1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/syscore_ops.h> 21 #include <linux/clocksource.h> 22 #include <linux/jiffies.h> 23 #include <linux/time.h> 24 #include <linux/tick.h> 25 #include <linux/stop_machine.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/compiler.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 /* 38 * The most important data for readout fits into a single 64 byte 39 * cache line. 40 */ 41 static struct { 42 seqcount_t seq; 43 struct timekeeper timekeeper; 44 } tk_core ____cacheline_aligned; 45 46 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 47 static struct timekeeper shadow_timekeeper; 48 49 /** 50 * struct tk_fast - NMI safe timekeeper 51 * @seq: Sequence counter for protecting updates. The lowest bit 52 * is the index for the tk_read_base array 53 * @base: tk_read_base array. Access is indexed by the lowest bit of 54 * @seq. 55 * 56 * See @update_fast_timekeeper() below. 57 */ 58 struct tk_fast { 59 seqcount_t seq; 60 struct tk_read_base base[2]; 61 }; 62 63 static struct tk_fast tk_fast_mono ____cacheline_aligned; 64 static struct tk_fast tk_fast_raw ____cacheline_aligned; 65 66 /* flag for if timekeeping is suspended */ 67 int __read_mostly timekeeping_suspended; 68 69 static inline void tk_normalize_xtime(struct timekeeper *tk) 70 { 71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 73 tk->xtime_sec++; 74 } 75 } 76 77 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 78 { 79 struct timespec64 ts; 80 81 ts.tv_sec = tk->xtime_sec; 82 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 83 return ts; 84 } 85 86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 87 { 88 tk->xtime_sec = ts->tv_sec; 89 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 90 } 91 92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 93 { 94 tk->xtime_sec += ts->tv_sec; 95 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 96 tk_normalize_xtime(tk); 97 } 98 99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 100 { 101 struct timespec64 tmp; 102 103 /* 104 * Verify consistency of: offset_real = -wall_to_monotonic 105 * before modifying anything 106 */ 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 108 -tk->wall_to_monotonic.tv_nsec); 109 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 110 tk->wall_to_monotonic = wtm; 111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 112 tk->offs_real = timespec64_to_ktime(tmp); 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 114 } 115 116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 117 { 118 tk->offs_boot = ktime_add(tk->offs_boot, delta); 119 } 120 121 /* 122 * tk_clock_read - atomic clocksource read() helper 123 * 124 * This helper is necessary to use in the read paths because, while the 125 * seqlock ensures we don't return a bad value while structures are updated, 126 * it doesn't protect from potential crashes. There is the possibility that 127 * the tkr's clocksource may change between the read reference, and the 128 * clock reference passed to the read function. This can cause crashes if 129 * the wrong clocksource is passed to the wrong read function. 130 * This isn't necessary to use when holding the timekeeper_lock or doing 131 * a read of the fast-timekeeper tkrs (which is protected by its own locking 132 * and update logic). 133 */ 134 static inline u64 tk_clock_read(struct tk_read_base *tkr) 135 { 136 struct clocksource *clock = READ_ONCE(tkr->clock); 137 138 return clock->read(clock); 139 } 140 141 #ifdef CONFIG_DEBUG_TIMEKEEPING 142 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 143 144 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 145 { 146 147 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 148 const char *name = tk->tkr_mono.clock->name; 149 150 if (offset > max_cycles) { 151 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 152 offset, name, max_cycles); 153 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 154 } else { 155 if (offset > (max_cycles >> 1)) { 156 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 157 offset, name, max_cycles >> 1); 158 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 159 } 160 } 161 162 if (tk->underflow_seen) { 163 if (jiffies - tk->last_warning > WARNING_FREQ) { 164 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 166 printk_deferred(" Your kernel is probably still fine.\n"); 167 tk->last_warning = jiffies; 168 } 169 tk->underflow_seen = 0; 170 } 171 172 if (tk->overflow_seen) { 173 if (jiffies - tk->last_warning > WARNING_FREQ) { 174 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 175 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 176 printk_deferred(" Your kernel is probably still fine.\n"); 177 tk->last_warning = jiffies; 178 } 179 tk->overflow_seen = 0; 180 } 181 } 182 183 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 184 { 185 struct timekeeper *tk = &tk_core.timekeeper; 186 u64 now, last, mask, max, delta; 187 unsigned int seq; 188 189 /* 190 * Since we're called holding a seqlock, the data may shift 191 * under us while we're doing the calculation. This can cause 192 * false positives, since we'd note a problem but throw the 193 * results away. So nest another seqlock here to atomically 194 * grab the points we are checking with. 195 */ 196 do { 197 seq = read_seqcount_begin(&tk_core.seq); 198 now = tk_clock_read(tkr); 199 last = tkr->cycle_last; 200 mask = tkr->mask; 201 max = tkr->clock->max_cycles; 202 } while (read_seqcount_retry(&tk_core.seq, seq)); 203 204 delta = clocksource_delta(now, last, mask); 205 206 /* 207 * Try to catch underflows by checking if we are seeing small 208 * mask-relative negative values. 209 */ 210 if (unlikely((~delta & mask) < (mask >> 3))) { 211 tk->underflow_seen = 1; 212 delta = 0; 213 } 214 215 /* Cap delta value to the max_cycles values to avoid mult overflows */ 216 if (unlikely(delta > max)) { 217 tk->overflow_seen = 1; 218 delta = tkr->clock->max_cycles; 219 } 220 221 return delta; 222 } 223 #else 224 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 225 { 226 } 227 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 228 { 229 u64 cycle_now, delta; 230 231 /* read clocksource */ 232 cycle_now = tk_clock_read(tkr); 233 234 /* calculate the delta since the last update_wall_time */ 235 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 236 237 return delta; 238 } 239 #endif 240 241 /** 242 * tk_setup_internals - Set up internals to use clocksource clock. 243 * 244 * @tk: The target timekeeper to setup. 245 * @clock: Pointer to clocksource. 246 * 247 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 248 * pair and interval request. 249 * 250 * Unless you're the timekeeping code, you should not be using this! 251 */ 252 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 253 { 254 u64 interval; 255 u64 tmp, ntpinterval; 256 struct clocksource *old_clock; 257 258 ++tk->cs_was_changed_seq; 259 old_clock = tk->tkr_mono.clock; 260 tk->tkr_mono.clock = clock; 261 tk->tkr_mono.mask = clock->mask; 262 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 263 264 tk->tkr_raw.clock = clock; 265 tk->tkr_raw.mask = clock->mask; 266 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 267 268 /* Do the ns -> cycle conversion first, using original mult */ 269 tmp = NTP_INTERVAL_LENGTH; 270 tmp <<= clock->shift; 271 ntpinterval = tmp; 272 tmp += clock->mult/2; 273 do_div(tmp, clock->mult); 274 if (tmp == 0) 275 tmp = 1; 276 277 interval = (u64) tmp; 278 tk->cycle_interval = interval; 279 280 /* Go back from cycles -> shifted ns */ 281 tk->xtime_interval = interval * clock->mult; 282 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 283 tk->raw_interval = interval * clock->mult; 284 285 /* if changing clocks, convert xtime_nsec shift units */ 286 if (old_clock) { 287 int shift_change = clock->shift - old_clock->shift; 288 if (shift_change < 0) 289 tk->tkr_mono.xtime_nsec >>= -shift_change; 290 else 291 tk->tkr_mono.xtime_nsec <<= shift_change; 292 } 293 tk->tkr_raw.xtime_nsec = 0; 294 295 tk->tkr_mono.shift = clock->shift; 296 tk->tkr_raw.shift = clock->shift; 297 298 tk->ntp_error = 0; 299 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 300 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 301 302 /* 303 * The timekeeper keeps its own mult values for the currently 304 * active clocksource. These value will be adjusted via NTP 305 * to counteract clock drifting. 306 */ 307 tk->tkr_mono.mult = clock->mult; 308 tk->tkr_raw.mult = clock->mult; 309 tk->ntp_err_mult = 0; 310 } 311 312 /* Timekeeper helper functions. */ 313 314 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 315 static u32 default_arch_gettimeoffset(void) { return 0; } 316 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 317 #else 318 static inline u32 arch_gettimeoffset(void) { return 0; } 319 #endif 320 321 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 322 { 323 u64 nsec; 324 325 nsec = delta * tkr->mult + tkr->xtime_nsec; 326 nsec >>= tkr->shift; 327 328 /* If arch requires, add in get_arch_timeoffset() */ 329 return nsec + arch_gettimeoffset(); 330 } 331 332 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 333 { 334 u64 delta; 335 336 delta = timekeeping_get_delta(tkr); 337 return timekeeping_delta_to_ns(tkr, delta); 338 } 339 340 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 341 { 342 u64 delta; 343 344 /* calculate the delta since the last update_wall_time */ 345 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 346 return timekeeping_delta_to_ns(tkr, delta); 347 } 348 349 /** 350 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 351 * @tkr: Timekeeping readout base from which we take the update 352 * 353 * We want to use this from any context including NMI and tracing / 354 * instrumenting the timekeeping code itself. 355 * 356 * Employ the latch technique; see @raw_write_seqcount_latch. 357 * 358 * So if a NMI hits the update of base[0] then it will use base[1] 359 * which is still consistent. In the worst case this can result is a 360 * slightly wrong timestamp (a few nanoseconds). See 361 * @ktime_get_mono_fast_ns. 362 */ 363 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 364 { 365 struct tk_read_base *base = tkf->base; 366 367 /* Force readers off to base[1] */ 368 raw_write_seqcount_latch(&tkf->seq); 369 370 /* Update base[0] */ 371 memcpy(base, tkr, sizeof(*base)); 372 373 /* Force readers back to base[0] */ 374 raw_write_seqcount_latch(&tkf->seq); 375 376 /* Update base[1] */ 377 memcpy(base + 1, base, sizeof(*base)); 378 } 379 380 /** 381 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 382 * 383 * This timestamp is not guaranteed to be monotonic across an update. 384 * The timestamp is calculated by: 385 * 386 * now = base_mono + clock_delta * slope 387 * 388 * So if the update lowers the slope, readers who are forced to the 389 * not yet updated second array are still using the old steeper slope. 390 * 391 * tmono 392 * ^ 393 * | o n 394 * | o n 395 * | u 396 * | o 397 * |o 398 * |12345678---> reader order 399 * 400 * o = old slope 401 * u = update 402 * n = new slope 403 * 404 * So reader 6 will observe time going backwards versus reader 5. 405 * 406 * While other CPUs are likely to be able observe that, the only way 407 * for a CPU local observation is when an NMI hits in the middle of 408 * the update. Timestamps taken from that NMI context might be ahead 409 * of the following timestamps. Callers need to be aware of that and 410 * deal with it. 411 */ 412 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 413 { 414 struct tk_read_base *tkr; 415 unsigned int seq; 416 u64 now; 417 418 do { 419 seq = raw_read_seqcount_latch(&tkf->seq); 420 tkr = tkf->base + (seq & 0x01); 421 now = ktime_to_ns(tkr->base); 422 423 now += timekeeping_delta_to_ns(tkr, 424 clocksource_delta( 425 tk_clock_read(tkr), 426 tkr->cycle_last, 427 tkr->mask)); 428 } while (read_seqcount_retry(&tkf->seq, seq)); 429 430 return now; 431 } 432 433 u64 ktime_get_mono_fast_ns(void) 434 { 435 return __ktime_get_fast_ns(&tk_fast_mono); 436 } 437 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 438 439 u64 ktime_get_raw_fast_ns(void) 440 { 441 return __ktime_get_fast_ns(&tk_fast_raw); 442 } 443 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 444 445 /** 446 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 447 * 448 * To keep it NMI safe since we're accessing from tracing, we're not using a 449 * separate timekeeper with updates to monotonic clock and boot offset 450 * protected with seqlocks. This has the following minor side effects: 451 * 452 * (1) Its possible that a timestamp be taken after the boot offset is updated 453 * but before the timekeeper is updated. If this happens, the new boot offset 454 * is added to the old timekeeping making the clock appear to update slightly 455 * earlier: 456 * CPU 0 CPU 1 457 * timekeeping_inject_sleeptime64() 458 * __timekeeping_inject_sleeptime(tk, delta); 459 * timestamp(); 460 * timekeeping_update(tk, TK_CLEAR_NTP...); 461 * 462 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 463 * partially updated. Since the tk->offs_boot update is a rare event, this 464 * should be a rare occurrence which postprocessing should be able to handle. 465 */ 466 u64 notrace ktime_get_boot_fast_ns(void) 467 { 468 struct timekeeper *tk = &tk_core.timekeeper; 469 470 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 471 } 472 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 473 474 /* Suspend-time cycles value for halted fast timekeeper. */ 475 static u64 cycles_at_suspend; 476 477 static u64 dummy_clock_read(struct clocksource *cs) 478 { 479 return cycles_at_suspend; 480 } 481 482 static struct clocksource dummy_clock = { 483 .read = dummy_clock_read, 484 }; 485 486 /** 487 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 488 * @tk: Timekeeper to snapshot. 489 * 490 * It generally is unsafe to access the clocksource after timekeeping has been 491 * suspended, so take a snapshot of the readout base of @tk and use it as the 492 * fast timekeeper's readout base while suspended. It will return the same 493 * number of cycles every time until timekeeping is resumed at which time the 494 * proper readout base for the fast timekeeper will be restored automatically. 495 */ 496 static void halt_fast_timekeeper(struct timekeeper *tk) 497 { 498 static struct tk_read_base tkr_dummy; 499 struct tk_read_base *tkr = &tk->tkr_mono; 500 501 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 502 cycles_at_suspend = tk_clock_read(tkr); 503 tkr_dummy.clock = &dummy_clock; 504 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 505 506 tkr = &tk->tkr_raw; 507 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 508 tkr_dummy.clock = &dummy_clock; 509 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 510 } 511 512 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 513 514 static inline void update_vsyscall(struct timekeeper *tk) 515 { 516 struct timespec xt, wm; 517 518 xt = timespec64_to_timespec(tk_xtime(tk)); 519 wm = timespec64_to_timespec(tk->wall_to_monotonic); 520 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 521 tk->tkr_mono.cycle_last); 522 } 523 524 static inline void old_vsyscall_fixup(struct timekeeper *tk) 525 { 526 s64 remainder; 527 528 /* 529 * Store only full nanoseconds into xtime_nsec after rounding 530 * it up and add the remainder to the error difference. 531 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 532 * by truncating the remainder in vsyscalls. However, it causes 533 * additional work to be done in timekeeping_adjust(). Once 534 * the vsyscall implementations are converted to use xtime_nsec 535 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 536 * users are removed, this can be killed. 537 */ 538 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 539 if (remainder != 0) { 540 tk->tkr_mono.xtime_nsec -= remainder; 541 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 542 tk->ntp_error += remainder << tk->ntp_error_shift; 543 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 544 } 545 } 546 #else 547 #define old_vsyscall_fixup(tk) 548 #endif 549 550 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 551 552 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 553 { 554 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 555 } 556 557 /** 558 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 559 */ 560 int pvclock_gtod_register_notifier(struct notifier_block *nb) 561 { 562 struct timekeeper *tk = &tk_core.timekeeper; 563 unsigned long flags; 564 int ret; 565 566 raw_spin_lock_irqsave(&timekeeper_lock, flags); 567 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 568 update_pvclock_gtod(tk, true); 569 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 570 571 return ret; 572 } 573 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 574 575 /** 576 * pvclock_gtod_unregister_notifier - unregister a pvclock 577 * timedata update listener 578 */ 579 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 580 { 581 unsigned long flags; 582 int ret; 583 584 raw_spin_lock_irqsave(&timekeeper_lock, flags); 585 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 586 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 587 588 return ret; 589 } 590 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 591 592 /* 593 * tk_update_leap_state - helper to update the next_leap_ktime 594 */ 595 static inline void tk_update_leap_state(struct timekeeper *tk) 596 { 597 tk->next_leap_ktime = ntp_get_next_leap(); 598 if (tk->next_leap_ktime != KTIME_MAX) 599 /* Convert to monotonic time */ 600 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 601 } 602 603 /* 604 * Update the ktime_t based scalar nsec members of the timekeeper 605 */ 606 static inline void tk_update_ktime_data(struct timekeeper *tk) 607 { 608 u64 seconds; 609 u32 nsec; 610 611 /* 612 * The xtime based monotonic readout is: 613 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 614 * The ktime based monotonic readout is: 615 * nsec = base_mono + now(); 616 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 617 */ 618 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 619 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 620 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 621 622 /* Update the monotonic raw base */ 623 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 624 625 /* 626 * The sum of the nanoseconds portions of xtime and 627 * wall_to_monotonic can be greater/equal one second. Take 628 * this into account before updating tk->ktime_sec. 629 */ 630 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 631 if (nsec >= NSEC_PER_SEC) 632 seconds++; 633 tk->ktime_sec = seconds; 634 } 635 636 /* must hold timekeeper_lock */ 637 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 638 { 639 if (action & TK_CLEAR_NTP) { 640 tk->ntp_error = 0; 641 ntp_clear(); 642 } 643 644 tk_update_leap_state(tk); 645 tk_update_ktime_data(tk); 646 647 update_vsyscall(tk); 648 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 649 650 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 651 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 652 653 if (action & TK_CLOCK_WAS_SET) 654 tk->clock_was_set_seq++; 655 /* 656 * The mirroring of the data to the shadow-timekeeper needs 657 * to happen last here to ensure we don't over-write the 658 * timekeeper structure on the next update with stale data 659 */ 660 if (action & TK_MIRROR) 661 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 662 sizeof(tk_core.timekeeper)); 663 } 664 665 /** 666 * timekeeping_forward_now - update clock to the current time 667 * 668 * Forward the current clock to update its state since the last call to 669 * update_wall_time(). This is useful before significant clock changes, 670 * as it avoids having to deal with this time offset explicitly. 671 */ 672 static void timekeeping_forward_now(struct timekeeper *tk) 673 { 674 u64 cycle_now, delta; 675 u64 nsec; 676 677 cycle_now = tk_clock_read(&tk->tkr_mono); 678 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 679 tk->tkr_mono.cycle_last = cycle_now; 680 tk->tkr_raw.cycle_last = cycle_now; 681 682 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 683 684 /* If arch requires, add in get_arch_timeoffset() */ 685 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 686 687 tk_normalize_xtime(tk); 688 689 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 690 timespec64_add_ns(&tk->raw_time, nsec); 691 } 692 693 /** 694 * __getnstimeofday64 - Returns the time of day in a timespec64. 695 * @ts: pointer to the timespec to be set 696 * 697 * Updates the time of day in the timespec. 698 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 699 */ 700 int __getnstimeofday64(struct timespec64 *ts) 701 { 702 struct timekeeper *tk = &tk_core.timekeeper; 703 unsigned long seq; 704 u64 nsecs; 705 706 do { 707 seq = read_seqcount_begin(&tk_core.seq); 708 709 ts->tv_sec = tk->xtime_sec; 710 nsecs = timekeeping_get_ns(&tk->tkr_mono); 711 712 } while (read_seqcount_retry(&tk_core.seq, seq)); 713 714 ts->tv_nsec = 0; 715 timespec64_add_ns(ts, nsecs); 716 717 /* 718 * Do not bail out early, in case there were callers still using 719 * the value, even in the face of the WARN_ON. 720 */ 721 if (unlikely(timekeeping_suspended)) 722 return -EAGAIN; 723 return 0; 724 } 725 EXPORT_SYMBOL(__getnstimeofday64); 726 727 /** 728 * getnstimeofday64 - Returns the time of day in a timespec64. 729 * @ts: pointer to the timespec64 to be set 730 * 731 * Returns the time of day in a timespec64 (WARN if suspended). 732 */ 733 void getnstimeofday64(struct timespec64 *ts) 734 { 735 WARN_ON(__getnstimeofday64(ts)); 736 } 737 EXPORT_SYMBOL(getnstimeofday64); 738 739 ktime_t ktime_get(void) 740 { 741 struct timekeeper *tk = &tk_core.timekeeper; 742 unsigned int seq; 743 ktime_t base; 744 u64 nsecs; 745 746 WARN_ON(timekeeping_suspended); 747 748 do { 749 seq = read_seqcount_begin(&tk_core.seq); 750 base = tk->tkr_mono.base; 751 nsecs = timekeeping_get_ns(&tk->tkr_mono); 752 753 } while (read_seqcount_retry(&tk_core.seq, seq)); 754 755 return ktime_add_ns(base, nsecs); 756 } 757 EXPORT_SYMBOL_GPL(ktime_get); 758 759 u32 ktime_get_resolution_ns(void) 760 { 761 struct timekeeper *tk = &tk_core.timekeeper; 762 unsigned int seq; 763 u32 nsecs; 764 765 WARN_ON(timekeeping_suspended); 766 767 do { 768 seq = read_seqcount_begin(&tk_core.seq); 769 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 770 } while (read_seqcount_retry(&tk_core.seq, seq)); 771 772 return nsecs; 773 } 774 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 775 776 static ktime_t *offsets[TK_OFFS_MAX] = { 777 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 778 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 779 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 780 }; 781 782 ktime_t ktime_get_with_offset(enum tk_offsets offs) 783 { 784 struct timekeeper *tk = &tk_core.timekeeper; 785 unsigned int seq; 786 ktime_t base, *offset = offsets[offs]; 787 u64 nsecs; 788 789 WARN_ON(timekeeping_suspended); 790 791 do { 792 seq = read_seqcount_begin(&tk_core.seq); 793 base = ktime_add(tk->tkr_mono.base, *offset); 794 nsecs = timekeeping_get_ns(&tk->tkr_mono); 795 796 } while (read_seqcount_retry(&tk_core.seq, seq)); 797 798 return ktime_add_ns(base, nsecs); 799 800 } 801 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 802 803 /** 804 * ktime_mono_to_any() - convert mononotic time to any other time 805 * @tmono: time to convert. 806 * @offs: which offset to use 807 */ 808 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 809 { 810 ktime_t *offset = offsets[offs]; 811 unsigned long seq; 812 ktime_t tconv; 813 814 do { 815 seq = read_seqcount_begin(&tk_core.seq); 816 tconv = ktime_add(tmono, *offset); 817 } while (read_seqcount_retry(&tk_core.seq, seq)); 818 819 return tconv; 820 } 821 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 822 823 /** 824 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 825 */ 826 ktime_t ktime_get_raw(void) 827 { 828 struct timekeeper *tk = &tk_core.timekeeper; 829 unsigned int seq; 830 ktime_t base; 831 u64 nsecs; 832 833 do { 834 seq = read_seqcount_begin(&tk_core.seq); 835 base = tk->tkr_raw.base; 836 nsecs = timekeeping_get_ns(&tk->tkr_raw); 837 838 } while (read_seqcount_retry(&tk_core.seq, seq)); 839 840 return ktime_add_ns(base, nsecs); 841 } 842 EXPORT_SYMBOL_GPL(ktime_get_raw); 843 844 /** 845 * ktime_get_ts64 - get the monotonic clock in timespec64 format 846 * @ts: pointer to timespec variable 847 * 848 * The function calculates the monotonic clock from the realtime 849 * clock and the wall_to_monotonic offset and stores the result 850 * in normalized timespec64 format in the variable pointed to by @ts. 851 */ 852 void ktime_get_ts64(struct timespec64 *ts) 853 { 854 struct timekeeper *tk = &tk_core.timekeeper; 855 struct timespec64 tomono; 856 unsigned int seq; 857 u64 nsec; 858 859 WARN_ON(timekeeping_suspended); 860 861 do { 862 seq = read_seqcount_begin(&tk_core.seq); 863 ts->tv_sec = tk->xtime_sec; 864 nsec = timekeeping_get_ns(&tk->tkr_mono); 865 tomono = tk->wall_to_monotonic; 866 867 } while (read_seqcount_retry(&tk_core.seq, seq)); 868 869 ts->tv_sec += tomono.tv_sec; 870 ts->tv_nsec = 0; 871 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 872 } 873 EXPORT_SYMBOL_GPL(ktime_get_ts64); 874 875 /** 876 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 877 * 878 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 879 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 880 * works on both 32 and 64 bit systems. On 32 bit systems the readout 881 * covers ~136 years of uptime which should be enough to prevent 882 * premature wrap arounds. 883 */ 884 time64_t ktime_get_seconds(void) 885 { 886 struct timekeeper *tk = &tk_core.timekeeper; 887 888 WARN_ON(timekeeping_suspended); 889 return tk->ktime_sec; 890 } 891 EXPORT_SYMBOL_GPL(ktime_get_seconds); 892 893 /** 894 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 895 * 896 * Returns the wall clock seconds since 1970. This replaces the 897 * get_seconds() interface which is not y2038 safe on 32bit systems. 898 * 899 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 900 * 32bit systems the access must be protected with the sequence 901 * counter to provide "atomic" access to the 64bit tk->xtime_sec 902 * value. 903 */ 904 time64_t ktime_get_real_seconds(void) 905 { 906 struct timekeeper *tk = &tk_core.timekeeper; 907 time64_t seconds; 908 unsigned int seq; 909 910 if (IS_ENABLED(CONFIG_64BIT)) 911 return tk->xtime_sec; 912 913 do { 914 seq = read_seqcount_begin(&tk_core.seq); 915 seconds = tk->xtime_sec; 916 917 } while (read_seqcount_retry(&tk_core.seq, seq)); 918 919 return seconds; 920 } 921 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 922 923 /** 924 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 925 * but without the sequence counter protect. This internal function 926 * is called just when timekeeping lock is already held. 927 */ 928 time64_t __ktime_get_real_seconds(void) 929 { 930 struct timekeeper *tk = &tk_core.timekeeper; 931 932 return tk->xtime_sec; 933 } 934 935 /** 936 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 937 * @systime_snapshot: pointer to struct receiving the system time snapshot 938 */ 939 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 940 { 941 struct timekeeper *tk = &tk_core.timekeeper; 942 unsigned long seq; 943 ktime_t base_raw; 944 ktime_t base_real; 945 u64 nsec_raw; 946 u64 nsec_real; 947 u64 now; 948 949 WARN_ON_ONCE(timekeeping_suspended); 950 951 do { 952 seq = read_seqcount_begin(&tk_core.seq); 953 now = tk_clock_read(&tk->tkr_mono); 954 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 955 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 956 base_real = ktime_add(tk->tkr_mono.base, 957 tk_core.timekeeper.offs_real); 958 base_raw = tk->tkr_raw.base; 959 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 960 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 961 } while (read_seqcount_retry(&tk_core.seq, seq)); 962 963 systime_snapshot->cycles = now; 964 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 965 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 966 } 967 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 968 969 /* Scale base by mult/div checking for overflow */ 970 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 971 { 972 u64 tmp, rem; 973 974 tmp = div64_u64_rem(*base, div, &rem); 975 976 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 977 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 978 return -EOVERFLOW; 979 tmp *= mult; 980 rem *= mult; 981 982 do_div(rem, div); 983 *base = tmp + rem; 984 return 0; 985 } 986 987 /** 988 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 989 * @history: Snapshot representing start of history 990 * @partial_history_cycles: Cycle offset into history (fractional part) 991 * @total_history_cycles: Total history length in cycles 992 * @discontinuity: True indicates clock was set on history period 993 * @ts: Cross timestamp that should be adjusted using 994 * partial/total ratio 995 * 996 * Helper function used by get_device_system_crosststamp() to correct the 997 * crosstimestamp corresponding to the start of the current interval to the 998 * system counter value (timestamp point) provided by the driver. The 999 * total_history_* quantities are the total history starting at the provided 1000 * reference point and ending at the start of the current interval. The cycle 1001 * count between the driver timestamp point and the start of the current 1002 * interval is partial_history_cycles. 1003 */ 1004 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1005 u64 partial_history_cycles, 1006 u64 total_history_cycles, 1007 bool discontinuity, 1008 struct system_device_crosststamp *ts) 1009 { 1010 struct timekeeper *tk = &tk_core.timekeeper; 1011 u64 corr_raw, corr_real; 1012 bool interp_forward; 1013 int ret; 1014 1015 if (total_history_cycles == 0 || partial_history_cycles == 0) 1016 return 0; 1017 1018 /* Interpolate shortest distance from beginning or end of history */ 1019 interp_forward = partial_history_cycles > total_history_cycles / 2; 1020 partial_history_cycles = interp_forward ? 1021 total_history_cycles - partial_history_cycles : 1022 partial_history_cycles; 1023 1024 /* 1025 * Scale the monotonic raw time delta by: 1026 * partial_history_cycles / total_history_cycles 1027 */ 1028 corr_raw = (u64)ktime_to_ns( 1029 ktime_sub(ts->sys_monoraw, history->raw)); 1030 ret = scale64_check_overflow(partial_history_cycles, 1031 total_history_cycles, &corr_raw); 1032 if (ret) 1033 return ret; 1034 1035 /* 1036 * If there is a discontinuity in the history, scale monotonic raw 1037 * correction by: 1038 * mult(real)/mult(raw) yielding the realtime correction 1039 * Otherwise, calculate the realtime correction similar to monotonic 1040 * raw calculation 1041 */ 1042 if (discontinuity) { 1043 corr_real = mul_u64_u32_div 1044 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1045 } else { 1046 corr_real = (u64)ktime_to_ns( 1047 ktime_sub(ts->sys_realtime, history->real)); 1048 ret = scale64_check_overflow(partial_history_cycles, 1049 total_history_cycles, &corr_real); 1050 if (ret) 1051 return ret; 1052 } 1053 1054 /* Fixup monotonic raw and real time time values */ 1055 if (interp_forward) { 1056 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1057 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1058 } else { 1059 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1060 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1061 } 1062 1063 return 0; 1064 } 1065 1066 /* 1067 * cycle_between - true if test occurs chronologically between before and after 1068 */ 1069 static bool cycle_between(u64 before, u64 test, u64 after) 1070 { 1071 if (test > before && test < after) 1072 return true; 1073 if (test < before && before > after) 1074 return true; 1075 return false; 1076 } 1077 1078 /** 1079 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1080 * @get_time_fn: Callback to get simultaneous device time and 1081 * system counter from the device driver 1082 * @ctx: Context passed to get_time_fn() 1083 * @history_begin: Historical reference point used to interpolate system 1084 * time when counter provided by the driver is before the current interval 1085 * @xtstamp: Receives simultaneously captured system and device time 1086 * 1087 * Reads a timestamp from a device and correlates it to system time 1088 */ 1089 int get_device_system_crosststamp(int (*get_time_fn) 1090 (ktime_t *device_time, 1091 struct system_counterval_t *sys_counterval, 1092 void *ctx), 1093 void *ctx, 1094 struct system_time_snapshot *history_begin, 1095 struct system_device_crosststamp *xtstamp) 1096 { 1097 struct system_counterval_t system_counterval; 1098 struct timekeeper *tk = &tk_core.timekeeper; 1099 u64 cycles, now, interval_start; 1100 unsigned int clock_was_set_seq = 0; 1101 ktime_t base_real, base_raw; 1102 u64 nsec_real, nsec_raw; 1103 u8 cs_was_changed_seq; 1104 unsigned long seq; 1105 bool do_interp; 1106 int ret; 1107 1108 do { 1109 seq = read_seqcount_begin(&tk_core.seq); 1110 /* 1111 * Try to synchronously capture device time and a system 1112 * counter value calling back into the device driver 1113 */ 1114 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1115 if (ret) 1116 return ret; 1117 1118 /* 1119 * Verify that the clocksource associated with the captured 1120 * system counter value is the same as the currently installed 1121 * timekeeper clocksource 1122 */ 1123 if (tk->tkr_mono.clock != system_counterval.cs) 1124 return -ENODEV; 1125 cycles = system_counterval.cycles; 1126 1127 /* 1128 * Check whether the system counter value provided by the 1129 * device driver is on the current timekeeping interval. 1130 */ 1131 now = tk_clock_read(&tk->tkr_mono); 1132 interval_start = tk->tkr_mono.cycle_last; 1133 if (!cycle_between(interval_start, cycles, now)) { 1134 clock_was_set_seq = tk->clock_was_set_seq; 1135 cs_was_changed_seq = tk->cs_was_changed_seq; 1136 cycles = interval_start; 1137 do_interp = true; 1138 } else { 1139 do_interp = false; 1140 } 1141 1142 base_real = ktime_add(tk->tkr_mono.base, 1143 tk_core.timekeeper.offs_real); 1144 base_raw = tk->tkr_raw.base; 1145 1146 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1147 system_counterval.cycles); 1148 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1149 system_counterval.cycles); 1150 } while (read_seqcount_retry(&tk_core.seq, seq)); 1151 1152 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1153 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1154 1155 /* 1156 * Interpolate if necessary, adjusting back from the start of the 1157 * current interval 1158 */ 1159 if (do_interp) { 1160 u64 partial_history_cycles, total_history_cycles; 1161 bool discontinuity; 1162 1163 /* 1164 * Check that the counter value occurs after the provided 1165 * history reference and that the history doesn't cross a 1166 * clocksource change 1167 */ 1168 if (!history_begin || 1169 !cycle_between(history_begin->cycles, 1170 system_counterval.cycles, cycles) || 1171 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1172 return -EINVAL; 1173 partial_history_cycles = cycles - system_counterval.cycles; 1174 total_history_cycles = cycles - history_begin->cycles; 1175 discontinuity = 1176 history_begin->clock_was_set_seq != clock_was_set_seq; 1177 1178 ret = adjust_historical_crosststamp(history_begin, 1179 partial_history_cycles, 1180 total_history_cycles, 1181 discontinuity, xtstamp); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 return 0; 1187 } 1188 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1189 1190 /** 1191 * do_gettimeofday - Returns the time of day in a timeval 1192 * @tv: pointer to the timeval to be set 1193 * 1194 * NOTE: Users should be converted to using getnstimeofday() 1195 */ 1196 void do_gettimeofday(struct timeval *tv) 1197 { 1198 struct timespec64 now; 1199 1200 getnstimeofday64(&now); 1201 tv->tv_sec = now.tv_sec; 1202 tv->tv_usec = now.tv_nsec/1000; 1203 } 1204 EXPORT_SYMBOL(do_gettimeofday); 1205 1206 /** 1207 * do_settimeofday64 - Sets the time of day. 1208 * @ts: pointer to the timespec64 variable containing the new time 1209 * 1210 * Sets the time of day to the new time and update NTP and notify hrtimers 1211 */ 1212 int do_settimeofday64(const struct timespec64 *ts) 1213 { 1214 struct timekeeper *tk = &tk_core.timekeeper; 1215 struct timespec64 ts_delta, xt; 1216 unsigned long flags; 1217 int ret = 0; 1218 1219 if (!timespec64_valid_strict(ts)) 1220 return -EINVAL; 1221 1222 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1223 write_seqcount_begin(&tk_core.seq); 1224 1225 timekeeping_forward_now(tk); 1226 1227 xt = tk_xtime(tk); 1228 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1229 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1230 1231 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1232 ret = -EINVAL; 1233 goto out; 1234 } 1235 1236 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1237 1238 tk_set_xtime(tk, ts); 1239 out: 1240 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1241 1242 write_seqcount_end(&tk_core.seq); 1243 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1244 1245 /* signal hrtimers about time change */ 1246 clock_was_set(); 1247 1248 return ret; 1249 } 1250 EXPORT_SYMBOL(do_settimeofday64); 1251 1252 /** 1253 * timekeeping_inject_offset - Adds or subtracts from the current time. 1254 * @tv: pointer to the timespec variable containing the offset 1255 * 1256 * Adds or subtracts an offset value from the current time. 1257 */ 1258 int timekeeping_inject_offset(struct timespec *ts) 1259 { 1260 struct timekeeper *tk = &tk_core.timekeeper; 1261 unsigned long flags; 1262 struct timespec64 ts64, tmp; 1263 int ret = 0; 1264 1265 if (!timespec_inject_offset_valid(ts)) 1266 return -EINVAL; 1267 1268 ts64 = timespec_to_timespec64(*ts); 1269 1270 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1271 write_seqcount_begin(&tk_core.seq); 1272 1273 timekeeping_forward_now(tk); 1274 1275 /* Make sure the proposed value is valid */ 1276 tmp = timespec64_add(tk_xtime(tk), ts64); 1277 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1278 !timespec64_valid_strict(&tmp)) { 1279 ret = -EINVAL; 1280 goto error; 1281 } 1282 1283 tk_xtime_add(tk, &ts64); 1284 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1285 1286 error: /* even if we error out, we forwarded the time, so call update */ 1287 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1288 1289 write_seqcount_end(&tk_core.seq); 1290 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1291 1292 /* signal hrtimers about time change */ 1293 clock_was_set(); 1294 1295 return ret; 1296 } 1297 EXPORT_SYMBOL(timekeeping_inject_offset); 1298 1299 /** 1300 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1301 * 1302 */ 1303 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1304 { 1305 tk->tai_offset = tai_offset; 1306 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1307 } 1308 1309 /** 1310 * change_clocksource - Swaps clocksources if a new one is available 1311 * 1312 * Accumulates current time interval and initializes new clocksource 1313 */ 1314 static int change_clocksource(void *data) 1315 { 1316 struct timekeeper *tk = &tk_core.timekeeper; 1317 struct clocksource *new, *old; 1318 unsigned long flags; 1319 1320 new = (struct clocksource *) data; 1321 1322 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1323 write_seqcount_begin(&tk_core.seq); 1324 1325 timekeeping_forward_now(tk); 1326 /* 1327 * If the cs is in module, get a module reference. Succeeds 1328 * for built-in code (owner == NULL) as well. 1329 */ 1330 if (try_module_get(new->owner)) { 1331 if (!new->enable || new->enable(new) == 0) { 1332 old = tk->tkr_mono.clock; 1333 tk_setup_internals(tk, new); 1334 if (old->disable) 1335 old->disable(old); 1336 module_put(old->owner); 1337 } else { 1338 module_put(new->owner); 1339 } 1340 } 1341 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1342 1343 write_seqcount_end(&tk_core.seq); 1344 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * timekeeping_notify - Install a new clock source 1351 * @clock: pointer to the clock source 1352 * 1353 * This function is called from clocksource.c after a new, better clock 1354 * source has been registered. The caller holds the clocksource_mutex. 1355 */ 1356 int timekeeping_notify(struct clocksource *clock) 1357 { 1358 struct timekeeper *tk = &tk_core.timekeeper; 1359 1360 if (tk->tkr_mono.clock == clock) 1361 return 0; 1362 stop_machine(change_clocksource, clock, NULL); 1363 tick_clock_notify(); 1364 return tk->tkr_mono.clock == clock ? 0 : -1; 1365 } 1366 1367 /** 1368 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1369 * @ts: pointer to the timespec64 to be set 1370 * 1371 * Returns the raw monotonic time (completely un-modified by ntp) 1372 */ 1373 void getrawmonotonic64(struct timespec64 *ts) 1374 { 1375 struct timekeeper *tk = &tk_core.timekeeper; 1376 struct timespec64 ts64; 1377 unsigned long seq; 1378 u64 nsecs; 1379 1380 do { 1381 seq = read_seqcount_begin(&tk_core.seq); 1382 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1383 ts64 = tk->raw_time; 1384 1385 } while (read_seqcount_retry(&tk_core.seq, seq)); 1386 1387 timespec64_add_ns(&ts64, nsecs); 1388 *ts = ts64; 1389 } 1390 EXPORT_SYMBOL(getrawmonotonic64); 1391 1392 1393 /** 1394 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1395 */ 1396 int timekeeping_valid_for_hres(void) 1397 { 1398 struct timekeeper *tk = &tk_core.timekeeper; 1399 unsigned long seq; 1400 int ret; 1401 1402 do { 1403 seq = read_seqcount_begin(&tk_core.seq); 1404 1405 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1406 1407 } while (read_seqcount_retry(&tk_core.seq, seq)); 1408 1409 return ret; 1410 } 1411 1412 /** 1413 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1414 */ 1415 u64 timekeeping_max_deferment(void) 1416 { 1417 struct timekeeper *tk = &tk_core.timekeeper; 1418 unsigned long seq; 1419 u64 ret; 1420 1421 do { 1422 seq = read_seqcount_begin(&tk_core.seq); 1423 1424 ret = tk->tkr_mono.clock->max_idle_ns; 1425 1426 } while (read_seqcount_retry(&tk_core.seq, seq)); 1427 1428 return ret; 1429 } 1430 1431 /** 1432 * read_persistent_clock - Return time from the persistent clock. 1433 * 1434 * Weak dummy function for arches that do not yet support it. 1435 * Reads the time from the battery backed persistent clock. 1436 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1437 * 1438 * XXX - Do be sure to remove it once all arches implement it. 1439 */ 1440 void __weak read_persistent_clock(struct timespec *ts) 1441 { 1442 ts->tv_sec = 0; 1443 ts->tv_nsec = 0; 1444 } 1445 1446 void __weak read_persistent_clock64(struct timespec64 *ts64) 1447 { 1448 struct timespec ts; 1449 1450 read_persistent_clock(&ts); 1451 *ts64 = timespec_to_timespec64(ts); 1452 } 1453 1454 /** 1455 * read_boot_clock64 - Return time of the system start. 1456 * 1457 * Weak dummy function for arches that do not yet support it. 1458 * Function to read the exact time the system has been started. 1459 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1460 * 1461 * XXX - Do be sure to remove it once all arches implement it. 1462 */ 1463 void __weak read_boot_clock64(struct timespec64 *ts) 1464 { 1465 ts->tv_sec = 0; 1466 ts->tv_nsec = 0; 1467 } 1468 1469 /* Flag for if timekeeping_resume() has injected sleeptime */ 1470 static bool sleeptime_injected; 1471 1472 /* Flag for if there is a persistent clock on this platform */ 1473 static bool persistent_clock_exists; 1474 1475 /* 1476 * timekeeping_init - Initializes the clocksource and common timekeeping values 1477 */ 1478 void __init timekeeping_init(void) 1479 { 1480 struct timekeeper *tk = &tk_core.timekeeper; 1481 struct clocksource *clock; 1482 unsigned long flags; 1483 struct timespec64 now, boot, tmp; 1484 1485 read_persistent_clock64(&now); 1486 if (!timespec64_valid_strict(&now)) { 1487 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1488 " Check your CMOS/BIOS settings.\n"); 1489 now.tv_sec = 0; 1490 now.tv_nsec = 0; 1491 } else if (now.tv_sec || now.tv_nsec) 1492 persistent_clock_exists = true; 1493 1494 read_boot_clock64(&boot); 1495 if (!timespec64_valid_strict(&boot)) { 1496 pr_warn("WARNING: Boot clock returned invalid value!\n" 1497 " Check your CMOS/BIOS settings.\n"); 1498 boot.tv_sec = 0; 1499 boot.tv_nsec = 0; 1500 } 1501 1502 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1503 write_seqcount_begin(&tk_core.seq); 1504 ntp_init(); 1505 1506 clock = clocksource_default_clock(); 1507 if (clock->enable) 1508 clock->enable(clock); 1509 tk_setup_internals(tk, clock); 1510 1511 tk_set_xtime(tk, &now); 1512 tk->raw_time.tv_sec = 0; 1513 tk->raw_time.tv_nsec = 0; 1514 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1515 boot = tk_xtime(tk); 1516 1517 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1518 tk_set_wall_to_mono(tk, tmp); 1519 1520 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1521 1522 write_seqcount_end(&tk_core.seq); 1523 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1524 } 1525 1526 /* time in seconds when suspend began for persistent clock */ 1527 static struct timespec64 timekeeping_suspend_time; 1528 1529 /** 1530 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1531 * @delta: pointer to a timespec delta value 1532 * 1533 * Takes a timespec offset measuring a suspend interval and properly 1534 * adds the sleep offset to the timekeeping variables. 1535 */ 1536 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1537 struct timespec64 *delta) 1538 { 1539 if (!timespec64_valid_strict(delta)) { 1540 printk_deferred(KERN_WARNING 1541 "__timekeeping_inject_sleeptime: Invalid " 1542 "sleep delta value!\n"); 1543 return; 1544 } 1545 tk_xtime_add(tk, delta); 1546 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1547 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1548 tk_debug_account_sleep_time(delta); 1549 } 1550 1551 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1552 /** 1553 * We have three kinds of time sources to use for sleep time 1554 * injection, the preference order is: 1555 * 1) non-stop clocksource 1556 * 2) persistent clock (ie: RTC accessible when irqs are off) 1557 * 3) RTC 1558 * 1559 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1560 * If system has neither 1) nor 2), 3) will be used finally. 1561 * 1562 * 1563 * If timekeeping has injected sleeptime via either 1) or 2), 1564 * 3) becomes needless, so in this case we don't need to call 1565 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1566 * means. 1567 */ 1568 bool timekeeping_rtc_skipresume(void) 1569 { 1570 return sleeptime_injected; 1571 } 1572 1573 /** 1574 * 1) can be determined whether to use or not only when doing 1575 * timekeeping_resume() which is invoked after rtc_suspend(), 1576 * so we can't skip rtc_suspend() surely if system has 1). 1577 * 1578 * But if system has 2), 2) will definitely be used, so in this 1579 * case we don't need to call rtc_suspend(), and this is what 1580 * timekeeping_rtc_skipsuspend() means. 1581 */ 1582 bool timekeeping_rtc_skipsuspend(void) 1583 { 1584 return persistent_clock_exists; 1585 } 1586 1587 /** 1588 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1589 * @delta: pointer to a timespec64 delta value 1590 * 1591 * This hook is for architectures that cannot support read_persistent_clock64 1592 * because their RTC/persistent clock is only accessible when irqs are enabled. 1593 * and also don't have an effective nonstop clocksource. 1594 * 1595 * This function should only be called by rtc_resume(), and allows 1596 * a suspend offset to be injected into the timekeeping values. 1597 */ 1598 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1599 { 1600 struct timekeeper *tk = &tk_core.timekeeper; 1601 unsigned long flags; 1602 1603 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1604 write_seqcount_begin(&tk_core.seq); 1605 1606 timekeeping_forward_now(tk); 1607 1608 __timekeeping_inject_sleeptime(tk, delta); 1609 1610 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1611 1612 write_seqcount_end(&tk_core.seq); 1613 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1614 1615 /* signal hrtimers about time change */ 1616 clock_was_set(); 1617 } 1618 #endif 1619 1620 /** 1621 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1622 */ 1623 void timekeeping_resume(void) 1624 { 1625 struct timekeeper *tk = &tk_core.timekeeper; 1626 struct clocksource *clock = tk->tkr_mono.clock; 1627 unsigned long flags; 1628 struct timespec64 ts_new, ts_delta; 1629 u64 cycle_now; 1630 1631 sleeptime_injected = false; 1632 read_persistent_clock64(&ts_new); 1633 1634 clockevents_resume(); 1635 clocksource_resume(); 1636 1637 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1638 write_seqcount_begin(&tk_core.seq); 1639 1640 /* 1641 * After system resumes, we need to calculate the suspended time and 1642 * compensate it for the OS time. There are 3 sources that could be 1643 * used: Nonstop clocksource during suspend, persistent clock and rtc 1644 * device. 1645 * 1646 * One specific platform may have 1 or 2 or all of them, and the 1647 * preference will be: 1648 * suspend-nonstop clocksource -> persistent clock -> rtc 1649 * The less preferred source will only be tried if there is no better 1650 * usable source. The rtc part is handled separately in rtc core code. 1651 */ 1652 cycle_now = tk_clock_read(&tk->tkr_mono); 1653 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1654 cycle_now > tk->tkr_mono.cycle_last) { 1655 u64 nsec, cyc_delta; 1656 1657 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1658 tk->tkr_mono.mask); 1659 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1660 ts_delta = ns_to_timespec64(nsec); 1661 sleeptime_injected = true; 1662 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1663 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1664 sleeptime_injected = true; 1665 } 1666 1667 if (sleeptime_injected) 1668 __timekeeping_inject_sleeptime(tk, &ts_delta); 1669 1670 /* Re-base the last cycle value */ 1671 tk->tkr_mono.cycle_last = cycle_now; 1672 tk->tkr_raw.cycle_last = cycle_now; 1673 1674 tk->ntp_error = 0; 1675 timekeeping_suspended = 0; 1676 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1677 write_seqcount_end(&tk_core.seq); 1678 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1679 1680 touch_softlockup_watchdog(); 1681 1682 tick_resume(); 1683 hrtimers_resume(); 1684 } 1685 1686 int timekeeping_suspend(void) 1687 { 1688 struct timekeeper *tk = &tk_core.timekeeper; 1689 unsigned long flags; 1690 struct timespec64 delta, delta_delta; 1691 static struct timespec64 old_delta; 1692 1693 read_persistent_clock64(&timekeeping_suspend_time); 1694 1695 /* 1696 * On some systems the persistent_clock can not be detected at 1697 * timekeeping_init by its return value, so if we see a valid 1698 * value returned, update the persistent_clock_exists flag. 1699 */ 1700 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1701 persistent_clock_exists = true; 1702 1703 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1704 write_seqcount_begin(&tk_core.seq); 1705 timekeeping_forward_now(tk); 1706 timekeeping_suspended = 1; 1707 1708 if (persistent_clock_exists) { 1709 /* 1710 * To avoid drift caused by repeated suspend/resumes, 1711 * which each can add ~1 second drift error, 1712 * try to compensate so the difference in system time 1713 * and persistent_clock time stays close to constant. 1714 */ 1715 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1716 delta_delta = timespec64_sub(delta, old_delta); 1717 if (abs(delta_delta.tv_sec) >= 2) { 1718 /* 1719 * if delta_delta is too large, assume time correction 1720 * has occurred and set old_delta to the current delta. 1721 */ 1722 old_delta = delta; 1723 } else { 1724 /* Otherwise try to adjust old_system to compensate */ 1725 timekeeping_suspend_time = 1726 timespec64_add(timekeeping_suspend_time, delta_delta); 1727 } 1728 } 1729 1730 timekeeping_update(tk, TK_MIRROR); 1731 halt_fast_timekeeper(tk); 1732 write_seqcount_end(&tk_core.seq); 1733 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1734 1735 tick_suspend(); 1736 clocksource_suspend(); 1737 clockevents_suspend(); 1738 1739 return 0; 1740 } 1741 1742 /* sysfs resume/suspend bits for timekeeping */ 1743 static struct syscore_ops timekeeping_syscore_ops = { 1744 .resume = timekeeping_resume, 1745 .suspend = timekeeping_suspend, 1746 }; 1747 1748 static int __init timekeeping_init_ops(void) 1749 { 1750 register_syscore_ops(&timekeeping_syscore_ops); 1751 return 0; 1752 } 1753 device_initcall(timekeeping_init_ops); 1754 1755 /* 1756 * Apply a multiplier adjustment to the timekeeper 1757 */ 1758 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1759 s64 offset, 1760 bool negative, 1761 int adj_scale) 1762 { 1763 s64 interval = tk->cycle_interval; 1764 s32 mult_adj = 1; 1765 1766 if (negative) { 1767 mult_adj = -mult_adj; 1768 interval = -interval; 1769 offset = -offset; 1770 } 1771 mult_adj <<= adj_scale; 1772 interval <<= adj_scale; 1773 offset <<= adj_scale; 1774 1775 /* 1776 * So the following can be confusing. 1777 * 1778 * To keep things simple, lets assume mult_adj == 1 for now. 1779 * 1780 * When mult_adj != 1, remember that the interval and offset values 1781 * have been appropriately scaled so the math is the same. 1782 * 1783 * The basic idea here is that we're increasing the multiplier 1784 * by one, this causes the xtime_interval to be incremented by 1785 * one cycle_interval. This is because: 1786 * xtime_interval = cycle_interval * mult 1787 * So if mult is being incremented by one: 1788 * xtime_interval = cycle_interval * (mult + 1) 1789 * Its the same as: 1790 * xtime_interval = (cycle_interval * mult) + cycle_interval 1791 * Which can be shortened to: 1792 * xtime_interval += cycle_interval 1793 * 1794 * So offset stores the non-accumulated cycles. Thus the current 1795 * time (in shifted nanoseconds) is: 1796 * now = (offset * adj) + xtime_nsec 1797 * Now, even though we're adjusting the clock frequency, we have 1798 * to keep time consistent. In other words, we can't jump back 1799 * in time, and we also want to avoid jumping forward in time. 1800 * 1801 * So given the same offset value, we need the time to be the same 1802 * both before and after the freq adjustment. 1803 * now = (offset * adj_1) + xtime_nsec_1 1804 * now = (offset * adj_2) + xtime_nsec_2 1805 * So: 1806 * (offset * adj_1) + xtime_nsec_1 = 1807 * (offset * adj_2) + xtime_nsec_2 1808 * And we know: 1809 * adj_2 = adj_1 + 1 1810 * So: 1811 * (offset * adj_1) + xtime_nsec_1 = 1812 * (offset * (adj_1+1)) + xtime_nsec_2 1813 * (offset * adj_1) + xtime_nsec_1 = 1814 * (offset * adj_1) + offset + xtime_nsec_2 1815 * Canceling the sides: 1816 * xtime_nsec_1 = offset + xtime_nsec_2 1817 * Which gives us: 1818 * xtime_nsec_2 = xtime_nsec_1 - offset 1819 * Which simplfies to: 1820 * xtime_nsec -= offset 1821 * 1822 * XXX - TODO: Doc ntp_error calculation. 1823 */ 1824 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1825 /* NTP adjustment caused clocksource mult overflow */ 1826 WARN_ON_ONCE(1); 1827 return; 1828 } 1829 1830 tk->tkr_mono.mult += mult_adj; 1831 tk->xtime_interval += interval; 1832 tk->tkr_mono.xtime_nsec -= offset; 1833 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1834 } 1835 1836 /* 1837 * Calculate the multiplier adjustment needed to match the frequency 1838 * specified by NTP 1839 */ 1840 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1841 s64 offset) 1842 { 1843 s64 interval = tk->cycle_interval; 1844 s64 xinterval = tk->xtime_interval; 1845 u32 base = tk->tkr_mono.clock->mult; 1846 u32 max = tk->tkr_mono.clock->maxadj; 1847 u32 cur_adj = tk->tkr_mono.mult; 1848 s64 tick_error; 1849 bool negative; 1850 u32 adj_scale; 1851 1852 /* Remove any current error adj from freq calculation */ 1853 if (tk->ntp_err_mult) 1854 xinterval -= tk->cycle_interval; 1855 1856 tk->ntp_tick = ntp_tick_length(); 1857 1858 /* Calculate current error per tick */ 1859 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1860 tick_error -= (xinterval + tk->xtime_remainder); 1861 1862 /* Don't worry about correcting it if its small */ 1863 if (likely((tick_error >= 0) && (tick_error <= interval))) 1864 return; 1865 1866 /* preserve the direction of correction */ 1867 negative = (tick_error < 0); 1868 1869 /* If any adjustment would pass the max, just return */ 1870 if (negative && (cur_adj - 1) <= (base - max)) 1871 return; 1872 if (!negative && (cur_adj + 1) >= (base + max)) 1873 return; 1874 /* 1875 * Sort out the magnitude of the correction, but 1876 * avoid making so large a correction that we go 1877 * over the max adjustment. 1878 */ 1879 adj_scale = 0; 1880 tick_error = abs(tick_error); 1881 while (tick_error > interval) { 1882 u32 adj = 1 << (adj_scale + 1); 1883 1884 /* Check if adjustment gets us within 1 unit from the max */ 1885 if (negative && (cur_adj - adj) <= (base - max)) 1886 break; 1887 if (!negative && (cur_adj + adj) >= (base + max)) 1888 break; 1889 1890 adj_scale++; 1891 tick_error >>= 1; 1892 } 1893 1894 /* scale the corrections */ 1895 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1896 } 1897 1898 /* 1899 * Adjust the timekeeper's multiplier to the correct frequency 1900 * and also to reduce the accumulated error value. 1901 */ 1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1903 { 1904 /* Correct for the current frequency error */ 1905 timekeeping_freqadjust(tk, offset); 1906 1907 /* Next make a small adjustment to fix any cumulative error */ 1908 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1909 tk->ntp_err_mult = 1; 1910 timekeeping_apply_adjustment(tk, offset, 0, 0); 1911 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1912 /* Undo any existing error adjustment */ 1913 timekeeping_apply_adjustment(tk, offset, 1, 0); 1914 tk->ntp_err_mult = 0; 1915 } 1916 1917 if (unlikely(tk->tkr_mono.clock->maxadj && 1918 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1919 > tk->tkr_mono.clock->maxadj))) { 1920 printk_once(KERN_WARNING 1921 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1922 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1923 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1924 } 1925 1926 /* 1927 * It may be possible that when we entered this function, xtime_nsec 1928 * was very small. Further, if we're slightly speeding the clocksource 1929 * in the code above, its possible the required corrective factor to 1930 * xtime_nsec could cause it to underflow. 1931 * 1932 * Now, since we already accumulated the second, cannot simply roll 1933 * the accumulated second back, since the NTP subsystem has been 1934 * notified via second_overflow. So instead we push xtime_nsec forward 1935 * by the amount we underflowed, and add that amount into the error. 1936 * 1937 * We'll correct this error next time through this function, when 1938 * xtime_nsec is not as small. 1939 */ 1940 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1941 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1942 tk->tkr_mono.xtime_nsec = 0; 1943 tk->ntp_error += neg << tk->ntp_error_shift; 1944 } 1945 } 1946 1947 /** 1948 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1949 * 1950 * Helper function that accumulates the nsecs greater than a second 1951 * from the xtime_nsec field to the xtime_secs field. 1952 * It also calls into the NTP code to handle leapsecond processing. 1953 * 1954 */ 1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1956 { 1957 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1958 unsigned int clock_set = 0; 1959 1960 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1961 int leap; 1962 1963 tk->tkr_mono.xtime_nsec -= nsecps; 1964 tk->xtime_sec++; 1965 1966 /* Figure out if its a leap sec and apply if needed */ 1967 leap = second_overflow(tk->xtime_sec); 1968 if (unlikely(leap)) { 1969 struct timespec64 ts; 1970 1971 tk->xtime_sec += leap; 1972 1973 ts.tv_sec = leap; 1974 ts.tv_nsec = 0; 1975 tk_set_wall_to_mono(tk, 1976 timespec64_sub(tk->wall_to_monotonic, ts)); 1977 1978 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1979 1980 clock_set = TK_CLOCK_WAS_SET; 1981 } 1982 } 1983 return clock_set; 1984 } 1985 1986 /** 1987 * logarithmic_accumulation - shifted accumulation of cycles 1988 * 1989 * This functions accumulates a shifted interval of cycles into 1990 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1991 * loop. 1992 * 1993 * Returns the unconsumed cycles. 1994 */ 1995 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 1996 u32 shift, unsigned int *clock_set) 1997 { 1998 u64 interval = tk->cycle_interval << shift; 1999 u64 snsec_per_sec; 2000 2001 /* If the offset is smaller than a shifted interval, do nothing */ 2002 if (offset < interval) 2003 return offset; 2004 2005 /* Accumulate one shifted interval */ 2006 offset -= interval; 2007 tk->tkr_mono.cycle_last += interval; 2008 tk->tkr_raw.cycle_last += interval; 2009 2010 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2011 *clock_set |= accumulate_nsecs_to_secs(tk); 2012 2013 /* Accumulate raw time */ 2014 tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift; 2015 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2016 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2017 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2018 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2019 tk->raw_time.tv_sec++; 2020 } 2021 tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift; 2022 tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift; 2023 2024 /* Accumulate error between NTP and clock interval */ 2025 tk->ntp_error += tk->ntp_tick << shift; 2026 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2027 (tk->ntp_error_shift + shift); 2028 2029 return offset; 2030 } 2031 2032 /** 2033 * update_wall_time - Uses the current clocksource to increment the wall time 2034 * 2035 */ 2036 void update_wall_time(void) 2037 { 2038 struct timekeeper *real_tk = &tk_core.timekeeper; 2039 struct timekeeper *tk = &shadow_timekeeper; 2040 u64 offset; 2041 int shift = 0, maxshift; 2042 unsigned int clock_set = 0; 2043 unsigned long flags; 2044 2045 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2046 2047 /* Make sure we're fully resumed: */ 2048 if (unlikely(timekeeping_suspended)) 2049 goto out; 2050 2051 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2052 offset = real_tk->cycle_interval; 2053 #else 2054 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2055 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2056 #endif 2057 2058 /* Check if there's really nothing to do */ 2059 if (offset < real_tk->cycle_interval) 2060 goto out; 2061 2062 /* Do some additional sanity checking */ 2063 timekeeping_check_update(real_tk, offset); 2064 2065 /* 2066 * With NO_HZ we may have to accumulate many cycle_intervals 2067 * (think "ticks") worth of time at once. To do this efficiently, 2068 * we calculate the largest doubling multiple of cycle_intervals 2069 * that is smaller than the offset. We then accumulate that 2070 * chunk in one go, and then try to consume the next smaller 2071 * doubled multiple. 2072 */ 2073 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2074 shift = max(0, shift); 2075 /* Bound shift to one less than what overflows tick_length */ 2076 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2077 shift = min(shift, maxshift); 2078 while (offset >= tk->cycle_interval) { 2079 offset = logarithmic_accumulation(tk, offset, shift, 2080 &clock_set); 2081 if (offset < tk->cycle_interval<<shift) 2082 shift--; 2083 } 2084 2085 /* correct the clock when NTP error is too big */ 2086 timekeeping_adjust(tk, offset); 2087 2088 /* 2089 * XXX This can be killed once everyone converts 2090 * to the new update_vsyscall. 2091 */ 2092 old_vsyscall_fixup(tk); 2093 2094 /* 2095 * Finally, make sure that after the rounding 2096 * xtime_nsec isn't larger than NSEC_PER_SEC 2097 */ 2098 clock_set |= accumulate_nsecs_to_secs(tk); 2099 2100 write_seqcount_begin(&tk_core.seq); 2101 /* 2102 * Update the real timekeeper. 2103 * 2104 * We could avoid this memcpy by switching pointers, but that 2105 * requires changes to all other timekeeper usage sites as 2106 * well, i.e. move the timekeeper pointer getter into the 2107 * spinlocked/seqcount protected sections. And we trade this 2108 * memcpy under the tk_core.seq against one before we start 2109 * updating. 2110 */ 2111 timekeeping_update(tk, clock_set); 2112 memcpy(real_tk, tk, sizeof(*tk)); 2113 /* The memcpy must come last. Do not put anything here! */ 2114 write_seqcount_end(&tk_core.seq); 2115 out: 2116 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2117 if (clock_set) 2118 /* Have to call _delayed version, since in irq context*/ 2119 clock_was_set_delayed(); 2120 } 2121 2122 /** 2123 * getboottime64 - Return the real time of system boot. 2124 * @ts: pointer to the timespec64 to be set 2125 * 2126 * Returns the wall-time of boot in a timespec64. 2127 * 2128 * This is based on the wall_to_monotonic offset and the total suspend 2129 * time. Calls to settimeofday will affect the value returned (which 2130 * basically means that however wrong your real time clock is at boot time, 2131 * you get the right time here). 2132 */ 2133 void getboottime64(struct timespec64 *ts) 2134 { 2135 struct timekeeper *tk = &tk_core.timekeeper; 2136 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2137 2138 *ts = ktime_to_timespec64(t); 2139 } 2140 EXPORT_SYMBOL_GPL(getboottime64); 2141 2142 unsigned long get_seconds(void) 2143 { 2144 struct timekeeper *tk = &tk_core.timekeeper; 2145 2146 return tk->xtime_sec; 2147 } 2148 EXPORT_SYMBOL(get_seconds); 2149 2150 struct timespec __current_kernel_time(void) 2151 { 2152 struct timekeeper *tk = &tk_core.timekeeper; 2153 2154 return timespec64_to_timespec(tk_xtime(tk)); 2155 } 2156 2157 struct timespec64 current_kernel_time64(void) 2158 { 2159 struct timekeeper *tk = &tk_core.timekeeper; 2160 struct timespec64 now; 2161 unsigned long seq; 2162 2163 do { 2164 seq = read_seqcount_begin(&tk_core.seq); 2165 2166 now = tk_xtime(tk); 2167 } while (read_seqcount_retry(&tk_core.seq, seq)); 2168 2169 return now; 2170 } 2171 EXPORT_SYMBOL(current_kernel_time64); 2172 2173 struct timespec64 get_monotonic_coarse64(void) 2174 { 2175 struct timekeeper *tk = &tk_core.timekeeper; 2176 struct timespec64 now, mono; 2177 unsigned long seq; 2178 2179 do { 2180 seq = read_seqcount_begin(&tk_core.seq); 2181 2182 now = tk_xtime(tk); 2183 mono = tk->wall_to_monotonic; 2184 } while (read_seqcount_retry(&tk_core.seq, seq)); 2185 2186 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2187 now.tv_nsec + mono.tv_nsec); 2188 2189 return now; 2190 } 2191 EXPORT_SYMBOL(get_monotonic_coarse64); 2192 2193 /* 2194 * Must hold jiffies_lock 2195 */ 2196 void do_timer(unsigned long ticks) 2197 { 2198 jiffies_64 += ticks; 2199 calc_global_load(ticks); 2200 } 2201 2202 /** 2203 * ktime_get_update_offsets_now - hrtimer helper 2204 * @cwsseq: pointer to check and store the clock was set sequence number 2205 * @offs_real: pointer to storage for monotonic -> realtime offset 2206 * @offs_boot: pointer to storage for monotonic -> boottime offset 2207 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2208 * 2209 * Returns current monotonic time and updates the offsets if the 2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2211 * different. 2212 * 2213 * Called from hrtimer_interrupt() or retrigger_next_event() 2214 */ 2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2216 ktime_t *offs_boot, ktime_t *offs_tai) 2217 { 2218 struct timekeeper *tk = &tk_core.timekeeper; 2219 unsigned int seq; 2220 ktime_t base; 2221 u64 nsecs; 2222 2223 do { 2224 seq = read_seqcount_begin(&tk_core.seq); 2225 2226 base = tk->tkr_mono.base; 2227 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2228 base = ktime_add_ns(base, nsecs); 2229 2230 if (*cwsseq != tk->clock_was_set_seq) { 2231 *cwsseq = tk->clock_was_set_seq; 2232 *offs_real = tk->offs_real; 2233 *offs_boot = tk->offs_boot; 2234 *offs_tai = tk->offs_tai; 2235 } 2236 2237 /* Handle leapsecond insertion adjustments */ 2238 if (unlikely(base >= tk->next_leap_ktime)) 2239 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2240 2241 } while (read_seqcount_retry(&tk_core.seq, seq)); 2242 2243 return base; 2244 } 2245 2246 /** 2247 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2248 */ 2249 int do_adjtimex(struct timex *txc) 2250 { 2251 struct timekeeper *tk = &tk_core.timekeeper; 2252 unsigned long flags; 2253 struct timespec64 ts; 2254 s32 orig_tai, tai; 2255 int ret; 2256 2257 /* Validate the data before disabling interrupts */ 2258 ret = ntp_validate_timex(txc); 2259 if (ret) 2260 return ret; 2261 2262 if (txc->modes & ADJ_SETOFFSET) { 2263 struct timespec delta; 2264 delta.tv_sec = txc->time.tv_sec; 2265 delta.tv_nsec = txc->time.tv_usec; 2266 if (!(txc->modes & ADJ_NANO)) 2267 delta.tv_nsec *= 1000; 2268 ret = timekeeping_inject_offset(&delta); 2269 if (ret) 2270 return ret; 2271 } 2272 2273 getnstimeofday64(&ts); 2274 2275 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2276 write_seqcount_begin(&tk_core.seq); 2277 2278 orig_tai = tai = tk->tai_offset; 2279 ret = __do_adjtimex(txc, &ts, &tai); 2280 2281 if (tai != orig_tai) { 2282 __timekeeping_set_tai_offset(tk, tai); 2283 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2284 } 2285 tk_update_leap_state(tk); 2286 2287 write_seqcount_end(&tk_core.seq); 2288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2289 2290 if (tai != orig_tai) 2291 clock_was_set(); 2292 2293 ntp_notify_cmos_timer(); 2294 2295 return ret; 2296 } 2297 2298 #ifdef CONFIG_NTP_PPS 2299 /** 2300 * hardpps() - Accessor function to NTP __hardpps function 2301 */ 2302 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2303 { 2304 unsigned long flags; 2305 2306 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2307 write_seqcount_begin(&tk_core.seq); 2308 2309 __hardpps(phase_ts, raw_ts); 2310 2311 write_seqcount_end(&tk_core.seq); 2312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2313 } 2314 EXPORT_SYMBOL(hardpps); 2315 #endif 2316 2317 /** 2318 * xtime_update() - advances the timekeeping infrastructure 2319 * @ticks: number of ticks, that have elapsed since the last call. 2320 * 2321 * Must be called with interrupts disabled. 2322 */ 2323 void xtime_update(unsigned long ticks) 2324 { 2325 write_seqlock(&jiffies_lock); 2326 do_timer(ticks); 2327 write_sequnlock(&jiffies_lock); 2328 update_wall_time(); 2329 } 2330