xref: /linux/kernel/time/tick-sched.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per-CPU nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevaluate with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the CPU in charge went
120 	 * into a long sleep. If two CPUs happen to assign themselves to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
161 
162 static bool check_tick_dependency(atomic_t *dep)
163 {
164 	int val = atomic_read(dep);
165 
166 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 		return true;
169 	}
170 
171 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 		return true;
174 	}
175 
176 	if (val & TICK_DEP_MASK_SCHED) {
177 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 		return true;
184 	}
185 
186 	return false;
187 }
188 
189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
190 {
191 	WARN_ON_ONCE(!irqs_disabled());
192 
193 	if (unlikely(!cpu_online(cpu)))
194 		return false;
195 
196 	if (check_tick_dependency(&tick_dep_mask))
197 		return false;
198 
199 	if (check_tick_dependency(&ts->tick_dep_mask))
200 		return false;
201 
202 	if (check_tick_dependency(&current->tick_dep_mask))
203 		return false;
204 
205 	if (check_tick_dependency(&current->signal->tick_dep_mask))
206 		return false;
207 
208 	return true;
209 }
210 
211 static void nohz_full_kick_func(struct irq_work *work)
212 {
213 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
214 }
215 
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 	.func = nohz_full_kick_func,
218 };
219 
220 /*
221  * Kick this CPU if it's full dynticks in order to force it to
222  * re-evaluate its dependency on the tick and restart it if necessary.
223  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
224  * is NMI safe.
225  */
226 static void tick_nohz_full_kick(void)
227 {
228 	if (!tick_nohz_full_cpu(smp_processor_id()))
229 		return;
230 
231 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
232 }
233 
234 /*
235  * Kick the CPU if it's full dynticks in order to force it to
236  * re-evaluate its dependency on the tick and restart it if necessary.
237  */
238 void tick_nohz_full_kick_cpu(int cpu)
239 {
240 	if (!tick_nohz_full_cpu(cpu))
241 		return;
242 
243 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
244 }
245 
246 /*
247  * Kick all full dynticks CPUs in order to force these to re-evaluate
248  * their dependency on the tick and restart it if necessary.
249  */
250 static void tick_nohz_full_kick_all(void)
251 {
252 	int cpu;
253 
254 	if (!tick_nohz_full_running)
255 		return;
256 
257 	preempt_disable();
258 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
259 		tick_nohz_full_kick_cpu(cpu);
260 	preempt_enable();
261 }
262 
263 static void tick_nohz_dep_set_all(atomic_t *dep,
264 				  enum tick_dep_bits bit)
265 {
266 	int prev;
267 
268 	prev = atomic_fetch_or(BIT(bit), dep);
269 	if (!prev)
270 		tick_nohz_full_kick_all();
271 }
272 
273 /*
274  * Set a global tick dependency. Used by perf events that rely on freq and
275  * by unstable clock.
276  */
277 void tick_nohz_dep_set(enum tick_dep_bits bit)
278 {
279 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
280 }
281 
282 void tick_nohz_dep_clear(enum tick_dep_bits bit)
283 {
284 	atomic_andnot(BIT(bit), &tick_dep_mask);
285 }
286 
287 /*
288  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289  * manage events throttling.
290  */
291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
292 {
293 	int prev;
294 	struct tick_sched *ts;
295 
296 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
297 
298 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 	if (!prev) {
300 		preempt_disable();
301 		/* Perf needs local kick that is NMI safe */
302 		if (cpu == smp_processor_id()) {
303 			tick_nohz_full_kick();
304 		} else {
305 			/* Remote irq work not NMI-safe */
306 			if (!WARN_ON_ONCE(in_nmi()))
307 				tick_nohz_full_kick_cpu(cpu);
308 		}
309 		preempt_enable();
310 	}
311 }
312 
313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
314 {
315 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316 
317 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
318 }
319 
320 /*
321  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
322  * per task timers.
323  */
324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
325 {
326 	/*
327 	 * We could optimize this with just kicking the target running the task
328 	 * if that noise matters for nohz full users.
329 	 */
330 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
331 }
332 
333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
334 {
335 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
336 }
337 
338 /*
339  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340  * per process timers.
341  */
342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
343 {
344 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
345 }
346 
347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
348 {
349 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
350 }
351 
352 /*
353  * Re-evaluate the need for the tick as we switch the current task.
354  * It might need the tick due to per task/process properties:
355  * perf events, posix CPU timers, ...
356  */
357 void __tick_nohz_task_switch(void)
358 {
359 	unsigned long flags;
360 	struct tick_sched *ts;
361 
362 	local_irq_save(flags);
363 
364 	if (!tick_nohz_full_cpu(smp_processor_id()))
365 		goto out;
366 
367 	ts = this_cpu_ptr(&tick_cpu_sched);
368 
369 	if (ts->tick_stopped) {
370 		if (atomic_read(&current->tick_dep_mask) ||
371 		    atomic_read(&current->signal->tick_dep_mask))
372 			tick_nohz_full_kick();
373 	}
374 out:
375 	local_irq_restore(flags);
376 }
377 
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init tick_nohz_full_setup(char *str)
380 {
381 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
382 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 		free_bootmem_cpumask_var(tick_nohz_full_mask);
385 		return 1;
386 	}
387 	tick_nohz_full_running = true;
388 
389 	return 1;
390 }
391 __setup("nohz_full=", tick_nohz_full_setup);
392 
393 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
394 				       unsigned long action,
395 				       void *hcpu)
396 {
397 	unsigned int cpu = (unsigned long)hcpu;
398 
399 	switch (action & ~CPU_TASKS_FROZEN) {
400 	case CPU_DOWN_PREPARE:
401 		/*
402 		 * The boot CPU handles housekeeping duty (unbound timers,
403 		 * workqueues, timekeeping, ...) on behalf of full dynticks
404 		 * CPUs. It must remain online when nohz full is enabled.
405 		 */
406 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
407 			return NOTIFY_BAD;
408 		break;
409 	}
410 	return NOTIFY_OK;
411 }
412 
413 static int tick_nohz_init_all(void)
414 {
415 	int err = -1;
416 
417 #ifdef CONFIG_NO_HZ_FULL_ALL
418 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
419 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
420 		return err;
421 	}
422 	err = 0;
423 	cpumask_setall(tick_nohz_full_mask);
424 	tick_nohz_full_running = true;
425 #endif
426 	return err;
427 }
428 
429 void __init tick_nohz_init(void)
430 {
431 	int cpu;
432 
433 	if (!tick_nohz_full_running) {
434 		if (tick_nohz_init_all() < 0)
435 			return;
436 	}
437 
438 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
439 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
440 		cpumask_clear(tick_nohz_full_mask);
441 		tick_nohz_full_running = false;
442 		return;
443 	}
444 
445 	/*
446 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
447 	 * locking contexts. But then we need irq work to raise its own
448 	 * interrupts to avoid circular dependency on the tick
449 	 */
450 	if (!arch_irq_work_has_interrupt()) {
451 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
452 		cpumask_clear(tick_nohz_full_mask);
453 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
454 		tick_nohz_full_running = false;
455 		return;
456 	}
457 
458 	cpu = smp_processor_id();
459 
460 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
461 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
462 			cpu);
463 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
464 	}
465 
466 	cpumask_andnot(housekeeping_mask,
467 		       cpu_possible_mask, tick_nohz_full_mask);
468 
469 	for_each_cpu(cpu, tick_nohz_full_mask)
470 		context_tracking_cpu_set(cpu);
471 
472 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
473 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
474 		cpumask_pr_args(tick_nohz_full_mask));
475 
476 	/*
477 	 * We need at least one CPU to handle housekeeping work such
478 	 * as timekeeping, unbound timers, workqueues, ...
479 	 */
480 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
481 }
482 #endif
483 
484 /*
485  * NOHZ - aka dynamic tick functionality
486  */
487 #ifdef CONFIG_NO_HZ_COMMON
488 /*
489  * NO HZ enabled ?
490  */
491 bool tick_nohz_enabled __read_mostly  = true;
492 unsigned long tick_nohz_active  __read_mostly;
493 /*
494  * Enable / Disable tickless mode
495  */
496 static int __init setup_tick_nohz(char *str)
497 {
498 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
499 }
500 
501 __setup("nohz=", setup_tick_nohz);
502 
503 int tick_nohz_tick_stopped(void)
504 {
505 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
506 }
507 
508 /**
509  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
510  *
511  * Called from interrupt entry when the CPU was idle
512  *
513  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
514  * must be updated. Otherwise an interrupt handler could use a stale jiffy
515  * value. We do this unconditionally on any CPU, as we don't know whether the
516  * CPU, which has the update task assigned is in a long sleep.
517  */
518 static void tick_nohz_update_jiffies(ktime_t now)
519 {
520 	unsigned long flags;
521 
522 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
523 
524 	local_irq_save(flags);
525 	tick_do_update_jiffies64(now);
526 	local_irq_restore(flags);
527 
528 	touch_softlockup_watchdog_sched();
529 }
530 
531 /*
532  * Updates the per-CPU time idle statistics counters
533  */
534 static void
535 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
536 {
537 	ktime_t delta;
538 
539 	if (ts->idle_active) {
540 		delta = ktime_sub(now, ts->idle_entrytime);
541 		if (nr_iowait_cpu(cpu) > 0)
542 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
543 		else
544 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
545 		ts->idle_entrytime = now;
546 	}
547 
548 	if (last_update_time)
549 		*last_update_time = ktime_to_us(now);
550 
551 }
552 
553 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
554 {
555 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
556 	ts->idle_active = 0;
557 
558 	sched_clock_idle_wakeup_event(0);
559 }
560 
561 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
562 {
563 	ktime_t now = ktime_get();
564 
565 	ts->idle_entrytime = now;
566 	ts->idle_active = 1;
567 	sched_clock_idle_sleep_event();
568 	return now;
569 }
570 
571 /**
572  * get_cpu_idle_time_us - get the total idle time of a CPU
573  * @cpu: CPU number to query
574  * @last_update_time: variable to store update time in. Do not update
575  * counters if NULL.
576  *
577  * Return the cumulative idle time (since boot) for a given
578  * CPU, in microseconds.
579  *
580  * This time is measured via accounting rather than sampling,
581  * and is as accurate as ktime_get() is.
582  *
583  * This function returns -1 if NOHZ is not enabled.
584  */
585 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
586 {
587 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
588 	ktime_t now, idle;
589 
590 	if (!tick_nohz_active)
591 		return -1;
592 
593 	now = ktime_get();
594 	if (last_update_time) {
595 		update_ts_time_stats(cpu, ts, now, last_update_time);
596 		idle = ts->idle_sleeptime;
597 	} else {
598 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
599 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
600 
601 			idle = ktime_add(ts->idle_sleeptime, delta);
602 		} else {
603 			idle = ts->idle_sleeptime;
604 		}
605 	}
606 
607 	return ktime_to_us(idle);
608 
609 }
610 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
611 
612 /**
613  * get_cpu_iowait_time_us - get the total iowait time of a CPU
614  * @cpu: CPU number to query
615  * @last_update_time: variable to store update time in. Do not update
616  * counters if NULL.
617  *
618  * Return the cumulative iowait time (since boot) for a given
619  * CPU, in microseconds.
620  *
621  * This time is measured via accounting rather than sampling,
622  * and is as accurate as ktime_get() is.
623  *
624  * This function returns -1 if NOHZ is not enabled.
625  */
626 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
627 {
628 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
629 	ktime_t now, iowait;
630 
631 	if (!tick_nohz_active)
632 		return -1;
633 
634 	now = ktime_get();
635 	if (last_update_time) {
636 		update_ts_time_stats(cpu, ts, now, last_update_time);
637 		iowait = ts->iowait_sleeptime;
638 	} else {
639 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
640 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
641 
642 			iowait = ktime_add(ts->iowait_sleeptime, delta);
643 		} else {
644 			iowait = ts->iowait_sleeptime;
645 		}
646 	}
647 
648 	return ktime_to_us(iowait);
649 }
650 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
651 
652 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
653 {
654 	hrtimer_cancel(&ts->sched_timer);
655 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
656 
657 	/* Forward the time to expire in the future */
658 	hrtimer_forward(&ts->sched_timer, now, tick_period);
659 
660 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
661 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
662 	else
663 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
664 }
665 
666 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
667 					 ktime_t now, int cpu)
668 {
669 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
670 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
671 	unsigned long seq, basejiff;
672 	ktime_t	tick;
673 
674 	/* Read jiffies and the time when jiffies were updated last */
675 	do {
676 		seq = read_seqbegin(&jiffies_lock);
677 		basemono = last_jiffies_update.tv64;
678 		basejiff = jiffies;
679 	} while (read_seqretry(&jiffies_lock, seq));
680 	ts->last_jiffies = basejiff;
681 
682 	if (rcu_needs_cpu(basemono, &next_rcu) ||
683 	    arch_needs_cpu() || irq_work_needs_cpu()) {
684 		next_tick = basemono + TICK_NSEC;
685 	} else {
686 		/*
687 		 * Get the next pending timer. If high resolution
688 		 * timers are enabled this only takes the timer wheel
689 		 * timers into account. If high resolution timers are
690 		 * disabled this also looks at the next expiring
691 		 * hrtimer.
692 		 */
693 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
694 		ts->next_timer = next_tmr;
695 		/* Take the next rcu event into account */
696 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
697 	}
698 
699 	/*
700 	 * If the tick is due in the next period, keep it ticking or
701 	 * force prod the timer.
702 	 */
703 	delta = next_tick - basemono;
704 	if (delta <= (u64)TICK_NSEC) {
705 		tick.tv64 = 0;
706 
707 		/*
708 		 * Tell the timer code that the base is not idle, i.e. undo
709 		 * the effect of get_next_timer_interrupt():
710 		 */
711 		timer_clear_idle();
712 		/*
713 		 * We've not stopped the tick yet, and there's a timer in the
714 		 * next period, so no point in stopping it either, bail.
715 		 */
716 		if (!ts->tick_stopped)
717 			goto out;
718 
719 		/*
720 		 * If, OTOH, we did stop it, but there's a pending (expired)
721 		 * timer reprogram the timer hardware to fire now.
722 		 *
723 		 * We will not restart the tick proper, just prod the timer
724 		 * hardware into firing an interrupt to process the pending
725 		 * timers. Just like tick_irq_exit() will not restart the tick
726 		 * for 'normal' interrupts.
727 		 *
728 		 * Only once we exit the idle loop will we re-enable the tick,
729 		 * see tick_nohz_idle_exit().
730 		 */
731 		if (delta == 0) {
732 			tick_nohz_restart(ts, now);
733 			goto out;
734 		}
735 	}
736 
737 	/*
738 	 * If this CPU is the one which updates jiffies, then give up
739 	 * the assignment and let it be taken by the CPU which runs
740 	 * the tick timer next, which might be this CPU as well. If we
741 	 * don't drop this here the jiffies might be stale and
742 	 * do_timer() never invoked. Keep track of the fact that it
743 	 * was the one which had the do_timer() duty last. If this CPU
744 	 * is the one which had the do_timer() duty last, we limit the
745 	 * sleep time to the timekeeping max_deferment value.
746 	 * Otherwise we can sleep as long as we want.
747 	 */
748 	delta = timekeeping_max_deferment();
749 	if (cpu == tick_do_timer_cpu) {
750 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
751 		ts->do_timer_last = 1;
752 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
753 		delta = KTIME_MAX;
754 		ts->do_timer_last = 0;
755 	} else if (!ts->do_timer_last) {
756 		delta = KTIME_MAX;
757 	}
758 
759 #ifdef CONFIG_NO_HZ_FULL
760 	/* Limit the tick delta to the maximum scheduler deferment */
761 	if (!ts->inidle)
762 		delta = min(delta, scheduler_tick_max_deferment());
763 #endif
764 
765 	/* Calculate the next expiry time */
766 	if (delta < (KTIME_MAX - basemono))
767 		expires = basemono + delta;
768 	else
769 		expires = KTIME_MAX;
770 
771 	expires = min_t(u64, expires, next_tick);
772 	tick.tv64 = expires;
773 
774 	/* Skip reprogram of event if its not changed */
775 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
776 		goto out;
777 
778 	/*
779 	 * nohz_stop_sched_tick can be called several times before
780 	 * the nohz_restart_sched_tick is called. This happens when
781 	 * interrupts arrive which do not cause a reschedule. In the
782 	 * first call we save the current tick time, so we can restart
783 	 * the scheduler tick in nohz_restart_sched_tick.
784 	 */
785 	if (!ts->tick_stopped) {
786 		nohz_balance_enter_idle(cpu);
787 		calc_load_enter_idle();
788 		cpu_load_update_nohz_start();
789 
790 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
791 		ts->tick_stopped = 1;
792 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
793 	}
794 
795 	/*
796 	 * If the expiration time == KTIME_MAX, then we simply stop
797 	 * the tick timer.
798 	 */
799 	if (unlikely(expires == KTIME_MAX)) {
800 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
801 			hrtimer_cancel(&ts->sched_timer);
802 		goto out;
803 	}
804 
805 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
806 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
807 	else
808 		tick_program_event(tick, 1);
809 out:
810 	/* Update the estimated sleep length */
811 	ts->sleep_length = ktime_sub(dev->next_event, now);
812 	return tick;
813 }
814 
815 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
816 {
817 	/* Update jiffies first */
818 	tick_do_update_jiffies64(now);
819 	cpu_load_update_nohz_stop();
820 
821 	/*
822 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
823 	 * the clock forward checks in the enqueue path:
824 	 */
825 	timer_clear_idle();
826 
827 	calc_load_exit_idle();
828 	touch_softlockup_watchdog_sched();
829 	/*
830 	 * Cancel the scheduled timer and restore the tick
831 	 */
832 	ts->tick_stopped  = 0;
833 	ts->idle_exittime = now;
834 
835 	tick_nohz_restart(ts, now);
836 }
837 
838 static void tick_nohz_full_update_tick(struct tick_sched *ts)
839 {
840 #ifdef CONFIG_NO_HZ_FULL
841 	int cpu = smp_processor_id();
842 
843 	if (!tick_nohz_full_cpu(cpu))
844 		return;
845 
846 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
847 		return;
848 
849 	if (can_stop_full_tick(cpu, ts))
850 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
851 	else if (ts->tick_stopped)
852 		tick_nohz_restart_sched_tick(ts, ktime_get());
853 #endif
854 }
855 
856 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
857 {
858 	/*
859 	 * If this CPU is offline and it is the one which updates
860 	 * jiffies, then give up the assignment and let it be taken by
861 	 * the CPU which runs the tick timer next. If we don't drop
862 	 * this here the jiffies might be stale and do_timer() never
863 	 * invoked.
864 	 */
865 	if (unlikely(!cpu_online(cpu))) {
866 		if (cpu == tick_do_timer_cpu)
867 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
868 		return false;
869 	}
870 
871 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
872 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
873 		return false;
874 	}
875 
876 	if (need_resched())
877 		return false;
878 
879 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
880 		static int ratelimit;
881 
882 		if (ratelimit < 10 &&
883 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
884 			pr_warn("NOHZ: local_softirq_pending %02x\n",
885 				(unsigned int) local_softirq_pending());
886 			ratelimit++;
887 		}
888 		return false;
889 	}
890 
891 	if (tick_nohz_full_enabled()) {
892 		/*
893 		 * Keep the tick alive to guarantee timekeeping progression
894 		 * if there are full dynticks CPUs around
895 		 */
896 		if (tick_do_timer_cpu == cpu)
897 			return false;
898 		/*
899 		 * Boot safety: make sure the timekeeping duty has been
900 		 * assigned before entering dyntick-idle mode,
901 		 */
902 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
903 			return false;
904 	}
905 
906 	return true;
907 }
908 
909 static void __tick_nohz_idle_enter(struct tick_sched *ts)
910 {
911 	ktime_t now, expires;
912 	int cpu = smp_processor_id();
913 
914 	now = tick_nohz_start_idle(ts);
915 
916 	if (can_stop_idle_tick(cpu, ts)) {
917 		int was_stopped = ts->tick_stopped;
918 
919 		ts->idle_calls++;
920 
921 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
922 		if (expires.tv64 > 0LL) {
923 			ts->idle_sleeps++;
924 			ts->idle_expires = expires;
925 		}
926 
927 		if (!was_stopped && ts->tick_stopped)
928 			ts->idle_jiffies = ts->last_jiffies;
929 	}
930 }
931 
932 /**
933  * tick_nohz_idle_enter - stop the idle tick from the idle task
934  *
935  * When the next event is more than a tick into the future, stop the idle tick
936  * Called when we start the idle loop.
937  *
938  * The arch is responsible of calling:
939  *
940  * - rcu_idle_enter() after its last use of RCU before the CPU is put
941  *  to sleep.
942  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
943  */
944 void tick_nohz_idle_enter(void)
945 {
946 	struct tick_sched *ts;
947 
948 	WARN_ON_ONCE(irqs_disabled());
949 
950 	/*
951 	 * Update the idle state in the scheduler domain hierarchy
952 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
953 	 * State will be updated to busy during the first busy tick after
954 	 * exiting idle.
955 	 */
956 	set_cpu_sd_state_idle();
957 
958 	local_irq_disable();
959 
960 	ts = this_cpu_ptr(&tick_cpu_sched);
961 	ts->inidle = 1;
962 	__tick_nohz_idle_enter(ts);
963 
964 	local_irq_enable();
965 }
966 
967 /**
968  * tick_nohz_irq_exit - update next tick event from interrupt exit
969  *
970  * When an interrupt fires while we are idle and it doesn't cause
971  * a reschedule, it may still add, modify or delete a timer, enqueue
972  * an RCU callback, etc...
973  * So we need to re-calculate and reprogram the next tick event.
974  */
975 void tick_nohz_irq_exit(void)
976 {
977 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
978 
979 	if (ts->inidle)
980 		__tick_nohz_idle_enter(ts);
981 	else
982 		tick_nohz_full_update_tick(ts);
983 }
984 
985 /**
986  * tick_nohz_get_sleep_length - return the length of the current sleep
987  *
988  * Called from power state control code with interrupts disabled
989  */
990 ktime_t tick_nohz_get_sleep_length(void)
991 {
992 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
993 
994 	return ts->sleep_length;
995 }
996 
997 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
998 {
999 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1000 	unsigned long ticks;
1001 
1002 	if (vtime_accounting_cpu_enabled())
1003 		return;
1004 	/*
1005 	 * We stopped the tick in idle. Update process times would miss the
1006 	 * time we slept as update_process_times does only a 1 tick
1007 	 * accounting. Enforce that this is accounted to idle !
1008 	 */
1009 	ticks = jiffies - ts->idle_jiffies;
1010 	/*
1011 	 * We might be one off. Do not randomly account a huge number of ticks!
1012 	 */
1013 	if (ticks && ticks < LONG_MAX)
1014 		account_idle_ticks(ticks);
1015 #endif
1016 }
1017 
1018 /**
1019  * tick_nohz_idle_exit - restart the idle tick from the idle task
1020  *
1021  * Restart the idle tick when the CPU is woken up from idle
1022  * This also exit the RCU extended quiescent state. The CPU
1023  * can use RCU again after this function is called.
1024  */
1025 void tick_nohz_idle_exit(void)
1026 {
1027 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1028 	ktime_t now;
1029 
1030 	local_irq_disable();
1031 
1032 	WARN_ON_ONCE(!ts->inidle);
1033 
1034 	ts->inidle = 0;
1035 
1036 	if (ts->idle_active || ts->tick_stopped)
1037 		now = ktime_get();
1038 
1039 	if (ts->idle_active)
1040 		tick_nohz_stop_idle(ts, now);
1041 
1042 	if (ts->tick_stopped) {
1043 		tick_nohz_restart_sched_tick(ts, now);
1044 		tick_nohz_account_idle_ticks(ts);
1045 	}
1046 
1047 	local_irq_enable();
1048 }
1049 
1050 /*
1051  * The nohz low res interrupt handler
1052  */
1053 static void tick_nohz_handler(struct clock_event_device *dev)
1054 {
1055 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1056 	struct pt_regs *regs = get_irq_regs();
1057 	ktime_t now = ktime_get();
1058 
1059 	dev->next_event.tv64 = KTIME_MAX;
1060 
1061 	tick_sched_do_timer(now);
1062 	tick_sched_handle(ts, regs);
1063 
1064 	/* No need to reprogram if we are running tickless  */
1065 	if (unlikely(ts->tick_stopped))
1066 		return;
1067 
1068 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1069 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1070 }
1071 
1072 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1073 {
1074 	if (!tick_nohz_enabled)
1075 		return;
1076 	ts->nohz_mode = mode;
1077 	/* One update is enough */
1078 	if (!test_and_set_bit(0, &tick_nohz_active))
1079 		timers_update_migration(true);
1080 }
1081 
1082 /**
1083  * tick_nohz_switch_to_nohz - switch to nohz mode
1084  */
1085 static void tick_nohz_switch_to_nohz(void)
1086 {
1087 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1088 	ktime_t next;
1089 
1090 	if (!tick_nohz_enabled)
1091 		return;
1092 
1093 	if (tick_switch_to_oneshot(tick_nohz_handler))
1094 		return;
1095 
1096 	/*
1097 	 * Recycle the hrtimer in ts, so we can share the
1098 	 * hrtimer_forward with the highres code.
1099 	 */
1100 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1101 	/* Get the next period */
1102 	next = tick_init_jiffy_update();
1103 
1104 	hrtimer_set_expires(&ts->sched_timer, next);
1105 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1106 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1107 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1108 }
1109 
1110 static inline void tick_nohz_irq_enter(void)
1111 {
1112 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113 	ktime_t now;
1114 
1115 	if (!ts->idle_active && !ts->tick_stopped)
1116 		return;
1117 	now = ktime_get();
1118 	if (ts->idle_active)
1119 		tick_nohz_stop_idle(ts, now);
1120 	if (ts->tick_stopped)
1121 		tick_nohz_update_jiffies(now);
1122 }
1123 
1124 #else
1125 
1126 static inline void tick_nohz_switch_to_nohz(void) { }
1127 static inline void tick_nohz_irq_enter(void) { }
1128 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1129 
1130 #endif /* CONFIG_NO_HZ_COMMON */
1131 
1132 /*
1133  * Called from irq_enter to notify about the possible interruption of idle()
1134  */
1135 void tick_irq_enter(void)
1136 {
1137 	tick_check_oneshot_broadcast_this_cpu();
1138 	tick_nohz_irq_enter();
1139 }
1140 
1141 /*
1142  * High resolution timer specific code
1143  */
1144 #ifdef CONFIG_HIGH_RES_TIMERS
1145 /*
1146  * We rearm the timer until we get disabled by the idle code.
1147  * Called with interrupts disabled.
1148  */
1149 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1150 {
1151 	struct tick_sched *ts =
1152 		container_of(timer, struct tick_sched, sched_timer);
1153 	struct pt_regs *regs = get_irq_regs();
1154 	ktime_t now = ktime_get();
1155 
1156 	tick_sched_do_timer(now);
1157 
1158 	/*
1159 	 * Do not call, when we are not in irq context and have
1160 	 * no valid regs pointer
1161 	 */
1162 	if (regs)
1163 		tick_sched_handle(ts, regs);
1164 
1165 	/* No need to reprogram if we are in idle or full dynticks mode */
1166 	if (unlikely(ts->tick_stopped))
1167 		return HRTIMER_NORESTART;
1168 
1169 	hrtimer_forward(timer, now, tick_period);
1170 
1171 	return HRTIMER_RESTART;
1172 }
1173 
1174 static int sched_skew_tick;
1175 
1176 static int __init skew_tick(char *str)
1177 {
1178 	get_option(&str, &sched_skew_tick);
1179 
1180 	return 0;
1181 }
1182 early_param("skew_tick", skew_tick);
1183 
1184 /**
1185  * tick_setup_sched_timer - setup the tick emulation timer
1186  */
1187 void tick_setup_sched_timer(void)
1188 {
1189 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1190 	ktime_t now = ktime_get();
1191 
1192 	/*
1193 	 * Emulate tick processing via per-CPU hrtimers:
1194 	 */
1195 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1196 	ts->sched_timer.function = tick_sched_timer;
1197 
1198 	/* Get the next period (per-CPU) */
1199 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1200 
1201 	/* Offset the tick to avert jiffies_lock contention. */
1202 	if (sched_skew_tick) {
1203 		u64 offset = ktime_to_ns(tick_period) >> 1;
1204 		do_div(offset, num_possible_cpus());
1205 		offset *= smp_processor_id();
1206 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1207 	}
1208 
1209 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1210 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1211 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1212 }
1213 #endif /* HIGH_RES_TIMERS */
1214 
1215 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1216 void tick_cancel_sched_timer(int cpu)
1217 {
1218 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1219 
1220 # ifdef CONFIG_HIGH_RES_TIMERS
1221 	if (ts->sched_timer.base)
1222 		hrtimer_cancel(&ts->sched_timer);
1223 # endif
1224 
1225 	memset(ts, 0, sizeof(*ts));
1226 }
1227 #endif
1228 
1229 /**
1230  * Async notification about clocksource changes
1231  */
1232 void tick_clock_notify(void)
1233 {
1234 	int cpu;
1235 
1236 	for_each_possible_cpu(cpu)
1237 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1238 }
1239 
1240 /*
1241  * Async notification about clock event changes
1242  */
1243 void tick_oneshot_notify(void)
1244 {
1245 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1246 
1247 	set_bit(0, &ts->check_clocks);
1248 }
1249 
1250 /**
1251  * Check, if a change happened, which makes oneshot possible.
1252  *
1253  * Called cyclic from the hrtimer softirq (driven by the timer
1254  * softirq) allow_nohz signals, that we can switch into low-res nohz
1255  * mode, because high resolution timers are disabled (either compile
1256  * or runtime). Called with interrupts disabled.
1257  */
1258 int tick_check_oneshot_change(int allow_nohz)
1259 {
1260 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1261 
1262 	if (!test_and_clear_bit(0, &ts->check_clocks))
1263 		return 0;
1264 
1265 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1266 		return 0;
1267 
1268 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1269 		return 0;
1270 
1271 	if (!allow_nohz)
1272 		return 1;
1273 
1274 	tick_nohz_switch_to_nohz();
1275 	return 0;
1276 }
1277