xref: /linux/kernel/time/timekeeping.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28 
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32 
33 #define TK_CLEAR_NTP		(1 << 0)
34 #define TK_MIRROR		(1 << 1)
35 #define TK_CLOCK_WAS_SET	(1 << 2)
36 
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42 	seqcount_t		seq;
43 	struct timekeeper	timekeeper;
44 } tk_core ____cacheline_aligned;
45 
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48 
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:	Sequence counter for protecting updates. The lowest bit
52  *		is the index for the tk_read_base array
53  * @base:	tk_read_base array. Access is indexed by the lowest bit of
54  *		@seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59 	seqcount_t		seq;
60 	struct tk_read_base	base[2];
61 };
62 
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65 
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 /*
122  * tk_clock_read - atomic clocksource read() helper
123  *
124  * This helper is necessary to use in the read paths because, while the
125  * seqlock ensures we don't return a bad value while structures are updated,
126  * it doesn't protect from potential crashes. There is the possibility that
127  * the tkr's clocksource may change between the read reference, and the
128  * clock reference passed to the read function.  This can cause crashes if
129  * the wrong clocksource is passed to the wrong read function.
130  * This isn't necessary to use when holding the timekeeper_lock or doing
131  * a read of the fast-timekeeper tkrs (which is protected by its own locking
132  * and update logic).
133  */
134 static inline u64 tk_clock_read(struct tk_read_base *tkr)
135 {
136 	struct clocksource *clock = READ_ONCE(tkr->clock);
137 
138 	return clock->read(clock);
139 }
140 
141 #ifdef CONFIG_DEBUG_TIMEKEEPING
142 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
143 
144 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
145 {
146 
147 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
148 	const char *name = tk->tkr_mono.clock->name;
149 
150 	if (offset > max_cycles) {
151 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
152 				offset, name, max_cycles);
153 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
154 	} else {
155 		if (offset > (max_cycles >> 1)) {
156 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
157 					offset, name, max_cycles >> 1);
158 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
159 		}
160 	}
161 
162 	if (tk->underflow_seen) {
163 		if (jiffies - tk->last_warning > WARNING_FREQ) {
164 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
165 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166 			printk_deferred("         Your kernel is probably still fine.\n");
167 			tk->last_warning = jiffies;
168 		}
169 		tk->underflow_seen = 0;
170 	}
171 
172 	if (tk->overflow_seen) {
173 		if (jiffies - tk->last_warning > WARNING_FREQ) {
174 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
175 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
176 			printk_deferred("         Your kernel is probably still fine.\n");
177 			tk->last_warning = jiffies;
178 		}
179 		tk->overflow_seen = 0;
180 	}
181 }
182 
183 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
184 {
185 	struct timekeeper *tk = &tk_core.timekeeper;
186 	u64 now, last, mask, max, delta;
187 	unsigned int seq;
188 
189 	/*
190 	 * Since we're called holding a seqlock, the data may shift
191 	 * under us while we're doing the calculation. This can cause
192 	 * false positives, since we'd note a problem but throw the
193 	 * results away. So nest another seqlock here to atomically
194 	 * grab the points we are checking with.
195 	 */
196 	do {
197 		seq = read_seqcount_begin(&tk_core.seq);
198 		now = tk_clock_read(tkr);
199 		last = tkr->cycle_last;
200 		mask = tkr->mask;
201 		max = tkr->clock->max_cycles;
202 	} while (read_seqcount_retry(&tk_core.seq, seq));
203 
204 	delta = clocksource_delta(now, last, mask);
205 
206 	/*
207 	 * Try to catch underflows by checking if we are seeing small
208 	 * mask-relative negative values.
209 	 */
210 	if (unlikely((~delta & mask) < (mask >> 3))) {
211 		tk->underflow_seen = 1;
212 		delta = 0;
213 	}
214 
215 	/* Cap delta value to the max_cycles values to avoid mult overflows */
216 	if (unlikely(delta > max)) {
217 		tk->overflow_seen = 1;
218 		delta = tkr->clock->max_cycles;
219 	}
220 
221 	return delta;
222 }
223 #else
224 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
225 {
226 }
227 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
228 {
229 	u64 cycle_now, delta;
230 
231 	/* read clocksource */
232 	cycle_now = tk_clock_read(tkr);
233 
234 	/* calculate the delta since the last update_wall_time */
235 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
236 
237 	return delta;
238 }
239 #endif
240 
241 /**
242  * tk_setup_internals - Set up internals to use clocksource clock.
243  *
244  * @tk:		The target timekeeper to setup.
245  * @clock:		Pointer to clocksource.
246  *
247  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
248  * pair and interval request.
249  *
250  * Unless you're the timekeeping code, you should not be using this!
251  */
252 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
253 {
254 	u64 interval;
255 	u64 tmp, ntpinterval;
256 	struct clocksource *old_clock;
257 
258 	++tk->cs_was_changed_seq;
259 	old_clock = tk->tkr_mono.clock;
260 	tk->tkr_mono.clock = clock;
261 	tk->tkr_mono.mask = clock->mask;
262 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
263 
264 	tk->tkr_raw.clock = clock;
265 	tk->tkr_raw.mask = clock->mask;
266 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
267 
268 	/* Do the ns -> cycle conversion first, using original mult */
269 	tmp = NTP_INTERVAL_LENGTH;
270 	tmp <<= clock->shift;
271 	ntpinterval = tmp;
272 	tmp += clock->mult/2;
273 	do_div(tmp, clock->mult);
274 	if (tmp == 0)
275 		tmp = 1;
276 
277 	interval = (u64) tmp;
278 	tk->cycle_interval = interval;
279 
280 	/* Go back from cycles -> shifted ns */
281 	tk->xtime_interval = interval * clock->mult;
282 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
283 	tk->raw_interval = interval * clock->mult;
284 
285 	 /* if changing clocks, convert xtime_nsec shift units */
286 	if (old_clock) {
287 		int shift_change = clock->shift - old_clock->shift;
288 		if (shift_change < 0)
289 			tk->tkr_mono.xtime_nsec >>= -shift_change;
290 		else
291 			tk->tkr_mono.xtime_nsec <<= shift_change;
292 	}
293 	tk->tkr_raw.xtime_nsec = 0;
294 
295 	tk->tkr_mono.shift = clock->shift;
296 	tk->tkr_raw.shift = clock->shift;
297 
298 	tk->ntp_error = 0;
299 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
300 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
301 
302 	/*
303 	 * The timekeeper keeps its own mult values for the currently
304 	 * active clocksource. These value will be adjusted via NTP
305 	 * to counteract clock drifting.
306 	 */
307 	tk->tkr_mono.mult = clock->mult;
308 	tk->tkr_raw.mult = clock->mult;
309 	tk->ntp_err_mult = 0;
310 }
311 
312 /* Timekeeper helper functions. */
313 
314 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
315 static u32 default_arch_gettimeoffset(void) { return 0; }
316 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
317 #else
318 static inline u32 arch_gettimeoffset(void) { return 0; }
319 #endif
320 
321 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
322 {
323 	u64 nsec;
324 
325 	nsec = delta * tkr->mult + tkr->xtime_nsec;
326 	nsec >>= tkr->shift;
327 
328 	/* If arch requires, add in get_arch_timeoffset() */
329 	return nsec + arch_gettimeoffset();
330 }
331 
332 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
333 {
334 	u64 delta;
335 
336 	delta = timekeeping_get_delta(tkr);
337 	return timekeeping_delta_to_ns(tkr, delta);
338 }
339 
340 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
341 {
342 	u64 delta;
343 
344 	/* calculate the delta since the last update_wall_time */
345 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
346 	return timekeeping_delta_to_ns(tkr, delta);
347 }
348 
349 /**
350  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
351  * @tkr: Timekeeping readout base from which we take the update
352  *
353  * We want to use this from any context including NMI and tracing /
354  * instrumenting the timekeeping code itself.
355  *
356  * Employ the latch technique; see @raw_write_seqcount_latch.
357  *
358  * So if a NMI hits the update of base[0] then it will use base[1]
359  * which is still consistent. In the worst case this can result is a
360  * slightly wrong timestamp (a few nanoseconds). See
361  * @ktime_get_mono_fast_ns.
362  */
363 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
364 {
365 	struct tk_read_base *base = tkf->base;
366 
367 	/* Force readers off to base[1] */
368 	raw_write_seqcount_latch(&tkf->seq);
369 
370 	/* Update base[0] */
371 	memcpy(base, tkr, sizeof(*base));
372 
373 	/* Force readers back to base[0] */
374 	raw_write_seqcount_latch(&tkf->seq);
375 
376 	/* Update base[1] */
377 	memcpy(base + 1, base, sizeof(*base));
378 }
379 
380 /**
381  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
382  *
383  * This timestamp is not guaranteed to be monotonic across an update.
384  * The timestamp is calculated by:
385  *
386  *	now = base_mono + clock_delta * slope
387  *
388  * So if the update lowers the slope, readers who are forced to the
389  * not yet updated second array are still using the old steeper slope.
390  *
391  * tmono
392  * ^
393  * |    o  n
394  * |   o n
395  * |  u
396  * | o
397  * |o
398  * |12345678---> reader order
399  *
400  * o = old slope
401  * u = update
402  * n = new slope
403  *
404  * So reader 6 will observe time going backwards versus reader 5.
405  *
406  * While other CPUs are likely to be able observe that, the only way
407  * for a CPU local observation is when an NMI hits in the middle of
408  * the update. Timestamps taken from that NMI context might be ahead
409  * of the following timestamps. Callers need to be aware of that and
410  * deal with it.
411  */
412 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
413 {
414 	struct tk_read_base *tkr;
415 	unsigned int seq;
416 	u64 now;
417 
418 	do {
419 		seq = raw_read_seqcount_latch(&tkf->seq);
420 		tkr = tkf->base + (seq & 0x01);
421 		now = ktime_to_ns(tkr->base);
422 
423 		now += timekeeping_delta_to_ns(tkr,
424 				clocksource_delta(
425 					tk_clock_read(tkr),
426 					tkr->cycle_last,
427 					tkr->mask));
428 	} while (read_seqcount_retry(&tkf->seq, seq));
429 
430 	return now;
431 }
432 
433 u64 ktime_get_mono_fast_ns(void)
434 {
435 	return __ktime_get_fast_ns(&tk_fast_mono);
436 }
437 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
438 
439 u64 ktime_get_raw_fast_ns(void)
440 {
441 	return __ktime_get_fast_ns(&tk_fast_raw);
442 }
443 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
444 
445 /**
446  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
447  *
448  * To keep it NMI safe since we're accessing from tracing, we're not using a
449  * separate timekeeper with updates to monotonic clock and boot offset
450  * protected with seqlocks. This has the following minor side effects:
451  *
452  * (1) Its possible that a timestamp be taken after the boot offset is updated
453  * but before the timekeeper is updated. If this happens, the new boot offset
454  * is added to the old timekeeping making the clock appear to update slightly
455  * earlier:
456  *    CPU 0                                        CPU 1
457  *    timekeeping_inject_sleeptime64()
458  *    __timekeeping_inject_sleeptime(tk, delta);
459  *                                                 timestamp();
460  *    timekeeping_update(tk, TK_CLEAR_NTP...);
461  *
462  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
463  * partially updated.  Since the tk->offs_boot update is a rare event, this
464  * should be a rare occurrence which postprocessing should be able to handle.
465  */
466 u64 notrace ktime_get_boot_fast_ns(void)
467 {
468 	struct timekeeper *tk = &tk_core.timekeeper;
469 
470 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
471 }
472 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
473 
474 /* Suspend-time cycles value for halted fast timekeeper. */
475 static u64 cycles_at_suspend;
476 
477 static u64 dummy_clock_read(struct clocksource *cs)
478 {
479 	return cycles_at_suspend;
480 }
481 
482 static struct clocksource dummy_clock = {
483 	.read = dummy_clock_read,
484 };
485 
486 /**
487  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
488  * @tk: Timekeeper to snapshot.
489  *
490  * It generally is unsafe to access the clocksource after timekeeping has been
491  * suspended, so take a snapshot of the readout base of @tk and use it as the
492  * fast timekeeper's readout base while suspended.  It will return the same
493  * number of cycles every time until timekeeping is resumed at which time the
494  * proper readout base for the fast timekeeper will be restored automatically.
495  */
496 static void halt_fast_timekeeper(struct timekeeper *tk)
497 {
498 	static struct tk_read_base tkr_dummy;
499 	struct tk_read_base *tkr = &tk->tkr_mono;
500 
501 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
502 	cycles_at_suspend = tk_clock_read(tkr);
503 	tkr_dummy.clock = &dummy_clock;
504 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
505 
506 	tkr = &tk->tkr_raw;
507 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
508 	tkr_dummy.clock = &dummy_clock;
509 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
510 }
511 
512 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
513 
514 static inline void update_vsyscall(struct timekeeper *tk)
515 {
516 	struct timespec xt, wm;
517 
518 	xt = timespec64_to_timespec(tk_xtime(tk));
519 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
520 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
521 			    tk->tkr_mono.cycle_last);
522 }
523 
524 static inline void old_vsyscall_fixup(struct timekeeper *tk)
525 {
526 	s64 remainder;
527 
528 	/*
529 	* Store only full nanoseconds into xtime_nsec after rounding
530 	* it up and add the remainder to the error difference.
531 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
532 	* by truncating the remainder in vsyscalls. However, it causes
533 	* additional work to be done in timekeeping_adjust(). Once
534 	* the vsyscall implementations are converted to use xtime_nsec
535 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
536 	* users are removed, this can be killed.
537 	*/
538 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
539 	if (remainder != 0) {
540 		tk->tkr_mono.xtime_nsec -= remainder;
541 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
542 		tk->ntp_error += remainder << tk->ntp_error_shift;
543 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
544 	}
545 }
546 #else
547 #define old_vsyscall_fixup(tk)
548 #endif
549 
550 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
551 
552 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
553 {
554 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
555 }
556 
557 /**
558  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
559  */
560 int pvclock_gtod_register_notifier(struct notifier_block *nb)
561 {
562 	struct timekeeper *tk = &tk_core.timekeeper;
563 	unsigned long flags;
564 	int ret;
565 
566 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
567 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
568 	update_pvclock_gtod(tk, true);
569 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
570 
571 	return ret;
572 }
573 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
574 
575 /**
576  * pvclock_gtod_unregister_notifier - unregister a pvclock
577  * timedata update listener
578  */
579 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
580 {
581 	unsigned long flags;
582 	int ret;
583 
584 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
585 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
586 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
587 
588 	return ret;
589 }
590 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
591 
592 /*
593  * tk_update_leap_state - helper to update the next_leap_ktime
594  */
595 static inline void tk_update_leap_state(struct timekeeper *tk)
596 {
597 	tk->next_leap_ktime = ntp_get_next_leap();
598 	if (tk->next_leap_ktime != KTIME_MAX)
599 		/* Convert to monotonic time */
600 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
601 }
602 
603 /*
604  * Update the ktime_t based scalar nsec members of the timekeeper
605  */
606 static inline void tk_update_ktime_data(struct timekeeper *tk)
607 {
608 	u64 seconds;
609 	u32 nsec;
610 
611 	/*
612 	 * The xtime based monotonic readout is:
613 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
614 	 * The ktime based monotonic readout is:
615 	 *	nsec = base_mono + now();
616 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
617 	 */
618 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
619 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
620 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
621 
622 	/* Update the monotonic raw base */
623 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
624 
625 	/*
626 	 * The sum of the nanoseconds portions of xtime and
627 	 * wall_to_monotonic can be greater/equal one second. Take
628 	 * this into account before updating tk->ktime_sec.
629 	 */
630 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
631 	if (nsec >= NSEC_PER_SEC)
632 		seconds++;
633 	tk->ktime_sec = seconds;
634 }
635 
636 /* must hold timekeeper_lock */
637 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
638 {
639 	if (action & TK_CLEAR_NTP) {
640 		tk->ntp_error = 0;
641 		ntp_clear();
642 	}
643 
644 	tk_update_leap_state(tk);
645 	tk_update_ktime_data(tk);
646 
647 	update_vsyscall(tk);
648 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
649 
650 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
651 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
652 
653 	if (action & TK_CLOCK_WAS_SET)
654 		tk->clock_was_set_seq++;
655 	/*
656 	 * The mirroring of the data to the shadow-timekeeper needs
657 	 * to happen last here to ensure we don't over-write the
658 	 * timekeeper structure on the next update with stale data
659 	 */
660 	if (action & TK_MIRROR)
661 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
662 		       sizeof(tk_core.timekeeper));
663 }
664 
665 /**
666  * timekeeping_forward_now - update clock to the current time
667  *
668  * Forward the current clock to update its state since the last call to
669  * update_wall_time(). This is useful before significant clock changes,
670  * as it avoids having to deal with this time offset explicitly.
671  */
672 static void timekeeping_forward_now(struct timekeeper *tk)
673 {
674 	u64 cycle_now, delta;
675 	u64 nsec;
676 
677 	cycle_now = tk_clock_read(&tk->tkr_mono);
678 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
679 	tk->tkr_mono.cycle_last = cycle_now;
680 	tk->tkr_raw.cycle_last  = cycle_now;
681 
682 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
683 
684 	/* If arch requires, add in get_arch_timeoffset() */
685 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
686 
687 	tk_normalize_xtime(tk);
688 
689 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
690 	timespec64_add_ns(&tk->raw_time, nsec);
691 }
692 
693 /**
694  * __getnstimeofday64 - Returns the time of day in a timespec64.
695  * @ts:		pointer to the timespec to be set
696  *
697  * Updates the time of day in the timespec.
698  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
699  */
700 int __getnstimeofday64(struct timespec64 *ts)
701 {
702 	struct timekeeper *tk = &tk_core.timekeeper;
703 	unsigned long seq;
704 	u64 nsecs;
705 
706 	do {
707 		seq = read_seqcount_begin(&tk_core.seq);
708 
709 		ts->tv_sec = tk->xtime_sec;
710 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
711 
712 	} while (read_seqcount_retry(&tk_core.seq, seq));
713 
714 	ts->tv_nsec = 0;
715 	timespec64_add_ns(ts, nsecs);
716 
717 	/*
718 	 * Do not bail out early, in case there were callers still using
719 	 * the value, even in the face of the WARN_ON.
720 	 */
721 	if (unlikely(timekeeping_suspended))
722 		return -EAGAIN;
723 	return 0;
724 }
725 EXPORT_SYMBOL(__getnstimeofday64);
726 
727 /**
728  * getnstimeofday64 - Returns the time of day in a timespec64.
729  * @ts:		pointer to the timespec64 to be set
730  *
731  * Returns the time of day in a timespec64 (WARN if suspended).
732  */
733 void getnstimeofday64(struct timespec64 *ts)
734 {
735 	WARN_ON(__getnstimeofday64(ts));
736 }
737 EXPORT_SYMBOL(getnstimeofday64);
738 
739 ktime_t ktime_get(void)
740 {
741 	struct timekeeper *tk = &tk_core.timekeeper;
742 	unsigned int seq;
743 	ktime_t base;
744 	u64 nsecs;
745 
746 	WARN_ON(timekeeping_suspended);
747 
748 	do {
749 		seq = read_seqcount_begin(&tk_core.seq);
750 		base = tk->tkr_mono.base;
751 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
752 
753 	} while (read_seqcount_retry(&tk_core.seq, seq));
754 
755 	return ktime_add_ns(base, nsecs);
756 }
757 EXPORT_SYMBOL_GPL(ktime_get);
758 
759 u32 ktime_get_resolution_ns(void)
760 {
761 	struct timekeeper *tk = &tk_core.timekeeper;
762 	unsigned int seq;
763 	u32 nsecs;
764 
765 	WARN_ON(timekeeping_suspended);
766 
767 	do {
768 		seq = read_seqcount_begin(&tk_core.seq);
769 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
770 	} while (read_seqcount_retry(&tk_core.seq, seq));
771 
772 	return nsecs;
773 }
774 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
775 
776 static ktime_t *offsets[TK_OFFS_MAX] = {
777 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
778 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
779 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
780 };
781 
782 ktime_t ktime_get_with_offset(enum tk_offsets offs)
783 {
784 	struct timekeeper *tk = &tk_core.timekeeper;
785 	unsigned int seq;
786 	ktime_t base, *offset = offsets[offs];
787 	u64 nsecs;
788 
789 	WARN_ON(timekeeping_suspended);
790 
791 	do {
792 		seq = read_seqcount_begin(&tk_core.seq);
793 		base = ktime_add(tk->tkr_mono.base, *offset);
794 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
795 
796 	} while (read_seqcount_retry(&tk_core.seq, seq));
797 
798 	return ktime_add_ns(base, nsecs);
799 
800 }
801 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
802 
803 /**
804  * ktime_mono_to_any() - convert mononotic time to any other time
805  * @tmono:	time to convert.
806  * @offs:	which offset to use
807  */
808 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
809 {
810 	ktime_t *offset = offsets[offs];
811 	unsigned long seq;
812 	ktime_t tconv;
813 
814 	do {
815 		seq = read_seqcount_begin(&tk_core.seq);
816 		tconv = ktime_add(tmono, *offset);
817 	} while (read_seqcount_retry(&tk_core.seq, seq));
818 
819 	return tconv;
820 }
821 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
822 
823 /**
824  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
825  */
826 ktime_t ktime_get_raw(void)
827 {
828 	struct timekeeper *tk = &tk_core.timekeeper;
829 	unsigned int seq;
830 	ktime_t base;
831 	u64 nsecs;
832 
833 	do {
834 		seq = read_seqcount_begin(&tk_core.seq);
835 		base = tk->tkr_raw.base;
836 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
837 
838 	} while (read_seqcount_retry(&tk_core.seq, seq));
839 
840 	return ktime_add_ns(base, nsecs);
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_raw);
843 
844 /**
845  * ktime_get_ts64 - get the monotonic clock in timespec64 format
846  * @ts:		pointer to timespec variable
847  *
848  * The function calculates the monotonic clock from the realtime
849  * clock and the wall_to_monotonic offset and stores the result
850  * in normalized timespec64 format in the variable pointed to by @ts.
851  */
852 void ktime_get_ts64(struct timespec64 *ts)
853 {
854 	struct timekeeper *tk = &tk_core.timekeeper;
855 	struct timespec64 tomono;
856 	unsigned int seq;
857 	u64 nsec;
858 
859 	WARN_ON(timekeeping_suspended);
860 
861 	do {
862 		seq = read_seqcount_begin(&tk_core.seq);
863 		ts->tv_sec = tk->xtime_sec;
864 		nsec = timekeeping_get_ns(&tk->tkr_mono);
865 		tomono = tk->wall_to_monotonic;
866 
867 	} while (read_seqcount_retry(&tk_core.seq, seq));
868 
869 	ts->tv_sec += tomono.tv_sec;
870 	ts->tv_nsec = 0;
871 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
872 }
873 EXPORT_SYMBOL_GPL(ktime_get_ts64);
874 
875 /**
876  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
877  *
878  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
879  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
880  * works on both 32 and 64 bit systems. On 32 bit systems the readout
881  * covers ~136 years of uptime which should be enough to prevent
882  * premature wrap arounds.
883  */
884 time64_t ktime_get_seconds(void)
885 {
886 	struct timekeeper *tk = &tk_core.timekeeper;
887 
888 	WARN_ON(timekeeping_suspended);
889 	return tk->ktime_sec;
890 }
891 EXPORT_SYMBOL_GPL(ktime_get_seconds);
892 
893 /**
894  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
895  *
896  * Returns the wall clock seconds since 1970. This replaces the
897  * get_seconds() interface which is not y2038 safe on 32bit systems.
898  *
899  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
900  * 32bit systems the access must be protected with the sequence
901  * counter to provide "atomic" access to the 64bit tk->xtime_sec
902  * value.
903  */
904 time64_t ktime_get_real_seconds(void)
905 {
906 	struct timekeeper *tk = &tk_core.timekeeper;
907 	time64_t seconds;
908 	unsigned int seq;
909 
910 	if (IS_ENABLED(CONFIG_64BIT))
911 		return tk->xtime_sec;
912 
913 	do {
914 		seq = read_seqcount_begin(&tk_core.seq);
915 		seconds = tk->xtime_sec;
916 
917 	} while (read_seqcount_retry(&tk_core.seq, seq));
918 
919 	return seconds;
920 }
921 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
922 
923 /**
924  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
925  * but without the sequence counter protect. This internal function
926  * is called just when timekeeping lock is already held.
927  */
928 time64_t __ktime_get_real_seconds(void)
929 {
930 	struct timekeeper *tk = &tk_core.timekeeper;
931 
932 	return tk->xtime_sec;
933 }
934 
935 /**
936  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
937  * @systime_snapshot:	pointer to struct receiving the system time snapshot
938  */
939 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
940 {
941 	struct timekeeper *tk = &tk_core.timekeeper;
942 	unsigned long seq;
943 	ktime_t base_raw;
944 	ktime_t base_real;
945 	u64 nsec_raw;
946 	u64 nsec_real;
947 	u64 now;
948 
949 	WARN_ON_ONCE(timekeeping_suspended);
950 
951 	do {
952 		seq = read_seqcount_begin(&tk_core.seq);
953 		now = tk_clock_read(&tk->tkr_mono);
954 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
955 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
956 		base_real = ktime_add(tk->tkr_mono.base,
957 				      tk_core.timekeeper.offs_real);
958 		base_raw = tk->tkr_raw.base;
959 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
960 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
961 	} while (read_seqcount_retry(&tk_core.seq, seq));
962 
963 	systime_snapshot->cycles = now;
964 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
965 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
966 }
967 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
968 
969 /* Scale base by mult/div checking for overflow */
970 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
971 {
972 	u64 tmp, rem;
973 
974 	tmp = div64_u64_rem(*base, div, &rem);
975 
976 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
977 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
978 		return -EOVERFLOW;
979 	tmp *= mult;
980 	rem *= mult;
981 
982 	do_div(rem, div);
983 	*base = tmp + rem;
984 	return 0;
985 }
986 
987 /**
988  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
989  * @history:			Snapshot representing start of history
990  * @partial_history_cycles:	Cycle offset into history (fractional part)
991  * @total_history_cycles:	Total history length in cycles
992  * @discontinuity:		True indicates clock was set on history period
993  * @ts:				Cross timestamp that should be adjusted using
994  *	partial/total ratio
995  *
996  * Helper function used by get_device_system_crosststamp() to correct the
997  * crosstimestamp corresponding to the start of the current interval to the
998  * system counter value (timestamp point) provided by the driver. The
999  * total_history_* quantities are the total history starting at the provided
1000  * reference point and ending at the start of the current interval. The cycle
1001  * count between the driver timestamp point and the start of the current
1002  * interval is partial_history_cycles.
1003  */
1004 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1005 					 u64 partial_history_cycles,
1006 					 u64 total_history_cycles,
1007 					 bool discontinuity,
1008 					 struct system_device_crosststamp *ts)
1009 {
1010 	struct timekeeper *tk = &tk_core.timekeeper;
1011 	u64 corr_raw, corr_real;
1012 	bool interp_forward;
1013 	int ret;
1014 
1015 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1016 		return 0;
1017 
1018 	/* Interpolate shortest distance from beginning or end of history */
1019 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1020 	partial_history_cycles = interp_forward ?
1021 		total_history_cycles - partial_history_cycles :
1022 		partial_history_cycles;
1023 
1024 	/*
1025 	 * Scale the monotonic raw time delta by:
1026 	 *	partial_history_cycles / total_history_cycles
1027 	 */
1028 	corr_raw = (u64)ktime_to_ns(
1029 		ktime_sub(ts->sys_monoraw, history->raw));
1030 	ret = scale64_check_overflow(partial_history_cycles,
1031 				     total_history_cycles, &corr_raw);
1032 	if (ret)
1033 		return ret;
1034 
1035 	/*
1036 	 * If there is a discontinuity in the history, scale monotonic raw
1037 	 *	correction by:
1038 	 *	mult(real)/mult(raw) yielding the realtime correction
1039 	 * Otherwise, calculate the realtime correction similar to monotonic
1040 	 *	raw calculation
1041 	 */
1042 	if (discontinuity) {
1043 		corr_real = mul_u64_u32_div
1044 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1045 	} else {
1046 		corr_real = (u64)ktime_to_ns(
1047 			ktime_sub(ts->sys_realtime, history->real));
1048 		ret = scale64_check_overflow(partial_history_cycles,
1049 					     total_history_cycles, &corr_real);
1050 		if (ret)
1051 			return ret;
1052 	}
1053 
1054 	/* Fixup monotonic raw and real time time values */
1055 	if (interp_forward) {
1056 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1057 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1058 	} else {
1059 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1060 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * cycle_between - true if test occurs chronologically between before and after
1068  */
1069 static bool cycle_between(u64 before, u64 test, u64 after)
1070 {
1071 	if (test > before && test < after)
1072 		return true;
1073 	if (test < before && before > after)
1074 		return true;
1075 	return false;
1076 }
1077 
1078 /**
1079  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1080  * @get_time_fn:	Callback to get simultaneous device time and
1081  *	system counter from the device driver
1082  * @ctx:		Context passed to get_time_fn()
1083  * @history_begin:	Historical reference point used to interpolate system
1084  *	time when counter provided by the driver is before the current interval
1085  * @xtstamp:		Receives simultaneously captured system and device time
1086  *
1087  * Reads a timestamp from a device and correlates it to system time
1088  */
1089 int get_device_system_crosststamp(int (*get_time_fn)
1090 				  (ktime_t *device_time,
1091 				   struct system_counterval_t *sys_counterval,
1092 				   void *ctx),
1093 				  void *ctx,
1094 				  struct system_time_snapshot *history_begin,
1095 				  struct system_device_crosststamp *xtstamp)
1096 {
1097 	struct system_counterval_t system_counterval;
1098 	struct timekeeper *tk = &tk_core.timekeeper;
1099 	u64 cycles, now, interval_start;
1100 	unsigned int clock_was_set_seq = 0;
1101 	ktime_t base_real, base_raw;
1102 	u64 nsec_real, nsec_raw;
1103 	u8 cs_was_changed_seq;
1104 	unsigned long seq;
1105 	bool do_interp;
1106 	int ret;
1107 
1108 	do {
1109 		seq = read_seqcount_begin(&tk_core.seq);
1110 		/*
1111 		 * Try to synchronously capture device time and a system
1112 		 * counter value calling back into the device driver
1113 		 */
1114 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1115 		if (ret)
1116 			return ret;
1117 
1118 		/*
1119 		 * Verify that the clocksource associated with the captured
1120 		 * system counter value is the same as the currently installed
1121 		 * timekeeper clocksource
1122 		 */
1123 		if (tk->tkr_mono.clock != system_counterval.cs)
1124 			return -ENODEV;
1125 		cycles = system_counterval.cycles;
1126 
1127 		/*
1128 		 * Check whether the system counter value provided by the
1129 		 * device driver is on the current timekeeping interval.
1130 		 */
1131 		now = tk_clock_read(&tk->tkr_mono);
1132 		interval_start = tk->tkr_mono.cycle_last;
1133 		if (!cycle_between(interval_start, cycles, now)) {
1134 			clock_was_set_seq = tk->clock_was_set_seq;
1135 			cs_was_changed_seq = tk->cs_was_changed_seq;
1136 			cycles = interval_start;
1137 			do_interp = true;
1138 		} else {
1139 			do_interp = false;
1140 		}
1141 
1142 		base_real = ktime_add(tk->tkr_mono.base,
1143 				      tk_core.timekeeper.offs_real);
1144 		base_raw = tk->tkr_raw.base;
1145 
1146 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1147 						     system_counterval.cycles);
1148 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1149 						    system_counterval.cycles);
1150 	} while (read_seqcount_retry(&tk_core.seq, seq));
1151 
1152 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1153 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1154 
1155 	/*
1156 	 * Interpolate if necessary, adjusting back from the start of the
1157 	 * current interval
1158 	 */
1159 	if (do_interp) {
1160 		u64 partial_history_cycles, total_history_cycles;
1161 		bool discontinuity;
1162 
1163 		/*
1164 		 * Check that the counter value occurs after the provided
1165 		 * history reference and that the history doesn't cross a
1166 		 * clocksource change
1167 		 */
1168 		if (!history_begin ||
1169 		    !cycle_between(history_begin->cycles,
1170 				   system_counterval.cycles, cycles) ||
1171 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1172 			return -EINVAL;
1173 		partial_history_cycles = cycles - system_counterval.cycles;
1174 		total_history_cycles = cycles - history_begin->cycles;
1175 		discontinuity =
1176 			history_begin->clock_was_set_seq != clock_was_set_seq;
1177 
1178 		ret = adjust_historical_crosststamp(history_begin,
1179 						    partial_history_cycles,
1180 						    total_history_cycles,
1181 						    discontinuity, xtstamp);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1189 
1190 /**
1191  * do_gettimeofday - Returns the time of day in a timeval
1192  * @tv:		pointer to the timeval to be set
1193  *
1194  * NOTE: Users should be converted to using getnstimeofday()
1195  */
1196 void do_gettimeofday(struct timeval *tv)
1197 {
1198 	struct timespec64 now;
1199 
1200 	getnstimeofday64(&now);
1201 	tv->tv_sec = now.tv_sec;
1202 	tv->tv_usec = now.tv_nsec/1000;
1203 }
1204 EXPORT_SYMBOL(do_gettimeofday);
1205 
1206 /**
1207  * do_settimeofday64 - Sets the time of day.
1208  * @ts:     pointer to the timespec64 variable containing the new time
1209  *
1210  * Sets the time of day to the new time and update NTP and notify hrtimers
1211  */
1212 int do_settimeofday64(const struct timespec64 *ts)
1213 {
1214 	struct timekeeper *tk = &tk_core.timekeeper;
1215 	struct timespec64 ts_delta, xt;
1216 	unsigned long flags;
1217 	int ret = 0;
1218 
1219 	if (!timespec64_valid_strict(ts))
1220 		return -EINVAL;
1221 
1222 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1223 	write_seqcount_begin(&tk_core.seq);
1224 
1225 	timekeeping_forward_now(tk);
1226 
1227 	xt = tk_xtime(tk);
1228 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1229 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1230 
1231 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1232 		ret = -EINVAL;
1233 		goto out;
1234 	}
1235 
1236 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1237 
1238 	tk_set_xtime(tk, ts);
1239 out:
1240 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241 
1242 	write_seqcount_end(&tk_core.seq);
1243 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244 
1245 	/* signal hrtimers about time change */
1246 	clock_was_set();
1247 
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(do_settimeofday64);
1251 
1252 /**
1253  * timekeeping_inject_offset - Adds or subtracts from the current time.
1254  * @tv:		pointer to the timespec variable containing the offset
1255  *
1256  * Adds or subtracts an offset value from the current time.
1257  */
1258 int timekeeping_inject_offset(struct timespec *ts)
1259 {
1260 	struct timekeeper *tk = &tk_core.timekeeper;
1261 	unsigned long flags;
1262 	struct timespec64 ts64, tmp;
1263 	int ret = 0;
1264 
1265 	if (!timespec_inject_offset_valid(ts))
1266 		return -EINVAL;
1267 
1268 	ts64 = timespec_to_timespec64(*ts);
1269 
1270 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1271 	write_seqcount_begin(&tk_core.seq);
1272 
1273 	timekeeping_forward_now(tk);
1274 
1275 	/* Make sure the proposed value is valid */
1276 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1277 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1278 	    !timespec64_valid_strict(&tmp)) {
1279 		ret = -EINVAL;
1280 		goto error;
1281 	}
1282 
1283 	tk_xtime_add(tk, &ts64);
1284 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1285 
1286 error: /* even if we error out, we forwarded the time, so call update */
1287 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1288 
1289 	write_seqcount_end(&tk_core.seq);
1290 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1291 
1292 	/* signal hrtimers about time change */
1293 	clock_was_set();
1294 
1295 	return ret;
1296 }
1297 EXPORT_SYMBOL(timekeeping_inject_offset);
1298 
1299 /**
1300  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1301  *
1302  */
1303 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1304 {
1305 	tk->tai_offset = tai_offset;
1306 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1307 }
1308 
1309 /**
1310  * change_clocksource - Swaps clocksources if a new one is available
1311  *
1312  * Accumulates current time interval and initializes new clocksource
1313  */
1314 static int change_clocksource(void *data)
1315 {
1316 	struct timekeeper *tk = &tk_core.timekeeper;
1317 	struct clocksource *new, *old;
1318 	unsigned long flags;
1319 
1320 	new = (struct clocksource *) data;
1321 
1322 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1323 	write_seqcount_begin(&tk_core.seq);
1324 
1325 	timekeeping_forward_now(tk);
1326 	/*
1327 	 * If the cs is in module, get a module reference. Succeeds
1328 	 * for built-in code (owner == NULL) as well.
1329 	 */
1330 	if (try_module_get(new->owner)) {
1331 		if (!new->enable || new->enable(new) == 0) {
1332 			old = tk->tkr_mono.clock;
1333 			tk_setup_internals(tk, new);
1334 			if (old->disable)
1335 				old->disable(old);
1336 			module_put(old->owner);
1337 		} else {
1338 			module_put(new->owner);
1339 		}
1340 	}
1341 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1342 
1343 	write_seqcount_end(&tk_core.seq);
1344 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1345 
1346 	return 0;
1347 }
1348 
1349 /**
1350  * timekeeping_notify - Install a new clock source
1351  * @clock:		pointer to the clock source
1352  *
1353  * This function is called from clocksource.c after a new, better clock
1354  * source has been registered. The caller holds the clocksource_mutex.
1355  */
1356 int timekeeping_notify(struct clocksource *clock)
1357 {
1358 	struct timekeeper *tk = &tk_core.timekeeper;
1359 
1360 	if (tk->tkr_mono.clock == clock)
1361 		return 0;
1362 	stop_machine(change_clocksource, clock, NULL);
1363 	tick_clock_notify();
1364 	return tk->tkr_mono.clock == clock ? 0 : -1;
1365 }
1366 
1367 /**
1368  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1369  * @ts:		pointer to the timespec64 to be set
1370  *
1371  * Returns the raw monotonic time (completely un-modified by ntp)
1372  */
1373 void getrawmonotonic64(struct timespec64 *ts)
1374 {
1375 	struct timekeeper *tk = &tk_core.timekeeper;
1376 	struct timespec64 ts64;
1377 	unsigned long seq;
1378 	u64 nsecs;
1379 
1380 	do {
1381 		seq = read_seqcount_begin(&tk_core.seq);
1382 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1383 		ts64 = tk->raw_time;
1384 
1385 	} while (read_seqcount_retry(&tk_core.seq, seq));
1386 
1387 	timespec64_add_ns(&ts64, nsecs);
1388 	*ts = ts64;
1389 }
1390 EXPORT_SYMBOL(getrawmonotonic64);
1391 
1392 
1393 /**
1394  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1395  */
1396 int timekeeping_valid_for_hres(void)
1397 {
1398 	struct timekeeper *tk = &tk_core.timekeeper;
1399 	unsigned long seq;
1400 	int ret;
1401 
1402 	do {
1403 		seq = read_seqcount_begin(&tk_core.seq);
1404 
1405 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1406 
1407 	} while (read_seqcount_retry(&tk_core.seq, seq));
1408 
1409 	return ret;
1410 }
1411 
1412 /**
1413  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1414  */
1415 u64 timekeeping_max_deferment(void)
1416 {
1417 	struct timekeeper *tk = &tk_core.timekeeper;
1418 	unsigned long seq;
1419 	u64 ret;
1420 
1421 	do {
1422 		seq = read_seqcount_begin(&tk_core.seq);
1423 
1424 		ret = tk->tkr_mono.clock->max_idle_ns;
1425 
1426 	} while (read_seqcount_retry(&tk_core.seq, seq));
1427 
1428 	return ret;
1429 }
1430 
1431 /**
1432  * read_persistent_clock -  Return time from the persistent clock.
1433  *
1434  * Weak dummy function for arches that do not yet support it.
1435  * Reads the time from the battery backed persistent clock.
1436  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1437  *
1438  *  XXX - Do be sure to remove it once all arches implement it.
1439  */
1440 void __weak read_persistent_clock(struct timespec *ts)
1441 {
1442 	ts->tv_sec = 0;
1443 	ts->tv_nsec = 0;
1444 }
1445 
1446 void __weak read_persistent_clock64(struct timespec64 *ts64)
1447 {
1448 	struct timespec ts;
1449 
1450 	read_persistent_clock(&ts);
1451 	*ts64 = timespec_to_timespec64(ts);
1452 }
1453 
1454 /**
1455  * read_boot_clock64 -  Return time of the system start.
1456  *
1457  * Weak dummy function for arches that do not yet support it.
1458  * Function to read the exact time the system has been started.
1459  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1460  *
1461  *  XXX - Do be sure to remove it once all arches implement it.
1462  */
1463 void __weak read_boot_clock64(struct timespec64 *ts)
1464 {
1465 	ts->tv_sec = 0;
1466 	ts->tv_nsec = 0;
1467 }
1468 
1469 /* Flag for if timekeeping_resume() has injected sleeptime */
1470 static bool sleeptime_injected;
1471 
1472 /* Flag for if there is a persistent clock on this platform */
1473 static bool persistent_clock_exists;
1474 
1475 /*
1476  * timekeeping_init - Initializes the clocksource and common timekeeping values
1477  */
1478 void __init timekeeping_init(void)
1479 {
1480 	struct timekeeper *tk = &tk_core.timekeeper;
1481 	struct clocksource *clock;
1482 	unsigned long flags;
1483 	struct timespec64 now, boot, tmp;
1484 
1485 	read_persistent_clock64(&now);
1486 	if (!timespec64_valid_strict(&now)) {
1487 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1488 			"         Check your CMOS/BIOS settings.\n");
1489 		now.tv_sec = 0;
1490 		now.tv_nsec = 0;
1491 	} else if (now.tv_sec || now.tv_nsec)
1492 		persistent_clock_exists = true;
1493 
1494 	read_boot_clock64(&boot);
1495 	if (!timespec64_valid_strict(&boot)) {
1496 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1497 			"         Check your CMOS/BIOS settings.\n");
1498 		boot.tv_sec = 0;
1499 		boot.tv_nsec = 0;
1500 	}
1501 
1502 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1503 	write_seqcount_begin(&tk_core.seq);
1504 	ntp_init();
1505 
1506 	clock = clocksource_default_clock();
1507 	if (clock->enable)
1508 		clock->enable(clock);
1509 	tk_setup_internals(tk, clock);
1510 
1511 	tk_set_xtime(tk, &now);
1512 	tk->raw_time.tv_sec = 0;
1513 	tk->raw_time.tv_nsec = 0;
1514 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1515 		boot = tk_xtime(tk);
1516 
1517 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1518 	tk_set_wall_to_mono(tk, tmp);
1519 
1520 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1521 
1522 	write_seqcount_end(&tk_core.seq);
1523 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1524 }
1525 
1526 /* time in seconds when suspend began for persistent clock */
1527 static struct timespec64 timekeeping_suspend_time;
1528 
1529 /**
1530  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1531  * @delta: pointer to a timespec delta value
1532  *
1533  * Takes a timespec offset measuring a suspend interval and properly
1534  * adds the sleep offset to the timekeeping variables.
1535  */
1536 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1537 					   struct timespec64 *delta)
1538 {
1539 	if (!timespec64_valid_strict(delta)) {
1540 		printk_deferred(KERN_WARNING
1541 				"__timekeeping_inject_sleeptime: Invalid "
1542 				"sleep delta value!\n");
1543 		return;
1544 	}
1545 	tk_xtime_add(tk, delta);
1546 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1547 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1548 	tk_debug_account_sleep_time(delta);
1549 }
1550 
1551 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1552 /**
1553  * We have three kinds of time sources to use for sleep time
1554  * injection, the preference order is:
1555  * 1) non-stop clocksource
1556  * 2) persistent clock (ie: RTC accessible when irqs are off)
1557  * 3) RTC
1558  *
1559  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1560  * If system has neither 1) nor 2), 3) will be used finally.
1561  *
1562  *
1563  * If timekeeping has injected sleeptime via either 1) or 2),
1564  * 3) becomes needless, so in this case we don't need to call
1565  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1566  * means.
1567  */
1568 bool timekeeping_rtc_skipresume(void)
1569 {
1570 	return sleeptime_injected;
1571 }
1572 
1573 /**
1574  * 1) can be determined whether to use or not only when doing
1575  * timekeeping_resume() which is invoked after rtc_suspend(),
1576  * so we can't skip rtc_suspend() surely if system has 1).
1577  *
1578  * But if system has 2), 2) will definitely be used, so in this
1579  * case we don't need to call rtc_suspend(), and this is what
1580  * timekeeping_rtc_skipsuspend() means.
1581  */
1582 bool timekeeping_rtc_skipsuspend(void)
1583 {
1584 	return persistent_clock_exists;
1585 }
1586 
1587 /**
1588  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1589  * @delta: pointer to a timespec64 delta value
1590  *
1591  * This hook is for architectures that cannot support read_persistent_clock64
1592  * because their RTC/persistent clock is only accessible when irqs are enabled.
1593  * and also don't have an effective nonstop clocksource.
1594  *
1595  * This function should only be called by rtc_resume(), and allows
1596  * a suspend offset to be injected into the timekeeping values.
1597  */
1598 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1599 {
1600 	struct timekeeper *tk = &tk_core.timekeeper;
1601 	unsigned long flags;
1602 
1603 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1604 	write_seqcount_begin(&tk_core.seq);
1605 
1606 	timekeeping_forward_now(tk);
1607 
1608 	__timekeeping_inject_sleeptime(tk, delta);
1609 
1610 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1611 
1612 	write_seqcount_end(&tk_core.seq);
1613 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1614 
1615 	/* signal hrtimers about time change */
1616 	clock_was_set();
1617 }
1618 #endif
1619 
1620 /**
1621  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1622  */
1623 void timekeeping_resume(void)
1624 {
1625 	struct timekeeper *tk = &tk_core.timekeeper;
1626 	struct clocksource *clock = tk->tkr_mono.clock;
1627 	unsigned long flags;
1628 	struct timespec64 ts_new, ts_delta;
1629 	u64 cycle_now;
1630 
1631 	sleeptime_injected = false;
1632 	read_persistent_clock64(&ts_new);
1633 
1634 	clockevents_resume();
1635 	clocksource_resume();
1636 
1637 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1638 	write_seqcount_begin(&tk_core.seq);
1639 
1640 	/*
1641 	 * After system resumes, we need to calculate the suspended time and
1642 	 * compensate it for the OS time. There are 3 sources that could be
1643 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1644 	 * device.
1645 	 *
1646 	 * One specific platform may have 1 or 2 or all of them, and the
1647 	 * preference will be:
1648 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1649 	 * The less preferred source will only be tried if there is no better
1650 	 * usable source. The rtc part is handled separately in rtc core code.
1651 	 */
1652 	cycle_now = tk_clock_read(&tk->tkr_mono);
1653 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1654 		cycle_now > tk->tkr_mono.cycle_last) {
1655 		u64 nsec, cyc_delta;
1656 
1657 		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1658 					      tk->tkr_mono.mask);
1659 		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1660 		ts_delta = ns_to_timespec64(nsec);
1661 		sleeptime_injected = true;
1662 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1663 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1664 		sleeptime_injected = true;
1665 	}
1666 
1667 	if (sleeptime_injected)
1668 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1669 
1670 	/* Re-base the last cycle value */
1671 	tk->tkr_mono.cycle_last = cycle_now;
1672 	tk->tkr_raw.cycle_last  = cycle_now;
1673 
1674 	tk->ntp_error = 0;
1675 	timekeeping_suspended = 0;
1676 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1677 	write_seqcount_end(&tk_core.seq);
1678 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1679 
1680 	touch_softlockup_watchdog();
1681 
1682 	tick_resume();
1683 	hrtimers_resume();
1684 }
1685 
1686 int timekeeping_suspend(void)
1687 {
1688 	struct timekeeper *tk = &tk_core.timekeeper;
1689 	unsigned long flags;
1690 	struct timespec64		delta, delta_delta;
1691 	static struct timespec64	old_delta;
1692 
1693 	read_persistent_clock64(&timekeeping_suspend_time);
1694 
1695 	/*
1696 	 * On some systems the persistent_clock can not be detected at
1697 	 * timekeeping_init by its return value, so if we see a valid
1698 	 * value returned, update the persistent_clock_exists flag.
1699 	 */
1700 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1701 		persistent_clock_exists = true;
1702 
1703 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1704 	write_seqcount_begin(&tk_core.seq);
1705 	timekeeping_forward_now(tk);
1706 	timekeeping_suspended = 1;
1707 
1708 	if (persistent_clock_exists) {
1709 		/*
1710 		 * To avoid drift caused by repeated suspend/resumes,
1711 		 * which each can add ~1 second drift error,
1712 		 * try to compensate so the difference in system time
1713 		 * and persistent_clock time stays close to constant.
1714 		 */
1715 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1716 		delta_delta = timespec64_sub(delta, old_delta);
1717 		if (abs(delta_delta.tv_sec) >= 2) {
1718 			/*
1719 			 * if delta_delta is too large, assume time correction
1720 			 * has occurred and set old_delta to the current delta.
1721 			 */
1722 			old_delta = delta;
1723 		} else {
1724 			/* Otherwise try to adjust old_system to compensate */
1725 			timekeeping_suspend_time =
1726 				timespec64_add(timekeeping_suspend_time, delta_delta);
1727 		}
1728 	}
1729 
1730 	timekeeping_update(tk, TK_MIRROR);
1731 	halt_fast_timekeeper(tk);
1732 	write_seqcount_end(&tk_core.seq);
1733 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1734 
1735 	tick_suspend();
1736 	clocksource_suspend();
1737 	clockevents_suspend();
1738 
1739 	return 0;
1740 }
1741 
1742 /* sysfs resume/suspend bits for timekeeping */
1743 static struct syscore_ops timekeeping_syscore_ops = {
1744 	.resume		= timekeeping_resume,
1745 	.suspend	= timekeeping_suspend,
1746 };
1747 
1748 static int __init timekeeping_init_ops(void)
1749 {
1750 	register_syscore_ops(&timekeeping_syscore_ops);
1751 	return 0;
1752 }
1753 device_initcall(timekeeping_init_ops);
1754 
1755 /*
1756  * Apply a multiplier adjustment to the timekeeper
1757  */
1758 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1759 							 s64 offset,
1760 							 bool negative,
1761 							 int adj_scale)
1762 {
1763 	s64 interval = tk->cycle_interval;
1764 	s32 mult_adj = 1;
1765 
1766 	if (negative) {
1767 		mult_adj = -mult_adj;
1768 		interval = -interval;
1769 		offset  = -offset;
1770 	}
1771 	mult_adj <<= adj_scale;
1772 	interval <<= adj_scale;
1773 	offset <<= adj_scale;
1774 
1775 	/*
1776 	 * So the following can be confusing.
1777 	 *
1778 	 * To keep things simple, lets assume mult_adj == 1 for now.
1779 	 *
1780 	 * When mult_adj != 1, remember that the interval and offset values
1781 	 * have been appropriately scaled so the math is the same.
1782 	 *
1783 	 * The basic idea here is that we're increasing the multiplier
1784 	 * by one, this causes the xtime_interval to be incremented by
1785 	 * one cycle_interval. This is because:
1786 	 *	xtime_interval = cycle_interval * mult
1787 	 * So if mult is being incremented by one:
1788 	 *	xtime_interval = cycle_interval * (mult + 1)
1789 	 * Its the same as:
1790 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1791 	 * Which can be shortened to:
1792 	 *	xtime_interval += cycle_interval
1793 	 *
1794 	 * So offset stores the non-accumulated cycles. Thus the current
1795 	 * time (in shifted nanoseconds) is:
1796 	 *	now = (offset * adj) + xtime_nsec
1797 	 * Now, even though we're adjusting the clock frequency, we have
1798 	 * to keep time consistent. In other words, we can't jump back
1799 	 * in time, and we also want to avoid jumping forward in time.
1800 	 *
1801 	 * So given the same offset value, we need the time to be the same
1802 	 * both before and after the freq adjustment.
1803 	 *	now = (offset * adj_1) + xtime_nsec_1
1804 	 *	now = (offset * adj_2) + xtime_nsec_2
1805 	 * So:
1806 	 *	(offset * adj_1) + xtime_nsec_1 =
1807 	 *		(offset * adj_2) + xtime_nsec_2
1808 	 * And we know:
1809 	 *	adj_2 = adj_1 + 1
1810 	 * So:
1811 	 *	(offset * adj_1) + xtime_nsec_1 =
1812 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1813 	 *	(offset * adj_1) + xtime_nsec_1 =
1814 	 *		(offset * adj_1) + offset + xtime_nsec_2
1815 	 * Canceling the sides:
1816 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1817 	 * Which gives us:
1818 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1819 	 * Which simplfies to:
1820 	 *	xtime_nsec -= offset
1821 	 *
1822 	 * XXX - TODO: Doc ntp_error calculation.
1823 	 */
1824 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1825 		/* NTP adjustment caused clocksource mult overflow */
1826 		WARN_ON_ONCE(1);
1827 		return;
1828 	}
1829 
1830 	tk->tkr_mono.mult += mult_adj;
1831 	tk->xtime_interval += interval;
1832 	tk->tkr_mono.xtime_nsec -= offset;
1833 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1834 }
1835 
1836 /*
1837  * Calculate the multiplier adjustment needed to match the frequency
1838  * specified by NTP
1839  */
1840 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1841 							s64 offset)
1842 {
1843 	s64 interval = tk->cycle_interval;
1844 	s64 xinterval = tk->xtime_interval;
1845 	u32 base = tk->tkr_mono.clock->mult;
1846 	u32 max = tk->tkr_mono.clock->maxadj;
1847 	u32 cur_adj = tk->tkr_mono.mult;
1848 	s64 tick_error;
1849 	bool negative;
1850 	u32 adj_scale;
1851 
1852 	/* Remove any current error adj from freq calculation */
1853 	if (tk->ntp_err_mult)
1854 		xinterval -= tk->cycle_interval;
1855 
1856 	tk->ntp_tick = ntp_tick_length();
1857 
1858 	/* Calculate current error per tick */
1859 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1860 	tick_error -= (xinterval + tk->xtime_remainder);
1861 
1862 	/* Don't worry about correcting it if its small */
1863 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1864 		return;
1865 
1866 	/* preserve the direction of correction */
1867 	negative = (tick_error < 0);
1868 
1869 	/* If any adjustment would pass the max, just return */
1870 	if (negative && (cur_adj - 1) <= (base - max))
1871 		return;
1872 	if (!negative && (cur_adj + 1) >= (base + max))
1873 		return;
1874 	/*
1875 	 * Sort out the magnitude of the correction, but
1876 	 * avoid making so large a correction that we go
1877 	 * over the max adjustment.
1878 	 */
1879 	adj_scale = 0;
1880 	tick_error = abs(tick_error);
1881 	while (tick_error > interval) {
1882 		u32 adj = 1 << (adj_scale + 1);
1883 
1884 		/* Check if adjustment gets us within 1 unit from the max */
1885 		if (negative && (cur_adj - adj) <= (base - max))
1886 			break;
1887 		if (!negative && (cur_adj + adj) >= (base + max))
1888 			break;
1889 
1890 		adj_scale++;
1891 		tick_error >>= 1;
1892 	}
1893 
1894 	/* scale the corrections */
1895 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1896 }
1897 
1898 /*
1899  * Adjust the timekeeper's multiplier to the correct frequency
1900  * and also to reduce the accumulated error value.
1901  */
1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903 {
1904 	/* Correct for the current frequency error */
1905 	timekeeping_freqadjust(tk, offset);
1906 
1907 	/* Next make a small adjustment to fix any cumulative error */
1908 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1909 		tk->ntp_err_mult = 1;
1910 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1911 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1912 		/* Undo any existing error adjustment */
1913 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1914 		tk->ntp_err_mult = 0;
1915 	}
1916 
1917 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1918 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1919 			> tk->tkr_mono.clock->maxadj))) {
1920 		printk_once(KERN_WARNING
1921 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1922 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1923 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1924 	}
1925 
1926 	/*
1927 	 * It may be possible that when we entered this function, xtime_nsec
1928 	 * was very small.  Further, if we're slightly speeding the clocksource
1929 	 * in the code above, its possible the required corrective factor to
1930 	 * xtime_nsec could cause it to underflow.
1931 	 *
1932 	 * Now, since we already accumulated the second, cannot simply roll
1933 	 * the accumulated second back, since the NTP subsystem has been
1934 	 * notified via second_overflow. So instead we push xtime_nsec forward
1935 	 * by the amount we underflowed, and add that amount into the error.
1936 	 *
1937 	 * We'll correct this error next time through this function, when
1938 	 * xtime_nsec is not as small.
1939 	 */
1940 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1942 		tk->tkr_mono.xtime_nsec = 0;
1943 		tk->ntp_error += neg << tk->ntp_error_shift;
1944 	}
1945 }
1946 
1947 /**
1948  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949  *
1950  * Helper function that accumulates the nsecs greater than a second
1951  * from the xtime_nsec field to the xtime_secs field.
1952  * It also calls into the NTP code to handle leapsecond processing.
1953  *
1954  */
1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956 {
1957 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958 	unsigned int clock_set = 0;
1959 
1960 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961 		int leap;
1962 
1963 		tk->tkr_mono.xtime_nsec -= nsecps;
1964 		tk->xtime_sec++;
1965 
1966 		/* Figure out if its a leap sec and apply if needed */
1967 		leap = second_overflow(tk->xtime_sec);
1968 		if (unlikely(leap)) {
1969 			struct timespec64 ts;
1970 
1971 			tk->xtime_sec += leap;
1972 
1973 			ts.tv_sec = leap;
1974 			ts.tv_nsec = 0;
1975 			tk_set_wall_to_mono(tk,
1976 				timespec64_sub(tk->wall_to_monotonic, ts));
1977 
1978 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1979 
1980 			clock_set = TK_CLOCK_WAS_SET;
1981 		}
1982 	}
1983 	return clock_set;
1984 }
1985 
1986 /**
1987  * logarithmic_accumulation - shifted accumulation of cycles
1988  *
1989  * This functions accumulates a shifted interval of cycles into
1990  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991  * loop.
1992  *
1993  * Returns the unconsumed cycles.
1994  */
1995 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1996 				    u32 shift, unsigned int *clock_set)
1997 {
1998 	u64 interval = tk->cycle_interval << shift;
1999 	u64 snsec_per_sec;
2000 
2001 	/* If the offset is smaller than a shifted interval, do nothing */
2002 	if (offset < interval)
2003 		return offset;
2004 
2005 	/* Accumulate one shifted interval */
2006 	offset -= interval;
2007 	tk->tkr_mono.cycle_last += interval;
2008 	tk->tkr_raw.cycle_last  += interval;
2009 
2010 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2011 	*clock_set |= accumulate_nsecs_to_secs(tk);
2012 
2013 	/* Accumulate raw time */
2014 	tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2015 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2016 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2017 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2018 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2019 		tk->raw_time.tv_sec++;
2020 	}
2021 	tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift;
2022 	tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2023 
2024 	/* Accumulate error between NTP and clock interval */
2025 	tk->ntp_error += tk->ntp_tick << shift;
2026 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2027 						(tk->ntp_error_shift + shift);
2028 
2029 	return offset;
2030 }
2031 
2032 /**
2033  * update_wall_time - Uses the current clocksource to increment the wall time
2034  *
2035  */
2036 void update_wall_time(void)
2037 {
2038 	struct timekeeper *real_tk = &tk_core.timekeeper;
2039 	struct timekeeper *tk = &shadow_timekeeper;
2040 	u64 offset;
2041 	int shift = 0, maxshift;
2042 	unsigned int clock_set = 0;
2043 	unsigned long flags;
2044 
2045 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2046 
2047 	/* Make sure we're fully resumed: */
2048 	if (unlikely(timekeeping_suspended))
2049 		goto out;
2050 
2051 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2052 	offset = real_tk->cycle_interval;
2053 #else
2054 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2055 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2056 #endif
2057 
2058 	/* Check if there's really nothing to do */
2059 	if (offset < real_tk->cycle_interval)
2060 		goto out;
2061 
2062 	/* Do some additional sanity checking */
2063 	timekeeping_check_update(real_tk, offset);
2064 
2065 	/*
2066 	 * With NO_HZ we may have to accumulate many cycle_intervals
2067 	 * (think "ticks") worth of time at once. To do this efficiently,
2068 	 * we calculate the largest doubling multiple of cycle_intervals
2069 	 * that is smaller than the offset.  We then accumulate that
2070 	 * chunk in one go, and then try to consume the next smaller
2071 	 * doubled multiple.
2072 	 */
2073 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2074 	shift = max(0, shift);
2075 	/* Bound shift to one less than what overflows tick_length */
2076 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2077 	shift = min(shift, maxshift);
2078 	while (offset >= tk->cycle_interval) {
2079 		offset = logarithmic_accumulation(tk, offset, shift,
2080 							&clock_set);
2081 		if (offset < tk->cycle_interval<<shift)
2082 			shift--;
2083 	}
2084 
2085 	/* correct the clock when NTP error is too big */
2086 	timekeeping_adjust(tk, offset);
2087 
2088 	/*
2089 	 * XXX This can be killed once everyone converts
2090 	 * to the new update_vsyscall.
2091 	 */
2092 	old_vsyscall_fixup(tk);
2093 
2094 	/*
2095 	 * Finally, make sure that after the rounding
2096 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2097 	 */
2098 	clock_set |= accumulate_nsecs_to_secs(tk);
2099 
2100 	write_seqcount_begin(&tk_core.seq);
2101 	/*
2102 	 * Update the real timekeeper.
2103 	 *
2104 	 * We could avoid this memcpy by switching pointers, but that
2105 	 * requires changes to all other timekeeper usage sites as
2106 	 * well, i.e. move the timekeeper pointer getter into the
2107 	 * spinlocked/seqcount protected sections. And we trade this
2108 	 * memcpy under the tk_core.seq against one before we start
2109 	 * updating.
2110 	 */
2111 	timekeeping_update(tk, clock_set);
2112 	memcpy(real_tk, tk, sizeof(*tk));
2113 	/* The memcpy must come last. Do not put anything here! */
2114 	write_seqcount_end(&tk_core.seq);
2115 out:
2116 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2117 	if (clock_set)
2118 		/* Have to call _delayed version, since in irq context*/
2119 		clock_was_set_delayed();
2120 }
2121 
2122 /**
2123  * getboottime64 - Return the real time of system boot.
2124  * @ts:		pointer to the timespec64 to be set
2125  *
2126  * Returns the wall-time of boot in a timespec64.
2127  *
2128  * This is based on the wall_to_monotonic offset and the total suspend
2129  * time. Calls to settimeofday will affect the value returned (which
2130  * basically means that however wrong your real time clock is at boot time,
2131  * you get the right time here).
2132  */
2133 void getboottime64(struct timespec64 *ts)
2134 {
2135 	struct timekeeper *tk = &tk_core.timekeeper;
2136 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2137 
2138 	*ts = ktime_to_timespec64(t);
2139 }
2140 EXPORT_SYMBOL_GPL(getboottime64);
2141 
2142 unsigned long get_seconds(void)
2143 {
2144 	struct timekeeper *tk = &tk_core.timekeeper;
2145 
2146 	return tk->xtime_sec;
2147 }
2148 EXPORT_SYMBOL(get_seconds);
2149 
2150 struct timespec __current_kernel_time(void)
2151 {
2152 	struct timekeeper *tk = &tk_core.timekeeper;
2153 
2154 	return timespec64_to_timespec(tk_xtime(tk));
2155 }
2156 
2157 struct timespec64 current_kernel_time64(void)
2158 {
2159 	struct timekeeper *tk = &tk_core.timekeeper;
2160 	struct timespec64 now;
2161 	unsigned long seq;
2162 
2163 	do {
2164 		seq = read_seqcount_begin(&tk_core.seq);
2165 
2166 		now = tk_xtime(tk);
2167 	} while (read_seqcount_retry(&tk_core.seq, seq));
2168 
2169 	return now;
2170 }
2171 EXPORT_SYMBOL(current_kernel_time64);
2172 
2173 struct timespec64 get_monotonic_coarse64(void)
2174 {
2175 	struct timekeeper *tk = &tk_core.timekeeper;
2176 	struct timespec64 now, mono;
2177 	unsigned long seq;
2178 
2179 	do {
2180 		seq = read_seqcount_begin(&tk_core.seq);
2181 
2182 		now = tk_xtime(tk);
2183 		mono = tk->wall_to_monotonic;
2184 	} while (read_seqcount_retry(&tk_core.seq, seq));
2185 
2186 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2187 				now.tv_nsec + mono.tv_nsec);
2188 
2189 	return now;
2190 }
2191 EXPORT_SYMBOL(get_monotonic_coarse64);
2192 
2193 /*
2194  * Must hold jiffies_lock
2195  */
2196 void do_timer(unsigned long ticks)
2197 {
2198 	jiffies_64 += ticks;
2199 	calc_global_load(ticks);
2200 }
2201 
2202 /**
2203  * ktime_get_update_offsets_now - hrtimer helper
2204  * @cwsseq:	pointer to check and store the clock was set sequence number
2205  * @offs_real:	pointer to storage for monotonic -> realtime offset
2206  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2207  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2208  *
2209  * Returns current monotonic time and updates the offsets if the
2210  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211  * different.
2212  *
2213  * Called from hrtimer_interrupt() or retrigger_next_event()
2214  */
2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216 				     ktime_t *offs_boot, ktime_t *offs_tai)
2217 {
2218 	struct timekeeper *tk = &tk_core.timekeeper;
2219 	unsigned int seq;
2220 	ktime_t base;
2221 	u64 nsecs;
2222 
2223 	do {
2224 		seq = read_seqcount_begin(&tk_core.seq);
2225 
2226 		base = tk->tkr_mono.base;
2227 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228 		base = ktime_add_ns(base, nsecs);
2229 
2230 		if (*cwsseq != tk->clock_was_set_seq) {
2231 			*cwsseq = tk->clock_was_set_seq;
2232 			*offs_real = tk->offs_real;
2233 			*offs_boot = tk->offs_boot;
2234 			*offs_tai = tk->offs_tai;
2235 		}
2236 
2237 		/* Handle leapsecond insertion adjustments */
2238 		if (unlikely(base >= tk->next_leap_ktime))
2239 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240 
2241 	} while (read_seqcount_retry(&tk_core.seq, seq));
2242 
2243 	return base;
2244 }
2245 
2246 /**
2247  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2248  */
2249 int do_adjtimex(struct timex *txc)
2250 {
2251 	struct timekeeper *tk = &tk_core.timekeeper;
2252 	unsigned long flags;
2253 	struct timespec64 ts;
2254 	s32 orig_tai, tai;
2255 	int ret;
2256 
2257 	/* Validate the data before disabling interrupts */
2258 	ret = ntp_validate_timex(txc);
2259 	if (ret)
2260 		return ret;
2261 
2262 	if (txc->modes & ADJ_SETOFFSET) {
2263 		struct timespec delta;
2264 		delta.tv_sec  = txc->time.tv_sec;
2265 		delta.tv_nsec = txc->time.tv_usec;
2266 		if (!(txc->modes & ADJ_NANO))
2267 			delta.tv_nsec *= 1000;
2268 		ret = timekeeping_inject_offset(&delta);
2269 		if (ret)
2270 			return ret;
2271 	}
2272 
2273 	getnstimeofday64(&ts);
2274 
2275 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2276 	write_seqcount_begin(&tk_core.seq);
2277 
2278 	orig_tai = tai = tk->tai_offset;
2279 	ret = __do_adjtimex(txc, &ts, &tai);
2280 
2281 	if (tai != orig_tai) {
2282 		__timekeeping_set_tai_offset(tk, tai);
2283 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2284 	}
2285 	tk_update_leap_state(tk);
2286 
2287 	write_seqcount_end(&tk_core.seq);
2288 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2289 
2290 	if (tai != orig_tai)
2291 		clock_was_set();
2292 
2293 	ntp_notify_cmos_timer();
2294 
2295 	return ret;
2296 }
2297 
2298 #ifdef CONFIG_NTP_PPS
2299 /**
2300  * hardpps() - Accessor function to NTP __hardpps function
2301  */
2302 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2303 {
2304 	unsigned long flags;
2305 
2306 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2307 	write_seqcount_begin(&tk_core.seq);
2308 
2309 	__hardpps(phase_ts, raw_ts);
2310 
2311 	write_seqcount_end(&tk_core.seq);
2312 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2313 }
2314 EXPORT_SYMBOL(hardpps);
2315 #endif
2316 
2317 /**
2318  * xtime_update() - advances the timekeeping infrastructure
2319  * @ticks:	number of ticks, that have elapsed since the last call.
2320  *
2321  * Must be called with interrupts disabled.
2322  */
2323 void xtime_update(unsigned long ticks)
2324 {
2325 	write_seqlock(&jiffies_lock);
2326 	do_timer(ticks);
2327 	write_sequnlock(&jiffies_lock);
2328 	update_wall_time();
2329 }
2330