1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/kobject.h> 10 #include <linux/percpu.h> 11 #include <linux/init.h> 12 #include <linux/mm.h> 13 #include <linux/nmi.h> 14 #include <linux/sched.h> 15 #include <linux/sched/loadavg.h> 16 #include <linux/sched/clock.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/timex.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 #include <linux/audit.h> 27 #include <linux/random.h> 28 29 #include <vdso/auxclock.h> 30 31 #include "tick-internal.h" 32 #include "ntp_internal.h" 33 #include "timekeeping_internal.h" 34 35 #define TK_CLEAR_NTP (1 << 0) 36 #define TK_CLOCK_WAS_SET (1 << 1) 37 38 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 39 40 enum timekeeping_adv_mode { 41 /* Update timekeeper when a tick has passed */ 42 TK_ADV_TICK, 43 44 /* Update timekeeper on a direct frequency change */ 45 TK_ADV_FREQ 46 }; 47 48 /* 49 * The most important data for readout fits into a single 64 byte 50 * cache line. 51 */ 52 struct tk_data { 53 seqcount_raw_spinlock_t seq; 54 struct timekeeper timekeeper; 55 struct timekeeper shadow_timekeeper; 56 raw_spinlock_t lock; 57 } ____cacheline_aligned; 58 59 static struct tk_data timekeeper_data[TIMEKEEPERS_MAX]; 60 61 /* The core timekeeper */ 62 #define tk_core (timekeeper_data[TIMEKEEPER_CORE]) 63 64 #ifdef CONFIG_POSIX_AUX_CLOCKS 65 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts) 66 { 67 return ktime_get_aux_ts64(CLOCK_AUX + tkid - TIMEKEEPER_AUX_FIRST, ts); 68 } 69 70 static inline bool tk_is_aux(const struct timekeeper *tk) 71 { 72 return tk->id >= TIMEKEEPER_AUX_FIRST && tk->id <= TIMEKEEPER_AUX_LAST; 73 } 74 #else 75 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts) 76 { 77 return false; 78 } 79 80 static inline bool tk_is_aux(const struct timekeeper *tk) 81 { 82 return false; 83 } 84 #endif 85 86 /* flag for if timekeeping is suspended */ 87 int __read_mostly timekeeping_suspended; 88 89 /** 90 * struct tk_fast - NMI safe timekeeper 91 * @seq: Sequence counter for protecting updates. The lowest bit 92 * is the index for the tk_read_base array 93 * @base: tk_read_base array. Access is indexed by the lowest bit of 94 * @seq. 95 * 96 * See @update_fast_timekeeper() below. 97 */ 98 struct tk_fast { 99 seqcount_latch_t seq; 100 struct tk_read_base base[2]; 101 }; 102 103 /* Suspend-time cycles value for halted fast timekeeper. */ 104 static u64 cycles_at_suspend; 105 106 static u64 dummy_clock_read(struct clocksource *cs) 107 { 108 if (timekeeping_suspended) 109 return cycles_at_suspend; 110 return local_clock(); 111 } 112 113 static struct clocksource dummy_clock = { 114 .read = dummy_clock_read, 115 }; 116 117 /* 118 * Boot time initialization which allows local_clock() to be utilized 119 * during early boot when clocksources are not available. local_clock() 120 * returns nanoseconds already so no conversion is required, hence mult=1 121 * and shift=0. When the first proper clocksource is installed then 122 * the fast time keepers are updated with the correct values. 123 */ 124 #define FAST_TK_INIT \ 125 { \ 126 .clock = &dummy_clock, \ 127 .mask = CLOCKSOURCE_MASK(64), \ 128 .mult = 1, \ 129 .shift = 0, \ 130 } 131 132 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 133 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 134 .base[0] = FAST_TK_INIT, 135 .base[1] = FAST_TK_INIT, 136 }; 137 138 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 139 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 140 .base[0] = FAST_TK_INIT, 141 .base[1] = FAST_TK_INIT, 142 }; 143 144 #ifdef CONFIG_POSIX_AUX_CLOCKS 145 static __init void tk_aux_setup(void); 146 static void tk_aux_update_clocksource(void); 147 static void tk_aux_advance(void); 148 #else 149 static inline void tk_aux_setup(void) { } 150 static inline void tk_aux_update_clocksource(void) { } 151 static inline void tk_aux_advance(void) { } 152 #endif 153 154 unsigned long timekeeper_lock_irqsave(void) 155 { 156 unsigned long flags; 157 158 raw_spin_lock_irqsave(&tk_core.lock, flags); 159 return flags; 160 } 161 162 void timekeeper_unlock_irqrestore(unsigned long flags) 163 { 164 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 165 } 166 167 /* 168 * Multigrain timestamps require tracking the latest fine-grained timestamp 169 * that has been issued, and never returning a coarse-grained timestamp that is 170 * earlier than that value. 171 * 172 * mg_floor represents the latest fine-grained time that has been handed out as 173 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 174 * converted to a realtime clock value on an as-needed basis. 175 * 176 * Maintaining mg_floor ensures the multigrain interfaces never issue a 177 * timestamp earlier than one that has been previously issued. 178 * 179 * The exception to this rule is when there is a backward realtime clock jump. If 180 * such an event occurs, a timestamp can appear to be earlier than a previous one. 181 */ 182 static __cacheline_aligned_in_smp atomic64_t mg_floor; 183 184 static inline void tk_normalize_xtime(struct timekeeper *tk) 185 { 186 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 187 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 188 tk->xtime_sec++; 189 } 190 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 191 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 192 tk->raw_sec++; 193 } 194 } 195 196 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 197 { 198 struct timespec64 ts; 199 200 ts.tv_sec = tk->xtime_sec; 201 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 202 return ts; 203 } 204 205 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) 206 { 207 struct timespec64 ts; 208 209 ts.tv_sec = tk->xtime_sec; 210 ts.tv_nsec = tk->coarse_nsec; 211 return ts; 212 } 213 214 /* 215 * Update the nanoseconds part for the coarse time keepers. They can't rely 216 * on xtime_nsec because xtime_nsec could be adjusted by a small negative 217 * amount when the multiplication factor of the clock is adjusted, which 218 * could cause the coarse clocks to go slightly backwards. See 219 * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse 220 * clockids which only is updated when the clock has been set or we have 221 * accumulated time. 222 */ 223 static inline void tk_update_coarse_nsecs(struct timekeeper *tk) 224 { 225 tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 226 } 227 228 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 229 { 230 tk->xtime_sec = ts->tv_sec; 231 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 232 tk_update_coarse_nsecs(tk); 233 } 234 235 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 236 { 237 tk->xtime_sec += ts->tv_sec; 238 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 239 tk_normalize_xtime(tk); 240 tk_update_coarse_nsecs(tk); 241 } 242 243 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 244 { 245 struct timespec64 tmp; 246 247 /* 248 * Verify consistency of: offset_real = -wall_to_monotonic 249 * before modifying anything 250 */ 251 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 252 -tk->wall_to_monotonic.tv_nsec); 253 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 254 tk->wall_to_monotonic = wtm; 255 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 256 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 257 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 258 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 259 } 260 261 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 262 { 263 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 264 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 265 /* 266 * Timespec representation for VDSO update to avoid 64bit division 267 * on every update. 268 */ 269 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 270 } 271 272 /* 273 * tk_clock_read - atomic clocksource read() helper 274 * 275 * This helper is necessary to use in the read paths because, while the 276 * seqcount ensures we don't return a bad value while structures are updated, 277 * it doesn't protect from potential crashes. There is the possibility that 278 * the tkr's clocksource may change between the read reference, and the 279 * clock reference passed to the read function. This can cause crashes if 280 * the wrong clocksource is passed to the wrong read function. 281 * This isn't necessary to use when holding the tk_core.lock or doing 282 * a read of the fast-timekeeper tkrs (which is protected by its own locking 283 * and update logic). 284 */ 285 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 286 { 287 struct clocksource *clock = READ_ONCE(tkr->clock); 288 289 return clock->read(clock); 290 } 291 292 /** 293 * tk_setup_internals - Set up internals to use clocksource clock. 294 * 295 * @tk: The target timekeeper to setup. 296 * @clock: Pointer to clocksource. 297 * 298 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 299 * pair and interval request. 300 * 301 * Unless you're the timekeeping code, you should not be using this! 302 */ 303 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 304 { 305 u64 interval; 306 u64 tmp, ntpinterval; 307 struct clocksource *old_clock; 308 309 ++tk->cs_was_changed_seq; 310 old_clock = tk->tkr_mono.clock; 311 tk->tkr_mono.clock = clock; 312 tk->tkr_mono.mask = clock->mask; 313 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 314 315 tk->tkr_raw.clock = clock; 316 tk->tkr_raw.mask = clock->mask; 317 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 318 319 /* Do the ns -> cycle conversion first, using original mult */ 320 tmp = NTP_INTERVAL_LENGTH; 321 tmp <<= clock->shift; 322 ntpinterval = tmp; 323 tmp += clock->mult/2; 324 do_div(tmp, clock->mult); 325 if (tmp == 0) 326 tmp = 1; 327 328 interval = (u64) tmp; 329 tk->cycle_interval = interval; 330 331 /* Go back from cycles -> shifted ns */ 332 tk->xtime_interval = interval * clock->mult; 333 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 334 tk->raw_interval = interval * clock->mult; 335 336 /* if changing clocks, convert xtime_nsec shift units */ 337 if (old_clock) { 338 int shift_change = clock->shift - old_clock->shift; 339 if (shift_change < 0) { 340 tk->tkr_mono.xtime_nsec >>= -shift_change; 341 tk->tkr_raw.xtime_nsec >>= -shift_change; 342 } else { 343 tk->tkr_mono.xtime_nsec <<= shift_change; 344 tk->tkr_raw.xtime_nsec <<= shift_change; 345 } 346 } 347 348 tk->tkr_mono.shift = clock->shift; 349 tk->tkr_raw.shift = clock->shift; 350 351 tk->ntp_error = 0; 352 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 353 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 354 355 /* 356 * The timekeeper keeps its own mult values for the currently 357 * active clocksource. These value will be adjusted via NTP 358 * to counteract clock drifting. 359 */ 360 tk->tkr_mono.mult = clock->mult; 361 tk->tkr_raw.mult = clock->mult; 362 tk->ntp_err_mult = 0; 363 tk->skip_second_overflow = 0; 364 } 365 366 /* Timekeeper helper functions. */ 367 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 368 { 369 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 370 } 371 372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 373 { 374 /* Calculate the delta since the last update_wall_time() */ 375 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 376 377 /* 378 * This detects both negative motion and the case where the delta 379 * overflows the multiplication with tkr->mult. 380 */ 381 if (unlikely(delta > tkr->clock->max_cycles)) { 382 /* 383 * Handle clocksource inconsistency between CPUs to prevent 384 * time from going backwards by checking for the MSB of the 385 * mask being set in the delta. 386 */ 387 if (delta & ~(mask >> 1)) 388 return tkr->xtime_nsec >> tkr->shift; 389 390 return delta_to_ns_safe(tkr, delta); 391 } 392 393 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 394 } 395 396 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 397 { 398 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 399 } 400 401 /** 402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 403 * @tkr: Timekeeping readout base from which we take the update 404 * @tkf: Pointer to NMI safe timekeeper 405 * 406 * We want to use this from any context including NMI and tracing / 407 * instrumenting the timekeeping code itself. 408 * 409 * Employ the latch technique; see @write_seqcount_latch. 410 * 411 * So if a NMI hits the update of base[0] then it will use base[1] 412 * which is still consistent. In the worst case this can result is a 413 * slightly wrong timestamp (a few nanoseconds). See 414 * @ktime_get_mono_fast_ns. 415 */ 416 static void update_fast_timekeeper(const struct tk_read_base *tkr, 417 struct tk_fast *tkf) 418 { 419 struct tk_read_base *base = tkf->base; 420 421 /* Force readers off to base[1] */ 422 write_seqcount_latch_begin(&tkf->seq); 423 424 /* Update base[0] */ 425 memcpy(base, tkr, sizeof(*base)); 426 427 /* Force readers back to base[0] */ 428 write_seqcount_latch(&tkf->seq); 429 430 /* Update base[1] */ 431 memcpy(base + 1, base, sizeof(*base)); 432 433 write_seqcount_latch_end(&tkf->seq); 434 } 435 436 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 437 { 438 struct tk_read_base *tkr; 439 unsigned int seq; 440 u64 now; 441 442 do { 443 seq = read_seqcount_latch(&tkf->seq); 444 tkr = tkf->base + (seq & 0x01); 445 now = ktime_to_ns(tkr->base); 446 now += timekeeping_get_ns(tkr); 447 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 448 449 return now; 450 } 451 452 /** 453 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 454 * 455 * This timestamp is not guaranteed to be monotonic across an update. 456 * The timestamp is calculated by: 457 * 458 * now = base_mono + clock_delta * slope 459 * 460 * So if the update lowers the slope, readers who are forced to the 461 * not yet updated second array are still using the old steeper slope. 462 * 463 * tmono 464 * ^ 465 * | o n 466 * | o n 467 * | u 468 * | o 469 * |o 470 * |12345678---> reader order 471 * 472 * o = old slope 473 * u = update 474 * n = new slope 475 * 476 * So reader 6 will observe time going backwards versus reader 5. 477 * 478 * While other CPUs are likely to be able to observe that, the only way 479 * for a CPU local observation is when an NMI hits in the middle of 480 * the update. Timestamps taken from that NMI context might be ahead 481 * of the following timestamps. Callers need to be aware of that and 482 * deal with it. 483 */ 484 u64 notrace ktime_get_mono_fast_ns(void) 485 { 486 return __ktime_get_fast_ns(&tk_fast_mono); 487 } 488 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 489 490 /** 491 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 492 * 493 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 494 * conversion factor is not affected by NTP/PTP correction. 495 */ 496 u64 notrace ktime_get_raw_fast_ns(void) 497 { 498 return __ktime_get_fast_ns(&tk_fast_raw); 499 } 500 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 501 502 /** 503 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 504 * 505 * To keep it NMI safe since we're accessing from tracing, we're not using a 506 * separate timekeeper with updates to monotonic clock and boot offset 507 * protected with seqcounts. This has the following minor side effects: 508 * 509 * (1) Its possible that a timestamp be taken after the boot offset is updated 510 * but before the timekeeper is updated. If this happens, the new boot offset 511 * is added to the old timekeeping making the clock appear to update slightly 512 * earlier: 513 * CPU 0 CPU 1 514 * timekeeping_inject_sleeptime64() 515 * __timekeeping_inject_sleeptime(tk, delta); 516 * timestamp(); 517 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 518 * 519 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 520 * partially updated. Since the tk->offs_boot update is a rare event, this 521 * should be a rare occurrence which postprocessing should be able to handle. 522 * 523 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 524 * apply as well. 525 */ 526 u64 notrace ktime_get_boot_fast_ns(void) 527 { 528 struct timekeeper *tk = &tk_core.timekeeper; 529 530 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 531 } 532 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 533 534 /** 535 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 536 * 537 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 538 * mono time and the TAI offset are not read atomically which may yield wrong 539 * readouts. However, an update of the TAI offset is an rare event e.g., caused 540 * by settime or adjtimex with an offset. The user of this function has to deal 541 * with the possibility of wrong timestamps in post processing. 542 */ 543 u64 notrace ktime_get_tai_fast_ns(void) 544 { 545 struct timekeeper *tk = &tk_core.timekeeper; 546 547 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 548 } 549 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 550 551 /** 552 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 553 * 554 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 555 */ 556 u64 ktime_get_real_fast_ns(void) 557 { 558 struct tk_fast *tkf = &tk_fast_mono; 559 struct tk_read_base *tkr; 560 u64 baser, delta; 561 unsigned int seq; 562 563 do { 564 seq = raw_read_seqcount_latch(&tkf->seq); 565 tkr = tkf->base + (seq & 0x01); 566 baser = ktime_to_ns(tkr->base_real); 567 delta = timekeeping_get_ns(tkr); 568 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 569 570 return baser + delta; 571 } 572 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 573 574 /** 575 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 576 * @tk: Timekeeper to snapshot. 577 * 578 * It generally is unsafe to access the clocksource after timekeeping has been 579 * suspended, so take a snapshot of the readout base of @tk and use it as the 580 * fast timekeeper's readout base while suspended. It will return the same 581 * number of cycles every time until timekeeping is resumed at which time the 582 * proper readout base for the fast timekeeper will be restored automatically. 583 */ 584 static void halt_fast_timekeeper(const struct timekeeper *tk) 585 { 586 static struct tk_read_base tkr_dummy; 587 const struct tk_read_base *tkr = &tk->tkr_mono; 588 589 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 590 cycles_at_suspend = tk_clock_read(tkr); 591 tkr_dummy.clock = &dummy_clock; 592 tkr_dummy.base_real = tkr->base + tk->offs_real; 593 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 594 595 tkr = &tk->tkr_raw; 596 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 597 tkr_dummy.clock = &dummy_clock; 598 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 599 } 600 601 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 602 603 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 604 { 605 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 606 } 607 608 /** 609 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 610 * @nb: Pointer to the notifier block to register 611 */ 612 int pvclock_gtod_register_notifier(struct notifier_block *nb) 613 { 614 struct timekeeper *tk = &tk_core.timekeeper; 615 int ret; 616 617 guard(raw_spinlock_irqsave)(&tk_core.lock); 618 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 619 update_pvclock_gtod(tk, true); 620 621 return ret; 622 } 623 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 624 625 /** 626 * pvclock_gtod_unregister_notifier - unregister a pvclock 627 * timedata update listener 628 * @nb: Pointer to the notifier block to unregister 629 */ 630 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 631 { 632 guard(raw_spinlock_irqsave)(&tk_core.lock); 633 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 634 } 635 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 636 637 /* 638 * tk_update_leap_state - helper to update the next_leap_ktime 639 */ 640 static inline void tk_update_leap_state(struct timekeeper *tk) 641 { 642 tk->next_leap_ktime = ntp_get_next_leap(tk->id); 643 if (tk->next_leap_ktime != KTIME_MAX) 644 /* Convert to monotonic time */ 645 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 646 } 647 648 /* 649 * Leap state update for both shadow and the real timekeeper 650 * Separate to spare a full memcpy() of the timekeeper. 651 */ 652 static void tk_update_leap_state_all(struct tk_data *tkd) 653 { 654 write_seqcount_begin(&tkd->seq); 655 tk_update_leap_state(&tkd->shadow_timekeeper); 656 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 657 write_seqcount_end(&tkd->seq); 658 } 659 660 /* 661 * Update the ktime_t based scalar nsec members of the timekeeper 662 */ 663 static inline void tk_update_ktime_data(struct timekeeper *tk) 664 { 665 u64 seconds; 666 u32 nsec; 667 668 /* 669 * The xtime based monotonic readout is: 670 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 671 * The ktime based monotonic readout is: 672 * nsec = base_mono + now(); 673 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 674 */ 675 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 676 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 677 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 678 679 /* 680 * The sum of the nanoseconds portions of xtime and 681 * wall_to_monotonic can be greater/equal one second. Take 682 * this into account before updating tk->ktime_sec. 683 */ 684 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 685 if (nsec >= NSEC_PER_SEC) 686 seconds++; 687 tk->ktime_sec = seconds; 688 689 /* Update the monotonic raw base */ 690 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 691 } 692 693 /* 694 * Restore the shadow timekeeper from the real timekeeper. 695 */ 696 static void timekeeping_restore_shadow(struct tk_data *tkd) 697 { 698 lockdep_assert_held(&tkd->lock); 699 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 700 } 701 702 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 703 { 704 struct timekeeper *tk = &tkd->shadow_timekeeper; 705 706 lockdep_assert_held(&tkd->lock); 707 708 /* 709 * Block out readers before running the updates below because that 710 * updates VDSO and other time related infrastructure. Not blocking 711 * the readers might let a reader see time going backwards when 712 * reading from the VDSO after the VDSO update and then reading in 713 * the kernel from the timekeeper before that got updated. 714 */ 715 write_seqcount_begin(&tkd->seq); 716 717 if (action & TK_CLEAR_NTP) { 718 tk->ntp_error = 0; 719 ntp_clear(tk->id); 720 } 721 722 tk_update_leap_state(tk); 723 tk_update_ktime_data(tk); 724 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 725 726 if (tk->id == TIMEKEEPER_CORE) { 727 update_vsyscall(tk); 728 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 729 730 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 731 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 732 } else if (tk_is_aux(tk)) { 733 vdso_time_update_aux(tk); 734 } 735 736 if (action & TK_CLOCK_WAS_SET) 737 tk->clock_was_set_seq++; 738 739 /* 740 * Update the real timekeeper. 741 * 742 * We could avoid this memcpy() by switching pointers, but that has 743 * the downside that the reader side does not longer benefit from 744 * the cacheline optimized data layout of the timekeeper and requires 745 * another indirection. 746 */ 747 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 748 write_seqcount_end(&tkd->seq); 749 } 750 751 /** 752 * timekeeping_forward_now - update clock to the current time 753 * @tk: Pointer to the timekeeper to update 754 * 755 * Forward the current clock to update its state since the last call to 756 * update_wall_time(). This is useful before significant clock changes, 757 * as it avoids having to deal with this time offset explicitly. 758 */ 759 static void timekeeping_forward_now(struct timekeeper *tk) 760 { 761 u64 cycle_now, delta; 762 763 cycle_now = tk_clock_read(&tk->tkr_mono); 764 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 765 tk->tkr_mono.clock->max_raw_delta); 766 tk->tkr_mono.cycle_last = cycle_now; 767 tk->tkr_raw.cycle_last = cycle_now; 768 769 while (delta > 0) { 770 u64 max = tk->tkr_mono.clock->max_cycles; 771 u64 incr = delta < max ? delta : max; 772 773 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 774 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 775 tk_normalize_xtime(tk); 776 delta -= incr; 777 } 778 tk_update_coarse_nsecs(tk); 779 } 780 781 /** 782 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 783 * @ts: pointer to the timespec to be set 784 * 785 * Returns the time of day in a timespec64 (WARN if suspended). 786 */ 787 void ktime_get_real_ts64(struct timespec64 *ts) 788 { 789 struct timekeeper *tk = &tk_core.timekeeper; 790 unsigned int seq; 791 u64 nsecs; 792 793 WARN_ON(timekeeping_suspended); 794 795 do { 796 seq = read_seqcount_begin(&tk_core.seq); 797 798 ts->tv_sec = tk->xtime_sec; 799 nsecs = timekeeping_get_ns(&tk->tkr_mono); 800 801 } while (read_seqcount_retry(&tk_core.seq, seq)); 802 803 ts->tv_nsec = 0; 804 timespec64_add_ns(ts, nsecs); 805 } 806 EXPORT_SYMBOL(ktime_get_real_ts64); 807 808 ktime_t ktime_get(void) 809 { 810 struct timekeeper *tk = &tk_core.timekeeper; 811 unsigned int seq; 812 ktime_t base; 813 u64 nsecs; 814 815 WARN_ON(timekeeping_suspended); 816 817 do { 818 seq = read_seqcount_begin(&tk_core.seq); 819 base = tk->tkr_mono.base; 820 nsecs = timekeeping_get_ns(&tk->tkr_mono); 821 822 } while (read_seqcount_retry(&tk_core.seq, seq)); 823 824 return ktime_add_ns(base, nsecs); 825 } 826 EXPORT_SYMBOL_GPL(ktime_get); 827 828 u32 ktime_get_resolution_ns(void) 829 { 830 struct timekeeper *tk = &tk_core.timekeeper; 831 unsigned int seq; 832 u32 nsecs; 833 834 WARN_ON(timekeeping_suspended); 835 836 do { 837 seq = read_seqcount_begin(&tk_core.seq); 838 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 839 } while (read_seqcount_retry(&tk_core.seq, seq)); 840 841 return nsecs; 842 } 843 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 844 845 static ktime_t *offsets[TK_OFFS_MAX] = { 846 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 847 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 848 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 849 }; 850 851 ktime_t ktime_get_with_offset(enum tk_offsets offs) 852 { 853 struct timekeeper *tk = &tk_core.timekeeper; 854 unsigned int seq; 855 ktime_t base, *offset = offsets[offs]; 856 u64 nsecs; 857 858 WARN_ON(timekeeping_suspended); 859 860 do { 861 seq = read_seqcount_begin(&tk_core.seq); 862 base = ktime_add(tk->tkr_mono.base, *offset); 863 nsecs = timekeeping_get_ns(&tk->tkr_mono); 864 865 } while (read_seqcount_retry(&tk_core.seq, seq)); 866 867 return ktime_add_ns(base, nsecs); 868 869 } 870 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 871 872 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 873 { 874 struct timekeeper *tk = &tk_core.timekeeper; 875 ktime_t base, *offset = offsets[offs]; 876 unsigned int seq; 877 u64 nsecs; 878 879 WARN_ON(timekeeping_suspended); 880 881 do { 882 seq = read_seqcount_begin(&tk_core.seq); 883 base = ktime_add(tk->tkr_mono.base, *offset); 884 nsecs = tk->coarse_nsec; 885 886 } while (read_seqcount_retry(&tk_core.seq, seq)); 887 888 return ktime_add_ns(base, nsecs); 889 } 890 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 891 892 /** 893 * ktime_mono_to_any() - convert monotonic time to any other time 894 * @tmono: time to convert. 895 * @offs: which offset to use 896 */ 897 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 898 { 899 ktime_t *offset = offsets[offs]; 900 unsigned int seq; 901 ktime_t tconv; 902 903 if (IS_ENABLED(CONFIG_64BIT)) { 904 /* 905 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 906 * tk_update_sleep_time(). 907 */ 908 return ktime_add(tmono, READ_ONCE(*offset)); 909 } 910 911 do { 912 seq = read_seqcount_begin(&tk_core.seq); 913 tconv = ktime_add(tmono, *offset); 914 } while (read_seqcount_retry(&tk_core.seq, seq)); 915 916 return tconv; 917 } 918 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 919 920 /** 921 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 922 */ 923 ktime_t ktime_get_raw(void) 924 { 925 struct timekeeper *tk = &tk_core.timekeeper; 926 unsigned int seq; 927 ktime_t base; 928 u64 nsecs; 929 930 do { 931 seq = read_seqcount_begin(&tk_core.seq); 932 base = tk->tkr_raw.base; 933 nsecs = timekeeping_get_ns(&tk->tkr_raw); 934 935 } while (read_seqcount_retry(&tk_core.seq, seq)); 936 937 return ktime_add_ns(base, nsecs); 938 } 939 EXPORT_SYMBOL_GPL(ktime_get_raw); 940 941 /** 942 * ktime_get_ts64 - get the monotonic clock in timespec64 format 943 * @ts: pointer to timespec variable 944 * 945 * The function calculates the monotonic clock from the realtime 946 * clock and the wall_to_monotonic offset and stores the result 947 * in normalized timespec64 format in the variable pointed to by @ts. 948 */ 949 void ktime_get_ts64(struct timespec64 *ts) 950 { 951 struct timekeeper *tk = &tk_core.timekeeper; 952 struct timespec64 tomono; 953 unsigned int seq; 954 u64 nsec; 955 956 WARN_ON(timekeeping_suspended); 957 958 do { 959 seq = read_seqcount_begin(&tk_core.seq); 960 ts->tv_sec = tk->xtime_sec; 961 nsec = timekeeping_get_ns(&tk->tkr_mono); 962 tomono = tk->wall_to_monotonic; 963 964 } while (read_seqcount_retry(&tk_core.seq, seq)); 965 966 ts->tv_sec += tomono.tv_sec; 967 ts->tv_nsec = 0; 968 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 969 } 970 EXPORT_SYMBOL_GPL(ktime_get_ts64); 971 972 /** 973 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 974 * 975 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 976 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 977 * works on both 32 and 64 bit systems. On 32 bit systems the readout 978 * covers ~136 years of uptime which should be enough to prevent 979 * premature wrap arounds. 980 */ 981 time64_t ktime_get_seconds(void) 982 { 983 struct timekeeper *tk = &tk_core.timekeeper; 984 985 WARN_ON(timekeeping_suspended); 986 return tk->ktime_sec; 987 } 988 EXPORT_SYMBOL_GPL(ktime_get_seconds); 989 990 /** 991 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 992 * 993 * Returns the wall clock seconds since 1970. 994 * 995 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 996 * 32bit systems the access must be protected with the sequence 997 * counter to provide "atomic" access to the 64bit tk->xtime_sec 998 * value. 999 */ 1000 time64_t ktime_get_real_seconds(void) 1001 { 1002 struct timekeeper *tk = &tk_core.timekeeper; 1003 time64_t seconds; 1004 unsigned int seq; 1005 1006 if (IS_ENABLED(CONFIG_64BIT)) 1007 return tk->xtime_sec; 1008 1009 do { 1010 seq = read_seqcount_begin(&tk_core.seq); 1011 seconds = tk->xtime_sec; 1012 1013 } while (read_seqcount_retry(&tk_core.seq, seq)); 1014 1015 return seconds; 1016 } 1017 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1018 1019 /** 1020 * __ktime_get_real_seconds - Unprotected access to CLOCK_REALTIME seconds 1021 * 1022 * The same as ktime_get_real_seconds() but without the sequence counter 1023 * protection. This function is used in restricted contexts like the x86 MCE 1024 * handler and in KGDB. It's unprotected on 32-bit vs. concurrent half 1025 * completed modification and only to be used for such critical contexts. 1026 * 1027 * Returns: Racy snapshot of the CLOCK_REALTIME seconds value 1028 */ 1029 noinstr time64_t __ktime_get_real_seconds(void) 1030 { 1031 struct timekeeper *tk = &tk_core.timekeeper; 1032 1033 return tk->xtime_sec; 1034 } 1035 1036 /** 1037 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1038 * @systime_snapshot: pointer to struct receiving the system time snapshot 1039 */ 1040 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1041 { 1042 struct timekeeper *tk = &tk_core.timekeeper; 1043 unsigned int seq; 1044 ktime_t base_raw; 1045 ktime_t base_real; 1046 ktime_t base_boot; 1047 u64 nsec_raw; 1048 u64 nsec_real; 1049 u64 now; 1050 1051 WARN_ON_ONCE(timekeeping_suspended); 1052 1053 do { 1054 seq = read_seqcount_begin(&tk_core.seq); 1055 now = tk_clock_read(&tk->tkr_mono); 1056 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1057 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1058 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1059 base_real = ktime_add(tk->tkr_mono.base, 1060 tk_core.timekeeper.offs_real); 1061 base_boot = ktime_add(tk->tkr_mono.base, 1062 tk_core.timekeeper.offs_boot); 1063 base_raw = tk->tkr_raw.base; 1064 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1065 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1066 } while (read_seqcount_retry(&tk_core.seq, seq)); 1067 1068 systime_snapshot->cycles = now; 1069 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1070 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1071 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1072 } 1073 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1074 1075 /* Scale base by mult/div checking for overflow */ 1076 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1077 { 1078 u64 tmp, rem; 1079 1080 tmp = div64_u64_rem(*base, div, &rem); 1081 1082 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1083 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1084 return -EOVERFLOW; 1085 tmp *= mult; 1086 1087 rem = div64_u64(rem * mult, div); 1088 *base = tmp + rem; 1089 return 0; 1090 } 1091 1092 /** 1093 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1094 * @history: Snapshot representing start of history 1095 * @partial_history_cycles: Cycle offset into history (fractional part) 1096 * @total_history_cycles: Total history length in cycles 1097 * @discontinuity: True indicates clock was set on history period 1098 * @ts: Cross timestamp that should be adjusted using 1099 * partial/total ratio 1100 * 1101 * Helper function used by get_device_system_crosststamp() to correct the 1102 * crosstimestamp corresponding to the start of the current interval to the 1103 * system counter value (timestamp point) provided by the driver. The 1104 * total_history_* quantities are the total history starting at the provided 1105 * reference point and ending at the start of the current interval. The cycle 1106 * count between the driver timestamp point and the start of the current 1107 * interval is partial_history_cycles. 1108 */ 1109 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1110 u64 partial_history_cycles, 1111 u64 total_history_cycles, 1112 bool discontinuity, 1113 struct system_device_crosststamp *ts) 1114 { 1115 struct timekeeper *tk = &tk_core.timekeeper; 1116 u64 corr_raw, corr_real; 1117 bool interp_forward; 1118 int ret; 1119 1120 if (total_history_cycles == 0 || partial_history_cycles == 0) 1121 return 0; 1122 1123 /* Interpolate shortest distance from beginning or end of history */ 1124 interp_forward = partial_history_cycles > total_history_cycles / 2; 1125 partial_history_cycles = interp_forward ? 1126 total_history_cycles - partial_history_cycles : 1127 partial_history_cycles; 1128 1129 /* 1130 * Scale the monotonic raw time delta by: 1131 * partial_history_cycles / total_history_cycles 1132 */ 1133 corr_raw = (u64)ktime_to_ns( 1134 ktime_sub(ts->sys_monoraw, history->raw)); 1135 ret = scale64_check_overflow(partial_history_cycles, 1136 total_history_cycles, &corr_raw); 1137 if (ret) 1138 return ret; 1139 1140 /* 1141 * If there is a discontinuity in the history, scale monotonic raw 1142 * correction by: 1143 * mult(real)/mult(raw) yielding the realtime correction 1144 * Otherwise, calculate the realtime correction similar to monotonic 1145 * raw calculation 1146 */ 1147 if (discontinuity) { 1148 corr_real = mul_u64_u32_div 1149 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1150 } else { 1151 corr_real = (u64)ktime_to_ns( 1152 ktime_sub(ts->sys_realtime, history->real)); 1153 ret = scale64_check_overflow(partial_history_cycles, 1154 total_history_cycles, &corr_real); 1155 if (ret) 1156 return ret; 1157 } 1158 1159 /* Fixup monotonic raw and real time time values */ 1160 if (interp_forward) { 1161 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1162 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1163 } else { 1164 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1165 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1166 } 1167 1168 return 0; 1169 } 1170 1171 /* 1172 * timestamp_in_interval - true if ts is chronologically in [start, end] 1173 * 1174 * True if ts occurs chronologically at or after start, and before or at end. 1175 */ 1176 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1177 { 1178 if (ts >= start && ts <= end) 1179 return true; 1180 if (start > end && (ts >= start || ts <= end)) 1181 return true; 1182 return false; 1183 } 1184 1185 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1186 { 1187 u64 rem, res; 1188 1189 if (!numerator || !denominator) 1190 return false; 1191 1192 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1193 *val = res + div_u64(rem * numerator, denominator); 1194 return true; 1195 } 1196 1197 static bool convert_base_to_cs(struct system_counterval_t *scv) 1198 { 1199 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1200 struct clocksource_base *base; 1201 u32 num, den; 1202 1203 /* The timestamp was taken from the time keeper clock source */ 1204 if (cs->id == scv->cs_id) 1205 return true; 1206 1207 /* 1208 * Check whether cs_id matches the base clock. Prevent the compiler from 1209 * re-evaluating @base as the clocksource might change concurrently. 1210 */ 1211 base = READ_ONCE(cs->base); 1212 if (!base || base->id != scv->cs_id) 1213 return false; 1214 1215 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1216 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1217 1218 if (!convert_clock(&scv->cycles, num, den)) 1219 return false; 1220 1221 scv->cycles += base->offset; 1222 return true; 1223 } 1224 1225 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1226 { 1227 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1228 struct clocksource_base *base; 1229 1230 /* 1231 * Check whether base_id matches the base clock. Prevent the compiler from 1232 * re-evaluating @base as the clocksource might change concurrently. 1233 */ 1234 base = READ_ONCE(cs->base); 1235 if (!base || base->id != base_id) 1236 return false; 1237 1238 *cycles -= base->offset; 1239 if (!convert_clock(cycles, base->denominator, base->numerator)) 1240 return false; 1241 return true; 1242 } 1243 1244 static bool convert_ns_to_cs(u64 *delta) 1245 { 1246 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1247 1248 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1249 return false; 1250 1251 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1252 return true; 1253 } 1254 1255 /** 1256 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1257 * @treal: CLOCK_REALTIME timestamp to convert 1258 * @base_id: base clocksource id 1259 * @cycles: pointer to store the converted base clock timestamp 1260 * 1261 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1262 * 1263 * Return: true if the conversion is successful, false otherwise. 1264 */ 1265 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1266 { 1267 struct timekeeper *tk = &tk_core.timekeeper; 1268 unsigned int seq; 1269 u64 delta; 1270 1271 do { 1272 seq = read_seqcount_begin(&tk_core.seq); 1273 if ((u64)treal < tk->tkr_mono.base_real) 1274 return false; 1275 delta = (u64)treal - tk->tkr_mono.base_real; 1276 if (!convert_ns_to_cs(&delta)) 1277 return false; 1278 *cycles = tk->tkr_mono.cycle_last + delta; 1279 if (!convert_cs_to_base(cycles, base_id)) 1280 return false; 1281 } while (read_seqcount_retry(&tk_core.seq, seq)); 1282 1283 return true; 1284 } 1285 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1286 1287 /** 1288 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1289 * @get_time_fn: Callback to get simultaneous device time and 1290 * system counter from the device driver 1291 * @ctx: Context passed to get_time_fn() 1292 * @history_begin: Historical reference point used to interpolate system 1293 * time when counter provided by the driver is before the current interval 1294 * @xtstamp: Receives simultaneously captured system and device time 1295 * 1296 * Reads a timestamp from a device and correlates it to system time 1297 */ 1298 int get_device_system_crosststamp(int (*get_time_fn) 1299 (ktime_t *device_time, 1300 struct system_counterval_t *sys_counterval, 1301 void *ctx), 1302 void *ctx, 1303 struct system_time_snapshot *history_begin, 1304 struct system_device_crosststamp *xtstamp) 1305 { 1306 struct system_counterval_t system_counterval = {}; 1307 struct timekeeper *tk = &tk_core.timekeeper; 1308 u64 cycles, now, interval_start; 1309 unsigned int clock_was_set_seq = 0; 1310 ktime_t base_real, base_raw; 1311 u64 nsec_real, nsec_raw; 1312 u8 cs_was_changed_seq; 1313 unsigned int seq; 1314 bool do_interp; 1315 int ret; 1316 1317 do { 1318 seq = read_seqcount_begin(&tk_core.seq); 1319 /* 1320 * Try to synchronously capture device time and a system 1321 * counter value calling back into the device driver 1322 */ 1323 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1324 if (ret) 1325 return ret; 1326 1327 /* 1328 * Verify that the clocksource ID associated with the captured 1329 * system counter value is the same as for the currently 1330 * installed timekeeper clocksource 1331 */ 1332 if (system_counterval.cs_id == CSID_GENERIC || 1333 !convert_base_to_cs(&system_counterval)) 1334 return -ENODEV; 1335 cycles = system_counterval.cycles; 1336 1337 /* 1338 * Check whether the system counter value provided by the 1339 * device driver is on the current timekeeping interval. 1340 */ 1341 now = tk_clock_read(&tk->tkr_mono); 1342 interval_start = tk->tkr_mono.cycle_last; 1343 if (!timestamp_in_interval(interval_start, now, cycles)) { 1344 clock_was_set_seq = tk->clock_was_set_seq; 1345 cs_was_changed_seq = tk->cs_was_changed_seq; 1346 cycles = interval_start; 1347 do_interp = true; 1348 } else { 1349 do_interp = false; 1350 } 1351 1352 base_real = ktime_add(tk->tkr_mono.base, 1353 tk_core.timekeeper.offs_real); 1354 base_raw = tk->tkr_raw.base; 1355 1356 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1357 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1358 } while (read_seqcount_retry(&tk_core.seq, seq)); 1359 1360 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1361 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1362 1363 /* 1364 * Interpolate if necessary, adjusting back from the start of the 1365 * current interval 1366 */ 1367 if (do_interp) { 1368 u64 partial_history_cycles, total_history_cycles; 1369 bool discontinuity; 1370 1371 /* 1372 * Check that the counter value is not before the provided 1373 * history reference and that the history doesn't cross a 1374 * clocksource change 1375 */ 1376 if (!history_begin || 1377 !timestamp_in_interval(history_begin->cycles, 1378 cycles, system_counterval.cycles) || 1379 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1380 return -EINVAL; 1381 partial_history_cycles = cycles - system_counterval.cycles; 1382 total_history_cycles = cycles - history_begin->cycles; 1383 discontinuity = 1384 history_begin->clock_was_set_seq != clock_was_set_seq; 1385 1386 ret = adjust_historical_crosststamp(history_begin, 1387 partial_history_cycles, 1388 total_history_cycles, 1389 discontinuity, xtstamp); 1390 if (ret) 1391 return ret; 1392 } 1393 1394 return 0; 1395 } 1396 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1397 1398 /** 1399 * timekeeping_clocksource_has_base - Check whether the current clocksource 1400 * is based on given a base clock 1401 * @id: base clocksource ID 1402 * 1403 * Note: The return value is a snapshot which can become invalid right 1404 * after the function returns. 1405 * 1406 * Return: true if the timekeeper clocksource has a base clock with @id, 1407 * false otherwise 1408 */ 1409 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1410 { 1411 /* 1412 * This is a snapshot, so no point in using the sequence 1413 * count. Just prevent the compiler from re-evaluating @base as the 1414 * clocksource might change concurrently. 1415 */ 1416 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1417 1418 return base ? base->id == id : false; 1419 } 1420 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1421 1422 /** 1423 * do_settimeofday64 - Sets the time of day. 1424 * @ts: pointer to the timespec64 variable containing the new time 1425 * 1426 * Sets the time of day to the new time and update NTP and notify hrtimers 1427 */ 1428 int do_settimeofday64(const struct timespec64 *ts) 1429 { 1430 struct timespec64 ts_delta, xt; 1431 1432 if (!timespec64_valid_settod(ts)) 1433 return -EINVAL; 1434 1435 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1436 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1437 1438 timekeeping_forward_now(tks); 1439 1440 xt = tk_xtime(tks); 1441 ts_delta = timespec64_sub(*ts, xt); 1442 1443 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1444 timekeeping_restore_shadow(&tk_core); 1445 return -EINVAL; 1446 } 1447 1448 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1449 tk_set_xtime(tks, ts); 1450 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1451 } 1452 1453 /* Signal hrtimers about time change */ 1454 clock_was_set(CLOCK_SET_WALL); 1455 1456 audit_tk_injoffset(ts_delta); 1457 add_device_randomness(ts, sizeof(*ts)); 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(do_settimeofday64); 1461 1462 static inline bool timekeeper_is_core_tk(struct timekeeper *tk) 1463 { 1464 return !IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS) || tk->id == TIMEKEEPER_CORE; 1465 } 1466 1467 /** 1468 * __timekeeping_inject_offset - Adds or subtracts from the current time. 1469 * @tkd: Pointer to the timekeeper to modify 1470 * @ts: Pointer to the timespec variable containing the offset 1471 * 1472 * Adds or subtracts an offset value from the current time. 1473 */ 1474 static int __timekeeping_inject_offset(struct tk_data *tkd, const struct timespec64 *ts) 1475 { 1476 struct timekeeper *tks = &tkd->shadow_timekeeper; 1477 struct timespec64 tmp; 1478 1479 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1480 return -EINVAL; 1481 1482 timekeeping_forward_now(tks); 1483 1484 if (timekeeper_is_core_tk(tks)) { 1485 /* Make sure the proposed value is valid */ 1486 tmp = timespec64_add(tk_xtime(tks), *ts); 1487 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1488 !timespec64_valid_settod(&tmp)) { 1489 timekeeping_restore_shadow(tkd); 1490 return -EINVAL; 1491 } 1492 1493 tk_xtime_add(tks, ts); 1494 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1495 } else { 1496 struct tk_read_base *tkr_mono = &tks->tkr_mono; 1497 ktime_t now, offs; 1498 1499 /* Get the current time */ 1500 now = ktime_add_ns(tkr_mono->base, timekeeping_get_ns(tkr_mono)); 1501 /* Add the relative offset change */ 1502 offs = ktime_add(tks->offs_aux, timespec64_to_ktime(*ts)); 1503 1504 /* Prevent that the resulting time becomes negative */ 1505 if (ktime_add(now, offs) < 0) { 1506 timekeeping_restore_shadow(tkd); 1507 return -EINVAL; 1508 } 1509 tks->offs_aux = offs; 1510 } 1511 1512 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL); 1513 return 0; 1514 } 1515 1516 static int timekeeping_inject_offset(const struct timespec64 *ts) 1517 { 1518 int ret; 1519 1520 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) 1521 ret = __timekeeping_inject_offset(&tk_core, ts); 1522 1523 /* Signal hrtimers about time change */ 1524 if (!ret) 1525 clock_was_set(CLOCK_SET_WALL); 1526 return ret; 1527 } 1528 1529 /* 1530 * Indicates if there is an offset between the system clock and the hardware 1531 * clock/persistent clock/rtc. 1532 */ 1533 int persistent_clock_is_local; 1534 1535 /* 1536 * Adjust the time obtained from the CMOS to be UTC time instead of 1537 * local time. 1538 * 1539 * This is ugly, but preferable to the alternatives. Otherwise we 1540 * would either need to write a program to do it in /etc/rc (and risk 1541 * confusion if the program gets run more than once; it would also be 1542 * hard to make the program warp the clock precisely n hours) or 1543 * compile in the timezone information into the kernel. Bad, bad.... 1544 * 1545 * - TYT, 1992-01-01 1546 * 1547 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1548 * as real UNIX machines always do it. This avoids all headaches about 1549 * daylight saving times and warping kernel clocks. 1550 */ 1551 void timekeeping_warp_clock(void) 1552 { 1553 if (sys_tz.tz_minuteswest != 0) { 1554 struct timespec64 adjust; 1555 1556 persistent_clock_is_local = 1; 1557 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1558 adjust.tv_nsec = 0; 1559 timekeeping_inject_offset(&adjust); 1560 } 1561 } 1562 1563 /* 1564 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1565 */ 1566 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1567 { 1568 tk->tai_offset = tai_offset; 1569 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1570 } 1571 1572 /* 1573 * change_clocksource - Swaps clocksources if a new one is available 1574 * 1575 * Accumulates current time interval and initializes new clocksource 1576 */ 1577 static int change_clocksource(void *data) 1578 { 1579 struct clocksource *new = data, *old = NULL; 1580 1581 /* 1582 * If the clocksource is in a module, get a module reference. 1583 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1584 * reference can't be acquired. 1585 */ 1586 if (!try_module_get(new->owner)) 1587 return 0; 1588 1589 /* Abort if the device can't be enabled */ 1590 if (new->enable && new->enable(new) != 0) { 1591 module_put(new->owner); 1592 return 0; 1593 } 1594 1595 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1596 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1597 1598 timekeeping_forward_now(tks); 1599 old = tks->tkr_mono.clock; 1600 tk_setup_internals(tks, new); 1601 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1602 } 1603 1604 tk_aux_update_clocksource(); 1605 1606 if (old) { 1607 if (old->disable) 1608 old->disable(old); 1609 module_put(old->owner); 1610 } 1611 1612 return 0; 1613 } 1614 1615 /** 1616 * timekeeping_notify - Install a new clock source 1617 * @clock: pointer to the clock source 1618 * 1619 * This function is called from clocksource.c after a new, better clock 1620 * source has been registered. The caller holds the clocksource_mutex. 1621 */ 1622 int timekeeping_notify(struct clocksource *clock) 1623 { 1624 struct timekeeper *tk = &tk_core.timekeeper; 1625 1626 if (tk->tkr_mono.clock == clock) 1627 return 0; 1628 stop_machine(change_clocksource, clock, NULL); 1629 tick_clock_notify(); 1630 return tk->tkr_mono.clock == clock ? 0 : -1; 1631 } 1632 1633 /** 1634 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1635 * @ts: pointer to the timespec64 to be set 1636 * 1637 * Returns the raw monotonic time (completely un-modified by ntp) 1638 */ 1639 void ktime_get_raw_ts64(struct timespec64 *ts) 1640 { 1641 struct timekeeper *tk = &tk_core.timekeeper; 1642 unsigned int seq; 1643 u64 nsecs; 1644 1645 do { 1646 seq = read_seqcount_begin(&tk_core.seq); 1647 ts->tv_sec = tk->raw_sec; 1648 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1649 1650 } while (read_seqcount_retry(&tk_core.seq, seq)); 1651 1652 ts->tv_nsec = 0; 1653 timespec64_add_ns(ts, nsecs); 1654 } 1655 EXPORT_SYMBOL(ktime_get_raw_ts64); 1656 1657 /** 1658 * ktime_get_clock_ts64 - Returns time of a clock in a timespec 1659 * @id: POSIX clock ID of the clock to read 1660 * @ts: Pointer to the timespec64 to be set 1661 * 1662 * The timestamp is invalidated (@ts->sec is set to -1) if the 1663 * clock @id is not available. 1664 */ 1665 void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts) 1666 { 1667 /* Invalidate time stamp */ 1668 ts->tv_sec = -1; 1669 ts->tv_nsec = 0; 1670 1671 switch (id) { 1672 case CLOCK_REALTIME: 1673 ktime_get_real_ts64(ts); 1674 return; 1675 case CLOCK_MONOTONIC: 1676 ktime_get_ts64(ts); 1677 return; 1678 case CLOCK_MONOTONIC_RAW: 1679 ktime_get_raw_ts64(ts); 1680 return; 1681 case CLOCK_AUX ... CLOCK_AUX_LAST: 1682 if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS)) 1683 ktime_get_aux_ts64(id, ts); 1684 return; 1685 default: 1686 WARN_ON_ONCE(1); 1687 } 1688 } 1689 EXPORT_SYMBOL_GPL(ktime_get_clock_ts64); 1690 1691 /** 1692 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1693 */ 1694 int timekeeping_valid_for_hres(void) 1695 { 1696 struct timekeeper *tk = &tk_core.timekeeper; 1697 unsigned int seq; 1698 int ret; 1699 1700 do { 1701 seq = read_seqcount_begin(&tk_core.seq); 1702 1703 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1704 1705 } while (read_seqcount_retry(&tk_core.seq, seq)); 1706 1707 return ret; 1708 } 1709 1710 /** 1711 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1712 */ 1713 u64 timekeeping_max_deferment(void) 1714 { 1715 struct timekeeper *tk = &tk_core.timekeeper; 1716 unsigned int seq; 1717 u64 ret; 1718 1719 do { 1720 seq = read_seqcount_begin(&tk_core.seq); 1721 1722 ret = tk->tkr_mono.clock->max_idle_ns; 1723 1724 } while (read_seqcount_retry(&tk_core.seq, seq)); 1725 1726 return ret; 1727 } 1728 1729 /** 1730 * read_persistent_clock64 - Return time from the persistent clock. 1731 * @ts: Pointer to the storage for the readout value 1732 * 1733 * Weak dummy function for arches that do not yet support it. 1734 * Reads the time from the battery backed persistent clock. 1735 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1736 * 1737 * XXX - Do be sure to remove it once all arches implement it. 1738 */ 1739 void __weak read_persistent_clock64(struct timespec64 *ts) 1740 { 1741 ts->tv_sec = 0; 1742 ts->tv_nsec = 0; 1743 } 1744 1745 /** 1746 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1747 * from the boot. 1748 * @wall_time: current time as returned by persistent clock 1749 * @boot_offset: offset that is defined as wall_time - boot_time 1750 * 1751 * Weak dummy function for arches that do not yet support it. 1752 * 1753 * The default function calculates offset based on the current value of 1754 * local_clock(). This way architectures that support sched_clock() but don't 1755 * support dedicated boot time clock will provide the best estimate of the 1756 * boot time. 1757 */ 1758 void __weak __init 1759 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1760 struct timespec64 *boot_offset) 1761 { 1762 read_persistent_clock64(wall_time); 1763 *boot_offset = ns_to_timespec64(local_clock()); 1764 } 1765 1766 static __init void tkd_basic_setup(struct tk_data *tkd, enum timekeeper_ids tk_id, bool valid) 1767 { 1768 raw_spin_lock_init(&tkd->lock); 1769 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1770 tkd->timekeeper.id = tkd->shadow_timekeeper.id = tk_id; 1771 tkd->timekeeper.clock_valid = tkd->shadow_timekeeper.clock_valid = valid; 1772 } 1773 1774 /* 1775 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1776 * 1777 * The flag starts of false and is only set when a suspend reaches 1778 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1779 * timekeeper clocksource is not stopping across suspend and has been 1780 * used to update sleep time. If the timekeeper clocksource has stopped 1781 * then the flag stays true and is used by the RTC resume code to decide 1782 * whether sleeptime must be injected and if so the flag gets false then. 1783 * 1784 * If a suspend fails before reaching timekeeping_resume() then the flag 1785 * stays false and prevents erroneous sleeptime injection. 1786 */ 1787 static bool suspend_timing_needed; 1788 1789 /* Flag for if there is a persistent clock on this platform */ 1790 static bool persistent_clock_exists; 1791 1792 /* 1793 * timekeeping_init - Initializes the clocksource and common timekeeping values 1794 */ 1795 void __init timekeeping_init(void) 1796 { 1797 struct timespec64 wall_time, boot_offset, wall_to_mono; 1798 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1799 struct clocksource *clock; 1800 1801 tkd_basic_setup(&tk_core, TIMEKEEPER_CORE, true); 1802 tk_aux_setup(); 1803 1804 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1805 if (timespec64_valid_settod(&wall_time) && 1806 timespec64_to_ns(&wall_time) > 0) { 1807 persistent_clock_exists = true; 1808 } else if (timespec64_to_ns(&wall_time) != 0) { 1809 pr_warn("Persistent clock returned invalid value"); 1810 wall_time = (struct timespec64){0}; 1811 } 1812 1813 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1814 boot_offset = (struct timespec64){0}; 1815 1816 /* 1817 * We want set wall_to_mono, so the following is true: 1818 * wall time + wall_to_mono = boot time 1819 */ 1820 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1821 1822 guard(raw_spinlock_irqsave)(&tk_core.lock); 1823 1824 ntp_init(); 1825 1826 clock = clocksource_default_clock(); 1827 if (clock->enable) 1828 clock->enable(clock); 1829 tk_setup_internals(tks, clock); 1830 1831 tk_set_xtime(tks, &wall_time); 1832 tks->raw_sec = 0; 1833 1834 tk_set_wall_to_mono(tks, wall_to_mono); 1835 1836 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1837 } 1838 1839 /* time in seconds when suspend began for persistent clock */ 1840 static struct timespec64 timekeeping_suspend_time; 1841 1842 /** 1843 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1844 * @tk: Pointer to the timekeeper to be updated 1845 * @delta: Pointer to the delta value in timespec64 format 1846 * 1847 * Takes a timespec offset measuring a suspend interval and properly 1848 * adds the sleep offset to the timekeeping variables. 1849 */ 1850 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1851 const struct timespec64 *delta) 1852 { 1853 if (!timespec64_valid_strict(delta)) { 1854 printk_deferred(KERN_WARNING 1855 "__timekeeping_inject_sleeptime: Invalid " 1856 "sleep delta value!\n"); 1857 return; 1858 } 1859 tk_xtime_add(tk, delta); 1860 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1861 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1862 tk_debug_account_sleep_time(delta); 1863 } 1864 1865 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1866 /* 1867 * We have three kinds of time sources to use for sleep time 1868 * injection, the preference order is: 1869 * 1) non-stop clocksource 1870 * 2) persistent clock (ie: RTC accessible when irqs are off) 1871 * 3) RTC 1872 * 1873 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1874 * If system has neither 1) nor 2), 3) will be used finally. 1875 * 1876 * 1877 * If timekeeping has injected sleeptime via either 1) or 2), 1878 * 3) becomes needless, so in this case we don't need to call 1879 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1880 * means. 1881 */ 1882 bool timekeeping_rtc_skipresume(void) 1883 { 1884 return !suspend_timing_needed; 1885 } 1886 1887 /* 1888 * 1) can be determined whether to use or not only when doing 1889 * timekeeping_resume() which is invoked after rtc_suspend(), 1890 * so we can't skip rtc_suspend() surely if system has 1). 1891 * 1892 * But if system has 2), 2) will definitely be used, so in this 1893 * case we don't need to call rtc_suspend(), and this is what 1894 * timekeeping_rtc_skipsuspend() means. 1895 */ 1896 bool timekeeping_rtc_skipsuspend(void) 1897 { 1898 return persistent_clock_exists; 1899 } 1900 1901 /** 1902 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1903 * @delta: pointer to a timespec64 delta value 1904 * 1905 * This hook is for architectures that cannot support read_persistent_clock64 1906 * because their RTC/persistent clock is only accessible when irqs are enabled. 1907 * and also don't have an effective nonstop clocksource. 1908 * 1909 * This function should only be called by rtc_resume(), and allows 1910 * a suspend offset to be injected into the timekeeping values. 1911 */ 1912 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1913 { 1914 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1915 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1916 1917 suspend_timing_needed = false; 1918 timekeeping_forward_now(tks); 1919 __timekeeping_inject_sleeptime(tks, delta); 1920 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1921 } 1922 1923 /* Signal hrtimers about time change */ 1924 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1925 } 1926 #endif 1927 1928 /** 1929 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1930 */ 1931 void timekeeping_resume(void) 1932 { 1933 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1934 struct clocksource *clock = tks->tkr_mono.clock; 1935 struct timespec64 ts_new, ts_delta; 1936 bool inject_sleeptime = false; 1937 u64 cycle_now, nsec; 1938 unsigned long flags; 1939 1940 read_persistent_clock64(&ts_new); 1941 1942 clockevents_resume(); 1943 clocksource_resume(); 1944 1945 raw_spin_lock_irqsave(&tk_core.lock, flags); 1946 1947 /* 1948 * After system resumes, we need to calculate the suspended time and 1949 * compensate it for the OS time. There are 3 sources that could be 1950 * used: Nonstop clocksource during suspend, persistent clock and rtc 1951 * device. 1952 * 1953 * One specific platform may have 1 or 2 or all of them, and the 1954 * preference will be: 1955 * suspend-nonstop clocksource -> persistent clock -> rtc 1956 * The less preferred source will only be tried if there is no better 1957 * usable source. The rtc part is handled separately in rtc core code. 1958 */ 1959 cycle_now = tk_clock_read(&tks->tkr_mono); 1960 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1961 if (nsec > 0) { 1962 ts_delta = ns_to_timespec64(nsec); 1963 inject_sleeptime = true; 1964 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1965 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1966 inject_sleeptime = true; 1967 } 1968 1969 if (inject_sleeptime) { 1970 suspend_timing_needed = false; 1971 __timekeeping_inject_sleeptime(tks, &ts_delta); 1972 } 1973 1974 /* Re-base the last cycle value */ 1975 tks->tkr_mono.cycle_last = cycle_now; 1976 tks->tkr_raw.cycle_last = cycle_now; 1977 1978 tks->ntp_error = 0; 1979 timekeeping_suspended = 0; 1980 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1981 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1982 1983 touch_softlockup_watchdog(); 1984 1985 /* Resume the clockevent device(s) and hrtimers */ 1986 tick_resume(); 1987 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1988 timerfd_resume(); 1989 } 1990 1991 int timekeeping_suspend(void) 1992 { 1993 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1994 struct timespec64 delta, delta_delta; 1995 static struct timespec64 old_delta; 1996 struct clocksource *curr_clock; 1997 unsigned long flags; 1998 u64 cycle_now; 1999 2000 read_persistent_clock64(&timekeeping_suspend_time); 2001 2002 /* 2003 * On some systems the persistent_clock can not be detected at 2004 * timekeeping_init by its return value, so if we see a valid 2005 * value returned, update the persistent_clock_exists flag. 2006 */ 2007 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 2008 persistent_clock_exists = true; 2009 2010 suspend_timing_needed = true; 2011 2012 raw_spin_lock_irqsave(&tk_core.lock, flags); 2013 timekeeping_forward_now(tks); 2014 timekeeping_suspended = 1; 2015 2016 /* 2017 * Since we've called forward_now, cycle_last stores the value 2018 * just read from the current clocksource. Save this to potentially 2019 * use in suspend timing. 2020 */ 2021 curr_clock = tks->tkr_mono.clock; 2022 cycle_now = tks->tkr_mono.cycle_last; 2023 clocksource_start_suspend_timing(curr_clock, cycle_now); 2024 2025 if (persistent_clock_exists) { 2026 /* 2027 * To avoid drift caused by repeated suspend/resumes, 2028 * which each can add ~1 second drift error, 2029 * try to compensate so the difference in system time 2030 * and persistent_clock time stays close to constant. 2031 */ 2032 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 2033 delta_delta = timespec64_sub(delta, old_delta); 2034 if (abs(delta_delta.tv_sec) >= 2) { 2035 /* 2036 * if delta_delta is too large, assume time correction 2037 * has occurred and set old_delta to the current delta. 2038 */ 2039 old_delta = delta; 2040 } else { 2041 /* Otherwise try to adjust old_system to compensate */ 2042 timekeeping_suspend_time = 2043 timespec64_add(timekeeping_suspend_time, delta_delta); 2044 } 2045 } 2046 2047 timekeeping_update_from_shadow(&tk_core, 0); 2048 halt_fast_timekeeper(tks); 2049 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 2050 2051 tick_suspend(); 2052 clocksource_suspend(); 2053 clockevents_suspend(); 2054 2055 return 0; 2056 } 2057 2058 /* sysfs resume/suspend bits for timekeeping */ 2059 static struct syscore_ops timekeeping_syscore_ops = { 2060 .resume = timekeeping_resume, 2061 .suspend = timekeeping_suspend, 2062 }; 2063 2064 static int __init timekeeping_init_ops(void) 2065 { 2066 register_syscore_ops(&timekeeping_syscore_ops); 2067 return 0; 2068 } 2069 device_initcall(timekeeping_init_ops); 2070 2071 /* 2072 * Apply a multiplier adjustment to the timekeeper 2073 */ 2074 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2075 s64 offset, 2076 s32 mult_adj) 2077 { 2078 s64 interval = tk->cycle_interval; 2079 2080 if (mult_adj == 0) { 2081 return; 2082 } else if (mult_adj == -1) { 2083 interval = -interval; 2084 offset = -offset; 2085 } else if (mult_adj != 1) { 2086 interval *= mult_adj; 2087 offset *= mult_adj; 2088 } 2089 2090 /* 2091 * So the following can be confusing. 2092 * 2093 * To keep things simple, lets assume mult_adj == 1 for now. 2094 * 2095 * When mult_adj != 1, remember that the interval and offset values 2096 * have been appropriately scaled so the math is the same. 2097 * 2098 * The basic idea here is that we're increasing the multiplier 2099 * by one, this causes the xtime_interval to be incremented by 2100 * one cycle_interval. This is because: 2101 * xtime_interval = cycle_interval * mult 2102 * So if mult is being incremented by one: 2103 * xtime_interval = cycle_interval * (mult + 1) 2104 * Its the same as: 2105 * xtime_interval = (cycle_interval * mult) + cycle_interval 2106 * Which can be shortened to: 2107 * xtime_interval += cycle_interval 2108 * 2109 * So offset stores the non-accumulated cycles. Thus the current 2110 * time (in shifted nanoseconds) is: 2111 * now = (offset * adj) + xtime_nsec 2112 * Now, even though we're adjusting the clock frequency, we have 2113 * to keep time consistent. In other words, we can't jump back 2114 * in time, and we also want to avoid jumping forward in time. 2115 * 2116 * So given the same offset value, we need the time to be the same 2117 * both before and after the freq adjustment. 2118 * now = (offset * adj_1) + xtime_nsec_1 2119 * now = (offset * adj_2) + xtime_nsec_2 2120 * So: 2121 * (offset * adj_1) + xtime_nsec_1 = 2122 * (offset * adj_2) + xtime_nsec_2 2123 * And we know: 2124 * adj_2 = adj_1 + 1 2125 * So: 2126 * (offset * adj_1) + xtime_nsec_1 = 2127 * (offset * (adj_1+1)) + xtime_nsec_2 2128 * (offset * adj_1) + xtime_nsec_1 = 2129 * (offset * adj_1) + offset + xtime_nsec_2 2130 * Canceling the sides: 2131 * xtime_nsec_1 = offset + xtime_nsec_2 2132 * Which gives us: 2133 * xtime_nsec_2 = xtime_nsec_1 - offset 2134 * Which simplifies to: 2135 * xtime_nsec -= offset 2136 */ 2137 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2138 /* NTP adjustment caused clocksource mult overflow */ 2139 WARN_ON_ONCE(1); 2140 return; 2141 } 2142 2143 tk->tkr_mono.mult += mult_adj; 2144 tk->xtime_interval += interval; 2145 tk->tkr_mono.xtime_nsec -= offset; 2146 } 2147 2148 /* 2149 * Adjust the timekeeper's multiplier to the correct frequency 2150 * and also to reduce the accumulated error value. 2151 */ 2152 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2153 { 2154 u64 ntp_tl = ntp_tick_length(tk->id); 2155 u32 mult; 2156 2157 /* 2158 * Determine the multiplier from the current NTP tick length. 2159 * Avoid expensive division when the tick length doesn't change. 2160 */ 2161 if (likely(tk->ntp_tick == ntp_tl)) { 2162 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2163 } else { 2164 tk->ntp_tick = ntp_tl; 2165 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2166 tk->xtime_remainder, tk->cycle_interval); 2167 } 2168 2169 /* 2170 * If the clock is behind the NTP time, increase the multiplier by 1 2171 * to catch up with it. If it's ahead and there was a remainder in the 2172 * tick division, the clock will slow down. Otherwise it will stay 2173 * ahead until the tick length changes to a non-divisible value. 2174 */ 2175 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2176 mult += tk->ntp_err_mult; 2177 2178 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2179 2180 if (unlikely(tk->tkr_mono.clock->maxadj && 2181 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2182 > tk->tkr_mono.clock->maxadj))) { 2183 printk_once(KERN_WARNING 2184 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2185 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2186 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2187 } 2188 2189 /* 2190 * It may be possible that when we entered this function, xtime_nsec 2191 * was very small. Further, if we're slightly speeding the clocksource 2192 * in the code above, its possible the required corrective factor to 2193 * xtime_nsec could cause it to underflow. 2194 * 2195 * Now, since we have already accumulated the second and the NTP 2196 * subsystem has been notified via second_overflow(), we need to skip 2197 * the next update. 2198 */ 2199 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2200 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2201 tk->tkr_mono.shift; 2202 tk->xtime_sec--; 2203 tk->skip_second_overflow = 1; 2204 } 2205 } 2206 2207 /* 2208 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2209 * 2210 * Helper function that accumulates the nsecs greater than a second 2211 * from the xtime_nsec field to the xtime_secs field. 2212 * It also calls into the NTP code to handle leapsecond processing. 2213 */ 2214 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2215 { 2216 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2217 unsigned int clock_set = 0; 2218 2219 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2220 int leap; 2221 2222 tk->tkr_mono.xtime_nsec -= nsecps; 2223 tk->xtime_sec++; 2224 2225 /* 2226 * Skip NTP update if this second was accumulated before, 2227 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2228 */ 2229 if (unlikely(tk->skip_second_overflow)) { 2230 tk->skip_second_overflow = 0; 2231 continue; 2232 } 2233 2234 /* Figure out if its a leap sec and apply if needed */ 2235 leap = second_overflow(tk->id, tk->xtime_sec); 2236 if (unlikely(leap)) { 2237 struct timespec64 ts; 2238 2239 tk->xtime_sec += leap; 2240 2241 ts.tv_sec = leap; 2242 ts.tv_nsec = 0; 2243 tk_set_wall_to_mono(tk, 2244 timespec64_sub(tk->wall_to_monotonic, ts)); 2245 2246 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2247 2248 clock_set = TK_CLOCK_WAS_SET; 2249 } 2250 } 2251 return clock_set; 2252 } 2253 2254 /* 2255 * logarithmic_accumulation - shifted accumulation of cycles 2256 * 2257 * This functions accumulates a shifted interval of cycles into 2258 * a shifted interval nanoseconds. Allows for O(log) accumulation 2259 * loop. 2260 * 2261 * Returns the unconsumed cycles. 2262 */ 2263 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2264 u32 shift, unsigned int *clock_set) 2265 { 2266 u64 interval = tk->cycle_interval << shift; 2267 u64 snsec_per_sec; 2268 2269 /* If the offset is smaller than a shifted interval, do nothing */ 2270 if (offset < interval) 2271 return offset; 2272 2273 /* Accumulate one shifted interval */ 2274 offset -= interval; 2275 tk->tkr_mono.cycle_last += interval; 2276 tk->tkr_raw.cycle_last += interval; 2277 2278 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2279 *clock_set |= accumulate_nsecs_to_secs(tk); 2280 2281 /* Accumulate raw time */ 2282 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2283 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2284 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2285 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2286 tk->raw_sec++; 2287 } 2288 2289 /* Accumulate error between NTP and clock interval */ 2290 tk->ntp_error += tk->ntp_tick << shift; 2291 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2292 (tk->ntp_error_shift + shift); 2293 2294 return offset; 2295 } 2296 2297 /* 2298 * timekeeping_advance - Updates the timekeeper to the current time and 2299 * current NTP tick length 2300 */ 2301 static bool __timekeeping_advance(struct tk_data *tkd, enum timekeeping_adv_mode mode) 2302 { 2303 struct timekeeper *tk = &tkd->shadow_timekeeper; 2304 struct timekeeper *real_tk = &tkd->timekeeper; 2305 unsigned int clock_set = 0; 2306 int shift = 0, maxshift; 2307 u64 offset, orig_offset; 2308 2309 /* Make sure we're fully resumed: */ 2310 if (unlikely(timekeeping_suspended)) 2311 return false; 2312 2313 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2314 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2315 tk->tkr_mono.clock->max_raw_delta); 2316 orig_offset = offset; 2317 /* Check if there's really nothing to do */ 2318 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2319 return false; 2320 2321 /* 2322 * With NO_HZ we may have to accumulate many cycle_intervals 2323 * (think "ticks") worth of time at once. To do this efficiently, 2324 * we calculate the largest doubling multiple of cycle_intervals 2325 * that is smaller than the offset. We then accumulate that 2326 * chunk in one go, and then try to consume the next smaller 2327 * doubled multiple. 2328 */ 2329 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2330 shift = max(0, shift); 2331 /* Bound shift to one less than what overflows tick_length */ 2332 maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1; 2333 shift = min(shift, maxshift); 2334 while (offset >= tk->cycle_interval) { 2335 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2336 if (offset < tk->cycle_interval<<shift) 2337 shift--; 2338 } 2339 2340 /* Adjust the multiplier to correct NTP error */ 2341 timekeeping_adjust(tk, offset); 2342 2343 /* 2344 * Finally, make sure that after the rounding 2345 * xtime_nsec isn't larger than NSEC_PER_SEC 2346 */ 2347 clock_set |= accumulate_nsecs_to_secs(tk); 2348 2349 /* 2350 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls 2351 * making small negative adjustments to the base xtime_nsec 2352 * value, only update the coarse clocks if we accumulated time 2353 */ 2354 if (orig_offset != offset) 2355 tk_update_coarse_nsecs(tk); 2356 2357 timekeeping_update_from_shadow(tkd, clock_set); 2358 2359 return !!clock_set; 2360 } 2361 2362 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2363 { 2364 guard(raw_spinlock_irqsave)(&tk_core.lock); 2365 return __timekeeping_advance(&tk_core, mode); 2366 } 2367 2368 /** 2369 * update_wall_time - Uses the current clocksource to increment the wall time 2370 * 2371 * It also updates the enabled auxiliary clock timekeepers 2372 */ 2373 void update_wall_time(void) 2374 { 2375 if (timekeeping_advance(TK_ADV_TICK)) 2376 clock_was_set_delayed(); 2377 tk_aux_advance(); 2378 } 2379 2380 /** 2381 * getboottime64 - Return the real time of system boot. 2382 * @ts: pointer to the timespec64 to be set 2383 * 2384 * Returns the wall-time of boot in a timespec64. 2385 * 2386 * This is based on the wall_to_monotonic offset and the total suspend 2387 * time. Calls to settimeofday will affect the value returned (which 2388 * basically means that however wrong your real time clock is at boot time, 2389 * you get the right time here). 2390 */ 2391 void getboottime64(struct timespec64 *ts) 2392 { 2393 struct timekeeper *tk = &tk_core.timekeeper; 2394 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2395 2396 *ts = ktime_to_timespec64(t); 2397 } 2398 EXPORT_SYMBOL_GPL(getboottime64); 2399 2400 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2401 { 2402 struct timekeeper *tk = &tk_core.timekeeper; 2403 unsigned int seq; 2404 2405 do { 2406 seq = read_seqcount_begin(&tk_core.seq); 2407 2408 *ts = tk_xtime_coarse(tk); 2409 } while (read_seqcount_retry(&tk_core.seq, seq)); 2410 } 2411 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2412 2413 /** 2414 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2415 * @ts: timespec64 to be filled 2416 * 2417 * Fetch the global mg_floor value, convert it to realtime and compare it 2418 * to the current coarse-grained time. Fill @ts with whichever is 2419 * latest. Note that this is a filesystem-specific interface and should be 2420 * avoided outside of that context. 2421 */ 2422 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2423 { 2424 struct timekeeper *tk = &tk_core.timekeeper; 2425 u64 floor = atomic64_read(&mg_floor); 2426 ktime_t f_real, offset, coarse; 2427 unsigned int seq; 2428 2429 do { 2430 seq = read_seqcount_begin(&tk_core.seq); 2431 *ts = tk_xtime_coarse(tk); 2432 offset = tk_core.timekeeper.offs_real; 2433 } while (read_seqcount_retry(&tk_core.seq, seq)); 2434 2435 coarse = timespec64_to_ktime(*ts); 2436 f_real = ktime_add(floor, offset); 2437 if (ktime_after(f_real, coarse)) 2438 *ts = ktime_to_timespec64(f_real); 2439 } 2440 2441 /** 2442 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2443 * @ts: pointer to the timespec to be set 2444 * 2445 * Get a monotonic fine-grained time value and attempt to swap it into 2446 * mg_floor. If that succeeds then accept the new floor value. If it fails 2447 * then another task raced in during the interim time and updated the 2448 * floor. Since any update to the floor must be later than the previous 2449 * floor, either outcome is acceptable. 2450 * 2451 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2452 * and determining that the resulting coarse-grained timestamp did not effect 2453 * a change in ctime. Any more recent floor value would effect a change to 2454 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2455 * 2456 * @ts will be filled with the latest floor value, regardless of the outcome of 2457 * the cmpxchg. Note that this is a filesystem specific interface and should be 2458 * avoided outside of that context. 2459 */ 2460 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2461 { 2462 struct timekeeper *tk = &tk_core.timekeeper; 2463 ktime_t old = atomic64_read(&mg_floor); 2464 ktime_t offset, mono; 2465 unsigned int seq; 2466 u64 nsecs; 2467 2468 do { 2469 seq = read_seqcount_begin(&tk_core.seq); 2470 2471 ts->tv_sec = tk->xtime_sec; 2472 mono = tk->tkr_mono.base; 2473 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2474 offset = tk_core.timekeeper.offs_real; 2475 } while (read_seqcount_retry(&tk_core.seq, seq)); 2476 2477 mono = ktime_add_ns(mono, nsecs); 2478 2479 /* 2480 * Attempt to update the floor with the new time value. As any 2481 * update must be later then the existing floor, and would effect 2482 * a change to ctime from the perspective of the current task, 2483 * accept the resulting floor value regardless of the outcome of 2484 * the swap. 2485 */ 2486 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2487 ts->tv_nsec = 0; 2488 timespec64_add_ns(ts, nsecs); 2489 timekeeping_inc_mg_floor_swaps(); 2490 } else { 2491 /* 2492 * Another task changed mg_floor since "old" was fetched. 2493 * "old" has been updated with the latest value of "mg_floor". 2494 * That value is newer than the previous floor value, which 2495 * is enough to effect a change to ctime. Accept it. 2496 */ 2497 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2498 } 2499 } 2500 2501 void ktime_get_coarse_ts64(struct timespec64 *ts) 2502 { 2503 struct timekeeper *tk = &tk_core.timekeeper; 2504 struct timespec64 now, mono; 2505 unsigned int seq; 2506 2507 do { 2508 seq = read_seqcount_begin(&tk_core.seq); 2509 2510 now = tk_xtime_coarse(tk); 2511 mono = tk->wall_to_monotonic; 2512 } while (read_seqcount_retry(&tk_core.seq, seq)); 2513 2514 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2515 now.tv_nsec + mono.tv_nsec); 2516 } 2517 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2518 2519 /* 2520 * Must hold jiffies_lock 2521 */ 2522 void do_timer(unsigned long ticks) 2523 { 2524 jiffies_64 += ticks; 2525 calc_global_load(); 2526 } 2527 2528 /** 2529 * ktime_get_update_offsets_now - hrtimer helper 2530 * @cwsseq: pointer to check and store the clock was set sequence number 2531 * @offs_real: pointer to storage for monotonic -> realtime offset 2532 * @offs_boot: pointer to storage for monotonic -> boottime offset 2533 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2534 * 2535 * Returns current monotonic time and updates the offsets if the 2536 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2537 * different. 2538 * 2539 * Called from hrtimer_interrupt() or retrigger_next_event() 2540 */ 2541 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2542 ktime_t *offs_boot, ktime_t *offs_tai) 2543 { 2544 struct timekeeper *tk = &tk_core.timekeeper; 2545 unsigned int seq; 2546 ktime_t base; 2547 u64 nsecs; 2548 2549 do { 2550 seq = read_seqcount_begin(&tk_core.seq); 2551 2552 base = tk->tkr_mono.base; 2553 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2554 base = ktime_add_ns(base, nsecs); 2555 2556 if (*cwsseq != tk->clock_was_set_seq) { 2557 *cwsseq = tk->clock_was_set_seq; 2558 *offs_real = tk->offs_real; 2559 *offs_boot = tk->offs_boot; 2560 *offs_tai = tk->offs_tai; 2561 } 2562 2563 /* Handle leapsecond insertion adjustments */ 2564 if (unlikely(base >= tk->next_leap_ktime)) 2565 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2566 2567 } while (read_seqcount_retry(&tk_core.seq, seq)); 2568 2569 return base; 2570 } 2571 2572 /* 2573 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2574 */ 2575 static int timekeeping_validate_timex(const struct __kernel_timex *txc, bool aux_clock) 2576 { 2577 if (txc->modes & ADJ_ADJTIME) { 2578 /* singleshot must not be used with any other mode bits */ 2579 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2580 return -EINVAL; 2581 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2582 !capable(CAP_SYS_TIME)) 2583 return -EPERM; 2584 } else { 2585 /* In order to modify anything, you gotta be super-user! */ 2586 if (txc->modes && !capable(CAP_SYS_TIME)) 2587 return -EPERM; 2588 /* 2589 * if the quartz is off by more than 10% then 2590 * something is VERY wrong! 2591 */ 2592 if (txc->modes & ADJ_TICK && 2593 (txc->tick < 900000/USER_HZ || 2594 txc->tick > 1100000/USER_HZ)) 2595 return -EINVAL; 2596 } 2597 2598 if (txc->modes & ADJ_SETOFFSET) { 2599 /* In order to inject time, you gotta be super-user! */ 2600 if (!capable(CAP_SYS_TIME)) 2601 return -EPERM; 2602 2603 /* 2604 * Validate if a timespec/timeval used to inject a time 2605 * offset is valid. Offsets can be positive or negative, so 2606 * we don't check tv_sec. The value of the timeval/timespec 2607 * is the sum of its fields,but *NOTE*: 2608 * The field tv_usec/tv_nsec must always be non-negative and 2609 * we can't have more nanoseconds/microseconds than a second. 2610 */ 2611 if (txc->time.tv_usec < 0) 2612 return -EINVAL; 2613 2614 if (txc->modes & ADJ_NANO) { 2615 if (txc->time.tv_usec >= NSEC_PER_SEC) 2616 return -EINVAL; 2617 } else { 2618 if (txc->time.tv_usec >= USEC_PER_SEC) 2619 return -EINVAL; 2620 } 2621 } 2622 2623 /* 2624 * Check for potential multiplication overflows that can 2625 * only happen on 64-bit systems: 2626 */ 2627 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2628 if (LLONG_MIN / PPM_SCALE > txc->freq) 2629 return -EINVAL; 2630 if (LLONG_MAX / PPM_SCALE < txc->freq) 2631 return -EINVAL; 2632 } 2633 2634 if (aux_clock) { 2635 /* Auxiliary clocks are similar to TAI and do not have leap seconds */ 2636 if (txc->status & (STA_INS | STA_DEL)) 2637 return -EINVAL; 2638 2639 /* No TAI offset setting */ 2640 if (txc->modes & ADJ_TAI) 2641 return -EINVAL; 2642 2643 /* No PPS support either */ 2644 if (txc->status & (STA_PPSFREQ | STA_PPSTIME)) 2645 return -EINVAL; 2646 } 2647 2648 return 0; 2649 } 2650 2651 /** 2652 * random_get_entropy_fallback - Returns the raw clock source value, 2653 * used by random.c for platforms with no valid random_get_entropy(). 2654 */ 2655 unsigned long random_get_entropy_fallback(void) 2656 { 2657 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2658 struct clocksource *clock = READ_ONCE(tkr->clock); 2659 2660 if (unlikely(timekeeping_suspended || !clock)) 2661 return 0; 2662 return clock->read(clock); 2663 } 2664 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2665 2666 struct adjtimex_result { 2667 struct audit_ntp_data ad; 2668 struct timespec64 delta; 2669 bool clock_set; 2670 }; 2671 2672 static int __do_adjtimex(struct tk_data *tkd, struct __kernel_timex *txc, 2673 struct adjtimex_result *result) 2674 { 2675 struct timekeeper *tks = &tkd->shadow_timekeeper; 2676 bool aux_clock = !timekeeper_is_core_tk(tks); 2677 struct timespec64 ts; 2678 s32 orig_tai, tai; 2679 int ret; 2680 2681 /* Validate the data before disabling interrupts */ 2682 ret = timekeeping_validate_timex(txc, aux_clock); 2683 if (ret) 2684 return ret; 2685 add_device_randomness(txc, sizeof(*txc)); 2686 2687 if (!aux_clock) 2688 ktime_get_real_ts64(&ts); 2689 else 2690 tk_get_aux_ts64(tkd->timekeeper.id, &ts); 2691 2692 add_device_randomness(&ts, sizeof(ts)); 2693 2694 guard(raw_spinlock_irqsave)(&tkd->lock); 2695 2696 if (!tks->clock_valid) 2697 return -ENODEV; 2698 2699 if (txc->modes & ADJ_SETOFFSET) { 2700 result->delta.tv_sec = txc->time.tv_sec; 2701 result->delta.tv_nsec = txc->time.tv_usec; 2702 if (!(txc->modes & ADJ_NANO)) 2703 result->delta.tv_nsec *= 1000; 2704 ret = __timekeeping_inject_offset(tkd, &result->delta); 2705 if (ret) 2706 return ret; 2707 result->clock_set = true; 2708 } 2709 2710 orig_tai = tai = tks->tai_offset; 2711 ret = ntp_adjtimex(tks->id, txc, &ts, &tai, &result->ad); 2712 2713 if (tai != orig_tai) { 2714 __timekeeping_set_tai_offset(tks, tai); 2715 timekeeping_update_from_shadow(tkd, TK_CLOCK_WAS_SET); 2716 result->clock_set = true; 2717 } else { 2718 tk_update_leap_state_all(&tk_core); 2719 } 2720 2721 /* Update the multiplier immediately if frequency was set directly */ 2722 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2723 result->clock_set |= __timekeeping_advance(tkd, TK_ADV_FREQ); 2724 2725 return ret; 2726 } 2727 2728 /** 2729 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2730 * @txc: Pointer to kernel_timex structure containing NTP parameters 2731 */ 2732 int do_adjtimex(struct __kernel_timex *txc) 2733 { 2734 struct adjtimex_result result = { }; 2735 int ret; 2736 2737 ret = __do_adjtimex(&tk_core, txc, &result); 2738 if (ret < 0) 2739 return ret; 2740 2741 if (txc->modes & ADJ_SETOFFSET) 2742 audit_tk_injoffset(result.delta); 2743 2744 audit_ntp_log(&result.ad); 2745 2746 if (result.clock_set) 2747 clock_was_set(CLOCK_SET_WALL); 2748 2749 ntp_notify_cmos_timer(result.delta.tv_sec != 0); 2750 2751 return ret; 2752 } 2753 2754 /* 2755 * Invoked from NTP with the time keeper lock held, so lockless access is 2756 * fine. 2757 */ 2758 long ktime_get_ntp_seconds(unsigned int id) 2759 { 2760 return timekeeper_data[id].timekeeper.xtime_sec; 2761 } 2762 2763 #ifdef CONFIG_NTP_PPS 2764 /** 2765 * hardpps() - Accessor function to NTP __hardpps function 2766 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2767 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2768 */ 2769 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2770 { 2771 guard(raw_spinlock_irqsave)(&tk_core.lock); 2772 __hardpps(phase_ts, raw_ts); 2773 } 2774 EXPORT_SYMBOL(hardpps); 2775 #endif /* CONFIG_NTP_PPS */ 2776 2777 #ifdef CONFIG_POSIX_AUX_CLOCKS 2778 #include "posix-timers.h" 2779 2780 /* 2781 * Bitmap for the activated auxiliary timekeepers to allow lockless quick 2782 * checks in the hot paths without touching extra cache lines. If set, then 2783 * the state of the corresponding timekeeper has to be re-checked under 2784 * timekeeper::lock. 2785 */ 2786 static unsigned long aux_timekeepers; 2787 2788 static inline unsigned int clockid_to_tkid(unsigned int id) 2789 { 2790 return TIMEKEEPER_AUX_FIRST + id - CLOCK_AUX; 2791 } 2792 2793 static inline struct tk_data *aux_get_tk_data(clockid_t id) 2794 { 2795 if (!clockid_aux_valid(id)) 2796 return NULL; 2797 return &timekeeper_data[clockid_to_tkid(id)]; 2798 } 2799 2800 /* Invoked from timekeeping after a clocksource change */ 2801 static void tk_aux_update_clocksource(void) 2802 { 2803 unsigned long active = READ_ONCE(aux_timekeepers); 2804 unsigned int id; 2805 2806 for_each_set_bit(id, &active, BITS_PER_LONG) { 2807 struct tk_data *tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST]; 2808 struct timekeeper *tks = &tkd->shadow_timekeeper; 2809 2810 guard(raw_spinlock_irqsave)(&tkd->lock); 2811 if (!tks->clock_valid) 2812 continue; 2813 2814 timekeeping_forward_now(tks); 2815 tk_setup_internals(tks, tk_core.timekeeper.tkr_mono.clock); 2816 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL); 2817 } 2818 } 2819 2820 static void tk_aux_advance(void) 2821 { 2822 unsigned long active = READ_ONCE(aux_timekeepers); 2823 unsigned int id; 2824 2825 /* Lockless quick check to avoid extra cache lines */ 2826 for_each_set_bit(id, &active, BITS_PER_LONG) { 2827 struct tk_data *aux_tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST]; 2828 2829 guard(raw_spinlock)(&aux_tkd->lock); 2830 if (aux_tkd->shadow_timekeeper.clock_valid) 2831 __timekeeping_advance(aux_tkd, TK_ADV_TICK); 2832 } 2833 } 2834 2835 /** 2836 * ktime_get_aux - Get time for a AUX clock 2837 * @id: ID of the clock to read (CLOCK_AUX...) 2838 * @kt: Pointer to ktime_t to store the time stamp 2839 * 2840 * Returns: True if the timestamp is valid, false otherwise 2841 */ 2842 bool ktime_get_aux(clockid_t id, ktime_t *kt) 2843 { 2844 struct tk_data *aux_tkd = aux_get_tk_data(id); 2845 struct timekeeper *aux_tk; 2846 unsigned int seq; 2847 ktime_t base; 2848 u64 nsecs; 2849 2850 WARN_ON(timekeeping_suspended); 2851 2852 if (!aux_tkd) 2853 return false; 2854 2855 aux_tk = &aux_tkd->timekeeper; 2856 do { 2857 seq = read_seqcount_begin(&aux_tkd->seq); 2858 if (!aux_tk->clock_valid) 2859 return false; 2860 2861 base = ktime_add(aux_tk->tkr_mono.base, aux_tk->offs_aux); 2862 nsecs = timekeeping_get_ns(&aux_tk->tkr_mono); 2863 } while (read_seqcount_retry(&aux_tkd->seq, seq)); 2864 2865 *kt = ktime_add_ns(base, nsecs); 2866 return true; 2867 } 2868 EXPORT_SYMBOL_GPL(ktime_get_aux); 2869 2870 /** 2871 * ktime_get_aux_ts64 - Get time for a AUX clock 2872 * @id: ID of the clock to read (CLOCK_AUX...) 2873 * @ts: Pointer to timespec64 to store the time stamp 2874 * 2875 * Returns: True if the timestamp is valid, false otherwise 2876 */ 2877 bool ktime_get_aux_ts64(clockid_t id, struct timespec64 *ts) 2878 { 2879 ktime_t now; 2880 2881 if (!ktime_get_aux(id, &now)) 2882 return false; 2883 *ts = ktime_to_timespec64(now); 2884 return true; 2885 } 2886 EXPORT_SYMBOL_GPL(ktime_get_aux_ts64); 2887 2888 static int aux_get_res(clockid_t id, struct timespec64 *tp) 2889 { 2890 if (!clockid_aux_valid(id)) 2891 return -ENODEV; 2892 2893 tp->tv_sec = aux_clock_resolution_ns() / NSEC_PER_SEC; 2894 tp->tv_nsec = aux_clock_resolution_ns() % NSEC_PER_SEC; 2895 return 0; 2896 } 2897 2898 static int aux_get_timespec(clockid_t id, struct timespec64 *tp) 2899 { 2900 return ktime_get_aux_ts64(id, tp) ? 0 : -ENODEV; 2901 } 2902 2903 static int aux_clock_set(const clockid_t id, const struct timespec64 *tnew) 2904 { 2905 struct tk_data *aux_tkd = aux_get_tk_data(id); 2906 struct timekeeper *aux_tks; 2907 ktime_t tnow, nsecs; 2908 2909 if (!timespec64_valid_settod(tnew)) 2910 return -EINVAL; 2911 if (!aux_tkd) 2912 return -ENODEV; 2913 2914 aux_tks = &aux_tkd->shadow_timekeeper; 2915 2916 guard(raw_spinlock_irq)(&aux_tkd->lock); 2917 if (!aux_tks->clock_valid) 2918 return -ENODEV; 2919 2920 /* Forward the timekeeper base time */ 2921 timekeeping_forward_now(aux_tks); 2922 /* 2923 * Get the updated base time. tkr_mono.base has not been 2924 * updated yet, so do that first. That makes the update 2925 * in timekeeping_update_from_shadow() redundant, but 2926 * that's harmless. After that @tnow can be calculated 2927 * by using tkr_mono::cycle_last, which has been set 2928 * by timekeeping_forward_now(). 2929 */ 2930 tk_update_ktime_data(aux_tks); 2931 nsecs = timekeeping_cycles_to_ns(&aux_tks->tkr_mono, aux_tks->tkr_mono.cycle_last); 2932 tnow = ktime_add(aux_tks->tkr_mono.base, nsecs); 2933 2934 /* 2935 * Calculate the new AUX offset as delta to @tnow ("monotonic"). 2936 * That avoids all the tk::xtime back and forth conversions as 2937 * xtime ("realtime") is not applicable for auxiliary clocks and 2938 * kept in sync with "monotonic". 2939 */ 2940 aux_tks->offs_aux = ktime_sub(timespec64_to_ktime(*tnew), tnow); 2941 2942 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); 2943 return 0; 2944 } 2945 2946 static int aux_clock_adj(const clockid_t id, struct __kernel_timex *txc) 2947 { 2948 struct tk_data *aux_tkd = aux_get_tk_data(id); 2949 struct adjtimex_result result = { }; 2950 2951 if (!aux_tkd) 2952 return -ENODEV; 2953 2954 /* 2955 * @result is ignored for now as there are neither hrtimers nor a 2956 * RTC related to auxiliary clocks for now. 2957 */ 2958 return __do_adjtimex(aux_tkd, txc, &result); 2959 } 2960 2961 const struct k_clock clock_aux = { 2962 .clock_getres = aux_get_res, 2963 .clock_get_timespec = aux_get_timespec, 2964 .clock_set = aux_clock_set, 2965 .clock_adj = aux_clock_adj, 2966 }; 2967 2968 static void aux_clock_enable(clockid_t id) 2969 { 2970 struct tk_read_base *tkr_raw = &tk_core.timekeeper.tkr_raw; 2971 struct tk_data *aux_tkd = aux_get_tk_data(id); 2972 struct timekeeper *aux_tks = &aux_tkd->shadow_timekeeper; 2973 2974 /* Prevent the core timekeeper from changing. */ 2975 guard(raw_spinlock_irq)(&tk_core.lock); 2976 2977 /* 2978 * Setup the auxiliary clock assuming that the raw core timekeeper 2979 * clock frequency conversion is close enough. Userspace has to 2980 * adjust for the deviation via clock_adjtime(2). 2981 */ 2982 guard(raw_spinlock_nested)(&aux_tkd->lock); 2983 2984 /* Remove leftovers of a previous registration */ 2985 memset(aux_tks, 0, sizeof(*aux_tks)); 2986 /* Restore the timekeeper id */ 2987 aux_tks->id = aux_tkd->timekeeper.id; 2988 /* Setup the timekeeper based on the current system clocksource */ 2989 tk_setup_internals(aux_tks, tkr_raw->clock); 2990 2991 /* Mark it valid and set it live */ 2992 aux_tks->clock_valid = true; 2993 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); 2994 } 2995 2996 static void aux_clock_disable(clockid_t id) 2997 { 2998 struct tk_data *aux_tkd = aux_get_tk_data(id); 2999 3000 guard(raw_spinlock_irq)(&aux_tkd->lock); 3001 aux_tkd->shadow_timekeeper.clock_valid = false; 3002 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); 3003 } 3004 3005 static DEFINE_MUTEX(aux_clock_mutex); 3006 3007 static ssize_t aux_clock_enable_store(struct kobject *kobj, struct kobj_attribute *attr, 3008 const char *buf, size_t count) 3009 { 3010 /* Lazy atoi() as name is "0..7" */ 3011 int id = kobj->name[0] & 0x7; 3012 bool enable; 3013 3014 if (!capable(CAP_SYS_TIME)) 3015 return -EPERM; 3016 3017 if (kstrtobool(buf, &enable) < 0) 3018 return -EINVAL; 3019 3020 guard(mutex)(&aux_clock_mutex); 3021 if (enable == test_bit(id, &aux_timekeepers)) 3022 return count; 3023 3024 if (enable) { 3025 aux_clock_enable(CLOCK_AUX + id); 3026 set_bit(id, &aux_timekeepers); 3027 } else { 3028 aux_clock_disable(CLOCK_AUX + id); 3029 clear_bit(id, &aux_timekeepers); 3030 } 3031 return count; 3032 } 3033 3034 static ssize_t aux_clock_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 3035 { 3036 unsigned long active = READ_ONCE(aux_timekeepers); 3037 /* Lazy atoi() as name is "0..7" */ 3038 int id = kobj->name[0] & 0x7; 3039 3040 return sysfs_emit(buf, "%d\n", test_bit(id, &active)); 3041 } 3042 3043 static struct kobj_attribute aux_clock_enable_attr = __ATTR_RW(aux_clock_enable); 3044 3045 static struct attribute *aux_clock_enable_attrs[] = { 3046 &aux_clock_enable_attr.attr, 3047 NULL 3048 }; 3049 3050 static const struct attribute_group aux_clock_enable_attr_group = { 3051 .attrs = aux_clock_enable_attrs, 3052 }; 3053 3054 static int __init tk_aux_sysfs_init(void) 3055 { 3056 struct kobject *auxo, *tko = kobject_create_and_add("time", kernel_kobj); 3057 3058 if (!tko) 3059 return -ENOMEM; 3060 3061 auxo = kobject_create_and_add("aux_clocks", tko); 3062 if (!auxo) { 3063 kobject_put(tko); 3064 return -ENOMEM; 3065 } 3066 3067 for (int i = 0; i <= MAX_AUX_CLOCKS; i++) { 3068 char id[2] = { [0] = '0' + i, }; 3069 struct kobject *clk = kobject_create_and_add(id, auxo); 3070 3071 if (!clk) 3072 return -ENOMEM; 3073 3074 int ret = sysfs_create_group(clk, &aux_clock_enable_attr_group); 3075 3076 if (ret) 3077 return ret; 3078 } 3079 return 0; 3080 } 3081 late_initcall(tk_aux_sysfs_init); 3082 3083 static __init void tk_aux_setup(void) 3084 { 3085 for (int i = TIMEKEEPER_AUX_FIRST; i <= TIMEKEEPER_AUX_LAST; i++) 3086 tkd_basic_setup(&timekeeper_data[i], i, false); 3087 } 3088 #endif /* CONFIG_POSIX_AUX_CLOCKS */ 3089