1 /* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10 /* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched/core.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30 #include <linux/export.h> 31 #include <linux/timex.h> 32 #include <linux/capability.h> 33 #include <linux/timekeeper_internal.h> 34 #include <linux/errno.h> 35 #include <linux/syscalls.h> 36 #include <linux/security.h> 37 #include <linux/fs.h> 38 #include <linux/math64.h> 39 #include <linux/ptrace.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/unistd.h> 43 44 #include <generated/timeconst.h> 45 #include "timekeeping.h" 46 47 /* 48 * The timezone where the local system is located. Used as a default by some 49 * programs who obtain this value by using gettimeofday. 50 */ 51 struct timezone sys_tz; 52 53 EXPORT_SYMBOL(sys_tz); 54 55 #ifdef __ARCH_WANT_SYS_TIME 56 57 /* 58 * sys_time() can be implemented in user-level using 59 * sys_gettimeofday(). Is this for backwards compatibility? If so, 60 * why not move it into the appropriate arch directory (for those 61 * architectures that need it). 62 */ 63 SYSCALL_DEFINE1(time, time_t __user *, tloc) 64 { 65 time_t i = get_seconds(); 66 67 if (tloc) { 68 if (put_user(i,tloc)) 69 return -EFAULT; 70 } 71 force_successful_syscall_return(); 72 return i; 73 } 74 75 /* 76 * sys_stime() can be implemented in user-level using 77 * sys_settimeofday(). Is this for backwards compatibility? If so, 78 * why not move it into the appropriate arch directory (for those 79 * architectures that need it). 80 */ 81 82 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 83 { 84 struct timespec tv; 85 int err; 86 87 if (get_user(tv.tv_sec, tptr)) 88 return -EFAULT; 89 90 tv.tv_nsec = 0; 91 92 err = security_settime(&tv, NULL); 93 if (err) 94 return err; 95 96 do_settimeofday(&tv); 97 return 0; 98 } 99 100 #endif /* __ARCH_WANT_SYS_TIME */ 101 102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 103 struct timezone __user *, tz) 104 { 105 if (likely(tv != NULL)) { 106 struct timeval ktv; 107 do_gettimeofday(&ktv); 108 if (copy_to_user(tv, &ktv, sizeof(ktv))) 109 return -EFAULT; 110 } 111 if (unlikely(tz != NULL)) { 112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 113 return -EFAULT; 114 } 115 return 0; 116 } 117 118 /* 119 * Indicates if there is an offset between the system clock and the hardware 120 * clock/persistent clock/rtc. 121 */ 122 int persistent_clock_is_local; 123 124 /* 125 * Adjust the time obtained from the CMOS to be UTC time instead of 126 * local time. 127 * 128 * This is ugly, but preferable to the alternatives. Otherwise we 129 * would either need to write a program to do it in /etc/rc (and risk 130 * confusion if the program gets run more than once; it would also be 131 * hard to make the program warp the clock precisely n hours) or 132 * compile in the timezone information into the kernel. Bad, bad.... 133 * 134 * - TYT, 1992-01-01 135 * 136 * The best thing to do is to keep the CMOS clock in universal time (UTC) 137 * as real UNIX machines always do it. This avoids all headaches about 138 * daylight saving times and warping kernel clocks. 139 */ 140 static inline void warp_clock(void) 141 { 142 if (sys_tz.tz_minuteswest != 0) { 143 struct timespec adjust; 144 145 persistent_clock_is_local = 1; 146 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 147 adjust.tv_nsec = 0; 148 timekeeping_inject_offset(&adjust); 149 } 150 } 151 152 /* 153 * In case for some reason the CMOS clock has not already been running 154 * in UTC, but in some local time: The first time we set the timezone, 155 * we will warp the clock so that it is ticking UTC time instead of 156 * local time. Presumably, if someone is setting the timezone then we 157 * are running in an environment where the programs understand about 158 * timezones. This should be done at boot time in the /etc/rc script, 159 * as soon as possible, so that the clock can be set right. Otherwise, 160 * various programs will get confused when the clock gets warped. 161 */ 162 163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz) 164 { 165 static int firsttime = 1; 166 int error = 0; 167 168 if (tv && !timespec_valid(tv)) 169 return -EINVAL; 170 171 error = security_settime(tv, tz); 172 if (error) 173 return error; 174 175 if (tz) { 176 /* Verify we're witin the +-15 hrs range */ 177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 178 return -EINVAL; 179 180 sys_tz = *tz; 181 update_vsyscall_tz(); 182 if (firsttime) { 183 firsttime = 0; 184 if (!tv) 185 warp_clock(); 186 } 187 } 188 if (tv) 189 return do_settimeofday(tv); 190 return 0; 191 } 192 193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 194 struct timezone __user *, tz) 195 { 196 struct timeval user_tv; 197 struct timespec new_ts; 198 struct timezone new_tz; 199 200 if (tv) { 201 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 202 return -EFAULT; 203 204 if (!timeval_valid(&user_tv)) 205 return -EINVAL; 206 207 new_ts.tv_sec = user_tv.tv_sec; 208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 209 } 210 if (tz) { 211 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 212 return -EFAULT; 213 } 214 215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 216 } 217 218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) 219 { 220 struct timex txc; /* Local copy of parameter */ 221 int ret; 222 223 /* Copy the user data space into the kernel copy 224 * structure. But bear in mind that the structures 225 * may change 226 */ 227 if(copy_from_user(&txc, txc_p, sizeof(struct timex))) 228 return -EFAULT; 229 ret = do_adjtimex(&txc); 230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 231 } 232 233 /** 234 * current_fs_time - Return FS time 235 * @sb: Superblock. 236 * 237 * Return the current time truncated to the time granularity supported by 238 * the fs. 239 */ 240 struct timespec current_fs_time(struct super_block *sb) 241 { 242 struct timespec now = current_kernel_time(); 243 return timespec_trunc(now, sb->s_time_gran); 244 } 245 EXPORT_SYMBOL(current_fs_time); 246 247 /* 248 * Convert jiffies to milliseconds and back. 249 * 250 * Avoid unnecessary multiplications/divisions in the 251 * two most common HZ cases: 252 */ 253 unsigned int jiffies_to_msecs(const unsigned long j) 254 { 255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 256 return (MSEC_PER_SEC / HZ) * j; 257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 259 #else 260 # if BITS_PER_LONG == 32 261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; 262 # else 263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; 264 # endif 265 #endif 266 } 267 EXPORT_SYMBOL(jiffies_to_msecs); 268 269 unsigned int jiffies_to_usecs(const unsigned long j) 270 { 271 /* 272 * Hz usually doesn't go much further MSEC_PER_SEC. 273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that. 274 */ 275 BUILD_BUG_ON(HZ > USEC_PER_SEC); 276 277 #if !(USEC_PER_SEC % HZ) 278 return (USEC_PER_SEC / HZ) * j; 279 #else 280 # if BITS_PER_LONG == 32 281 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 282 # else 283 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 284 # endif 285 #endif 286 } 287 EXPORT_SYMBOL(jiffies_to_usecs); 288 289 /** 290 * timespec_trunc - Truncate timespec to a granularity 291 * @t: Timespec 292 * @gran: Granularity in ns. 293 * 294 * Truncate a timespec to a granularity. gran must be smaller than a second. 295 * Always rounds down. 296 * 297 * This function should be only used for timestamps returned by 298 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because 299 * it doesn't handle the better resolution of the latter. 300 */ 301 struct timespec timespec_trunc(struct timespec t, unsigned gran) 302 { 303 /* 304 * Division is pretty slow so avoid it for common cases. 305 * Currently current_kernel_time() never returns better than 306 * jiffies resolution. Exploit that. 307 */ 308 if (gran <= jiffies_to_usecs(1) * 1000) { 309 /* nothing */ 310 } else if (gran == 1000000000) { 311 t.tv_nsec = 0; 312 } else { 313 t.tv_nsec -= t.tv_nsec % gran; 314 } 315 return t; 316 } 317 EXPORT_SYMBOL(timespec_trunc); 318 319 /* 320 * mktime64 - Converts date to seconds. 321 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 322 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 323 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 324 * 325 * [For the Julian calendar (which was used in Russia before 1917, 326 * Britain & colonies before 1752, anywhere else before 1582, 327 * and is still in use by some communities) leave out the 328 * -year/100+year/400 terms, and add 10.] 329 * 330 * This algorithm was first published by Gauss (I think). 331 */ 332 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 333 const unsigned int day, const unsigned int hour, 334 const unsigned int min, const unsigned int sec) 335 { 336 unsigned int mon = mon0, year = year0; 337 338 /* 1..12 -> 11,12,1..10 */ 339 if (0 >= (int) (mon -= 2)) { 340 mon += 12; /* Puts Feb last since it has leap day */ 341 year -= 1; 342 } 343 344 return ((((time64_t) 345 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 346 year*365 - 719499 347 )*24 + hour /* now have hours */ 348 )*60 + min /* now have minutes */ 349 )*60 + sec; /* finally seconds */ 350 } 351 EXPORT_SYMBOL(mktime64); 352 353 /** 354 * set_normalized_timespec - set timespec sec and nsec parts and normalize 355 * 356 * @ts: pointer to timespec variable to be set 357 * @sec: seconds to set 358 * @nsec: nanoseconds to set 359 * 360 * Set seconds and nanoseconds field of a timespec variable and 361 * normalize to the timespec storage format 362 * 363 * Note: The tv_nsec part is always in the range of 364 * 0 <= tv_nsec < NSEC_PER_SEC 365 * For negative values only the tv_sec field is negative ! 366 */ 367 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) 368 { 369 while (nsec >= NSEC_PER_SEC) { 370 /* 371 * The following asm() prevents the compiler from 372 * optimising this loop into a modulo operation. See 373 * also __iter_div_u64_rem() in include/linux/time.h 374 */ 375 asm("" : "+rm"(nsec)); 376 nsec -= NSEC_PER_SEC; 377 ++sec; 378 } 379 while (nsec < 0) { 380 asm("" : "+rm"(nsec)); 381 nsec += NSEC_PER_SEC; 382 --sec; 383 } 384 ts->tv_sec = sec; 385 ts->tv_nsec = nsec; 386 } 387 EXPORT_SYMBOL(set_normalized_timespec); 388 389 /** 390 * ns_to_timespec - Convert nanoseconds to timespec 391 * @nsec: the nanoseconds value to be converted 392 * 393 * Returns the timespec representation of the nsec parameter. 394 */ 395 struct timespec ns_to_timespec(const s64 nsec) 396 { 397 struct timespec ts; 398 s32 rem; 399 400 if (!nsec) 401 return (struct timespec) {0, 0}; 402 403 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 404 if (unlikely(rem < 0)) { 405 ts.tv_sec--; 406 rem += NSEC_PER_SEC; 407 } 408 ts.tv_nsec = rem; 409 410 return ts; 411 } 412 EXPORT_SYMBOL(ns_to_timespec); 413 414 /** 415 * ns_to_timeval - Convert nanoseconds to timeval 416 * @nsec: the nanoseconds value to be converted 417 * 418 * Returns the timeval representation of the nsec parameter. 419 */ 420 struct timeval ns_to_timeval(const s64 nsec) 421 { 422 struct timespec ts = ns_to_timespec(nsec); 423 struct timeval tv; 424 425 tv.tv_sec = ts.tv_sec; 426 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 427 428 return tv; 429 } 430 EXPORT_SYMBOL(ns_to_timeval); 431 432 #if BITS_PER_LONG == 32 433 /** 434 * set_normalized_timespec - set timespec sec and nsec parts and normalize 435 * 436 * @ts: pointer to timespec variable to be set 437 * @sec: seconds to set 438 * @nsec: nanoseconds to set 439 * 440 * Set seconds and nanoseconds field of a timespec variable and 441 * normalize to the timespec storage format 442 * 443 * Note: The tv_nsec part is always in the range of 444 * 0 <= tv_nsec < NSEC_PER_SEC 445 * For negative values only the tv_sec field is negative ! 446 */ 447 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 448 { 449 while (nsec >= NSEC_PER_SEC) { 450 /* 451 * The following asm() prevents the compiler from 452 * optimising this loop into a modulo operation. See 453 * also __iter_div_u64_rem() in include/linux/time.h 454 */ 455 asm("" : "+rm"(nsec)); 456 nsec -= NSEC_PER_SEC; 457 ++sec; 458 } 459 while (nsec < 0) { 460 asm("" : "+rm"(nsec)); 461 nsec += NSEC_PER_SEC; 462 --sec; 463 } 464 ts->tv_sec = sec; 465 ts->tv_nsec = nsec; 466 } 467 EXPORT_SYMBOL(set_normalized_timespec64); 468 469 /** 470 * ns_to_timespec64 - Convert nanoseconds to timespec64 471 * @nsec: the nanoseconds value to be converted 472 * 473 * Returns the timespec64 representation of the nsec parameter. 474 */ 475 struct timespec64 ns_to_timespec64(const s64 nsec) 476 { 477 struct timespec64 ts; 478 s32 rem; 479 480 if (!nsec) 481 return (struct timespec64) {0, 0}; 482 483 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 484 if (unlikely(rem < 0)) { 485 ts.tv_sec--; 486 rem += NSEC_PER_SEC; 487 } 488 ts.tv_nsec = rem; 489 490 return ts; 491 } 492 EXPORT_SYMBOL(ns_to_timespec64); 493 #endif 494 /** 495 * msecs_to_jiffies: - convert milliseconds to jiffies 496 * @m: time in milliseconds 497 * 498 * conversion is done as follows: 499 * 500 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 501 * 502 * - 'too large' values [that would result in larger than 503 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 504 * 505 * - all other values are converted to jiffies by either multiplying 506 * the input value by a factor or dividing it with a factor and 507 * handling any 32-bit overflows. 508 * for the details see __msecs_to_jiffies() 509 * 510 * msecs_to_jiffies() checks for the passed in value being a constant 511 * via __builtin_constant_p() allowing gcc to eliminate most of the 512 * code, __msecs_to_jiffies() is called if the value passed does not 513 * allow constant folding and the actual conversion must be done at 514 * runtime. 515 * the _msecs_to_jiffies helpers are the HZ dependent conversion 516 * routines found in include/linux/jiffies.h 517 */ 518 unsigned long __msecs_to_jiffies(const unsigned int m) 519 { 520 /* 521 * Negative value, means infinite timeout: 522 */ 523 if ((int)m < 0) 524 return MAX_JIFFY_OFFSET; 525 return _msecs_to_jiffies(m); 526 } 527 EXPORT_SYMBOL(__msecs_to_jiffies); 528 529 unsigned long __usecs_to_jiffies(const unsigned int u) 530 { 531 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 532 return MAX_JIFFY_OFFSET; 533 return _usecs_to_jiffies(u); 534 } 535 EXPORT_SYMBOL(__usecs_to_jiffies); 536 537 /* 538 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 539 * that a remainder subtract here would not do the right thing as the 540 * resolution values don't fall on second boundries. I.e. the line: 541 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 542 * Note that due to the small error in the multiplier here, this 543 * rounding is incorrect for sufficiently large values of tv_nsec, but 544 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 545 * OK. 546 * 547 * Rather, we just shift the bits off the right. 548 * 549 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 550 * value to a scaled second value. 551 */ 552 static unsigned long 553 __timespec_to_jiffies(unsigned long sec, long nsec) 554 { 555 nsec = nsec + TICK_NSEC - 1; 556 557 if (sec >= MAX_SEC_IN_JIFFIES){ 558 sec = MAX_SEC_IN_JIFFIES; 559 nsec = 0; 560 } 561 return (((u64)sec * SEC_CONVERSION) + 562 (((u64)nsec * NSEC_CONVERSION) >> 563 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 564 565 } 566 567 unsigned long 568 timespec_to_jiffies(const struct timespec *value) 569 { 570 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec); 571 } 572 573 EXPORT_SYMBOL(timespec_to_jiffies); 574 575 void 576 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) 577 { 578 /* 579 * Convert jiffies to nanoseconds and separate with 580 * one divide. 581 */ 582 u32 rem; 583 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 584 NSEC_PER_SEC, &rem); 585 value->tv_nsec = rem; 586 } 587 EXPORT_SYMBOL(jiffies_to_timespec); 588 589 /* 590 * We could use a similar algorithm to timespec_to_jiffies (with a 591 * different multiplier for usec instead of nsec). But this has a 592 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 593 * usec value, since it's not necessarily integral. 594 * 595 * We could instead round in the intermediate scaled representation 596 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 597 * perilous: the scaling introduces a small positive error, which 598 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 599 * units to the intermediate before shifting) leads to accidental 600 * overflow and overestimates. 601 * 602 * At the cost of one additional multiplication by a constant, just 603 * use the timespec implementation. 604 */ 605 unsigned long 606 timeval_to_jiffies(const struct timeval *value) 607 { 608 return __timespec_to_jiffies(value->tv_sec, 609 value->tv_usec * NSEC_PER_USEC); 610 } 611 EXPORT_SYMBOL(timeval_to_jiffies); 612 613 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 614 { 615 /* 616 * Convert jiffies to nanoseconds and separate with 617 * one divide. 618 */ 619 u32 rem; 620 621 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 622 NSEC_PER_SEC, &rem); 623 value->tv_usec = rem / NSEC_PER_USEC; 624 } 625 EXPORT_SYMBOL(jiffies_to_timeval); 626 627 /* 628 * Convert jiffies/jiffies_64 to clock_t and back. 629 */ 630 clock_t jiffies_to_clock_t(unsigned long x) 631 { 632 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 633 # if HZ < USER_HZ 634 return x * (USER_HZ / HZ); 635 # else 636 return x / (HZ / USER_HZ); 637 # endif 638 #else 639 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 640 #endif 641 } 642 EXPORT_SYMBOL(jiffies_to_clock_t); 643 644 unsigned long clock_t_to_jiffies(unsigned long x) 645 { 646 #if (HZ % USER_HZ)==0 647 if (x >= ~0UL / (HZ / USER_HZ)) 648 return ~0UL; 649 return x * (HZ / USER_HZ); 650 #else 651 /* Don't worry about loss of precision here .. */ 652 if (x >= ~0UL / HZ * USER_HZ) 653 return ~0UL; 654 655 /* .. but do try to contain it here */ 656 return div_u64((u64)x * HZ, USER_HZ); 657 #endif 658 } 659 EXPORT_SYMBOL(clock_t_to_jiffies); 660 661 u64 jiffies_64_to_clock_t(u64 x) 662 { 663 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 664 # if HZ < USER_HZ 665 x = div_u64(x * USER_HZ, HZ); 666 # elif HZ > USER_HZ 667 x = div_u64(x, HZ / USER_HZ); 668 # else 669 /* Nothing to do */ 670 # endif 671 #else 672 /* 673 * There are better ways that don't overflow early, 674 * but even this doesn't overflow in hundreds of years 675 * in 64 bits, so.. 676 */ 677 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 678 #endif 679 return x; 680 } 681 EXPORT_SYMBOL(jiffies_64_to_clock_t); 682 683 u64 nsec_to_clock_t(u64 x) 684 { 685 #if (NSEC_PER_SEC % USER_HZ) == 0 686 return div_u64(x, NSEC_PER_SEC / USER_HZ); 687 #elif (USER_HZ % 512) == 0 688 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 689 #else 690 /* 691 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 692 * overflow after 64.99 years. 693 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 694 */ 695 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 696 #endif 697 } 698 699 /** 700 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 701 * 702 * @n: nsecs in u64 703 * 704 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 705 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 706 * for scheduler, not for use in device drivers to calculate timeout value. 707 * 708 * note: 709 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 710 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 711 */ 712 u64 nsecs_to_jiffies64(u64 n) 713 { 714 #if (NSEC_PER_SEC % HZ) == 0 715 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 716 return div_u64(n, NSEC_PER_SEC / HZ); 717 #elif (HZ % 512) == 0 718 /* overflow after 292 years if HZ = 1024 */ 719 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 720 #else 721 /* 722 * Generic case - optimized for cases where HZ is a multiple of 3. 723 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 724 */ 725 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 726 #endif 727 } 728 EXPORT_SYMBOL(nsecs_to_jiffies64); 729 730 /** 731 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 732 * 733 * @n: nsecs in u64 734 * 735 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 736 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 737 * for scheduler, not for use in device drivers to calculate timeout value. 738 * 739 * note: 740 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 741 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 742 */ 743 unsigned long nsecs_to_jiffies(u64 n) 744 { 745 return (unsigned long)nsecs_to_jiffies64(n); 746 } 747 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 748 749 /* 750 * Add two timespec values and do a safety check for overflow. 751 * It's assumed that both values are valid (>= 0) 752 */ 753 struct timespec timespec_add_safe(const struct timespec lhs, 754 const struct timespec rhs) 755 { 756 struct timespec res; 757 758 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec, 759 lhs.tv_nsec + rhs.tv_nsec); 760 761 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec) 762 res.tv_sec = TIME_T_MAX; 763 764 return res; 765 } 766