1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * 5 * This file contains the interface functions for the various time related 6 * system calls: time, stime, gettimeofday, settimeofday, adjtime 7 * 8 * Modification history: 9 * 10 * 1993-09-02 Philip Gladstone 11 * Created file with time related functions from sched/core.c and adjtimex() 12 * 1993-10-08 Torsten Duwe 13 * adjtime interface update and CMOS clock write code 14 * 1995-08-13 Torsten Duwe 15 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 16 * 1999-01-16 Ulrich Windl 17 * Introduced error checking for many cases in adjtimex(). 18 * Updated NTP code according to technical memorandum Jan '96 19 * "A Kernel Model for Precision Timekeeping" by Dave Mills 20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 21 * (Even though the technical memorandum forbids it) 22 * 2004-07-14 Christoph Lameter 23 * Added getnstimeofday to allow the posix timer functions to return 24 * with nanosecond accuracy 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/timex.h> 30 #include <linux/capability.h> 31 #include <linux/timekeeper_internal.h> 32 #include <linux/errno.h> 33 #include <linux/syscalls.h> 34 #include <linux/security.h> 35 #include <linux/fs.h> 36 #include <linux/math64.h> 37 #include <linux/ptrace.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/compat.h> 41 #include <asm/unistd.h> 42 43 #include <generated/timeconst.h> 44 #include "timekeeping.h" 45 46 /* 47 * The timezone where the local system is located. Used as a default by some 48 * programs who obtain this value by using gettimeofday. 49 */ 50 struct timezone sys_tz; 51 52 EXPORT_SYMBOL(sys_tz); 53 54 #ifdef __ARCH_WANT_SYS_TIME 55 56 /* 57 * sys_time() can be implemented in user-level using 58 * sys_gettimeofday(). Is this for backwards compatibility? If so, 59 * why not move it into the appropriate arch directory (for those 60 * architectures that need it). 61 */ 62 SYSCALL_DEFINE1(time, time_t __user *, tloc) 63 { 64 time_t i = (time_t)ktime_get_real_seconds(); 65 66 if (tloc) { 67 if (put_user(i,tloc)) 68 return -EFAULT; 69 } 70 force_successful_syscall_return(); 71 return i; 72 } 73 74 /* 75 * sys_stime() can be implemented in user-level using 76 * sys_settimeofday(). Is this for backwards compatibility? If so, 77 * why not move it into the appropriate arch directory (for those 78 * architectures that need it). 79 */ 80 81 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 82 { 83 struct timespec64 tv; 84 int err; 85 86 if (get_user(tv.tv_sec, tptr)) 87 return -EFAULT; 88 89 tv.tv_nsec = 0; 90 91 err = security_settime64(&tv, NULL); 92 if (err) 93 return err; 94 95 do_settimeofday64(&tv); 96 return 0; 97 } 98 99 #endif /* __ARCH_WANT_SYS_TIME */ 100 101 #ifdef CONFIG_COMPAT_32BIT_TIME 102 #ifdef __ARCH_WANT_SYS_TIME32 103 104 /* old_time32_t is a 32 bit "long" and needs to get converted. */ 105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc) 106 { 107 old_time32_t i; 108 109 i = (old_time32_t)ktime_get_real_seconds(); 110 111 if (tloc) { 112 if (put_user(i,tloc)) 113 return -EFAULT; 114 } 115 force_successful_syscall_return(); 116 return i; 117 } 118 119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr) 120 { 121 struct timespec64 tv; 122 int err; 123 124 if (get_user(tv.tv_sec, tptr)) 125 return -EFAULT; 126 127 tv.tv_nsec = 0; 128 129 err = security_settime64(&tv, NULL); 130 if (err) 131 return err; 132 133 do_settimeofday64(&tv); 134 return 0; 135 } 136 137 #endif /* __ARCH_WANT_SYS_TIME32 */ 138 #endif 139 140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 141 struct timezone __user *, tz) 142 { 143 if (likely(tv != NULL)) { 144 struct timespec64 ts; 145 146 ktime_get_real_ts64(&ts); 147 if (put_user(ts.tv_sec, &tv->tv_sec) || 148 put_user(ts.tv_nsec / 1000, &tv->tv_usec)) 149 return -EFAULT; 150 } 151 if (unlikely(tz != NULL)) { 152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 153 return -EFAULT; 154 } 155 return 0; 156 } 157 158 /* 159 * In case for some reason the CMOS clock has not already been running 160 * in UTC, but in some local time: The first time we set the timezone, 161 * we will warp the clock so that it is ticking UTC time instead of 162 * local time. Presumably, if someone is setting the timezone then we 163 * are running in an environment where the programs understand about 164 * timezones. This should be done at boot time in the /etc/rc script, 165 * as soon as possible, so that the clock can be set right. Otherwise, 166 * various programs will get confused when the clock gets warped. 167 */ 168 169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) 170 { 171 static int firsttime = 1; 172 int error = 0; 173 174 if (tv && !timespec64_valid_settod(tv)) 175 return -EINVAL; 176 177 error = security_settime64(tv, tz); 178 if (error) 179 return error; 180 181 if (tz) { 182 /* Verify we're witin the +-15 hrs range */ 183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 184 return -EINVAL; 185 186 sys_tz = *tz; 187 update_vsyscall_tz(); 188 if (firsttime) { 189 firsttime = 0; 190 if (!tv) 191 timekeeping_warp_clock(); 192 } 193 } 194 if (tv) 195 return do_settimeofday64(tv); 196 return 0; 197 } 198 199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 200 struct timezone __user *, tz) 201 { 202 struct timespec64 new_ts; 203 struct timeval user_tv; 204 struct timezone new_tz; 205 206 if (tv) { 207 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 208 return -EFAULT; 209 210 if (!timeval_valid(&user_tv)) 211 return -EINVAL; 212 213 new_ts.tv_sec = user_tv.tv_sec; 214 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 215 } 216 if (tz) { 217 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 218 return -EFAULT; 219 } 220 221 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 222 } 223 224 #ifdef CONFIG_COMPAT 225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv, 226 struct timezone __user *, tz) 227 { 228 if (tv) { 229 struct timespec64 ts; 230 231 ktime_get_real_ts64(&ts); 232 if (put_user(ts.tv_sec, &tv->tv_sec) || 233 put_user(ts.tv_nsec / 1000, &tv->tv_usec)) 234 return -EFAULT; 235 } 236 if (tz) { 237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 238 return -EFAULT; 239 } 240 241 return 0; 242 } 243 244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv, 245 struct timezone __user *, tz) 246 { 247 struct timespec64 new_ts; 248 struct timeval user_tv; 249 struct timezone new_tz; 250 251 if (tv) { 252 if (compat_get_timeval(&user_tv, tv)) 253 return -EFAULT; 254 new_ts.tv_sec = user_tv.tv_sec; 255 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 256 } 257 if (tz) { 258 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 259 return -EFAULT; 260 } 261 262 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 263 } 264 #endif 265 266 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 267 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p) 268 { 269 struct __kernel_timex txc; /* Local copy of parameter */ 270 int ret; 271 272 /* Copy the user data space into the kernel copy 273 * structure. But bear in mind that the structures 274 * may change 275 */ 276 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex))) 277 return -EFAULT; 278 ret = do_adjtimex(&txc); 279 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret; 280 } 281 #endif 282 283 #ifdef CONFIG_COMPAT_32BIT_TIME 284 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp) 285 { 286 struct old_timex32 tx32; 287 288 memset(txc, 0, sizeof(struct __kernel_timex)); 289 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32))) 290 return -EFAULT; 291 292 txc->modes = tx32.modes; 293 txc->offset = tx32.offset; 294 txc->freq = tx32.freq; 295 txc->maxerror = tx32.maxerror; 296 txc->esterror = tx32.esterror; 297 txc->status = tx32.status; 298 txc->constant = tx32.constant; 299 txc->precision = tx32.precision; 300 txc->tolerance = tx32.tolerance; 301 txc->time.tv_sec = tx32.time.tv_sec; 302 txc->time.tv_usec = tx32.time.tv_usec; 303 txc->tick = tx32.tick; 304 txc->ppsfreq = tx32.ppsfreq; 305 txc->jitter = tx32.jitter; 306 txc->shift = tx32.shift; 307 txc->stabil = tx32.stabil; 308 txc->jitcnt = tx32.jitcnt; 309 txc->calcnt = tx32.calcnt; 310 txc->errcnt = tx32.errcnt; 311 txc->stbcnt = tx32.stbcnt; 312 313 return 0; 314 } 315 316 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc) 317 { 318 struct old_timex32 tx32; 319 320 memset(&tx32, 0, sizeof(struct old_timex32)); 321 tx32.modes = txc->modes; 322 tx32.offset = txc->offset; 323 tx32.freq = txc->freq; 324 tx32.maxerror = txc->maxerror; 325 tx32.esterror = txc->esterror; 326 tx32.status = txc->status; 327 tx32.constant = txc->constant; 328 tx32.precision = txc->precision; 329 tx32.tolerance = txc->tolerance; 330 tx32.time.tv_sec = txc->time.tv_sec; 331 tx32.time.tv_usec = txc->time.tv_usec; 332 tx32.tick = txc->tick; 333 tx32.ppsfreq = txc->ppsfreq; 334 tx32.jitter = txc->jitter; 335 tx32.shift = txc->shift; 336 tx32.stabil = txc->stabil; 337 tx32.jitcnt = txc->jitcnt; 338 tx32.calcnt = txc->calcnt; 339 tx32.errcnt = txc->errcnt; 340 tx32.stbcnt = txc->stbcnt; 341 tx32.tai = txc->tai; 342 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32))) 343 return -EFAULT; 344 return 0; 345 } 346 347 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp) 348 { 349 struct __kernel_timex txc; 350 int err, ret; 351 352 err = get_old_timex32(&txc, utp); 353 if (err) 354 return err; 355 356 ret = do_adjtimex(&txc); 357 358 err = put_old_timex32(utp, &txc); 359 if (err) 360 return err; 361 362 return ret; 363 } 364 #endif 365 366 /* 367 * Convert jiffies to milliseconds and back. 368 * 369 * Avoid unnecessary multiplications/divisions in the 370 * two most common HZ cases: 371 */ 372 unsigned int jiffies_to_msecs(const unsigned long j) 373 { 374 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 375 return (MSEC_PER_SEC / HZ) * j; 376 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 377 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 378 #else 379 # if BITS_PER_LONG == 32 380 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >> 381 HZ_TO_MSEC_SHR32; 382 # else 383 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); 384 # endif 385 #endif 386 } 387 EXPORT_SYMBOL(jiffies_to_msecs); 388 389 unsigned int jiffies_to_usecs(const unsigned long j) 390 { 391 /* 392 * Hz usually doesn't go much further MSEC_PER_SEC. 393 * jiffies_to_usecs() and usecs_to_jiffies() depend on that. 394 */ 395 BUILD_BUG_ON(HZ > USEC_PER_SEC); 396 397 #if !(USEC_PER_SEC % HZ) 398 return (USEC_PER_SEC / HZ) * j; 399 #else 400 # if BITS_PER_LONG == 32 401 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 402 # else 403 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 404 # endif 405 #endif 406 } 407 EXPORT_SYMBOL(jiffies_to_usecs); 408 409 /* 410 * mktime64 - Converts date to seconds. 411 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 412 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 413 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 414 * 415 * [For the Julian calendar (which was used in Russia before 1917, 416 * Britain & colonies before 1752, anywhere else before 1582, 417 * and is still in use by some communities) leave out the 418 * -year/100+year/400 terms, and add 10.] 419 * 420 * This algorithm was first published by Gauss (I think). 421 * 422 * A leap second can be indicated by calling this function with sec as 423 * 60 (allowable under ISO 8601). The leap second is treated the same 424 * as the following second since they don't exist in UNIX time. 425 * 426 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight 427 * tomorrow - (allowable under ISO 8601) is supported. 428 */ 429 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 430 const unsigned int day, const unsigned int hour, 431 const unsigned int min, const unsigned int sec) 432 { 433 unsigned int mon = mon0, year = year0; 434 435 /* 1..12 -> 11,12,1..10 */ 436 if (0 >= (int) (mon -= 2)) { 437 mon += 12; /* Puts Feb last since it has leap day */ 438 year -= 1; 439 } 440 441 return ((((time64_t) 442 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 443 year*365 - 719499 444 )*24 + hour /* now have hours - midnight tomorrow handled here */ 445 )*60 + min /* now have minutes */ 446 )*60 + sec; /* finally seconds */ 447 } 448 EXPORT_SYMBOL(mktime64); 449 450 /** 451 * ns_to_timespec - Convert nanoseconds to timespec 452 * @nsec: the nanoseconds value to be converted 453 * 454 * Returns the timespec representation of the nsec parameter. 455 */ 456 struct timespec ns_to_timespec(const s64 nsec) 457 { 458 struct timespec ts; 459 s32 rem; 460 461 if (!nsec) 462 return (struct timespec) {0, 0}; 463 464 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 465 if (unlikely(rem < 0)) { 466 ts.tv_sec--; 467 rem += NSEC_PER_SEC; 468 } 469 ts.tv_nsec = rem; 470 471 return ts; 472 } 473 EXPORT_SYMBOL(ns_to_timespec); 474 475 /** 476 * ns_to_timeval - Convert nanoseconds to timeval 477 * @nsec: the nanoseconds value to be converted 478 * 479 * Returns the timeval representation of the nsec parameter. 480 */ 481 struct timeval ns_to_timeval(const s64 nsec) 482 { 483 struct timespec ts = ns_to_timespec(nsec); 484 struct timeval tv; 485 486 tv.tv_sec = ts.tv_sec; 487 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 488 489 return tv; 490 } 491 EXPORT_SYMBOL(ns_to_timeval); 492 493 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec) 494 { 495 struct timespec64 ts = ns_to_timespec64(nsec); 496 struct __kernel_old_timeval tv; 497 498 tv.tv_sec = ts.tv_sec; 499 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000; 500 501 return tv; 502 } 503 EXPORT_SYMBOL(ns_to_kernel_old_timeval); 504 505 /** 506 * set_normalized_timespec - set timespec sec and nsec parts and normalize 507 * 508 * @ts: pointer to timespec variable to be set 509 * @sec: seconds to set 510 * @nsec: nanoseconds to set 511 * 512 * Set seconds and nanoseconds field of a timespec variable and 513 * normalize to the timespec storage format 514 * 515 * Note: The tv_nsec part is always in the range of 516 * 0 <= tv_nsec < NSEC_PER_SEC 517 * For negative values only the tv_sec field is negative ! 518 */ 519 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 520 { 521 while (nsec >= NSEC_PER_SEC) { 522 /* 523 * The following asm() prevents the compiler from 524 * optimising this loop into a modulo operation. See 525 * also __iter_div_u64_rem() in include/linux/time.h 526 */ 527 asm("" : "+rm"(nsec)); 528 nsec -= NSEC_PER_SEC; 529 ++sec; 530 } 531 while (nsec < 0) { 532 asm("" : "+rm"(nsec)); 533 nsec += NSEC_PER_SEC; 534 --sec; 535 } 536 ts->tv_sec = sec; 537 ts->tv_nsec = nsec; 538 } 539 EXPORT_SYMBOL(set_normalized_timespec64); 540 541 /** 542 * ns_to_timespec64 - Convert nanoseconds to timespec64 543 * @nsec: the nanoseconds value to be converted 544 * 545 * Returns the timespec64 representation of the nsec parameter. 546 */ 547 struct timespec64 ns_to_timespec64(const s64 nsec) 548 { 549 struct timespec64 ts; 550 s32 rem; 551 552 if (!nsec) 553 return (struct timespec64) {0, 0}; 554 555 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 556 if (unlikely(rem < 0)) { 557 ts.tv_sec--; 558 rem += NSEC_PER_SEC; 559 } 560 ts.tv_nsec = rem; 561 562 return ts; 563 } 564 EXPORT_SYMBOL(ns_to_timespec64); 565 566 /** 567 * msecs_to_jiffies: - convert milliseconds to jiffies 568 * @m: time in milliseconds 569 * 570 * conversion is done as follows: 571 * 572 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 573 * 574 * - 'too large' values [that would result in larger than 575 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 576 * 577 * - all other values are converted to jiffies by either multiplying 578 * the input value by a factor or dividing it with a factor and 579 * handling any 32-bit overflows. 580 * for the details see __msecs_to_jiffies() 581 * 582 * msecs_to_jiffies() checks for the passed in value being a constant 583 * via __builtin_constant_p() allowing gcc to eliminate most of the 584 * code, __msecs_to_jiffies() is called if the value passed does not 585 * allow constant folding and the actual conversion must be done at 586 * runtime. 587 * the _msecs_to_jiffies helpers are the HZ dependent conversion 588 * routines found in include/linux/jiffies.h 589 */ 590 unsigned long __msecs_to_jiffies(const unsigned int m) 591 { 592 /* 593 * Negative value, means infinite timeout: 594 */ 595 if ((int)m < 0) 596 return MAX_JIFFY_OFFSET; 597 return _msecs_to_jiffies(m); 598 } 599 EXPORT_SYMBOL(__msecs_to_jiffies); 600 601 unsigned long __usecs_to_jiffies(const unsigned int u) 602 { 603 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 604 return MAX_JIFFY_OFFSET; 605 return _usecs_to_jiffies(u); 606 } 607 EXPORT_SYMBOL(__usecs_to_jiffies); 608 609 /* 610 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 611 * that a remainder subtract here would not do the right thing as the 612 * resolution values don't fall on second boundries. I.e. the line: 613 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 614 * Note that due to the small error in the multiplier here, this 615 * rounding is incorrect for sufficiently large values of tv_nsec, but 616 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 617 * OK. 618 * 619 * Rather, we just shift the bits off the right. 620 * 621 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 622 * value to a scaled second value. 623 */ 624 static unsigned long 625 __timespec64_to_jiffies(u64 sec, long nsec) 626 { 627 nsec = nsec + TICK_NSEC - 1; 628 629 if (sec >= MAX_SEC_IN_JIFFIES){ 630 sec = MAX_SEC_IN_JIFFIES; 631 nsec = 0; 632 } 633 return ((sec * SEC_CONVERSION) + 634 (((u64)nsec * NSEC_CONVERSION) >> 635 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 636 637 } 638 639 static unsigned long 640 __timespec_to_jiffies(unsigned long sec, long nsec) 641 { 642 return __timespec64_to_jiffies((u64)sec, nsec); 643 } 644 645 unsigned long 646 timespec64_to_jiffies(const struct timespec64 *value) 647 { 648 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec); 649 } 650 EXPORT_SYMBOL(timespec64_to_jiffies); 651 652 void 653 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) 654 { 655 /* 656 * Convert jiffies to nanoseconds and separate with 657 * one divide. 658 */ 659 u32 rem; 660 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 661 NSEC_PER_SEC, &rem); 662 value->tv_nsec = rem; 663 } 664 EXPORT_SYMBOL(jiffies_to_timespec64); 665 666 /* 667 * We could use a similar algorithm to timespec_to_jiffies (with a 668 * different multiplier for usec instead of nsec). But this has a 669 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 670 * usec value, since it's not necessarily integral. 671 * 672 * We could instead round in the intermediate scaled representation 673 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 674 * perilous: the scaling introduces a small positive error, which 675 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 676 * units to the intermediate before shifting) leads to accidental 677 * overflow and overestimates. 678 * 679 * At the cost of one additional multiplication by a constant, just 680 * use the timespec implementation. 681 */ 682 unsigned long 683 timeval_to_jiffies(const struct timeval *value) 684 { 685 return __timespec_to_jiffies(value->tv_sec, 686 value->tv_usec * NSEC_PER_USEC); 687 } 688 EXPORT_SYMBOL(timeval_to_jiffies); 689 690 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 691 { 692 /* 693 * Convert jiffies to nanoseconds and separate with 694 * one divide. 695 */ 696 u32 rem; 697 698 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 699 NSEC_PER_SEC, &rem); 700 value->tv_usec = rem / NSEC_PER_USEC; 701 } 702 EXPORT_SYMBOL(jiffies_to_timeval); 703 704 /* 705 * Convert jiffies/jiffies_64 to clock_t and back. 706 */ 707 clock_t jiffies_to_clock_t(unsigned long x) 708 { 709 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 710 # if HZ < USER_HZ 711 return x * (USER_HZ / HZ); 712 # else 713 return x / (HZ / USER_HZ); 714 # endif 715 #else 716 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 717 #endif 718 } 719 EXPORT_SYMBOL(jiffies_to_clock_t); 720 721 unsigned long clock_t_to_jiffies(unsigned long x) 722 { 723 #if (HZ % USER_HZ)==0 724 if (x >= ~0UL / (HZ / USER_HZ)) 725 return ~0UL; 726 return x * (HZ / USER_HZ); 727 #else 728 /* Don't worry about loss of precision here .. */ 729 if (x >= ~0UL / HZ * USER_HZ) 730 return ~0UL; 731 732 /* .. but do try to contain it here */ 733 return div_u64((u64)x * HZ, USER_HZ); 734 #endif 735 } 736 EXPORT_SYMBOL(clock_t_to_jiffies); 737 738 u64 jiffies_64_to_clock_t(u64 x) 739 { 740 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 741 # if HZ < USER_HZ 742 x = div_u64(x * USER_HZ, HZ); 743 # elif HZ > USER_HZ 744 x = div_u64(x, HZ / USER_HZ); 745 # else 746 /* Nothing to do */ 747 # endif 748 #else 749 /* 750 * There are better ways that don't overflow early, 751 * but even this doesn't overflow in hundreds of years 752 * in 64 bits, so.. 753 */ 754 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 755 #endif 756 return x; 757 } 758 EXPORT_SYMBOL(jiffies_64_to_clock_t); 759 760 u64 nsec_to_clock_t(u64 x) 761 { 762 #if (NSEC_PER_SEC % USER_HZ) == 0 763 return div_u64(x, NSEC_PER_SEC / USER_HZ); 764 #elif (USER_HZ % 512) == 0 765 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 766 #else 767 /* 768 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 769 * overflow after 64.99 years. 770 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 771 */ 772 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 773 #endif 774 } 775 776 u64 jiffies64_to_nsecs(u64 j) 777 { 778 #if !(NSEC_PER_SEC % HZ) 779 return (NSEC_PER_SEC / HZ) * j; 780 # else 781 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN); 782 #endif 783 } 784 EXPORT_SYMBOL(jiffies64_to_nsecs); 785 786 u64 jiffies64_to_msecs(const u64 j) 787 { 788 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 789 return (MSEC_PER_SEC / HZ) * j; 790 #else 791 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); 792 #endif 793 } 794 EXPORT_SYMBOL(jiffies64_to_msecs); 795 796 /** 797 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 798 * 799 * @n: nsecs in u64 800 * 801 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 802 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 803 * for scheduler, not for use in device drivers to calculate timeout value. 804 * 805 * note: 806 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 807 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 808 */ 809 u64 nsecs_to_jiffies64(u64 n) 810 { 811 #if (NSEC_PER_SEC % HZ) == 0 812 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 813 return div_u64(n, NSEC_PER_SEC / HZ); 814 #elif (HZ % 512) == 0 815 /* overflow after 292 years if HZ = 1024 */ 816 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 817 #else 818 /* 819 * Generic case - optimized for cases where HZ is a multiple of 3. 820 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 821 */ 822 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 823 #endif 824 } 825 EXPORT_SYMBOL(nsecs_to_jiffies64); 826 827 /** 828 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 829 * 830 * @n: nsecs in u64 831 * 832 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 833 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 834 * for scheduler, not for use in device drivers to calculate timeout value. 835 * 836 * note: 837 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 838 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 839 */ 840 unsigned long nsecs_to_jiffies(u64 n) 841 { 842 return (unsigned long)nsecs_to_jiffies64(n); 843 } 844 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 845 846 /* 847 * Add two timespec64 values and do a safety check for overflow. 848 * It's assumed that both values are valid (>= 0). 849 * And, each timespec64 is in normalized form. 850 */ 851 struct timespec64 timespec64_add_safe(const struct timespec64 lhs, 852 const struct timespec64 rhs) 853 { 854 struct timespec64 res; 855 856 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec, 857 lhs.tv_nsec + rhs.tv_nsec); 858 859 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { 860 res.tv_sec = TIME64_MAX; 861 res.tv_nsec = 0; 862 } 863 864 return res; 865 } 866 867 int get_timespec64(struct timespec64 *ts, 868 const struct __kernel_timespec __user *uts) 869 { 870 struct __kernel_timespec kts; 871 int ret; 872 873 ret = copy_from_user(&kts, uts, sizeof(kts)); 874 if (ret) 875 return -EFAULT; 876 877 ts->tv_sec = kts.tv_sec; 878 879 /* Zero out the padding for 32 bit systems or in compat mode */ 880 if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall()) 881 kts.tv_nsec &= 0xFFFFFFFFUL; 882 883 ts->tv_nsec = kts.tv_nsec; 884 885 return 0; 886 } 887 EXPORT_SYMBOL_GPL(get_timespec64); 888 889 int put_timespec64(const struct timespec64 *ts, 890 struct __kernel_timespec __user *uts) 891 { 892 struct __kernel_timespec kts = { 893 .tv_sec = ts->tv_sec, 894 .tv_nsec = ts->tv_nsec 895 }; 896 897 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0; 898 } 899 EXPORT_SYMBOL_GPL(put_timespec64); 900 901 static int __get_old_timespec32(struct timespec64 *ts64, 902 const struct old_timespec32 __user *cts) 903 { 904 struct old_timespec32 ts; 905 int ret; 906 907 ret = copy_from_user(&ts, cts, sizeof(ts)); 908 if (ret) 909 return -EFAULT; 910 911 ts64->tv_sec = ts.tv_sec; 912 ts64->tv_nsec = ts.tv_nsec; 913 914 return 0; 915 } 916 917 static int __put_old_timespec32(const struct timespec64 *ts64, 918 struct old_timespec32 __user *cts) 919 { 920 struct old_timespec32 ts = { 921 .tv_sec = ts64->tv_sec, 922 .tv_nsec = ts64->tv_nsec 923 }; 924 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0; 925 } 926 927 int get_old_timespec32(struct timespec64 *ts, const void __user *uts) 928 { 929 if (COMPAT_USE_64BIT_TIME) 930 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0; 931 else 932 return __get_old_timespec32(ts, uts); 933 } 934 EXPORT_SYMBOL_GPL(get_old_timespec32); 935 936 int put_old_timespec32(const struct timespec64 *ts, void __user *uts) 937 { 938 if (COMPAT_USE_64BIT_TIME) 939 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0; 940 else 941 return __put_old_timespec32(ts, uts); 942 } 943 EXPORT_SYMBOL_GPL(put_old_timespec32); 944 945 int get_itimerspec64(struct itimerspec64 *it, 946 const struct __kernel_itimerspec __user *uit) 947 { 948 int ret; 949 950 ret = get_timespec64(&it->it_interval, &uit->it_interval); 951 if (ret) 952 return ret; 953 954 ret = get_timespec64(&it->it_value, &uit->it_value); 955 956 return ret; 957 } 958 EXPORT_SYMBOL_GPL(get_itimerspec64); 959 960 int put_itimerspec64(const struct itimerspec64 *it, 961 struct __kernel_itimerspec __user *uit) 962 { 963 int ret; 964 965 ret = put_timespec64(&it->it_interval, &uit->it_interval); 966 if (ret) 967 return ret; 968 969 ret = put_timespec64(&it->it_value, &uit->it_value); 970 971 return ret; 972 } 973 EXPORT_SYMBOL_GPL(put_itimerspec64); 974 975 int get_old_itimerspec32(struct itimerspec64 *its, 976 const struct old_itimerspec32 __user *uits) 977 { 978 979 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) || 980 __get_old_timespec32(&its->it_value, &uits->it_value)) 981 return -EFAULT; 982 return 0; 983 } 984 EXPORT_SYMBOL_GPL(get_old_itimerspec32); 985 986 int put_old_itimerspec32(const struct itimerspec64 *its, 987 struct old_itimerspec32 __user *uits) 988 { 989 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) || 990 __put_old_timespec32(&its->it_value, &uits->it_value)) 991 return -EFAULT; 992 return 0; 993 } 994 EXPORT_SYMBOL_GPL(put_old_itimerspec32); 995