xref: /linux/kernel/time/time.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		/* Verify we're witin the +-15 hrs range */
177 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 			return -EINVAL;
179 
180 		sys_tz = *tz;
181 		update_vsyscall_tz();
182 		if (firsttime) {
183 			firsttime = 0;
184 			if (!tv)
185 				warp_clock();
186 		}
187 	}
188 	if (tv)
189 		return do_settimeofday(tv);
190 	return 0;
191 }
192 
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 		struct timezone __user *, tz)
195 {
196 	struct timeval user_tv;
197 	struct timespec	new_ts;
198 	struct timezone new_tz;
199 
200 	if (tv) {
201 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 			return -EFAULT;
203 
204 		if (!timeval_valid(&user_tv))
205 			return -EINVAL;
206 
207 		new_ts.tv_sec = user_tv.tv_sec;
208 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 	}
210 	if (tz) {
211 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 			return -EFAULT;
213 	}
214 
215 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217 
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 	struct timex txc;		/* Local copy of parameter */
221 	int ret;
222 
223 	/* Copy the user data space into the kernel copy
224 	 * structure. But bear in mind that the structures
225 	 * may change
226 	 */
227 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 		return -EFAULT;
229 	ret = do_adjtimex(&txc);
230 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232 
233 /**
234  * current_fs_time - Return FS time
235  * @sb: Superblock.
236  *
237  * Return the current time truncated to the time granularity supported by
238  * the fs.
239  */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242 	struct timespec now = current_kernel_time();
243 	return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246 
247 /*
248  * Convert jiffies to milliseconds and back.
249  *
250  * Avoid unnecessary multiplications/divisions in the
251  * two most common HZ cases:
252  */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 	return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268 
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271 	/*
272 	 * Hz usually doesn't go much further MSEC_PER_SEC.
273 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274 	 */
275 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
276 
277 #if !(USEC_PER_SEC % HZ)
278 	return (USEC_PER_SEC / HZ) * j;
279 #else
280 # if BITS_PER_LONG == 32
281 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 # else
283 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284 # endif
285 #endif
286 }
287 EXPORT_SYMBOL(jiffies_to_usecs);
288 
289 /**
290  * timespec_trunc - Truncate timespec to a granularity
291  * @t: Timespec
292  * @gran: Granularity in ns.
293  *
294  * Truncate a timespec to a granularity. gran must be smaller than a second.
295  * Always rounds down.
296  *
297  * This function should be only used for timestamps returned by
298  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
299  * it doesn't handle the better resolution of the latter.
300  */
301 struct timespec timespec_trunc(struct timespec t, unsigned gran)
302 {
303 	/*
304 	 * Division is pretty slow so avoid it for common cases.
305 	 * Currently current_kernel_time() never returns better than
306 	 * jiffies resolution. Exploit that.
307 	 */
308 	if (gran <= jiffies_to_usecs(1) * 1000) {
309 		/* nothing */
310 	} else if (gran == 1000000000) {
311 		t.tv_nsec = 0;
312 	} else {
313 		t.tv_nsec -= t.tv_nsec % gran;
314 	}
315 	return t;
316 }
317 EXPORT_SYMBOL(timespec_trunc);
318 
319 /*
320  * mktime64 - Converts date to seconds.
321  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
322  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
323  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
324  *
325  * [For the Julian calendar (which was used in Russia before 1917,
326  * Britain & colonies before 1752, anywhere else before 1582,
327  * and is still in use by some communities) leave out the
328  * -year/100+year/400 terms, and add 10.]
329  *
330  * This algorithm was first published by Gauss (I think).
331  */
332 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
333 		const unsigned int day, const unsigned int hour,
334 		const unsigned int min, const unsigned int sec)
335 {
336 	unsigned int mon = mon0, year = year0;
337 
338 	/* 1..12 -> 11,12,1..10 */
339 	if (0 >= (int) (mon -= 2)) {
340 		mon += 12;	/* Puts Feb last since it has leap day */
341 		year -= 1;
342 	}
343 
344 	return ((((time64_t)
345 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
346 		  year*365 - 719499
347 	    )*24 + hour /* now have hours */
348 	  )*60 + min /* now have minutes */
349 	)*60 + sec; /* finally seconds */
350 }
351 EXPORT_SYMBOL(mktime64);
352 
353 /**
354  * set_normalized_timespec - set timespec sec and nsec parts and normalize
355  *
356  * @ts:		pointer to timespec variable to be set
357  * @sec:	seconds to set
358  * @nsec:	nanoseconds to set
359  *
360  * Set seconds and nanoseconds field of a timespec variable and
361  * normalize to the timespec storage format
362  *
363  * Note: The tv_nsec part is always in the range of
364  *	0 <= tv_nsec < NSEC_PER_SEC
365  * For negative values only the tv_sec field is negative !
366  */
367 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
368 {
369 	while (nsec >= NSEC_PER_SEC) {
370 		/*
371 		 * The following asm() prevents the compiler from
372 		 * optimising this loop into a modulo operation. See
373 		 * also __iter_div_u64_rem() in include/linux/time.h
374 		 */
375 		asm("" : "+rm"(nsec));
376 		nsec -= NSEC_PER_SEC;
377 		++sec;
378 	}
379 	while (nsec < 0) {
380 		asm("" : "+rm"(nsec));
381 		nsec += NSEC_PER_SEC;
382 		--sec;
383 	}
384 	ts->tv_sec = sec;
385 	ts->tv_nsec = nsec;
386 }
387 EXPORT_SYMBOL(set_normalized_timespec);
388 
389 /**
390  * ns_to_timespec - Convert nanoseconds to timespec
391  * @nsec:       the nanoseconds value to be converted
392  *
393  * Returns the timespec representation of the nsec parameter.
394  */
395 struct timespec ns_to_timespec(const s64 nsec)
396 {
397 	struct timespec ts;
398 	s32 rem;
399 
400 	if (!nsec)
401 		return (struct timespec) {0, 0};
402 
403 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
404 	if (unlikely(rem < 0)) {
405 		ts.tv_sec--;
406 		rem += NSEC_PER_SEC;
407 	}
408 	ts.tv_nsec = rem;
409 
410 	return ts;
411 }
412 EXPORT_SYMBOL(ns_to_timespec);
413 
414 /**
415  * ns_to_timeval - Convert nanoseconds to timeval
416  * @nsec:       the nanoseconds value to be converted
417  *
418  * Returns the timeval representation of the nsec parameter.
419  */
420 struct timeval ns_to_timeval(const s64 nsec)
421 {
422 	struct timespec ts = ns_to_timespec(nsec);
423 	struct timeval tv;
424 
425 	tv.tv_sec = ts.tv_sec;
426 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
427 
428 	return tv;
429 }
430 EXPORT_SYMBOL(ns_to_timeval);
431 
432 #if BITS_PER_LONG == 32
433 /**
434  * set_normalized_timespec - set timespec sec and nsec parts and normalize
435  *
436  * @ts:		pointer to timespec variable to be set
437  * @sec:	seconds to set
438  * @nsec:	nanoseconds to set
439  *
440  * Set seconds and nanoseconds field of a timespec variable and
441  * normalize to the timespec storage format
442  *
443  * Note: The tv_nsec part is always in the range of
444  *	0 <= tv_nsec < NSEC_PER_SEC
445  * For negative values only the tv_sec field is negative !
446  */
447 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
448 {
449 	while (nsec >= NSEC_PER_SEC) {
450 		/*
451 		 * The following asm() prevents the compiler from
452 		 * optimising this loop into a modulo operation. See
453 		 * also __iter_div_u64_rem() in include/linux/time.h
454 		 */
455 		asm("" : "+rm"(nsec));
456 		nsec -= NSEC_PER_SEC;
457 		++sec;
458 	}
459 	while (nsec < 0) {
460 		asm("" : "+rm"(nsec));
461 		nsec += NSEC_PER_SEC;
462 		--sec;
463 	}
464 	ts->tv_sec = sec;
465 	ts->tv_nsec = nsec;
466 }
467 EXPORT_SYMBOL(set_normalized_timespec64);
468 
469 /**
470  * ns_to_timespec64 - Convert nanoseconds to timespec64
471  * @nsec:       the nanoseconds value to be converted
472  *
473  * Returns the timespec64 representation of the nsec parameter.
474  */
475 struct timespec64 ns_to_timespec64(const s64 nsec)
476 {
477 	struct timespec64 ts;
478 	s32 rem;
479 
480 	if (!nsec)
481 		return (struct timespec64) {0, 0};
482 
483 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
484 	if (unlikely(rem < 0)) {
485 		ts.tv_sec--;
486 		rem += NSEC_PER_SEC;
487 	}
488 	ts.tv_nsec = rem;
489 
490 	return ts;
491 }
492 EXPORT_SYMBOL(ns_to_timespec64);
493 #endif
494 /**
495  * msecs_to_jiffies: - convert milliseconds to jiffies
496  * @m:	time in milliseconds
497  *
498  * conversion is done as follows:
499  *
500  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
501  *
502  * - 'too large' values [that would result in larger than
503  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
504  *
505  * - all other values are converted to jiffies by either multiplying
506  *   the input value by a factor or dividing it with a factor and
507  *   handling any 32-bit overflows.
508  *   for the details see __msecs_to_jiffies()
509  *
510  * msecs_to_jiffies() checks for the passed in value being a constant
511  * via __builtin_constant_p() allowing gcc to eliminate most of the
512  * code, __msecs_to_jiffies() is called if the value passed does not
513  * allow constant folding and the actual conversion must be done at
514  * runtime.
515  * the _msecs_to_jiffies helpers are the HZ dependent conversion
516  * routines found in include/linux/jiffies.h
517  */
518 unsigned long __msecs_to_jiffies(const unsigned int m)
519 {
520 	/*
521 	 * Negative value, means infinite timeout:
522 	 */
523 	if ((int)m < 0)
524 		return MAX_JIFFY_OFFSET;
525 	return _msecs_to_jiffies(m);
526 }
527 EXPORT_SYMBOL(__msecs_to_jiffies);
528 
529 unsigned long __usecs_to_jiffies(const unsigned int u)
530 {
531 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
532 		return MAX_JIFFY_OFFSET;
533 	return _usecs_to_jiffies(u);
534 }
535 EXPORT_SYMBOL(__usecs_to_jiffies);
536 
537 /*
538  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
539  * that a remainder subtract here would not do the right thing as the
540  * resolution values don't fall on second boundries.  I.e. the line:
541  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
542  * Note that due to the small error in the multiplier here, this
543  * rounding is incorrect for sufficiently large values of tv_nsec, but
544  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
545  * OK.
546  *
547  * Rather, we just shift the bits off the right.
548  *
549  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
550  * value to a scaled second value.
551  */
552 static unsigned long
553 __timespec_to_jiffies(unsigned long sec, long nsec)
554 {
555 	nsec = nsec + TICK_NSEC - 1;
556 
557 	if (sec >= MAX_SEC_IN_JIFFIES){
558 		sec = MAX_SEC_IN_JIFFIES;
559 		nsec = 0;
560 	}
561 	return (((u64)sec * SEC_CONVERSION) +
562 		(((u64)nsec * NSEC_CONVERSION) >>
563 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
564 
565 }
566 
567 unsigned long
568 timespec_to_jiffies(const struct timespec *value)
569 {
570 	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
571 }
572 
573 EXPORT_SYMBOL(timespec_to_jiffies);
574 
575 void
576 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
577 {
578 	/*
579 	 * Convert jiffies to nanoseconds and separate with
580 	 * one divide.
581 	 */
582 	u32 rem;
583 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
584 				    NSEC_PER_SEC, &rem);
585 	value->tv_nsec = rem;
586 }
587 EXPORT_SYMBOL(jiffies_to_timespec);
588 
589 /*
590  * We could use a similar algorithm to timespec_to_jiffies (with a
591  * different multiplier for usec instead of nsec). But this has a
592  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
593  * usec value, since it's not necessarily integral.
594  *
595  * We could instead round in the intermediate scaled representation
596  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
597  * perilous: the scaling introduces a small positive error, which
598  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
599  * units to the intermediate before shifting) leads to accidental
600  * overflow and overestimates.
601  *
602  * At the cost of one additional multiplication by a constant, just
603  * use the timespec implementation.
604  */
605 unsigned long
606 timeval_to_jiffies(const struct timeval *value)
607 {
608 	return __timespec_to_jiffies(value->tv_sec,
609 				     value->tv_usec * NSEC_PER_USEC);
610 }
611 EXPORT_SYMBOL(timeval_to_jiffies);
612 
613 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
614 {
615 	/*
616 	 * Convert jiffies to nanoseconds and separate with
617 	 * one divide.
618 	 */
619 	u32 rem;
620 
621 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
622 				    NSEC_PER_SEC, &rem);
623 	value->tv_usec = rem / NSEC_PER_USEC;
624 }
625 EXPORT_SYMBOL(jiffies_to_timeval);
626 
627 /*
628  * Convert jiffies/jiffies_64 to clock_t and back.
629  */
630 clock_t jiffies_to_clock_t(unsigned long x)
631 {
632 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
633 # if HZ < USER_HZ
634 	return x * (USER_HZ / HZ);
635 # else
636 	return x / (HZ / USER_HZ);
637 # endif
638 #else
639 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
640 #endif
641 }
642 EXPORT_SYMBOL(jiffies_to_clock_t);
643 
644 unsigned long clock_t_to_jiffies(unsigned long x)
645 {
646 #if (HZ % USER_HZ)==0
647 	if (x >= ~0UL / (HZ / USER_HZ))
648 		return ~0UL;
649 	return x * (HZ / USER_HZ);
650 #else
651 	/* Don't worry about loss of precision here .. */
652 	if (x >= ~0UL / HZ * USER_HZ)
653 		return ~0UL;
654 
655 	/* .. but do try to contain it here */
656 	return div_u64((u64)x * HZ, USER_HZ);
657 #endif
658 }
659 EXPORT_SYMBOL(clock_t_to_jiffies);
660 
661 u64 jiffies_64_to_clock_t(u64 x)
662 {
663 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
664 # if HZ < USER_HZ
665 	x = div_u64(x * USER_HZ, HZ);
666 # elif HZ > USER_HZ
667 	x = div_u64(x, HZ / USER_HZ);
668 # else
669 	/* Nothing to do */
670 # endif
671 #else
672 	/*
673 	 * There are better ways that don't overflow early,
674 	 * but even this doesn't overflow in hundreds of years
675 	 * in 64 bits, so..
676 	 */
677 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
678 #endif
679 	return x;
680 }
681 EXPORT_SYMBOL(jiffies_64_to_clock_t);
682 
683 u64 nsec_to_clock_t(u64 x)
684 {
685 #if (NSEC_PER_SEC % USER_HZ) == 0
686 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
687 #elif (USER_HZ % 512) == 0
688 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
689 #else
690 	/*
691          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
692          * overflow after 64.99 years.
693          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
694          */
695 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
696 #endif
697 }
698 
699 /**
700  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
701  *
702  * @n:	nsecs in u64
703  *
704  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
705  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
706  * for scheduler, not for use in device drivers to calculate timeout value.
707  *
708  * note:
709  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
710  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
711  */
712 u64 nsecs_to_jiffies64(u64 n)
713 {
714 #if (NSEC_PER_SEC % HZ) == 0
715 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
716 	return div_u64(n, NSEC_PER_SEC / HZ);
717 #elif (HZ % 512) == 0
718 	/* overflow after 292 years if HZ = 1024 */
719 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
720 #else
721 	/*
722 	 * Generic case - optimized for cases where HZ is a multiple of 3.
723 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
724 	 */
725 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
726 #endif
727 }
728 EXPORT_SYMBOL(nsecs_to_jiffies64);
729 
730 /**
731  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
732  *
733  * @n:	nsecs in u64
734  *
735  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
736  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
737  * for scheduler, not for use in device drivers to calculate timeout value.
738  *
739  * note:
740  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
741  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
742  */
743 unsigned long nsecs_to_jiffies(u64 n)
744 {
745 	return (unsigned long)nsecs_to_jiffies64(n);
746 }
747 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
748 
749 /*
750  * Add two timespec values and do a safety check for overflow.
751  * It's assumed that both values are valid (>= 0)
752  */
753 struct timespec timespec_add_safe(const struct timespec lhs,
754 				  const struct timespec rhs)
755 {
756 	struct timespec res;
757 
758 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
759 				lhs.tv_nsec + rhs.tv_nsec);
760 
761 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
762 		res.tv_sec = TIME_T_MAX;
763 
764 	return res;
765 }
766