk->xtime_sec 847 * value. 848 */ 849 time64_t ktime_get_real_seconds(void) 850 { 851 struct timekeeper *tk = &tk_core.timekeeper; 852 time64_t seconds; 853 unsigned int seq; 854 855 if (IS_ENABLED(CONFIG_64BIT)) 856 return tk->xtime_sec; 857 858 do { 859 seq = read_seqcount_begin(&tk_core.seq); 860 seconds = tk->xtime_sec; 861 862 } while (read_seqcount_retry(&tk_core.seq, seq)); 863 864 return seconds; 865 } 866 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 867 868 /** 869 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 870 * but without the sequence counter protect. This internal function 871 * is called just when timekeeping lock is already held. 872 */ 873 time64_t __ktime_get_real_seconds(void) 874 { 875 struct timekeeper *tk = &tk_core.timekeeper; 876 877 return tk->xtime_sec; 878 } 879 880 /** 881 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 882 * @systime_snapshot: pointer to struct receiving the system time snapshot 883 */ 884 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 885 { 886 struct timekeeper *tk = &tk_core.timekeeper; 887 unsigned long seq; 888 ktime_t base_raw; 889 ktime_t base_real; 890 s64 nsec_raw; 891 s64 nsec_real; 892 cycle_t now; 893 894 WARN_ON_ONCE(timekeeping_suspended); 895 896 do { 897 seq = read_seqcount_begin(&tk_core.seq); 898 899 now = tk->tkr_mono.read(tk->tkr_mono.clock); 900 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 901 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 902 base_real = ktime_add(tk->tkr_mono.base, 903 tk_core.timekeeper.offs_real); 904 base_raw = tk->tkr_raw.base; 905 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 906 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 907 } while (read_seqcount_retry(&tk_core.seq, seq)); 908 909 systime_snapshot->cycles = now; 910 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 911 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 912 } 913 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 914 915 /* Scale base by mult/div checking for overflow */ 916 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 917 { 918 u64 tmp, rem; 919 920 tmp = div64_u64_rem(*base, div, &rem); 921 922 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 923 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 924 return -EOVERFLOW; 925 tmp *= mult; 926 rem *= mult; 927 928 do_div(rem, div); 929 *base = tmp + rem; 930 return 0; 931 } 932 933 /** 934 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 935 * @history: Snapshot representing start of history 936 * @partial_history_cycles: Cycle offset into history (fractional part) 937 * @total_history_cycles: Total history length in cycles 938 * @discontinuity: True indicates clock was set on history period 939 * @ts: Cross timestamp that should be adjusted using 940 * partial/total ratio 941 * 942 * Helper function used by get_device_system_crosststamp() to correct the 943 * crosstimestamp corresponding to the start of the current interval to the 944 * system counter value (timestamp point) provided by the driver. The 945 * total_history_* quantities are the total history starting at the provided 946 * reference point and ending at the start of the current interval. The cycle 947 * count between the driver timestamp point and the start of the current 948 * interval is partial_history_cycles. 949 */ 950 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 951 cycle_t partial_history_cycles, 952 cycle_t total_history_cycles, 953 bool discontinuity, 954 struct system_device_crosststamp *ts) 955 { 956 struct timekeeper *tk = &tk_core.timekeeper; 957 u64 corr_raw, corr_real; 958 bool interp_forward; 959 int ret; 960 961 if (total_history_cycles == 0 || partial_history_cycles == 0) 962 return 0; 963 964 /* Interpolate shortest distance from beginning or end of history */ 965 interp_forward = partial_history_cycles > total_history_cycles/2 ? 966 true : false; 967 partial_history_cycles = interp_forward ? 968 total_history_cycles - partial_history_cycles : 969 partial_history_cycles; 970 971 /* 972 * Scale the monotonic raw time delta by: 973 * partial_history_cycles / total_history_cycles 974 */ 975 corr_raw = (u64)ktime_to_ns( 976 ktime_sub(ts->sys_monoraw, history->raw)); 977 ret = scale64_check_overflow(partial_history_cycles, 978 total_history_cycles, &corr_raw); 979 if (ret) 980 return ret; 981 982 /* 983 * If there is a discontinuity in the history, scale monotonic raw 984 * correction by: 985 * mult(real)/mult(raw) yielding the realtime correction 986 * Otherwise, calculate the realtime correction similar to monotonic 987 * raw calculation 988 */ 989 if (discontinuity) { 990 corr_real = mul_u64_u32_div 991 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 992 } else { 993 corr_real = (u64)ktime_to_ns( 994 ktime_sub(ts->sys_realtime, history->real)); 995 ret = scale64_check_overflow(partial_history_cycles, 996 total_history_cycles, &corr_real); 997 if (ret) 998 return ret; 999 } 1000 1001 /* Fixup monotonic raw and real time time values */ 1002 if (interp_forward) { 1003 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1004 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1005 } else { 1006 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1007 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1008 } 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * cycle_between - true if test occurs chronologically between before and after 1015 */ 1016 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after) 1017 { 1018 if (test > before && test < after) 1019 return true; 1020 if (test < before && before > after) 1021 return true; 1022 return false; 1023 } 1024 1025 /** 1026 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1027 * @get_time_fn: Callback to get simultaneous device time and 1028 * system counter from the device driver 1029 * @ctx: Context passed to get_time_fn() 1030 * @history_begin: Historical reference point used to interpolate system 1031 * time when counter provided by the driver is before the current interval 1032 * @xtstamp: Receives simultaneously captured system and device time 1033 * 1034 * Reads a timestamp from a device and correlates it to system time 1035 */ 1036 int get_device_system_crosststamp(int (*get_time_fn) 1037 (ktime_t *device_time, 1038 struct system_counterval_t *sys_counterval, 1039 void *ctx), 1040 void *ctx, 1041 struct system_time_snapshot *history_begin, 1042 struct system_device_crosststamp *xtstamp) 1043 { 1044 struct system_counterval_t system_counterval; 1045 struct timekeeper *tk = &tk_core.timekeeper; 1046 cycle_t cycles, now, interval_start; 1047 unsigned int clock_was_set_seq = 0; 1048 ktime_t base_real, base_raw; 1049 s64 nsec_real, nsec_raw; 1050 u8 cs_was_changed_seq; 1051 unsigned long seq; 1052 bool do_interp; 1053 int ret; 1054 1055 do { 1056 seq = read_seqcount_begin(&tk_core.seq); 1057 /* 1058 * Try to synchronously capture device time and a system 1059 * counter value calling back into the device driver 1060 */ 1061 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1062 if (ret) 1063 return ret; 1064 1065 /* 1066 * Verify that the clocksource associated with the captured 1067 * system counter value is the same as the currently installed 1068 * timekeeper clocksource 1069 */ 1070 if (tk->tkr_mono.clock != system_counterval.cs) 1071 return -ENODEV; 1072 cycles = system_counterval.cycles; 1073 1074 /* 1075 * Check whether the system counter value provided by the 1076 * device driver is on the current timekeeping interval. 1077 */ 1078 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1079 interval_start = tk->tkr_mono.cycle_last; 1080 if (!cycle_between(interval_start, cycles, now)) { 1081 clock_was_set_seq = tk->clock_was_set_seq; 1082 cs_was_changed_seq = tk->cs_was_changed_seq; 1083 cycles = interval_start; 1084 do_interp = true; 1085 } else { 1086 do_interp = false; 1087 } 1088 1089 base_real = ktime_add(tk->tkr_mono.base, 1090 tk_core.timekeeper.offs_real); 1091 base_raw = tk->tkr_raw.base; 1092 1093 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1094 system_counterval.cycles); 1095 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1096 system_counterval.cycles); 1097 } while (read_seqcount_retry(&tk_core.seq, seq)); 1098 1099 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1100 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1101 1102 /* 1103 * Interpolate if necessary, adjusting back from the start of the 1104 * current interval 1105 */ 1106 if (do_interp) { 1107 cycle_t partial_history_cycles, total_history_cycles; 1108 bool discontinuity; 1109 1110 /* 1111 * Check that the counter value occurs after the provided 1112 * history reference and that the history doesn't cross a 1113 * clocksource change 1114 */ 1115 if (!history_begin || 1116 !cycle_between(history_begin->cycles, 1117 system_counterval.cycles, cycles) || 1118 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1119 return -EINVAL; 1120 partial_history_cycles = cycles - system_counterval.cycles; 1121 total_history_cycles = cycles - history_begin->cycles; 1122 discontinuity = 1123 history_begin->clock_was_set_seq != clock_was_set_seq; 1124 1125 ret = adjust_historical_crosststamp(history_begin, 1126 partial_history_cycles, 1127 total_history_cycles, 1128 discontinuity, xtstamp); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 return 0; 1134 } 1135 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1136 1137 /** 1138 * do_gettimeofday - Returns the time of day in a timeval 1139 * @tv: pointer to the timeval to be set 1140 * 1141 * NOTE: Users should be converted to using getnstimeofday() 1142 */ 1143 void do_gettimeofday(struct timeval *tv) 1144 { 1145 struct timespec64 now; 1146 1147 getnstimeofday64(&now); 1148 tv->tv_sec = now.tv_sec; 1149 tv->tv_usec = now.tv_nsec/1000; 1150 } 1151 EXPORT_SYMBOL(do_gettimeofday); 1152 1153 /** 1154 * do_settimeofday64 - Sets the time of day. 1155 * @ts: pointer to the timespec64 variable containing the new time 1156 * 1157 * Sets the time of day to the new time and update NTP and notify hrtimers 1158 */ 1159 int do_settimeofday64(const struct timespec64 *ts) 1160 { 1161 struct timekeeper *tk = &tk_core.timekeeper; 1162 struct timespec64 ts_delta, xt; 1163 unsigned long flags; 1164 int ret = 0; 1165 1166 if (!timespec64_valid_strict(ts)) 1167 return -EINVAL; 1168 1169 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1170 write_seqcount_begin(&tk_core.seq); 1171 1172 timekeeping_forward_now(tk); 1173 1174 xt = tk_xtime(tk); 1175 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1176 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1177 1178 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1179 ret = -EINVAL; 1180 goto out; 1181 } 1182 1183 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1184 1185 tk_set_xtime(tk, ts); 1186 out: 1187 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1188 1189 write_seqcount_end(&tk_core.seq); 1190 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1191 1192 /* signal hrtimers about time change */ 1193 clock_was_set(); 1194 1195 return ret; 1196 } 1197 EXPORT_SYMBOL(do_settimeofday64); 1198 1199 /** 1200 * timekeeping_inject_offset - Adds or subtracts from the current time. 1201 * @tv: pointer to the timespec variable containing the offset 1202 * 1203 * Adds or subtracts an offset value from the current time. 1204 */ 1205 int timekeeping_inject_offset(struct timespec *ts) 1206 { 1207 struct timekeeper *tk = &tk_core.timekeeper; 1208 unsigned long flags; 1209 struct timespec64 ts64, tmp; 1210 int ret = 0; 1211 1212 if (!timespec_inject_offset_valid(ts)) 1213 return -EINVAL; 1214 1215 ts64 = timespec_to_timespec64(*ts); 1216 1217 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1218 write_seqcount_begin(&tk_core.seq); 1219 1220 timekeeping_forward_now(tk); 1221 1222 /* Make sure the proposed value is valid */ 1223 tmp = timespec64_add(tk_xtime(tk), ts64); 1224 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1225 !timespec64_valid_strict(&tmp)) { 1226 ret = -EINVAL; 1227 goto error; 1228 } 1229 1230 tk_xtime_add(tk, &ts64); 1231 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1232 1233 error: /* even if we error out, we forwarded the time, so call update */ 1234 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1235 1236 write_seqcount_end(&tk_core.seq); 1237 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1238 1239 /* signal hrtimers about time change */ 1240 clock_was_set(); 1241 1242 return ret; 1243 } 1244 EXPORT_SYMBOL(timekeeping_inject_offset); 1245 1246 1247 /** 1248 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1249 * 1250 */ 1251 s32 timekeeping_get_tai_offset(void) 1252 { 1253 struct timekeeper *tk = &tk_core.timekeeper; 1254 unsigned int seq; 1255 s32 ret; 1256 1257 do { 1258 seq = read_seqcount_begin(&tk_core.seq); 1259 ret = tk->tai_offset; 1260 } while (read_seqcount_retry(&tk_core.seq, seq)); 1261 1262 return ret; 1263 } 1264 1265 /** 1266 * __timekeeping_set_tai_offset - Lock free worker function 1267 * 1268 */ 1269 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1270 { 1271 tk->tai_offset = tai_offset; 1272 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1273 } 1274 1275 /** 1276 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1277 * 1278 */ 1279 void timekeeping_set_tai_offset(s32 tai_offset) 1280 { 1281 struct timekeeper *tk = &tk_core.timekeeper; 1282 unsigned long flags; 1283 1284 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1285 write_seqcount_begin(&tk_core.seq); 1286 __timekeeping_set_tai_offset(tk, tai_offset); 1287 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1288 write_seqcount_end(&tk_core.seq); 1289 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1290 clock_was_set(); 1291 } 1292 1293 /** 1294 * change_clocksource - Swaps clocksources if a new one is available 1295 * 1296 * Accumulates current time interval and initializes new clocksource 1297 */ 1298 static int change_clocksource(void *data) 1299 { 1300 struct timekeeper *tk = &tk_core.timekeeper; 1301 struct clocksource *new, *old; 1302 unsigned long flags; 1303 1304 new = (struct clocksource *) data; 1305 1306 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1307 write_seqcount_begin(&tk_core.seq); 1308 1309 timekeeping_forward_now(tk); 1310 /* 1311 * If the cs is in module, get a module reference. Succeeds 1312 * for built-in code (owner == NULL) as well. 1313 */ 1314 if (try_module_get(new->owner)) { 1315 if (!new->enable || new->enable(new) == 0) { 1316 old = tk->tkr_mono.clock; 1317 tk_setup_internals(tk, new); 1318 if (old->disable) 1319 old->disable(old); 1320 module_put(old->owner); 1321 } else { 1322 module_put(new->owner); 1323 } 1324 } 1325 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1326 1327 write_seqcount_end(&tk_core.seq); 1328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1329 1330 return 0; 1331 } 1332 1333 /** 1334 * timekeeping_notify - Install a new clock source 1335 * @clock: pointer to the clock source 1336 * 1337 * This function is called from clocksource.c after a new, better clock 1338 * source has been registered. The caller holds the clocksource_mutex. 1339 */ 1340 int timekeeping_notify(struct clocksource *clock) 1341 { 1342 struct timekeeper *tk = &tk_core.timekeeper; 1343 1344 if (tk->tkr_mono.clock == clock) 1345 return 0; 1346 stop_machine(change_clocksource, clock, NULL); 1347 tick_clock_notify(); 1348 return tk->tkr_mono.clock == clock ? 0 : -1; 1349 } 1350 1351 /** 1352 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1353 * @ts: pointer to the timespec64 to be set 1354 * 1355 * Returns the raw monotonic time (completely un-modified by ntp) 1356 */ 1357 void getrawmonotonic64(struct timespec64 *ts) 1358 { 1359 struct timekeeper *tk = &tk_core.timekeeper; 1360 struct timespec64 ts64; 1361 unsigned long seq; 1362 s64 nsecs; 1363 1364 do { 1365 seq = read_seqcount_begin(&tk_core.seq); 1366 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1367 ts64 = tk->raw_time; 1368 1369 } while (read_seqcount_retry(&tk_core.seq, seq)); 1370 1371 timespec64_add_ns(&ts64, nsecs); 1372 *ts = ts64; 1373 } 1374 EXPORT_SYMBOL(getrawmonotonic64); 1375 1376 1377 /** 1378 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1379 */ 1380 int timekeeping_valid_for_hres(void) 1381 { 1382 struct timekeeper *tk = &tk_core.timekeeper; 1383 unsigned long seq; 1384 int ret; 1385 1386 do { 1387 seq = read_seqcount_begin(&tk_core.seq); 1388 1389 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1390 1391 } while (read_seqcount_retry(&tk_core.seq, seq)); 1392 1393 return ret; 1394 } 1395 1396 /** 1397 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1398 */ 1399 u64 timekeeping_max_deferment(void) 1400 { 1401 struct timekeeper *tk = &tk_core.timekeeper; 1402 unsigned long seq; 1403 u64 ret; 1404 1405 do { 1406 seq = read_seqcount_begin(&tk_core.seq); 1407 1408 ret = tk->tkr_mono.clock->max_idle_ns; 1409 1410 } while (read_seqcount_retry(&tk_core.seq, seq)); 1411 1412 return ret; 1413 } 1414 1415 /** 1416 * read_persistent_clock - Return time from the persistent clock. 1417 * 1418 * Weak dummy function for arches that do not yet support it. 1419 * Reads the time from the battery backed persistent clock. 1420 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1421 * 1422 * XXX - Do be sure to remove it once all arches implement it. 1423 */ 1424 void __weak read_persistent_clock(struct timespec *ts) 1425 { 1426 ts->tv_sec = 0; 1427 ts->tv_nsec = 0; 1428 } 1429 1430 void __weak read_persistent_clock64(struct timespec64 *ts64) 1431 { 1432 struct timespec ts; 1433 1434 read_persistent_clock(&ts); 1435 *ts64 = timespec_to_timespec64(ts); 1436 } 1437 1438 /** 1439 * read_boot_clock64 - Return time of the system start. 1440 * 1441 * Weak dummy function for arches that do not yet support it. 1442 * Function to read the exact time the system has been started. 1443 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1444 * 1445 * XXX - Do be sure to remove it once all arches implement it. 1446 */ 1447 void __weak read_boot_clock64(struct timespec64 *ts) 1448 { 1449 ts->tv_sec = 0; 1450 ts->tv_nsec = 0; 1451 } 1452 1453 /* Flag for if timekeeping_resume() has injected sleeptime */ 1454 static bool sleeptime_injected; 1455 1456 /* Flag for if there is a persistent clock on this platform */ 1457 static bool persistent_clock_exists; 1458 1459 /* 1460 * timekeeping_init - Initializes the clocksource and common timekeeping values 1461 */ 1462 void __init timekeeping_init(void) 1463 { 1464 struct timekeeper *tk = &tk_core.timekeeper; 1465 struct clocksource *clock; 1466 unsigned long flags; 1467 struct timespec64 now, boot, tmp; 1468 1469 read_persistent_clock64(&now); 1470 if (!timespec64_valid_strict(&now)) { 1471 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1472 " Check your CMOS/BIOS settings.\n"); 1473 now.tv_sec = 0; 1474 now.tv_nsec = 0; 1475 } else if (now.tv_sec || now.tv_nsec) 1476 persistent_clock_exists = true; 1477 1478 read_boot_clock64(&boot); 1479 if (!timespec64_valid_strict(&boot)) { 1480 pr_warn("WARNING: Boot clock returned invalid value!\n" 1481 " Check your CMOS/BIOS settings.\n"); 1482 boot.tv_sec = 0; 1483 boot.tv_nsec = 0; 1484 } 1485 1486 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1487 write_seqcount_begin(&tk_core.seq); 1488 ntp_init(); 1489 1490 clock = clocksource_default_clock(); 1491 if (clock->enable) 1492 clock->enable(clock); 1493 tk_setup_internals(tk, clock); 1494 1495 tk_set_xtime(tk, &now); 1496 tk->raw_time.tv_sec = 0; 1497 tk->raw_time.tv_nsec = 0; 1498 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1499 boot = tk_xtime(tk); 1500 1501 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1502 tk_set_wall_to_mono(tk, tmp); 1503 1504 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1505 1506 write_seqcount_end(&tk_core.seq); 1507 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1508 } 1509 1510 /* time in seconds when suspend began for persistent clock */ 1511 static struct timespec64 timekeeping_suspend_time; 1512 1513 /** 1514 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1515 * @delta: pointer to a timespec delta value 1516 * 1517 * Takes a timespec offset measuring a suspend interval and properly 1518 * adds the sleep offset to the timekeeping variables. 1519 */ 1520 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1521 struct timespec64 *delta) 1522 { 1523 if (!timespec64_valid_strict(delta)) { 1524 printk_deferred(KERN_WARNING 1525 "__timekeeping_inject_sleeptime: Invalid " 1526 "sleep delta value!\n"); 1527 return; 1528 } 1529 tk_xtime_add(tk, delta); 1530 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1531 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1532 tk_debug_account_sleep_time(delta); 1533 } 1534 1535 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1536 /** 1537 * We have three kinds of time sources to use for sleep time 1538 * injection, the preference order is: 1539 * 1) non-stop clocksource 1540 * 2) persistent clock (ie: RTC accessible when irqs are off) 1541 * 3) RTC 1542 * 1543 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1544 * If system has neither 1) nor 2), 3) will be used finally. 1545 * 1546 * 1547 * If timekeeping has injected sleeptime via either 1) or 2), 1548 * 3) becomes needless, so in this case we don't need to call 1549 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1550 * means. 1551 */ 1552 bool timekeeping_rtc_skipresume(void) 1553 { 1554 return sleeptime_injected; 1555 } 1556 1557 /** 1558 * 1) can be determined whether to use or not only when doing 1559 * timekeeping_resume() which is invoked after rtc_suspend(), 1560 * so we can't skip rtc_suspend() surely if system has 1). 1561 * 1562 * But if system has 2), 2) will definitely be used, so in this 1563 * case we don't need to call rtc_suspend(), and this is what 1564 * timekeeping_rtc_skipsuspend() means. 1565 */ 1566 bool timekeeping_rtc_skipsuspend(void) 1567 { 1568 return persistent_clock_exists; 1569 } 1570 1571 /** 1572 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1573 * @delta: pointer to a timespec64 delta value 1574 * 1575 * This hook is for architectures that cannot support read_persistent_clock64 1576 * because their RTC/persistent clock is only accessible when irqs are enabled. 1577 * and also don't have an effective nonstop clocksource. 1578 * 1579 * This function should only be called by rtc_resume(), and allows 1580 * a suspend offset to be injected into the timekeeping values. 1581 */ 1582 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1583 { 1584 struct timekeeper *tk = &tk_core.timekeeper; 1585 unsigned long flags; 1586 1587 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1588 write_seqcount_begin(&tk_core.seq); 1589 1590 timekeeping_forward_now(tk); 1591 1592 __timekeeping_inject_sleeptime(tk, delta); 1593 1594 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1595 1596 write_seqcount_end(&tk_core.seq); 1597 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1598 1599 /* signal hrtimers about time change */ 1600 clock_was_set(); 1601 } 1602 #endif 1603 1604 /** 1605 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1606 */ 1607 void timekeeping_resume(void) 1608 { 1609 struct timekeeper *tk = &tk_core.timekeeper; 1610 struct clocksource *clock = tk->tkr_mono.clock; 1611 unsigned long flags; 1612 struct timespec64 ts_new, ts_delta; 1613 cycle_t cycle_now, cycle_delta; 1614 1615 sleeptime_injected = false; 1616 read_persistent_clock64(&ts_new); 1617 1618 clockevents_resume(); 1619 clocksource_resume(); 1620 1621 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1622 write_seqcount_begin(&tk_core.seq); 1623 1624 /* 1625 * After system resumes, we need to calculate the suspended time and 1626 * compensate it for the OS time. There are 3 sources that could be 1627 * used: Nonstop clocksource during suspend, persistent clock and rtc 1628 * device. 1629 * 1630 * One specific platform may have 1 or 2 or all of them, and the 1631 * preference will be: 1632 * suspend-nonstop clocksource -> persistent clock -> rtc 1633 * The less preferred source will only be tried if there is no better 1634 * usable source. The rtc part is handled separately in rtc core code. 1635 */ 1636 cycle_now = tk->tkr_mono.read(clock); 1637 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1638 cycle_now > tk->tkr_mono.cycle_last) { 1639 u64 num, max = ULLONG_MAX; 1640 u32 mult = clock->mult; 1641 u32 shift = clock->shift; 1642 s64 nsec = 0; 1643 1644 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1645 tk->tkr_mono.mask); 1646 1647 /* 1648 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1649 * suspended time is too long. In that case we need do the 1650 * 64 bits math carefully 1651 */ 1652 do_div(max, mult); 1653 if (cycle_delta > max) { 1654 num = div64_u64(cycle_delta, max); 1655 nsec = (((u64) max * mult) >> shift) * num; 1656 cycle_delta -= num * max; 1657 } 1658 nsec += ((u64) cycle_delta * mult) >> shift; 1659 1660 ts_delta = ns_to_timespec64(nsec); 1661 sleeptime_injected = true; 1662 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1663 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1664 sleeptime_injected = true; 1665 } 1666 1667 if (sleeptime_injected) 1668 __timekeeping_inject_sleeptime(tk, &ts_delta); 1669 1670 /* Re-base the last cycle value */ 1671 tk->tkr_mono.cycle_last = cycle_now; 1672 tk->tkr_raw.cycle_last = cycle_now; 1673 1674 tk->ntp_error = 0; 1675 timekeeping_suspended = 0; 1676 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1677 write_seqcount_end(&tk_core.seq); 1678 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1679 1680 touch_softlockup_watchdog(); 1681 1682 tick_resume(); 1683 hrtimers_resume(); 1684 } 1685 1686 int timekeeping_suspend(void) 1687 { 1688 struct timekeeper *tk = &tk_core.timekeeper; 1689 unsigned long flags; 1690 struct timespec64 delta, delta_delta; 1691 static struct timespec64 old_delta; 1692 1693 read_persistent_clock64(&timekeeping_suspend_time); 1694 1695 /* 1696 * On some systems the persistent_clock can not be detected at 1697 * timekeeping_init by its return value, so if we see a valid 1698 * value returned, update the persistent_clock_exists flag. 1699 */ 1700 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1701 persistent_clock_exists = true; 1702 1703 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1704 write_seqcount_begin(&tk_core.seq); 1705 timekeeping_forward_now(tk); 1706 timekeeping_suspended = 1; 1707 1708 if (persistent_clock_exists) { 1709 /* 1710 * To avoid drift caused by repeated suspend/resumes, 1711 * which each can add ~1 second drift error, 1712 * try to compensate so the difference in system time 1713 * and persistent_clock time stays close to constant. 1714 */ 1715 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1716 delta_delta = timespec64_sub(delta, old_delta); 1717 if (abs(delta_delta.tv_sec) >= 2) { 1718 /* 1719 * if delta_delta is too large, assume time correction 1720 * has occurred and set old_delta to the current delta. 1721 */ 1722 old_delta = delta; 1723 } else { 1724 /* Otherwise try to adjust old_system to compensate */ 1725 timekeeping_suspend_time = 1726 timespec64_add(timekeeping_suspend_time, delta_delta); 1727 } 1728 } 1729 1730 timekeeping_update(tk, TK_MIRROR); 1731 halt_fast_timekeeper(tk); 1732 write_seqcount_end(&tk_core.seq); 1733 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1734 1735 tick_suspend(); 1736 clocksource_suspend(); 1737 clockevents_suspend(); 1738 1739 return 0; 1740 } 1741 1742 /* sysfs resume/suspend bits for timekeeping */ 1743 static struct syscore_ops timekeeping_syscore_ops = { 1744 .resume = timekeeping_resume, 1745 .suspend = timekeeping_suspend, 1746 }; 1747 1748 static int __init timekeeping_init_ops(void) 1749 { 1750 register_syscore_ops(&timekeeping_syscore_ops); 1751 return 0; 1752 } 1753 device_initcall(timekeeping_init_ops); 1754 1755 /* 1756 * Apply a multiplier adjustment to the timekeeper 1757 */ 1758 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1759 s64 offset, 1760 bool negative, 1761 int adj_scale) 1762 { 1763 s64 interval = tk->cycle_interval; 1764 s32 mult_adj = 1; 1765 1766 if (negative) { 1767 mult_adj = -mult_adj; 1768 interval = -interval; 1769 offset = -offset; 1770 } 1771 mult_adj <<= adj_scale; 1772 interval <<= adj_scale; 1773 offset <<= adj_scale; 1774 1775 /* 1776 * So the following can be confusing. 1777 * 1778 * To keep things simple, lets assume mult_adj == 1 for now. 1779 * 1780 * When mult_adj != 1, remember that the interval and offset values 1781 * have been appropriately scaled so the math is the same. 1782 * 1783 * The basic idea here is that we're increasing the multiplier 1784 * by one, this causes the xtime_interval to be incremented by 1785 * one cycle_interval. This is because: 1786 * xtime_interval = cycle_interval * mult 1787 * So if mult is being incremented by one: 1788 * xtime_interval = cycle_interval * (mult + 1) 1789 * Its the same as: 1790 * xtime_interval = (cycle_interval * mult) + cycle_interval 1791 * Which can be shortened to: 1792 * xtime_interval += cycle_interval 1793 * 1794 * So offset stores the non-accumulated cycles. Thus the current 1795 * time (in shifted nanoseconds) is: 1796 * now = (offset * adj) + xtime_nsec 1797 * Now, even though we're adjusting the clock frequency, we have 1798 * to keep time consistent. In other words, we can't jump back 1799 * in time, and we also want to avoid jumping forward in time. 1800 * 1801 * So given the same offset value, we need the time to be the same 1802 * both before and after the freq adjustment. 1803 * now = (offset * adj_1) + xtime_nsec_1 1804 * now = (offset * adj_2) + xtime_nsec_2 1805 * So: 1806 * (offset * adj_1) + xtime_nsec_1 = 1807 * (offset * adj_2) + xtime_nsec_2 1808 * And we know: 1809 * adj_2 = adj_1 + 1 1810 * So: 1811 * (offset * adj_1) + xtime_nsec_1 = 1812 * (offset * (adj_1+1)) + xtime_nsec_2 1813 * (offset * adj_1) + xtime_nsec_1 = 1814 * (offset * adj_1) + offset + xtime_nsec_2 1815 * Canceling the sides: 1816 * xtime_nsec_1 = offset + xtime_nsec_2 1817 * Which gives us: 1818 * xtime_nsec_2 = xtime_nsec_1 - offset 1819 * Which simplfies to: 1820 * xtime_nsec -= offset 1821 * 1822 * XXX - TODO: Doc ntp_error calculation. 1823 */ 1824 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1825 /* NTP adjustment caused clocksource mult overflow */ 1826 WARN_ON_ONCE(1); 1827 return; 1828 } 1829 1830 tk->tkr_mono.mult += mult_adj; 1831 tk->xtime_interval += interval; 1832 tk->tkr_mono.xtime_nsec -= offset; 1833 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1834 } 1835 1836 /* 1837 * Calculate the multiplier adjustment needed to match the frequency 1838 * specified by NTP 1839 */ 1840 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1841 s64 offset) 1842 { 1843 s64 interval = tk->cycle_interval; 1844 s64 xinterval = tk->xtime_interval; 1845 u32 base = tk->tkr_mono.clock->mult; 1846 u32 max = tk->tkr_mono.clock->maxadj; 1847 u32 cur_adj = tk->tkr_mono.mult; 1848 s64 tick_error; 1849 bool negative; 1850 u32 adj_scale; 1851 1852 /* Remove any current error adj from freq calculation */ 1853 if (tk->ntp_err_mult) 1854 xinterval -= tk->cycle_interval; 1855 1856 tk->ntp_tick = ntp_tick_length(); 1857 1858 /* Calculate current error per tick */ 1859 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1860 tick_error -= (xinterval + tk->xtime_remainder); 1861 1862 /* Don't worry about correcting it if its small */ 1863 if (likely((tick_error >= 0) && (tick_error <= interval))) 1864 return; 1865 1866 /* preserve the direction of correction */ 1867 negative = (tick_error < 0); 1868 1869 /* If any adjustment would pass the max, just return */ 1870 if (negative && (cur_adj - 1) <= (base - max)) 1871 return; 1872 if (!negative && (cur_adj + 1) >= (base + max)) 1873 return; 1874 /* 1875 * Sort out the magnitude of the correction, but 1876 * avoid making so large a correction that we go 1877 * over the max adjustment. 1878 */ 1879 adj_scale = 0; 1880 tick_error = abs(tick_error); 1881 while (tick_error > interval) { 1882 u32 adj = 1 << (adj_scale + 1); 1883 1884 /* Check if adjustment gets us within 1 unit from the max */ 1885 if (negative && (cur_adj - adj) <= (base - max)) 1886 break; 1887 if (!negative && (cur_adj + adj) >= (base + max)) 1888 break; 1889 1890 adj_scale++; 1891 tick_error >>= 1; 1892 } 1893 1894 /* scale the corrections */ 1895 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1896 } 1897 1898 /* 1899 * Adjust the timekeeper's multiplier to the correct frequency 1900 * and also to reduce the accumulated error value. 1901 */ 1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1903 { 1904 /* Correct for the current frequency error */ 1905 timekeeping_freqadjust(tk, offset); 1906 1907 /* Next make a small adjustment to fix any cumulative error */ 1908 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1909 tk->ntp_err_mult = 1; 1910 timekeeping_apply_adjustment(tk, offset, 0, 0); 1911 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1912 /* Undo any existing error adjustment */ 1913 timekeeping_apply_adjustment(tk, offset, 1, 0); 1914 tk->ntp_err_mult = 0; 1915 } 1916 1917 if (unlikely(tk->tkr_mono.clock->maxadj && 1918 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1919 > tk->tkr_mono.clock->maxadj))) { 1920 printk_once(KERN_WARNING 1921 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1922 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1923 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1924 } 1925 1926 /* 1927 * It may be possible that when we entered this function, xtime_nsec 1928 * was very small. Further, if we're slightly speeding the clocksource 1929 * in the code above, its possible the required corrective factor to 1930 * xtime_nsec could cause it to underflow. 1931 * 1932 * Now, since we already accumulated the second, cannot simply roll 1933 * the accumulated second back, since the NTP subsystem has been 1934 * notified via second_overflow. So instead we push xtime_nsec forward 1935 * by the amount we underflowed, and add that amount into the error. 1936 * 1937 * We'll correct this error next time through this function, when 1938 * xtime_nsec is not as small. 1939 */ 1940 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1941 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1942 tk->tkr_mono.xtime_nsec = 0; 1943 tk->ntp_error += neg << tk->ntp_error_shift; 1944 } 1945 } 1946 1947 /** 1948 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1949 * 1950 * Helper function that accumulates the nsecs greater than a second 1951 * from the xtime_nsec field to the xtime_secs field. 1952 * It also calls into the NTP code to handle leapsecond processing. 1953 * 1954 */ 1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1956 { 1957 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1958 unsigned int clock_set = 0; 1959 1960 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1961 int leap; 1962 1963 tk->tkr_mono.xtime_nsec -= nsecps; 1964 tk->xtime_sec++; 1965 1966 /* Figure out if its a leap sec and apply if needed */ 1967 leap = second_overflow(tk->xtime_sec); 1968 if (unlikely(leap)) { 1969 struct timespec64 ts; 1970 1971 tk->xtime_sec += leap; 1972 1973 ts.tv_sec = leap; 1974 ts.tv_nsec = 0; 1975 tk_set_wall_to_mono(tk, 1976 timespec64_sub(tk->wall_to_monotonic, ts)); 1977 1978 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1979 1980 clock_set = TK_CLOCK_WAS_SET; 1981 } 1982 } 1983 return clock_set; 1984 } 1985 1986 /** 1987 * logarithmic_accumulation - shifted accumulation of cycles 1988 * 1989 * This functions accumulates a shifted interval of cycles into 1990 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1991 * loop. 1992 * 1993 * Returns the unconsumed cycles. 1994 */ 1995 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1996 u32 shift, 1997 unsigned int *clock_set) 1998 { 1999 cycle_t interval = tk->cycle_interval << shift; 2000 u64 raw_nsecs; 2001 2002 /* If the offset is smaller than a shifted interval, do nothing */ 2003 if (offset < interval) 2004 return offset; 2005 2006 /* Accumulate one shifted interval */ 2007 offset -= interval; 2008 tk->tkr_mono.cycle_last += interval; 2009 tk->tkr_raw.cycle_last += interval; 2010 2011 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2012 *clock_set |= accumulate_nsecs_to_secs(tk); 2013 2014 /* Accumulate raw time */ 2015 raw_nsecs = (u64)tk->raw_interval << shift; 2016 raw_nsecs += tk->raw_time.tv_nsec; 2017 if (raw_nsecs >= NSEC_PER_SEC) { 2018 u64 raw_secs = raw_nsecs; 2019 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2020 tk->raw_time.tv_sec += raw_secs; 2021 } 2022 tk->raw_time.tv_nsec = raw_nsecs; 2023 2024 /* Accumulate error between NTP and clock interval */ 2025 tk->ntp_error += tk->ntp_tick << shift; 2026 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2027 (tk->ntp_error_shift + shift); 2028 2029 return offset; 2030 } 2031 2032 /** 2033 * update_wall_time - Uses the current clocksource to increment the wall time 2034 * 2035 */ 2036 void update_wall_time(void) 2037 { 2038 struct timekeeper *real_tk = &tk_core.timekeeper; 2039 struct timekeeper *tk = &shadow_timekeeper; 2040 cycle_t offset; 2041 int shift = 0, maxshift; 2042 unsigned int clock_set = 0; 2043 unsigned long flags; 2044 2045 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2046 2047 /* Make sure we're fully resumed: */ 2048 if (unlikely(timekeeping_suspended)) 2049 goto out; 2050 2051 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2052 offset = real_tk->cycle_interval; 2053 #else 2054 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2055 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2056 #endif 2057 2058 /* Check if there's really nothing to do */ 2059 if (offset < real_tk->cycle_interval) 2060 goto out; 2061 2062 /* Do some additional sanity checking */ 2063 timekeeping_check_update(real_tk, offset); 2064 2065 /* 2066 * With NO_HZ we may have to accumulate many cycle_intervals 2067 * (think "ticks") worth of time at once. To do this efficiently, 2068 * we calculate the largest doubling multiple of cycle_intervals 2069 * that is smaller than the offset. We then accumulate that 2070 * chunk in one go, and then try to consume the next smaller 2071 * doubled multiple. 2072 */ 2073 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2074 shift = max(0, shift); 2075 /* Bound shift to one less than what overflows tick_length */ 2076 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2077 shift = min(shift, maxshift); 2078 while (offset >= tk->cycle_interval) { 2079 offset = logarithmic_accumulation(tk, offset, shift, 2080 &clock_set); 2081 if (offset < tk->cycle_interval<<shift) 2082 shift--; 2083 } 2084 2085 /* correct the clock when NTP error is too big */ 2086 timekeeping_adjust(tk, offset); 2087 2088 /* 2089 * XXX This can be killed once everyone converts 2090 * to the new update_vsyscall. 2091 */ 2092 old_vsyscall_fixup(tk); 2093 2094 /* 2095 * Finally, make sure that after the rounding 2096 * xtime_nsec isn't larger than NSEC_PER_SEC 2097 */ 2098 clock_set |= accumulate_nsecs_to_secs(tk); 2099 2100 write_seqcount_begin(&tk_core.seq); 2101 /* 2102 * Update the real timekeeper. 2103 * 2104 * We could avoid this memcpy by switching pointers, but that 2105 * requires changes to all other timekeeper usage sites as 2106 * well, i.e. move the timekeeper pointer getter into the 2107 * spinlocked/seqcount protected sections. And we trade this 2108 * memcpy under the tk_core.seq against one before we start 2109 * updating. 2110 */ 2111 timekeeping_update(tk, clock_set); 2112 memcpy(real_tk, tk, sizeof(*tk)); 2113 /* The memcpy must come last. Do not put anything here! */ 2114 write_seqcount_end(&tk_core.seq); 2115 out: 2116 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2117 if (clock_set) 2118 /* Have to call _delayed version, since in irq context*/ 2119 clock_was_set_delayed(); 2120 } 2121 2122 /** 2123 * getboottime64 - Return the real time of system boot. 2124 * @ts: pointer to the timespec64 to be set 2125 * 2126 * Returns the wall-time of boot in a timespec64. 2127 * 2128 * This is based on the wall_to_monotonic offset and the total suspend 2129 * time. Calls to settimeofday will affect the value returned (which 2130 * basically means that however wrong your real time clock is at boot time, 2131 * you get the right time here). 2132 */ 2133 void getboottime64(struct timespec64 *ts) 2134 { 2135 struct timekeeper *tk = &tk_core.timekeeper; 2136 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2137 2138 *ts = ktime_to_timespec64(t); 2139 } 2140 EXPORT_SYMBOL_GPL(getboottime64); 2141 2142 unsigned long get_seconds(void) 2143 { 2144 struct timekeeper *tk = &tk_core.timekeeper; 2145 2146 return tk->xtime_sec; 2147 } 2148 EXPORT_SYMBOL(get_seconds); 2149 2150 struct timespec __current_kernel_time(void) 2151 { 2152 struct timekeeper *tk = &tk_core.timekeeper; 2153 2154 return timespec64_to_timespec(tk_xtime(tk)); 2155 } 2156 2157 struct timespec64 current_kernel_time64(void) 2158 { 2159 struct timekeeper *tk = &tk_core.timekeeper; 2160 struct timespec64 now; 2161 unsigned long seq; 2162 2163 do { 2164 seq = read_seqcount_begin(&tk_core.seq); 2165 2166 now = tk_xtime(tk); 2167 } while (read_seqcount_retry(&tk_core.seq, seq)); 2168 2169 return now; 2170 } 2171 EXPORT_SYMBOL(current_kernel_time64); 2172 2173 struct timespec64 get_monotonic_coarse64(void) 2174 { 2175 struct timekeeper *tk = &tk_core.timekeeper; 2176 struct timespec64 now, mono; 2177 unsigned long seq; 2178 2179 do { 2180 seq = read_seqcount_begin(&tk_core.seq); 2181 2182 now = tk_xtime(tk); 2183 mono = tk->wall_to_monotonic; 2184 } while (read_seqcount_retry(&tk_core.seq, seq)); 2185 2186 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2187 now.tv_nsec + mono.tv_nsec); 2188 2189 return now; 2190 } 2191 EXPORT_SYMBOL(get_monotonic_coarse64); 2192 2193 /* 2194 * Must hold jiffies_lock 2195 */ 2196 void do_timer(unsigned long ticks) 2197 { 2198 jiffies_64 += ticks; 2199 calc_global_load(ticks); 2200 } 2201 2202 /** 2203 * ktime_get_update_offsets_now - hrtimer helper 2204 * @cwsseq: pointer to check and store the clock was set sequence number 2205 * @offs_real: pointer to storage for monotonic -> realtime offset 2206 * @offs_boot: pointer to storage for monotonic -> boottime offset 2207 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2208 * 2209 * Returns current monotonic time and updates the offsets if the 2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2211 * different. 2212 * 2213 * Called from hrtimer_interrupt() or retrigger_next_event() 2214 */ 2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2216 ktime_t *offs_boot, ktime_t *offs_tai) 2217 { 2218 struct timekeeper *tk = &tk_core.timekeeper; 2219 unsigned int seq; 2220 ktime_t base; 2221 u64 nsecs; 2222 2223 do { 2224 seq = read_seqcount_begin(&tk_core.seq); 2225 2226 base = tk->tkr_mono.base; 2227 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2228 base = ktime_add_ns(base, nsecs); 2229 2230 if (*cwsseq != tk->clock_was_set_seq) { 2231 *cwsseq = tk->clock_was_set_seq; 2232 *offs_real = tk->offs_real; 2233 *offs_boot = tk->offs_boot; 2234 *offs_tai = tk->offs_tai; 2235 } 2236 2237 /* Handle leapsecond insertion adjustments */ 2238 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 2239 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2240 2241 } while (read_seqcount_retry(&tk_core.seq, seq)); 2242 2243 return base; 2244 } 2245 2246 /** 2247 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2248 */ 2249 int do_adjtimex(struct timex *txc) 2250 { 2251 struct timekeeper *tk = &tk_core.timekeeper; 2252 unsigned long flags; 2253 struct timespec64 ts; 2254 s32 orig_tai, tai; 2255 int ret; 2256 2257 /* Validate the data before disabling interrupts */ 2258 ret = ntp_validate_timex(txc); 2259 if (ret) 2260 return ret; 2261 2262 if (txc->modes & ADJ_SETOFFSET) { 2263 struct timespec delta; 2264 delta.tv_sec = txc->time.tv_sec; 2265 delta.tv_nsec = txc->time.tv_usec; 2266 if (!(txc->modes & ADJ_NANO)) 2267 delta.tv_nsec *= 1000; 2268 ret = timekeeping_inject_offset(&delta); 2269 if (ret) 2270 return ret; 2271 } 2272 2273 getnstimeofday64(&ts); 2274 2275 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2276 write_seqcount_begin(&tk_core.seq); 2277 2278 orig_tai = tai = tk->tai_offset; 2279 ret = __do_adjtimex(txc, &ts, &tai); 2280 2281 if (tai != orig_tai) { 2282 __timekeeping_set_tai_offset(tk, tai); 2283 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2284 } 2285 tk_update_leap_state(tk); 2286 2287 write_seqcount_end(&tk_core.seq); 2288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2289 2290 if (tai != orig_tai) 2291 clock_was_set(); 2292 2293 ntp_notify_cmos_timer(); 2294 2295 return ret; 2296 } 2297 2298 #ifdef CONFIG_NTP_PPS 2299 /** 2300 * hardpps() - Accessor function to NTP __hardpps function 2301 */ 2302 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2303 { 2304 unsigned long flags; 2305 2306 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2307 write_seqcount_begin(&tk_core.seq); 2308 2309 __hardpps(phase_ts, raw_ts); 2310 2311 write_seqcount_end(&tk_core.seq); 2312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2313 } 2314 EXPORT_SYMBOL(hardpps); 2315 #endif 2316 2317 /** 2318 * xtime_update() - advances the timekeeping infrastructure 2319 * @ticks: number of ticks, that have elapsed since the last call. 2320 * 2321 * Must be called with interrupts disabled. 2322 */ 2323 void xtime_update(unsigned long ticks) 2324 { 2325 write_seqlock(&jiffies_lock); 2326 do_timer(ticks); 2327 write_sequnlock(&jiffies_lock); 2328 update_wall_time(); 2329 } 2330