1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/context_tracking.h> 26 27 #include <asm/irq_regs.h> 28 29 #include "tick-internal.h" 30 31 #include <trace/events/timer.h> 32 33 /* 34 * Per-CPU nohz control structure 35 */ 36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 44 /* 45 * The time, when the last jiffy update happened. Protected by jiffies_lock. 46 */ 47 static ktime_t last_jiffies_update; 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta.tv64 < tick_period.tv64) 62 return; 63 64 /* Reevaluate with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta.tv64 >= tick_period.tv64) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta.tv64 >= tick_period.tv64)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } else { 88 write_sequnlock(&jiffies_lock); 89 return; 90 } 91 write_sequnlock(&jiffies_lock); 92 update_wall_time(); 93 } 94 95 /* 96 * Initialize and return retrieve the jiffies update. 97 */ 98 static ktime_t tick_init_jiffy_update(void) 99 { 100 ktime_t period; 101 102 write_seqlock(&jiffies_lock); 103 /* Did we start the jiffies update yet ? */ 104 if (last_jiffies_update.tv64 == 0) 105 last_jiffies_update = tick_next_period; 106 period = last_jiffies_update; 107 write_sequnlock(&jiffies_lock); 108 return period; 109 } 110 111 112 static void tick_sched_do_timer(ktime_t now) 113 { 114 int cpu = smp_processor_id(); 115 116 #ifdef CONFIG_NO_HZ_COMMON 117 /* 118 * Check if the do_timer duty was dropped. We don't care about 119 * concurrency: This happens only when the CPU in charge went 120 * into a long sleep. If two CPUs happen to assign themselves to 121 * this duty, then the jiffies update is still serialized by 122 * jiffies_lock. 123 */ 124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 125 && !tick_nohz_full_cpu(cpu)) 126 tick_do_timer_cpu = cpu; 127 #endif 128 129 /* Check, if the jiffies need an update */ 130 if (tick_do_timer_cpu == cpu) 131 tick_do_update_jiffies64(now); 132 } 133 134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 135 { 136 #ifdef CONFIG_NO_HZ_COMMON 137 /* 138 * When we are idle and the tick is stopped, we have to touch 139 * the watchdog as we might not schedule for a really long 140 * time. This happens on complete idle SMP systems while 141 * waiting on the login prompt. We also increment the "start of 142 * idle" jiffy stamp so the idle accounting adjustment we do 143 * when we go busy again does not account too much ticks. 144 */ 145 if (ts->tick_stopped) { 146 touch_softlockup_watchdog_sched(); 147 if (is_idle_task(current)) 148 ts->idle_jiffies++; 149 } 150 #endif 151 update_process_times(user_mode(regs)); 152 profile_tick(CPU_PROFILING); 153 } 154 #endif 155 156 #ifdef CONFIG_NO_HZ_FULL 157 cpumask_var_t tick_nohz_full_mask; 158 cpumask_var_t housekeeping_mask; 159 bool tick_nohz_full_running; 160 static atomic_t tick_dep_mask; 161 162 static bool check_tick_dependency(atomic_t *dep) 163 { 164 int val = atomic_read(dep); 165 166 if (val & TICK_DEP_MASK_POSIX_TIMER) { 167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 168 return true; 169 } 170 171 if (val & TICK_DEP_MASK_PERF_EVENTS) { 172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 173 return true; 174 } 175 176 if (val & TICK_DEP_MASK_SCHED) { 177 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 183 return true; 184 } 185 186 return false; 187 } 188 189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 190 { 191 WARN_ON_ONCE(!irqs_disabled()); 192 193 if (unlikely(!cpu_online(cpu))) 194 return false; 195 196 if (check_tick_dependency(&tick_dep_mask)) 197 return false; 198 199 if (check_tick_dependency(&ts->tick_dep_mask)) 200 return false; 201 202 if (check_tick_dependency(¤t->tick_dep_mask)) 203 return false; 204 205 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 206 return false; 207 208 return true; 209 } 210 211 static void nohz_full_kick_func(struct irq_work *work) 212 { 213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 214 } 215 216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 217 .func = nohz_full_kick_func, 218 }; 219 220 /* 221 * Kick this CPU if it's full dynticks in order to force it to 222 * re-evaluate its dependency on the tick and restart it if necessary. 223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 224 * is NMI safe. 225 */ 226 static void tick_nohz_full_kick(void) 227 { 228 if (!tick_nohz_full_cpu(smp_processor_id())) 229 return; 230 231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 232 } 233 234 /* 235 * Kick the CPU if it's full dynticks in order to force it to 236 * re-evaluate its dependency on the tick and restart it if necessary. 237 */ 238 void tick_nohz_full_kick_cpu(int cpu) 239 { 240 if (!tick_nohz_full_cpu(cpu)) 241 return; 242 243 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 244 } 245 246 /* 247 * Kick all full dynticks CPUs in order to force these to re-evaluate 248 * their dependency on the tick and restart it if necessary. 249 */ 250 static void tick_nohz_full_kick_all(void) 251 { 252 int cpu; 253 254 if (!tick_nohz_full_running) 255 return; 256 257 preempt_disable(); 258 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 259 tick_nohz_full_kick_cpu(cpu); 260 preempt_enable(); 261 } 262 263 static void tick_nohz_dep_set_all(atomic_t *dep, 264 enum tick_dep_bits bit) 265 { 266 int prev; 267 268 prev = atomic_fetch_or(BIT(bit), dep); 269 if (!prev) 270 tick_nohz_full_kick_all(); 271 } 272 273 /* 274 * Set a global tick dependency. Used by perf events that rely on freq and 275 * by unstable clock. 276 */ 277 void tick_nohz_dep_set(enum tick_dep_bits bit) 278 { 279 tick_nohz_dep_set_all(&tick_dep_mask, bit); 280 } 281 282 void tick_nohz_dep_clear(enum tick_dep_bits bit) 283 { 284 atomic_andnot(BIT(bit), &tick_dep_mask); 285 } 286 287 /* 288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 289 * manage events throttling. 290 */ 291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 292 { 293 int prev; 294 struct tick_sched *ts; 295 296 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 297 298 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 299 if (!prev) { 300 preempt_disable(); 301 /* Perf needs local kick that is NMI safe */ 302 if (cpu == smp_processor_id()) { 303 tick_nohz_full_kick(); 304 } else { 305 /* Remote irq work not NMI-safe */ 306 if (!WARN_ON_ONCE(in_nmi())) 307 tick_nohz_full_kick_cpu(cpu); 308 } 309 preempt_enable(); 310 } 311 } 312 313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 314 { 315 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 316 317 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 318 } 319 320 /* 321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 322 * per task timers. 323 */ 324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 325 { 326 /* 327 * We could optimize this with just kicking the target running the task 328 * if that noise matters for nohz full users. 329 */ 330 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 331 } 332 333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 334 { 335 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 336 } 337 338 /* 339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 340 * per process timers. 341 */ 342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 343 { 344 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 345 } 346 347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 348 { 349 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 350 } 351 352 /* 353 * Re-evaluate the need for the tick as we switch the current task. 354 * It might need the tick due to per task/process properties: 355 * perf events, posix CPU timers, ... 356 */ 357 void __tick_nohz_task_switch(void) 358 { 359 unsigned long flags; 360 struct tick_sched *ts; 361 362 local_irq_save(flags); 363 364 if (!tick_nohz_full_cpu(smp_processor_id())) 365 goto out; 366 367 ts = this_cpu_ptr(&tick_cpu_sched); 368 369 if (ts->tick_stopped) { 370 if (atomic_read(¤t->tick_dep_mask) || 371 atomic_read(¤t->signal->tick_dep_mask)) 372 tick_nohz_full_kick(); 373 } 374 out: 375 local_irq_restore(flags); 376 } 377 378 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 379 static int __init tick_nohz_full_setup(char *str) 380 { 381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 382 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n"); 384 free_bootmem_cpumask_var(tick_nohz_full_mask); 385 return 1; 386 } 387 tick_nohz_full_running = true; 388 389 return 1; 390 } 391 __setup("nohz_full=", tick_nohz_full_setup); 392 393 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 394 unsigned long action, 395 void *hcpu) 396 { 397 unsigned int cpu = (unsigned long)hcpu; 398 399 switch (action & ~CPU_TASKS_FROZEN) { 400 case CPU_DOWN_PREPARE: 401 /* 402 * The boot CPU handles housekeeping duty (unbound timers, 403 * workqueues, timekeeping, ...) on behalf of full dynticks 404 * CPUs. It must remain online when nohz full is enabled. 405 */ 406 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 407 return NOTIFY_BAD; 408 break; 409 } 410 return NOTIFY_OK; 411 } 412 413 static int tick_nohz_init_all(void) 414 { 415 int err = -1; 416 417 #ifdef CONFIG_NO_HZ_FULL_ALL 418 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 419 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 420 return err; 421 } 422 err = 0; 423 cpumask_setall(tick_nohz_full_mask); 424 tick_nohz_full_running = true; 425 #endif 426 return err; 427 } 428 429 void __init tick_nohz_init(void) 430 { 431 int cpu; 432 433 if (!tick_nohz_full_running) { 434 if (tick_nohz_init_all() < 0) 435 return; 436 } 437 438 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 439 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 440 cpumask_clear(tick_nohz_full_mask); 441 tick_nohz_full_running = false; 442 return; 443 } 444 445 /* 446 * Full dynticks uses irq work to drive the tick rescheduling on safe 447 * locking contexts. But then we need irq work to raise its own 448 * interrupts to avoid circular dependency on the tick 449 */ 450 if (!arch_irq_work_has_interrupt()) { 451 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 452 cpumask_clear(tick_nohz_full_mask); 453 cpumask_copy(housekeeping_mask, cpu_possible_mask); 454 tick_nohz_full_running = false; 455 return; 456 } 457 458 cpu = smp_processor_id(); 459 460 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 461 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 462 cpu); 463 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 464 } 465 466 cpumask_andnot(housekeeping_mask, 467 cpu_possible_mask, tick_nohz_full_mask); 468 469 for_each_cpu(cpu, tick_nohz_full_mask) 470 context_tracking_cpu_set(cpu); 471 472 cpu_notifier(tick_nohz_cpu_down_callback, 0); 473 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 474 cpumask_pr_args(tick_nohz_full_mask)); 475 476 /* 477 * We need at least one CPU to handle housekeeping work such 478 * as timekeeping, unbound timers, workqueues, ... 479 */ 480 WARN_ON_ONCE(cpumask_empty(housekeeping_mask)); 481 } 482 #endif 483 484 /* 485 * NOHZ - aka dynamic tick functionality 486 */ 487 #ifdef CONFIG_NO_HZ_COMMON 488 /* 489 * NO HZ enabled ? 490 */ 491 bool tick_nohz_enabled __read_mostly = true; 492 unsigned long tick_nohz_active __read_mostly; 493 /* 494 * Enable / Disable tickless mode 495 */ 496 static int __init setup_tick_nohz(char *str) 497 { 498 return (kstrtobool(str, &tick_nohz_enabled) == 0); 499 } 500 501 __setup("nohz=", setup_tick_nohz); 502 503 int tick_nohz_tick_stopped(void) 504 { 505 return __this_cpu_read(tick_cpu_sched.tick_stopped); 506 } 507 508 /** 509 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 510 * 511 * Called from interrupt entry when the CPU was idle 512 * 513 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 514 * must be updated. Otherwise an interrupt handler could use a stale jiffy 515 * value. We do this unconditionally on any CPU, as we don't know whether the 516 * CPU, which has the update task assigned is in a long sleep. 517 */ 518 static void tick_nohz_update_jiffies(ktime_t now) 519 { 520 unsigned long flags; 521 522 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 523 524 local_irq_save(flags); 525 tick_do_update_jiffies64(now); 526 local_irq_restore(flags); 527 528 touch_softlockup_watchdog_sched(); 529 } 530 531 /* 532 * Updates the per-CPU time idle statistics counters 533 */ 534 static void 535 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 536 { 537 ktime_t delta; 538 539 if (ts->idle_active) { 540 delta = ktime_sub(now, ts->idle_entrytime); 541 if (nr_iowait_cpu(cpu) > 0) 542 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 543 else 544 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 545 ts->idle_entrytime = now; 546 } 547 548 if (last_update_time) 549 *last_update_time = ktime_to_us(now); 550 551 } 552 553 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 554 { 555 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 556 ts->idle_active = 0; 557 558 sched_clock_idle_wakeup_event(0); 559 } 560 561 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 562 { 563 ktime_t now = ktime_get(); 564 565 ts->idle_entrytime = now; 566 ts->idle_active = 1; 567 sched_clock_idle_sleep_event(); 568 return now; 569 } 570 571 /** 572 * get_cpu_idle_time_us - get the total idle time of a CPU 573 * @cpu: CPU number to query 574 * @last_update_time: variable to store update time in. Do not update 575 * counters if NULL. 576 * 577 * Return the cumulative idle time (since boot) for a given 578 * CPU, in microseconds. 579 * 580 * This time is measured via accounting rather than sampling, 581 * and is as accurate as ktime_get() is. 582 * 583 * This function returns -1 if NOHZ is not enabled. 584 */ 585 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 586 { 587 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 588 ktime_t now, idle; 589 590 if (!tick_nohz_active) 591 return -1; 592 593 now = ktime_get(); 594 if (last_update_time) { 595 update_ts_time_stats(cpu, ts, now, last_update_time); 596 idle = ts->idle_sleeptime; 597 } else { 598 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 599 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 600 601 idle = ktime_add(ts->idle_sleeptime, delta); 602 } else { 603 idle = ts->idle_sleeptime; 604 } 605 } 606 607 return ktime_to_us(idle); 608 609 } 610 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 611 612 /** 613 * get_cpu_iowait_time_us - get the total iowait time of a CPU 614 * @cpu: CPU number to query 615 * @last_update_time: variable to store update time in. Do not update 616 * counters if NULL. 617 * 618 * Return the cumulative iowait time (since boot) for a given 619 * CPU, in microseconds. 620 * 621 * This time is measured via accounting rather than sampling, 622 * and is as accurate as ktime_get() is. 623 * 624 * This function returns -1 if NOHZ is not enabled. 625 */ 626 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 627 { 628 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 629 ktime_t now, iowait; 630 631 if (!tick_nohz_active) 632 return -1; 633 634 now = ktime_get(); 635 if (last_update_time) { 636 update_ts_time_stats(cpu, ts, now, last_update_time); 637 iowait = ts->iowait_sleeptime; 638 } else { 639 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 640 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 641 642 iowait = ktime_add(ts->iowait_sleeptime, delta); 643 } else { 644 iowait = ts->iowait_sleeptime; 645 } 646 } 647 648 return ktime_to_us(iowait); 649 } 650 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 651 652 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 653 { 654 hrtimer_cancel(&ts->sched_timer); 655 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 656 657 /* Forward the time to expire in the future */ 658 hrtimer_forward(&ts->sched_timer, now, tick_period); 659 660 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 661 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 662 else 663 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 664 } 665 666 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 667 ktime_t now, int cpu) 668 { 669 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 670 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 671 unsigned long seq, basejiff; 672 ktime_t tick; 673 674 /* Read jiffies and the time when jiffies were updated last */ 675 do { 676 seq = read_seqbegin(&jiffies_lock); 677 basemono = last_jiffies_update.tv64; 678 basejiff = jiffies; 679 } while (read_seqretry(&jiffies_lock, seq)); 680 ts->last_jiffies = basejiff; 681 682 if (rcu_needs_cpu(basemono, &next_rcu) || 683 arch_needs_cpu() || irq_work_needs_cpu()) { 684 next_tick = basemono + TICK_NSEC; 685 } else { 686 /* 687 * Get the next pending timer. If high resolution 688 * timers are enabled this only takes the timer wheel 689 * timers into account. If high resolution timers are 690 * disabled this also looks at the next expiring 691 * hrtimer. 692 */ 693 next_tmr = get_next_timer_interrupt(basejiff, basemono); 694 ts->next_timer = next_tmr; 695 /* Take the next rcu event into account */ 696 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 697 } 698 699 /* 700 * If the tick is due in the next period, keep it ticking or 701 * force prod the timer. 702 */ 703 delta = next_tick - basemono; 704 if (delta <= (u64)TICK_NSEC) { 705 tick.tv64 = 0; 706 707 /* 708 * Tell the timer code that the base is not idle, i.e. undo 709 * the effect of get_next_timer_interrupt(): 710 */ 711 timer_clear_idle(); 712 /* 713 * We've not stopped the tick yet, and there's a timer in the 714 * next period, so no point in stopping it either, bail. 715 */ 716 if (!ts->tick_stopped) 717 goto out; 718 719 /* 720 * If, OTOH, we did stop it, but there's a pending (expired) 721 * timer reprogram the timer hardware to fire now. 722 * 723 * We will not restart the tick proper, just prod the timer 724 * hardware into firing an interrupt to process the pending 725 * timers. Just like tick_irq_exit() will not restart the tick 726 * for 'normal' interrupts. 727 * 728 * Only once we exit the idle loop will we re-enable the tick, 729 * see tick_nohz_idle_exit(). 730 */ 731 if (delta == 0) { 732 tick_nohz_restart(ts, now); 733 goto out; 734 } 735 } 736 737 /* 738 * If this CPU is the one which updates jiffies, then give up 739 * the assignment and let it be taken by the CPU which runs 740 * the tick timer next, which might be this CPU as well. If we 741 * don't drop this here the jiffies might be stale and 742 * do_timer() never invoked. Keep track of the fact that it 743 * was the one which had the do_timer() duty last. If this CPU 744 * is the one which had the do_timer() duty last, we limit the 745 * sleep time to the timekeeping max_deferment value. 746 * Otherwise we can sleep as long as we want. 747 */ 748 delta = timekeeping_max_deferment(); 749 if (cpu == tick_do_timer_cpu) { 750 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 751 ts->do_timer_last = 1; 752 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 753 delta = KTIME_MAX; 754 ts->do_timer_last = 0; 755 } else if (!ts->do_timer_last) { 756 delta = KTIME_MAX; 757 } 758 759 #ifdef CONFIG_NO_HZ_FULL 760 /* Limit the tick delta to the maximum scheduler deferment */ 761 if (!ts->inidle) 762 delta = min(delta, scheduler_tick_max_deferment()); 763 #endif 764 765 /* Calculate the next expiry time */ 766 if (delta < (KTIME_MAX - basemono)) 767 expires = basemono + delta; 768 else 769 expires = KTIME_MAX; 770 771 expires = min_t(u64, expires, next_tick); 772 tick.tv64 = expires; 773 774 /* Skip reprogram of event if its not changed */ 775 if (ts->tick_stopped && (expires == dev->next_event.tv64)) 776 goto out; 777 778 /* 779 * nohz_stop_sched_tick can be called several times before 780 * the nohz_restart_sched_tick is called. This happens when 781 * interrupts arrive which do not cause a reschedule. In the 782 * first call we save the current tick time, so we can restart 783 * the scheduler tick in nohz_restart_sched_tick. 784 */ 785 if (!ts->tick_stopped) { 786 nohz_balance_enter_idle(cpu); 787 calc_load_enter_idle(); 788 cpu_load_update_nohz_start(); 789 790 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 791 ts->tick_stopped = 1; 792 trace_tick_stop(1, TICK_DEP_MASK_NONE); 793 } 794 795 /* 796 * If the expiration time == KTIME_MAX, then we simply stop 797 * the tick timer. 798 */ 799 if (unlikely(expires == KTIME_MAX)) { 800 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 801 hrtimer_cancel(&ts->sched_timer); 802 goto out; 803 } 804 805 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 806 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 807 else 808 tick_program_event(tick, 1); 809 out: 810 /* Update the estimated sleep length */ 811 ts->sleep_length = ktime_sub(dev->next_event, now); 812 return tick; 813 } 814 815 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 816 { 817 /* Update jiffies first */ 818 tick_do_update_jiffies64(now); 819 cpu_load_update_nohz_stop(); 820 821 /* 822 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 823 * the clock forward checks in the enqueue path: 824 */ 825 timer_clear_idle(); 826 827 calc_load_exit_idle(); 828 touch_softlockup_watchdog_sched(); 829 /* 830 * Cancel the scheduled timer and restore the tick 831 */ 832 ts->tick_stopped = 0; 833 ts->idle_exittime = now; 834 835 tick_nohz_restart(ts, now); 836 } 837 838 static void tick_nohz_full_update_tick(struct tick_sched *ts) 839 { 840 #ifdef CONFIG_NO_HZ_FULL 841 int cpu = smp_processor_id(); 842 843 if (!tick_nohz_full_cpu(cpu)) 844 return; 845 846 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 847 return; 848 849 if (can_stop_full_tick(cpu, ts)) 850 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 851 else if (ts->tick_stopped) 852 tick_nohz_restart_sched_tick(ts, ktime_get()); 853 #endif 854 } 855 856 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 857 { 858 /* 859 * If this CPU is offline and it is the one which updates 860 * jiffies, then give up the assignment and let it be taken by 861 * the CPU which runs the tick timer next. If we don't drop 862 * this here the jiffies might be stale and do_timer() never 863 * invoked. 864 */ 865 if (unlikely(!cpu_online(cpu))) { 866 if (cpu == tick_do_timer_cpu) 867 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 868 return false; 869 } 870 871 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 872 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ }; 873 return false; 874 } 875 876 if (need_resched()) 877 return false; 878 879 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 880 static int ratelimit; 881 882 if (ratelimit < 10 && 883 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 884 pr_warn("NOHZ: local_softirq_pending %02x\n", 885 (unsigned int) local_softirq_pending()); 886 ratelimit++; 887 } 888 return false; 889 } 890 891 if (tick_nohz_full_enabled()) { 892 /* 893 * Keep the tick alive to guarantee timekeeping progression 894 * if there are full dynticks CPUs around 895 */ 896 if (tick_do_timer_cpu == cpu) 897 return false; 898 /* 899 * Boot safety: make sure the timekeeping duty has been 900 * assigned before entering dyntick-idle mode, 901 */ 902 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 903 return false; 904 } 905 906 return true; 907 } 908 909 static void __tick_nohz_idle_enter(struct tick_sched *ts) 910 { 911 ktime_t now, expires; 912 int cpu = smp_processor_id(); 913 914 now = tick_nohz_start_idle(ts); 915 916 if (can_stop_idle_tick(cpu, ts)) { 917 int was_stopped = ts->tick_stopped; 918 919 ts->idle_calls++; 920 921 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 922 if (expires.tv64 > 0LL) { 923 ts->idle_sleeps++; 924 ts->idle_expires = expires; 925 } 926 927 if (!was_stopped && ts->tick_stopped) 928 ts->idle_jiffies = ts->last_jiffies; 929 } 930 } 931 932 /** 933 * tick_nohz_idle_enter - stop the idle tick from the idle task 934 * 935 * When the next event is more than a tick into the future, stop the idle tick 936 * Called when we start the idle loop. 937 * 938 * The arch is responsible of calling: 939 * 940 * - rcu_idle_enter() after its last use of RCU before the CPU is put 941 * to sleep. 942 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 943 */ 944 void tick_nohz_idle_enter(void) 945 { 946 struct tick_sched *ts; 947 948 WARN_ON_ONCE(irqs_disabled()); 949 950 /* 951 * Update the idle state in the scheduler domain hierarchy 952 * when tick_nohz_stop_sched_tick() is called from the idle loop. 953 * State will be updated to busy during the first busy tick after 954 * exiting idle. 955 */ 956 set_cpu_sd_state_idle(); 957 958 local_irq_disable(); 959 960 ts = this_cpu_ptr(&tick_cpu_sched); 961 ts->inidle = 1; 962 __tick_nohz_idle_enter(ts); 963 964 local_irq_enable(); 965 } 966 967 /** 968 * tick_nohz_irq_exit - update next tick event from interrupt exit 969 * 970 * When an interrupt fires while we are idle and it doesn't cause 971 * a reschedule, it may still add, modify or delete a timer, enqueue 972 * an RCU callback, etc... 973 * So we need to re-calculate and reprogram the next tick event. 974 */ 975 void tick_nohz_irq_exit(void) 976 { 977 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 978 979 if (ts->inidle) 980 __tick_nohz_idle_enter(ts); 981 else 982 tick_nohz_full_update_tick(ts); 983 } 984 985 /** 986 * tick_nohz_get_sleep_length - return the length of the current sleep 987 * 988 * Called from power state control code with interrupts disabled 989 */ 990 ktime_t tick_nohz_get_sleep_length(void) 991 { 992 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 993 994 return ts->sleep_length; 995 } 996 997 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 998 { 999 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1000 unsigned long ticks; 1001 1002 if (vtime_accounting_cpu_enabled()) 1003 return; 1004 /* 1005 * We stopped the tick in idle. Update process times would miss the 1006 * time we slept as update_process_times does only a 1 tick 1007 * accounting. Enforce that this is accounted to idle ! 1008 */ 1009 ticks = jiffies - ts->idle_jiffies; 1010 /* 1011 * We might be one off. Do not randomly account a huge number of ticks! 1012 */ 1013 if (ticks && ticks < LONG_MAX) 1014 account_idle_ticks(ticks); 1015 #endif 1016 } 1017 1018 /** 1019 * tick_nohz_idle_exit - restart the idle tick from the idle task 1020 * 1021 * Restart the idle tick when the CPU is woken up from idle 1022 * This also exit the RCU extended quiescent state. The CPU 1023 * can use RCU again after this function is called. 1024 */ 1025 void tick_nohz_idle_exit(void) 1026 { 1027 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1028 ktime_t now; 1029 1030 local_irq_disable(); 1031 1032 WARN_ON_ONCE(!ts->inidle); 1033 1034 ts->inidle = 0; 1035 1036 if (ts->idle_active || ts->tick_stopped) 1037 now = ktime_get(); 1038 1039 if (ts->idle_active) 1040 tick_nohz_stop_idle(ts, now); 1041 1042 if (ts->tick_stopped) { 1043 tick_nohz_restart_sched_tick(ts, now); 1044 tick_nohz_account_idle_ticks(ts); 1045 } 1046 1047 local_irq_enable(); 1048 } 1049 1050 /* 1051 * The nohz low res interrupt handler 1052 */ 1053 static void tick_nohz_handler(struct clock_event_device *dev) 1054 { 1055 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1056 struct pt_regs *regs = get_irq_regs(); 1057 ktime_t now = ktime_get(); 1058 1059 dev->next_event.tv64 = KTIME_MAX; 1060 1061 tick_sched_do_timer(now); 1062 tick_sched_handle(ts, regs); 1063 1064 /* No need to reprogram if we are running tickless */ 1065 if (unlikely(ts->tick_stopped)) 1066 return; 1067 1068 hrtimer_forward(&ts->sched_timer, now, tick_period); 1069 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1070 } 1071 1072 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1073 { 1074 if (!tick_nohz_enabled) 1075 return; 1076 ts->nohz_mode = mode; 1077 /* One update is enough */ 1078 if (!test_and_set_bit(0, &tick_nohz_active)) 1079 timers_update_migration(true); 1080 } 1081 1082 /** 1083 * tick_nohz_switch_to_nohz - switch to nohz mode 1084 */ 1085 static void tick_nohz_switch_to_nohz(void) 1086 { 1087 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1088 ktime_t next; 1089 1090 if (!tick_nohz_enabled) 1091 return; 1092 1093 if (tick_switch_to_oneshot(tick_nohz_handler)) 1094 return; 1095 1096 /* 1097 * Recycle the hrtimer in ts, so we can share the 1098 * hrtimer_forward with the highres code. 1099 */ 1100 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1101 /* Get the next period */ 1102 next = tick_init_jiffy_update(); 1103 1104 hrtimer_set_expires(&ts->sched_timer, next); 1105 hrtimer_forward_now(&ts->sched_timer, tick_period); 1106 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1107 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1108 } 1109 1110 static inline void tick_nohz_irq_enter(void) 1111 { 1112 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1113 ktime_t now; 1114 1115 if (!ts->idle_active && !ts->tick_stopped) 1116 return; 1117 now = ktime_get(); 1118 if (ts->idle_active) 1119 tick_nohz_stop_idle(ts, now); 1120 if (ts->tick_stopped) 1121 tick_nohz_update_jiffies(now); 1122 } 1123 1124 #else 1125 1126 static inline void tick_nohz_switch_to_nohz(void) { } 1127 static inline void tick_nohz_irq_enter(void) { } 1128 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1129 1130 #endif /* CONFIG_NO_HZ_COMMON */ 1131 1132 /* 1133 * Called from irq_enter to notify about the possible interruption of idle() 1134 */ 1135 void tick_irq_enter(void) 1136 { 1137 tick_check_oneshot_broadcast_this_cpu(); 1138 tick_nohz_irq_enter(); 1139 } 1140 1141 /* 1142 * High resolution timer specific code 1143 */ 1144 #ifdef CONFIG_HIGH_RES_TIMERS 1145 /* 1146 * We rearm the timer until we get disabled by the idle code. 1147 * Called with interrupts disabled. 1148 */ 1149 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1150 { 1151 struct tick_sched *ts = 1152 container_of(timer, struct tick_sched, sched_timer); 1153 struct pt_regs *regs = get_irq_regs(); 1154 ktime_t now = ktime_get(); 1155 1156 tick_sched_do_timer(now); 1157 1158 /* 1159 * Do not call, when we are not in irq context and have 1160 * no valid regs pointer 1161 */ 1162 if (regs) 1163 tick_sched_handle(ts, regs); 1164 1165 /* No need to reprogram if we are in idle or full dynticks mode */ 1166 if (unlikely(ts->tick_stopped)) 1167 return HRTIMER_NORESTART; 1168 1169 hrtimer_forward(timer, now, tick_period); 1170 1171 return HRTIMER_RESTART; 1172 } 1173 1174 static int sched_skew_tick; 1175 1176 static int __init skew_tick(char *str) 1177 { 1178 get_option(&str, &sched_skew_tick); 1179 1180 return 0; 1181 } 1182 early_param("skew_tick", skew_tick); 1183 1184 /** 1185 * tick_setup_sched_timer - setup the tick emulation timer 1186 */ 1187 void tick_setup_sched_timer(void) 1188 { 1189 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1190 ktime_t now = ktime_get(); 1191 1192 /* 1193 * Emulate tick processing via per-CPU hrtimers: 1194 */ 1195 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1196 ts->sched_timer.function = tick_sched_timer; 1197 1198 /* Get the next period (per-CPU) */ 1199 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1200 1201 /* Offset the tick to avert jiffies_lock contention. */ 1202 if (sched_skew_tick) { 1203 u64 offset = ktime_to_ns(tick_period) >> 1; 1204 do_div(offset, num_possible_cpus()); 1205 offset *= smp_processor_id(); 1206 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1207 } 1208 1209 hrtimer_forward(&ts->sched_timer, now, tick_period); 1210 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1211 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1212 } 1213 #endif /* HIGH_RES_TIMERS */ 1214 1215 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1216 void tick_cancel_sched_timer(int cpu) 1217 { 1218 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1219 1220 # ifdef CONFIG_HIGH_RES_TIMERS 1221 if (ts->sched_timer.base) 1222 hrtimer_cancel(&ts->sched_timer); 1223 # endif 1224 1225 memset(ts, 0, sizeof(*ts)); 1226 } 1227 #endif 1228 1229 /** 1230 * Async notification about clocksource changes 1231 */ 1232 void tick_clock_notify(void) 1233 { 1234 int cpu; 1235 1236 for_each_possible_cpu(cpu) 1237 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1238 } 1239 1240 /* 1241 * Async notification about clock event changes 1242 */ 1243 void tick_oneshot_notify(void) 1244 { 1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1246 1247 set_bit(0, &ts->check_clocks); 1248 } 1249 1250 /** 1251 * Check, if a change happened, which makes oneshot possible. 1252 * 1253 * Called cyclic from the hrtimer softirq (driven by the timer 1254 * softirq) allow_nohz signals, that we can switch into low-res nohz 1255 * mode, because high resolution timers are disabled (either compile 1256 * or runtime). Called with interrupts disabled. 1257 */ 1258 int tick_check_oneshot_change(int allow_nohz) 1259 { 1260 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1261 1262 if (!test_and_clear_bit(0, &ts->check_clocks)) 1263 return 0; 1264 1265 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1266 return 0; 1267 1268 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1269 return 0; 1270 1271 if (!allow_nohz) 1272 return 1; 1273 1274 tick_nohz_switch_to_nohz(); 1275 return 0; 1276 } 1277