xref: /linux/kernel/time/time.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <linux/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec64_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime64(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		/* Verify we're witin the +-15 hrs range */
177 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 			return -EINVAL;
179 
180 		sys_tz = *tz;
181 		update_vsyscall_tz();
182 		if (firsttime) {
183 			firsttime = 0;
184 			if (!tv)
185 				warp_clock();
186 		}
187 	}
188 	if (tv)
189 		return do_settimeofday64(tv);
190 	return 0;
191 }
192 
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 		struct timezone __user *, tz)
195 {
196 	struct timespec64 new_ts;
197 	struct timeval user_tv;
198 	struct timezone new_tz;
199 
200 	if (tv) {
201 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 			return -EFAULT;
203 
204 		if (!timeval_valid(&user_tv))
205 			return -EINVAL;
206 
207 		new_ts.tv_sec = user_tv.tv_sec;
208 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 	}
210 	if (tz) {
211 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 			return -EFAULT;
213 	}
214 
215 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217 
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 	struct timex txc;		/* Local copy of parameter */
221 	int ret;
222 
223 	/* Copy the user data space into the kernel copy
224 	 * structure. But bear in mind that the structures
225 	 * may change
226 	 */
227 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 		return -EFAULT;
229 	ret = do_adjtimex(&txc);
230 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232 
233 /*
234  * Convert jiffies to milliseconds and back.
235  *
236  * Avoid unnecessary multiplications/divisions in the
237  * two most common HZ cases:
238  */
239 unsigned int jiffies_to_msecs(const unsigned long j)
240 {
241 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 	return (MSEC_PER_SEC / HZ) * j;
243 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
245 #else
246 # if BITS_PER_LONG == 32
247 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
248 # else
249 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
250 # endif
251 #endif
252 }
253 EXPORT_SYMBOL(jiffies_to_msecs);
254 
255 unsigned int jiffies_to_usecs(const unsigned long j)
256 {
257 	/*
258 	 * Hz usually doesn't go much further MSEC_PER_SEC.
259 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
260 	 */
261 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
262 
263 #if !(USEC_PER_SEC % HZ)
264 	return (USEC_PER_SEC / HZ) * j;
265 #else
266 # if BITS_PER_LONG == 32
267 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
268 # else
269 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
270 # endif
271 #endif
272 }
273 EXPORT_SYMBOL(jiffies_to_usecs);
274 
275 /**
276  * timespec_trunc - Truncate timespec to a granularity
277  * @t: Timespec
278  * @gran: Granularity in ns.
279  *
280  * Truncate a timespec to a granularity. Always rounds down. gran must
281  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
282  */
283 struct timespec timespec_trunc(struct timespec t, unsigned gran)
284 {
285 	/* Avoid division in the common cases 1 ns and 1 s. */
286 	if (gran == 1) {
287 		/* nothing */
288 	} else if (gran == NSEC_PER_SEC) {
289 		t.tv_nsec = 0;
290 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
291 		t.tv_nsec -= t.tv_nsec % gran;
292 	} else {
293 		WARN(1, "illegal file time granularity: %u", gran);
294 	}
295 	return t;
296 }
297 EXPORT_SYMBOL(timespec_trunc);
298 
299 /*
300  * mktime64 - Converts date to seconds.
301  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
302  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
303  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
304  *
305  * [For the Julian calendar (which was used in Russia before 1917,
306  * Britain & colonies before 1752, anywhere else before 1582,
307  * and is still in use by some communities) leave out the
308  * -year/100+year/400 terms, and add 10.]
309  *
310  * This algorithm was first published by Gauss (I think).
311  *
312  * A leap second can be indicated by calling this function with sec as
313  * 60 (allowable under ISO 8601).  The leap second is treated the same
314  * as the following second since they don't exist in UNIX time.
315  *
316  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
317  * tomorrow - (allowable under ISO 8601) is supported.
318  */
319 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
320 		const unsigned int day, const unsigned int hour,
321 		const unsigned int min, const unsigned int sec)
322 {
323 	unsigned int mon = mon0, year = year0;
324 
325 	/* 1..12 -> 11,12,1..10 */
326 	if (0 >= (int) (mon -= 2)) {
327 		mon += 12;	/* Puts Feb last since it has leap day */
328 		year -= 1;
329 	}
330 
331 	return ((((time64_t)
332 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333 		  year*365 - 719499
334 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
335 	  )*60 + min /* now have minutes */
336 	)*60 + sec; /* finally seconds */
337 }
338 EXPORT_SYMBOL(mktime64);
339 
340 /**
341  * set_normalized_timespec - set timespec sec and nsec parts and normalize
342  *
343  * @ts:		pointer to timespec variable to be set
344  * @sec:	seconds to set
345  * @nsec:	nanoseconds to set
346  *
347  * Set seconds and nanoseconds field of a timespec variable and
348  * normalize to the timespec storage format
349  *
350  * Note: The tv_nsec part is always in the range of
351  *	0 <= tv_nsec < NSEC_PER_SEC
352  * For negative values only the tv_sec field is negative !
353  */
354 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
355 {
356 	while (nsec >= NSEC_PER_SEC) {
357 		/*
358 		 * The following asm() prevents the compiler from
359 		 * optimising this loop into a modulo operation. See
360 		 * also __iter_div_u64_rem() in include/linux/time.h
361 		 */
362 		asm("" : "+rm"(nsec));
363 		nsec -= NSEC_PER_SEC;
364 		++sec;
365 	}
366 	while (nsec < 0) {
367 		asm("" : "+rm"(nsec));
368 		nsec += NSEC_PER_SEC;
369 		--sec;
370 	}
371 	ts->tv_sec = sec;
372 	ts->tv_nsec = nsec;
373 }
374 EXPORT_SYMBOL(set_normalized_timespec);
375 
376 /**
377  * ns_to_timespec - Convert nanoseconds to timespec
378  * @nsec:       the nanoseconds value to be converted
379  *
380  * Returns the timespec representation of the nsec parameter.
381  */
382 struct timespec ns_to_timespec(const s64 nsec)
383 {
384 	struct timespec ts;
385 	s32 rem;
386 
387 	if (!nsec)
388 		return (struct timespec) {0, 0};
389 
390 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
391 	if (unlikely(rem < 0)) {
392 		ts.tv_sec--;
393 		rem += NSEC_PER_SEC;
394 	}
395 	ts.tv_nsec = rem;
396 
397 	return ts;
398 }
399 EXPORT_SYMBOL(ns_to_timespec);
400 
401 /**
402  * ns_to_timeval - Convert nanoseconds to timeval
403  * @nsec:       the nanoseconds value to be converted
404  *
405  * Returns the timeval representation of the nsec parameter.
406  */
407 struct timeval ns_to_timeval(const s64 nsec)
408 {
409 	struct timespec ts = ns_to_timespec(nsec);
410 	struct timeval tv;
411 
412 	tv.tv_sec = ts.tv_sec;
413 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
414 
415 	return tv;
416 }
417 EXPORT_SYMBOL(ns_to_timeval);
418 
419 #if BITS_PER_LONG == 32
420 /**
421  * set_normalized_timespec - set timespec sec and nsec parts and normalize
422  *
423  * @ts:		pointer to timespec variable to be set
424  * @sec:	seconds to set
425  * @nsec:	nanoseconds to set
426  *
427  * Set seconds and nanoseconds field of a timespec variable and
428  * normalize to the timespec storage format
429  *
430  * Note: The tv_nsec part is always in the range of
431  *	0 <= tv_nsec < NSEC_PER_SEC
432  * For negative values only the tv_sec field is negative !
433  */
434 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
435 {
436 	while (nsec >= NSEC_PER_SEC) {
437 		/*
438 		 * The following asm() prevents the compiler from
439 		 * optimising this loop into a modulo operation. See
440 		 * also __iter_div_u64_rem() in include/linux/time.h
441 		 */
442 		asm("" : "+rm"(nsec));
443 		nsec -= NSEC_PER_SEC;
444 		++sec;
445 	}
446 	while (nsec < 0) {
447 		asm("" : "+rm"(nsec));
448 		nsec += NSEC_PER_SEC;
449 		--sec;
450 	}
451 	ts->tv_sec = sec;
452 	ts->tv_nsec = nsec;
453 }
454 EXPORT_SYMBOL(set_normalized_timespec64);
455 
456 /**
457  * ns_to_timespec64 - Convert nanoseconds to timespec64
458  * @nsec:       the nanoseconds value to be converted
459  *
460  * Returns the timespec64 representation of the nsec parameter.
461  */
462 struct timespec64 ns_to_timespec64(const s64 nsec)
463 {
464 	struct timespec64 ts;
465 	s32 rem;
466 
467 	if (!nsec)
468 		return (struct timespec64) {0, 0};
469 
470 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
471 	if (unlikely(rem < 0)) {
472 		ts.tv_sec--;
473 		rem += NSEC_PER_SEC;
474 	}
475 	ts.tv_nsec = rem;
476 
477 	return ts;
478 }
479 EXPORT_SYMBOL(ns_to_timespec64);
480 #endif
481 /**
482  * msecs_to_jiffies: - convert milliseconds to jiffies
483  * @m:	time in milliseconds
484  *
485  * conversion is done as follows:
486  *
487  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
488  *
489  * - 'too large' values [that would result in larger than
490  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
491  *
492  * - all other values are converted to jiffies by either multiplying
493  *   the input value by a factor or dividing it with a factor and
494  *   handling any 32-bit overflows.
495  *   for the details see __msecs_to_jiffies()
496  *
497  * msecs_to_jiffies() checks for the passed in value being a constant
498  * via __builtin_constant_p() allowing gcc to eliminate most of the
499  * code, __msecs_to_jiffies() is called if the value passed does not
500  * allow constant folding and the actual conversion must be done at
501  * runtime.
502  * the _msecs_to_jiffies helpers are the HZ dependent conversion
503  * routines found in include/linux/jiffies.h
504  */
505 unsigned long __msecs_to_jiffies(const unsigned int m)
506 {
507 	/*
508 	 * Negative value, means infinite timeout:
509 	 */
510 	if ((int)m < 0)
511 		return MAX_JIFFY_OFFSET;
512 	return _msecs_to_jiffies(m);
513 }
514 EXPORT_SYMBOL(__msecs_to_jiffies);
515 
516 unsigned long __usecs_to_jiffies(const unsigned int u)
517 {
518 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
519 		return MAX_JIFFY_OFFSET;
520 	return _usecs_to_jiffies(u);
521 }
522 EXPORT_SYMBOL(__usecs_to_jiffies);
523 
524 /*
525  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
526  * that a remainder subtract here would not do the right thing as the
527  * resolution values don't fall on second boundries.  I.e. the line:
528  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
529  * Note that due to the small error in the multiplier here, this
530  * rounding is incorrect for sufficiently large values of tv_nsec, but
531  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
532  * OK.
533  *
534  * Rather, we just shift the bits off the right.
535  *
536  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
537  * value to a scaled second value.
538  */
539 static unsigned long
540 __timespec64_to_jiffies(u64 sec, long nsec)
541 {
542 	nsec = nsec + TICK_NSEC - 1;
543 
544 	if (sec >= MAX_SEC_IN_JIFFIES){
545 		sec = MAX_SEC_IN_JIFFIES;
546 		nsec = 0;
547 	}
548 	return ((sec * SEC_CONVERSION) +
549 		(((u64)nsec * NSEC_CONVERSION) >>
550 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
551 
552 }
553 
554 static unsigned long
555 __timespec_to_jiffies(unsigned long sec, long nsec)
556 {
557 	return __timespec64_to_jiffies((u64)sec, nsec);
558 }
559 
560 unsigned long
561 timespec64_to_jiffies(const struct timespec64 *value)
562 {
563 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
564 }
565 EXPORT_SYMBOL(timespec64_to_jiffies);
566 
567 void
568 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
569 {
570 	/*
571 	 * Convert jiffies to nanoseconds and separate with
572 	 * one divide.
573 	 */
574 	u32 rem;
575 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
576 				    NSEC_PER_SEC, &rem);
577 	value->tv_nsec = rem;
578 }
579 EXPORT_SYMBOL(jiffies_to_timespec64);
580 
581 /*
582  * We could use a similar algorithm to timespec_to_jiffies (with a
583  * different multiplier for usec instead of nsec). But this has a
584  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
585  * usec value, since it's not necessarily integral.
586  *
587  * We could instead round in the intermediate scaled representation
588  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
589  * perilous: the scaling introduces a small positive error, which
590  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
591  * units to the intermediate before shifting) leads to accidental
592  * overflow and overestimates.
593  *
594  * At the cost of one additional multiplication by a constant, just
595  * use the timespec implementation.
596  */
597 unsigned long
598 timeval_to_jiffies(const struct timeval *value)
599 {
600 	return __timespec_to_jiffies(value->tv_sec,
601 				     value->tv_usec * NSEC_PER_USEC);
602 }
603 EXPORT_SYMBOL(timeval_to_jiffies);
604 
605 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
606 {
607 	/*
608 	 * Convert jiffies to nanoseconds and separate with
609 	 * one divide.
610 	 */
611 	u32 rem;
612 
613 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
614 				    NSEC_PER_SEC, &rem);
615 	value->tv_usec = rem / NSEC_PER_USEC;
616 }
617 EXPORT_SYMBOL(jiffies_to_timeval);
618 
619 /*
620  * Convert jiffies/jiffies_64 to clock_t and back.
621  */
622 clock_t jiffies_to_clock_t(unsigned long x)
623 {
624 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
625 # if HZ < USER_HZ
626 	return x * (USER_HZ / HZ);
627 # else
628 	return x / (HZ / USER_HZ);
629 # endif
630 #else
631 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
632 #endif
633 }
634 EXPORT_SYMBOL(jiffies_to_clock_t);
635 
636 unsigned long clock_t_to_jiffies(unsigned long x)
637 {
638 #if (HZ % USER_HZ)==0
639 	if (x >= ~0UL / (HZ / USER_HZ))
640 		return ~0UL;
641 	return x * (HZ / USER_HZ);
642 #else
643 	/* Don't worry about loss of precision here .. */
644 	if (x >= ~0UL / HZ * USER_HZ)
645 		return ~0UL;
646 
647 	/* .. but do try to contain it here */
648 	return div_u64((u64)x * HZ, USER_HZ);
649 #endif
650 }
651 EXPORT_SYMBOL(clock_t_to_jiffies);
652 
653 u64 jiffies_64_to_clock_t(u64 x)
654 {
655 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
656 # if HZ < USER_HZ
657 	x = div_u64(x * USER_HZ, HZ);
658 # elif HZ > USER_HZ
659 	x = div_u64(x, HZ / USER_HZ);
660 # else
661 	/* Nothing to do */
662 # endif
663 #else
664 	/*
665 	 * There are better ways that don't overflow early,
666 	 * but even this doesn't overflow in hundreds of years
667 	 * in 64 bits, so..
668 	 */
669 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
670 #endif
671 	return x;
672 }
673 EXPORT_SYMBOL(jiffies_64_to_clock_t);
674 
675 u64 nsec_to_clock_t(u64 x)
676 {
677 #if (NSEC_PER_SEC % USER_HZ) == 0
678 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
679 #elif (USER_HZ % 512) == 0
680 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
681 #else
682 	/*
683          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
684          * overflow after 64.99 years.
685          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
686          */
687 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
688 #endif
689 }
690 
691 u64 jiffies64_to_nsecs(u64 j)
692 {
693 #if !(NSEC_PER_SEC % HZ)
694 	return (NSEC_PER_SEC / HZ) * j;
695 # else
696 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
697 #endif
698 }
699 EXPORT_SYMBOL(jiffies64_to_nsecs);
700 
701 /**
702  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
703  *
704  * @n:	nsecs in u64
705  *
706  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
707  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
708  * for scheduler, not for use in device drivers to calculate timeout value.
709  *
710  * note:
711  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
712  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
713  */
714 u64 nsecs_to_jiffies64(u64 n)
715 {
716 #if (NSEC_PER_SEC % HZ) == 0
717 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
718 	return div_u64(n, NSEC_PER_SEC / HZ);
719 #elif (HZ % 512) == 0
720 	/* overflow after 292 years if HZ = 1024 */
721 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
722 #else
723 	/*
724 	 * Generic case - optimized for cases where HZ is a multiple of 3.
725 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
726 	 */
727 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
728 #endif
729 }
730 EXPORT_SYMBOL(nsecs_to_jiffies64);
731 
732 /**
733  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
734  *
735  * @n:	nsecs in u64
736  *
737  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
738  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
739  * for scheduler, not for use in device drivers to calculate timeout value.
740  *
741  * note:
742  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
743  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
744  */
745 unsigned long nsecs_to_jiffies(u64 n)
746 {
747 	return (unsigned long)nsecs_to_jiffies64(n);
748 }
749 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
750 
751 /*
752  * Add two timespec values and do a safety check for overflow.
753  * It's assumed that both values are valid (>= 0)
754  */
755 struct timespec timespec_add_safe(const struct timespec lhs,
756 				  const struct timespec rhs)
757 {
758 	struct timespec res;
759 
760 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
761 				lhs.tv_nsec + rhs.tv_nsec);
762 
763 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
764 		res.tv_sec = TIME_T_MAX;
765 
766 	return res;
767 }
768 
769 /*
770  * Add two timespec64 values and do a safety check for overflow.
771  * It's assumed that both values are valid (>= 0).
772  * And, each timespec64 is in normalized form.
773  */
774 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
775 				const struct timespec64 rhs)
776 {
777 	struct timespec64 res;
778 
779 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
780 			lhs.tv_nsec + rhs.tv_nsec);
781 
782 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
783 		res.tv_sec = TIME64_MAX;
784 		res.tv_nsec = 0;
785 	}
786 
787 	return res;
788 }
789