1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 27 #include <asm/irq_regs.h> 28 29 #include "tick-internal.h" 30 31 #include <trace/events/timer.h> 32 33 /* 34 * Per cpu nohz control structure 35 */ 36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 37 38 /* 39 * The time, when the last jiffy update happened. Protected by jiffies_lock. 40 */ 41 static ktime_t last_jiffies_update; 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 /* 49 * Must be called with interrupts disabled ! 50 */ 51 static void tick_do_update_jiffies64(ktime_t now) 52 { 53 unsigned long ticks = 0; 54 ktime_t delta; 55 56 /* 57 * Do a quick check without holding jiffies_lock: 58 */ 59 delta = ktime_sub(now, last_jiffies_update); 60 if (delta.tv64 < tick_period.tv64) 61 return; 62 63 /* Reevalute with jiffies_lock held */ 64 write_seqlock(&jiffies_lock); 65 66 delta = ktime_sub(now, last_jiffies_update); 67 if (delta.tv64 >= tick_period.tv64) { 68 69 delta = ktime_sub(delta, tick_period); 70 last_jiffies_update = ktime_add(last_jiffies_update, 71 tick_period); 72 73 /* Slow path for long timeouts */ 74 if (unlikely(delta.tv64 >= tick_period.tv64)) { 75 s64 incr = ktime_to_ns(tick_period); 76 77 ticks = ktime_divns(delta, incr); 78 79 last_jiffies_update = ktime_add_ns(last_jiffies_update, 80 incr * ticks); 81 } 82 do_timer(++ticks); 83 84 /* Keep the tick_next_period variable up to date */ 85 tick_next_period = ktime_add(last_jiffies_update, tick_period); 86 } 87 write_sequnlock(&jiffies_lock); 88 } 89 90 /* 91 * Initialize and return retrieve the jiffies update. 92 */ 93 static ktime_t tick_init_jiffy_update(void) 94 { 95 ktime_t period; 96 97 write_seqlock(&jiffies_lock); 98 /* Did we start the jiffies update yet ? */ 99 if (last_jiffies_update.tv64 == 0) 100 last_jiffies_update = tick_next_period; 101 period = last_jiffies_update; 102 write_sequnlock(&jiffies_lock); 103 return period; 104 } 105 106 107 static void tick_sched_do_timer(ktime_t now) 108 { 109 int cpu = smp_processor_id(); 110 111 #ifdef CONFIG_NO_HZ_COMMON 112 /* 113 * Check if the do_timer duty was dropped. We don't care about 114 * concurrency: This happens only when the cpu in charge went 115 * into a long sleep. If two cpus happen to assign themself to 116 * this duty, then the jiffies update is still serialized by 117 * jiffies_lock. 118 */ 119 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 120 && !tick_nohz_full_cpu(cpu)) 121 tick_do_timer_cpu = cpu; 122 #endif 123 124 /* Check, if the jiffies need an update */ 125 if (tick_do_timer_cpu == cpu) 126 tick_do_update_jiffies64(now); 127 } 128 129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 130 { 131 #ifdef CONFIG_NO_HZ_COMMON 132 /* 133 * When we are idle and the tick is stopped, we have to touch 134 * the watchdog as we might not schedule for a really long 135 * time. This happens on complete idle SMP systems while 136 * waiting on the login prompt. We also increment the "start of 137 * idle" jiffy stamp so the idle accounting adjustment we do 138 * when we go busy again does not account too much ticks. 139 */ 140 if (ts->tick_stopped) { 141 touch_softlockup_watchdog(); 142 if (is_idle_task(current)) 143 ts->idle_jiffies++; 144 } 145 #endif 146 update_process_times(user_mode(regs)); 147 profile_tick(CPU_PROFILING); 148 } 149 150 #ifdef CONFIG_NO_HZ_FULL 151 static cpumask_var_t nohz_full_mask; 152 bool have_nohz_full_mask; 153 154 static bool can_stop_full_tick(void) 155 { 156 WARN_ON_ONCE(!irqs_disabled()); 157 158 if (!sched_can_stop_tick()) { 159 trace_tick_stop(0, "more than 1 task in runqueue\n"); 160 return false; 161 } 162 163 if (!posix_cpu_timers_can_stop_tick(current)) { 164 trace_tick_stop(0, "posix timers running\n"); 165 return false; 166 } 167 168 if (!perf_event_can_stop_tick()) { 169 trace_tick_stop(0, "perf events running\n"); 170 return false; 171 } 172 173 /* sched_clock_tick() needs us? */ 174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 175 /* 176 * TODO: kick full dynticks CPUs when 177 * sched_clock_stable is set. 178 */ 179 if (!sched_clock_stable) { 180 trace_tick_stop(0, "unstable sched clock\n"); 181 /* 182 * Don't allow the user to think they can get 183 * full NO_HZ with this machine. 184 */ 185 WARN_ONCE(1, "NO_HZ FULL will not work with unstable sched clock"); 186 return false; 187 } 188 #endif 189 190 return true; 191 } 192 193 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now); 194 195 /* 196 * Re-evaluate the need for the tick on the current CPU 197 * and restart it if necessary. 198 */ 199 void tick_nohz_full_check(void) 200 { 201 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 202 203 if (tick_nohz_full_cpu(smp_processor_id())) { 204 if (ts->tick_stopped && !is_idle_task(current)) { 205 if (!can_stop_full_tick()) 206 tick_nohz_restart_sched_tick(ts, ktime_get()); 207 } 208 } 209 } 210 211 static void nohz_full_kick_work_func(struct irq_work *work) 212 { 213 tick_nohz_full_check(); 214 } 215 216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 217 .func = nohz_full_kick_work_func, 218 }; 219 220 /* 221 * Kick the current CPU if it's full dynticks in order to force it to 222 * re-evaluate its dependency on the tick and restart it if necessary. 223 */ 224 void tick_nohz_full_kick(void) 225 { 226 if (tick_nohz_full_cpu(smp_processor_id())) 227 irq_work_queue(&__get_cpu_var(nohz_full_kick_work)); 228 } 229 230 static void nohz_full_kick_ipi(void *info) 231 { 232 tick_nohz_full_check(); 233 } 234 235 /* 236 * Kick all full dynticks CPUs in order to force these to re-evaluate 237 * their dependency on the tick and restart it if necessary. 238 */ 239 void tick_nohz_full_kick_all(void) 240 { 241 if (!have_nohz_full_mask) 242 return; 243 244 preempt_disable(); 245 smp_call_function_many(nohz_full_mask, 246 nohz_full_kick_ipi, NULL, false); 247 preempt_enable(); 248 } 249 250 /* 251 * Re-evaluate the need for the tick as we switch the current task. 252 * It might need the tick due to per task/process properties: 253 * perf events, posix cpu timers, ... 254 */ 255 void tick_nohz_task_switch(struct task_struct *tsk) 256 { 257 unsigned long flags; 258 259 local_irq_save(flags); 260 261 if (!tick_nohz_full_cpu(smp_processor_id())) 262 goto out; 263 264 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 265 tick_nohz_full_kick(); 266 267 out: 268 local_irq_restore(flags); 269 } 270 271 int tick_nohz_full_cpu(int cpu) 272 { 273 if (!have_nohz_full_mask) 274 return 0; 275 276 return cpumask_test_cpu(cpu, nohz_full_mask); 277 } 278 279 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 280 static int __init tick_nohz_full_setup(char *str) 281 { 282 int cpu; 283 284 alloc_bootmem_cpumask_var(&nohz_full_mask); 285 if (cpulist_parse(str, nohz_full_mask) < 0) { 286 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 287 return 1; 288 } 289 290 cpu = smp_processor_id(); 291 if (cpumask_test_cpu(cpu, nohz_full_mask)) { 292 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 293 cpumask_clear_cpu(cpu, nohz_full_mask); 294 } 295 have_nohz_full_mask = true; 296 297 return 1; 298 } 299 __setup("nohz_full=", tick_nohz_full_setup); 300 301 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 302 unsigned long action, 303 void *hcpu) 304 { 305 unsigned int cpu = (unsigned long)hcpu; 306 307 switch (action & ~CPU_TASKS_FROZEN) { 308 case CPU_DOWN_PREPARE: 309 /* 310 * If we handle the timekeeping duty for full dynticks CPUs, 311 * we can't safely shutdown that CPU. 312 */ 313 if (have_nohz_full_mask && tick_do_timer_cpu == cpu) 314 return NOTIFY_BAD; 315 break; 316 } 317 return NOTIFY_OK; 318 } 319 320 /* 321 * Worst case string length in chunks of CPU range seems 2 steps 322 * separations: 0,2,4,6,... 323 * This is NR_CPUS + sizeof('\0') 324 */ 325 static char __initdata nohz_full_buf[NR_CPUS + 1]; 326 327 static int tick_nohz_init_all(void) 328 { 329 int err = -1; 330 331 #ifdef CONFIG_NO_HZ_FULL_ALL 332 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) { 333 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n"); 334 return err; 335 } 336 err = 0; 337 cpumask_setall(nohz_full_mask); 338 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask); 339 have_nohz_full_mask = true; 340 #endif 341 return err; 342 } 343 344 void __init tick_nohz_init(void) 345 { 346 int cpu; 347 348 if (!have_nohz_full_mask) { 349 if (tick_nohz_init_all() < 0) 350 return; 351 } 352 353 cpu_notifier(tick_nohz_cpu_down_callback, 0); 354 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask); 355 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf); 356 } 357 #else 358 #define have_nohz_full_mask (0) 359 #endif 360 361 /* 362 * NOHZ - aka dynamic tick functionality 363 */ 364 #ifdef CONFIG_NO_HZ_COMMON 365 /* 366 * NO HZ enabled ? 367 */ 368 int tick_nohz_enabled __read_mostly = 1; 369 370 /* 371 * Enable / Disable tickless mode 372 */ 373 static int __init setup_tick_nohz(char *str) 374 { 375 if (!strcmp(str, "off")) 376 tick_nohz_enabled = 0; 377 else if (!strcmp(str, "on")) 378 tick_nohz_enabled = 1; 379 else 380 return 0; 381 return 1; 382 } 383 384 __setup("nohz=", setup_tick_nohz); 385 386 /** 387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 388 * 389 * Called from interrupt entry when the CPU was idle 390 * 391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 392 * must be updated. Otherwise an interrupt handler could use a stale jiffy 393 * value. We do this unconditionally on any cpu, as we don't know whether the 394 * cpu, which has the update task assigned is in a long sleep. 395 */ 396 static void tick_nohz_update_jiffies(ktime_t now) 397 { 398 int cpu = smp_processor_id(); 399 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 400 unsigned long flags; 401 402 ts->idle_waketime = now; 403 404 local_irq_save(flags); 405 tick_do_update_jiffies64(now); 406 local_irq_restore(flags); 407 408 touch_softlockup_watchdog(); 409 } 410 411 /* 412 * Updates the per cpu time idle statistics counters 413 */ 414 static void 415 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 416 { 417 ktime_t delta; 418 419 if (ts->idle_active) { 420 delta = ktime_sub(now, ts->idle_entrytime); 421 if (nr_iowait_cpu(cpu) > 0) 422 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 423 else 424 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 425 ts->idle_entrytime = now; 426 } 427 428 if (last_update_time) 429 *last_update_time = ktime_to_us(now); 430 431 } 432 433 static void tick_nohz_stop_idle(int cpu, ktime_t now) 434 { 435 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 436 437 update_ts_time_stats(cpu, ts, now, NULL); 438 ts->idle_active = 0; 439 440 sched_clock_idle_wakeup_event(0); 441 } 442 443 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 444 { 445 ktime_t now = ktime_get(); 446 447 ts->idle_entrytime = now; 448 ts->idle_active = 1; 449 sched_clock_idle_sleep_event(); 450 return now; 451 } 452 453 /** 454 * get_cpu_idle_time_us - get the total idle time of a cpu 455 * @cpu: CPU number to query 456 * @last_update_time: variable to store update time in. Do not update 457 * counters if NULL. 458 * 459 * Return the cummulative idle time (since boot) for a given 460 * CPU, in microseconds. 461 * 462 * This time is measured via accounting rather than sampling, 463 * and is as accurate as ktime_get() is. 464 * 465 * This function returns -1 if NOHZ is not enabled. 466 */ 467 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 468 { 469 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 470 ktime_t now, idle; 471 472 if (!tick_nohz_enabled) 473 return -1; 474 475 now = ktime_get(); 476 if (last_update_time) { 477 update_ts_time_stats(cpu, ts, now, last_update_time); 478 idle = ts->idle_sleeptime; 479 } else { 480 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 481 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 482 483 idle = ktime_add(ts->idle_sleeptime, delta); 484 } else { 485 idle = ts->idle_sleeptime; 486 } 487 } 488 489 return ktime_to_us(idle); 490 491 } 492 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 493 494 /** 495 * get_cpu_iowait_time_us - get the total iowait time of a cpu 496 * @cpu: CPU number to query 497 * @last_update_time: variable to store update time in. Do not update 498 * counters if NULL. 499 * 500 * Return the cummulative iowait time (since boot) for a given 501 * CPU, in microseconds. 502 * 503 * This time is measured via accounting rather than sampling, 504 * and is as accurate as ktime_get() is. 505 * 506 * This function returns -1 if NOHZ is not enabled. 507 */ 508 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 509 { 510 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 511 ktime_t now, iowait; 512 513 if (!tick_nohz_enabled) 514 return -1; 515 516 now = ktime_get(); 517 if (last_update_time) { 518 update_ts_time_stats(cpu, ts, now, last_update_time); 519 iowait = ts->iowait_sleeptime; 520 } else { 521 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 522 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 523 524 iowait = ktime_add(ts->iowait_sleeptime, delta); 525 } else { 526 iowait = ts->iowait_sleeptime; 527 } 528 } 529 530 return ktime_to_us(iowait); 531 } 532 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 533 534 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 535 ktime_t now, int cpu) 536 { 537 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 538 ktime_t last_update, expires, ret = { .tv64 = 0 }; 539 unsigned long rcu_delta_jiffies; 540 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 541 u64 time_delta; 542 543 /* Read jiffies and the time when jiffies were updated last */ 544 do { 545 seq = read_seqbegin(&jiffies_lock); 546 last_update = last_jiffies_update; 547 last_jiffies = jiffies; 548 time_delta = timekeeping_max_deferment(); 549 } while (read_seqretry(&jiffies_lock, seq)); 550 551 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 552 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 553 next_jiffies = last_jiffies + 1; 554 delta_jiffies = 1; 555 } else { 556 /* Get the next timer wheel timer */ 557 next_jiffies = get_next_timer_interrupt(last_jiffies); 558 delta_jiffies = next_jiffies - last_jiffies; 559 if (rcu_delta_jiffies < delta_jiffies) { 560 next_jiffies = last_jiffies + rcu_delta_jiffies; 561 delta_jiffies = rcu_delta_jiffies; 562 } 563 } 564 565 /* 566 * Do not stop the tick, if we are only one off (or less) 567 * or if the cpu is required for RCU: 568 */ 569 if (!ts->tick_stopped && delta_jiffies <= 1) 570 goto out; 571 572 /* Schedule the tick, if we are at least one jiffie off */ 573 if ((long)delta_jiffies >= 1) { 574 575 /* 576 * If this cpu is the one which updates jiffies, then 577 * give up the assignment and let it be taken by the 578 * cpu which runs the tick timer next, which might be 579 * this cpu as well. If we don't drop this here the 580 * jiffies might be stale and do_timer() never 581 * invoked. Keep track of the fact that it was the one 582 * which had the do_timer() duty last. If this cpu is 583 * the one which had the do_timer() duty last, we 584 * limit the sleep time to the timekeeping 585 * max_deferement value which we retrieved 586 * above. Otherwise we can sleep as long as we want. 587 */ 588 if (cpu == tick_do_timer_cpu) { 589 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 590 ts->do_timer_last = 1; 591 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 592 time_delta = KTIME_MAX; 593 ts->do_timer_last = 0; 594 } else if (!ts->do_timer_last) { 595 time_delta = KTIME_MAX; 596 } 597 598 #ifdef CONFIG_NO_HZ_FULL 599 if (!ts->inidle) { 600 time_delta = min(time_delta, 601 scheduler_tick_max_deferment()); 602 } 603 #endif 604 605 /* 606 * calculate the expiry time for the next timer wheel 607 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 608 * that there is no timer pending or at least extremely 609 * far into the future (12 days for HZ=1000). In this 610 * case we set the expiry to the end of time. 611 */ 612 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 613 /* 614 * Calculate the time delta for the next timer event. 615 * If the time delta exceeds the maximum time delta 616 * permitted by the current clocksource then adjust 617 * the time delta accordingly to ensure the 618 * clocksource does not wrap. 619 */ 620 time_delta = min_t(u64, time_delta, 621 tick_period.tv64 * delta_jiffies); 622 } 623 624 if (time_delta < KTIME_MAX) 625 expires = ktime_add_ns(last_update, time_delta); 626 else 627 expires.tv64 = KTIME_MAX; 628 629 /* Skip reprogram of event if its not changed */ 630 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 631 goto out; 632 633 ret = expires; 634 635 /* 636 * nohz_stop_sched_tick can be called several times before 637 * the nohz_restart_sched_tick is called. This happens when 638 * interrupts arrive which do not cause a reschedule. In the 639 * first call we save the current tick time, so we can restart 640 * the scheduler tick in nohz_restart_sched_tick. 641 */ 642 if (!ts->tick_stopped) { 643 nohz_balance_enter_idle(cpu); 644 calc_load_enter_idle(); 645 646 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 647 ts->tick_stopped = 1; 648 trace_tick_stop(1, " "); 649 } 650 651 /* 652 * If the expiration time == KTIME_MAX, then 653 * in this case we simply stop the tick timer. 654 */ 655 if (unlikely(expires.tv64 == KTIME_MAX)) { 656 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 657 hrtimer_cancel(&ts->sched_timer); 658 goto out; 659 } 660 661 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 662 hrtimer_start(&ts->sched_timer, expires, 663 HRTIMER_MODE_ABS_PINNED); 664 /* Check, if the timer was already in the past */ 665 if (hrtimer_active(&ts->sched_timer)) 666 goto out; 667 } else if (!tick_program_event(expires, 0)) 668 goto out; 669 /* 670 * We are past the event already. So we crossed a 671 * jiffie boundary. Update jiffies and raise the 672 * softirq. 673 */ 674 tick_do_update_jiffies64(ktime_get()); 675 } 676 raise_softirq_irqoff(TIMER_SOFTIRQ); 677 out: 678 ts->next_jiffies = next_jiffies; 679 ts->last_jiffies = last_jiffies; 680 ts->sleep_length = ktime_sub(dev->next_event, now); 681 682 return ret; 683 } 684 685 static void tick_nohz_full_stop_tick(struct tick_sched *ts) 686 { 687 #ifdef CONFIG_NO_HZ_FULL 688 int cpu = smp_processor_id(); 689 690 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current)) 691 return; 692 693 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 694 return; 695 696 if (!can_stop_full_tick()) 697 return; 698 699 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 700 #endif 701 } 702 703 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 704 { 705 /* 706 * If this cpu is offline and it is the one which updates 707 * jiffies, then give up the assignment and let it be taken by 708 * the cpu which runs the tick timer next. If we don't drop 709 * this here the jiffies might be stale and do_timer() never 710 * invoked. 711 */ 712 if (unlikely(!cpu_online(cpu))) { 713 if (cpu == tick_do_timer_cpu) 714 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 715 return false; 716 } 717 718 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 719 return false; 720 721 if (need_resched()) 722 return false; 723 724 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 725 static int ratelimit; 726 727 if (ratelimit < 10 && 728 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 729 pr_warn("NOHZ: local_softirq_pending %02x\n", 730 (unsigned int) local_softirq_pending()); 731 ratelimit++; 732 } 733 return false; 734 } 735 736 if (have_nohz_full_mask) { 737 /* 738 * Keep the tick alive to guarantee timekeeping progression 739 * if there are full dynticks CPUs around 740 */ 741 if (tick_do_timer_cpu == cpu) 742 return false; 743 /* 744 * Boot safety: make sure the timekeeping duty has been 745 * assigned before entering dyntick-idle mode, 746 */ 747 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 748 return false; 749 } 750 751 return true; 752 } 753 754 static void __tick_nohz_idle_enter(struct tick_sched *ts) 755 { 756 ktime_t now, expires; 757 int cpu = smp_processor_id(); 758 759 now = tick_nohz_start_idle(cpu, ts); 760 761 if (can_stop_idle_tick(cpu, ts)) { 762 int was_stopped = ts->tick_stopped; 763 764 ts->idle_calls++; 765 766 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 767 if (expires.tv64 > 0LL) { 768 ts->idle_sleeps++; 769 ts->idle_expires = expires; 770 } 771 772 if (!was_stopped && ts->tick_stopped) 773 ts->idle_jiffies = ts->last_jiffies; 774 } 775 } 776 777 /** 778 * tick_nohz_idle_enter - stop the idle tick from the idle task 779 * 780 * When the next event is more than a tick into the future, stop the idle tick 781 * Called when we start the idle loop. 782 * 783 * The arch is responsible of calling: 784 * 785 * - rcu_idle_enter() after its last use of RCU before the CPU is put 786 * to sleep. 787 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 788 */ 789 void tick_nohz_idle_enter(void) 790 { 791 struct tick_sched *ts; 792 793 WARN_ON_ONCE(irqs_disabled()); 794 795 /* 796 * Update the idle state in the scheduler domain hierarchy 797 * when tick_nohz_stop_sched_tick() is called from the idle loop. 798 * State will be updated to busy during the first busy tick after 799 * exiting idle. 800 */ 801 set_cpu_sd_state_idle(); 802 803 local_irq_disable(); 804 805 ts = &__get_cpu_var(tick_cpu_sched); 806 /* 807 * set ts->inidle unconditionally. even if the system did not 808 * switch to nohz mode the cpu frequency governers rely on the 809 * update of the idle time accounting in tick_nohz_start_idle(). 810 */ 811 ts->inidle = 1; 812 __tick_nohz_idle_enter(ts); 813 814 local_irq_enable(); 815 } 816 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 817 818 /** 819 * tick_nohz_irq_exit - update next tick event from interrupt exit 820 * 821 * When an interrupt fires while we are idle and it doesn't cause 822 * a reschedule, it may still add, modify or delete a timer, enqueue 823 * an RCU callback, etc... 824 * So we need to re-calculate and reprogram the next tick event. 825 */ 826 void tick_nohz_irq_exit(void) 827 { 828 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 829 830 if (ts->inidle) { 831 /* Cancel the timer because CPU already waken up from the C-states*/ 832 menu_hrtimer_cancel(); 833 __tick_nohz_idle_enter(ts); 834 } else { 835 tick_nohz_full_stop_tick(ts); 836 } 837 } 838 839 /** 840 * tick_nohz_get_sleep_length - return the length of the current sleep 841 * 842 * Called from power state control code with interrupts disabled 843 */ 844 ktime_t tick_nohz_get_sleep_length(void) 845 { 846 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 847 848 return ts->sleep_length; 849 } 850 851 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 852 { 853 hrtimer_cancel(&ts->sched_timer); 854 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 855 856 while (1) { 857 /* Forward the time to expire in the future */ 858 hrtimer_forward(&ts->sched_timer, now, tick_period); 859 860 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 861 hrtimer_start_expires(&ts->sched_timer, 862 HRTIMER_MODE_ABS_PINNED); 863 /* Check, if the timer was already in the past */ 864 if (hrtimer_active(&ts->sched_timer)) 865 break; 866 } else { 867 if (!tick_program_event( 868 hrtimer_get_expires(&ts->sched_timer), 0)) 869 break; 870 } 871 /* Reread time and update jiffies */ 872 now = ktime_get(); 873 tick_do_update_jiffies64(now); 874 } 875 } 876 877 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 878 { 879 /* Update jiffies first */ 880 tick_do_update_jiffies64(now); 881 update_cpu_load_nohz(); 882 883 calc_load_exit_idle(); 884 touch_softlockup_watchdog(); 885 /* 886 * Cancel the scheduled timer and restore the tick 887 */ 888 ts->tick_stopped = 0; 889 ts->idle_exittime = now; 890 891 tick_nohz_restart(ts, now); 892 } 893 894 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 895 { 896 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 897 unsigned long ticks; 898 899 if (vtime_accounting_enabled()) 900 return; 901 /* 902 * We stopped the tick in idle. Update process times would miss the 903 * time we slept as update_process_times does only a 1 tick 904 * accounting. Enforce that this is accounted to idle ! 905 */ 906 ticks = jiffies - ts->idle_jiffies; 907 /* 908 * We might be one off. Do not randomly account a huge number of ticks! 909 */ 910 if (ticks && ticks < LONG_MAX) 911 account_idle_ticks(ticks); 912 #endif 913 } 914 915 /** 916 * tick_nohz_idle_exit - restart the idle tick from the idle task 917 * 918 * Restart the idle tick when the CPU is woken up from idle 919 * This also exit the RCU extended quiescent state. The CPU 920 * can use RCU again after this function is called. 921 */ 922 void tick_nohz_idle_exit(void) 923 { 924 int cpu = smp_processor_id(); 925 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 926 ktime_t now; 927 928 local_irq_disable(); 929 930 WARN_ON_ONCE(!ts->inidle); 931 932 ts->inidle = 0; 933 934 /* Cancel the timer because CPU already waken up from the C-states*/ 935 menu_hrtimer_cancel(); 936 if (ts->idle_active || ts->tick_stopped) 937 now = ktime_get(); 938 939 if (ts->idle_active) 940 tick_nohz_stop_idle(cpu, now); 941 942 if (ts->tick_stopped) { 943 tick_nohz_restart_sched_tick(ts, now); 944 tick_nohz_account_idle_ticks(ts); 945 } 946 947 local_irq_enable(); 948 } 949 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 950 951 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 952 { 953 hrtimer_forward(&ts->sched_timer, now, tick_period); 954 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 955 } 956 957 /* 958 * The nohz low res interrupt handler 959 */ 960 static void tick_nohz_handler(struct clock_event_device *dev) 961 { 962 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 963 struct pt_regs *regs = get_irq_regs(); 964 ktime_t now = ktime_get(); 965 966 dev->next_event.tv64 = KTIME_MAX; 967 968 tick_sched_do_timer(now); 969 tick_sched_handle(ts, regs); 970 971 while (tick_nohz_reprogram(ts, now)) { 972 now = ktime_get(); 973 tick_do_update_jiffies64(now); 974 } 975 } 976 977 /** 978 * tick_nohz_switch_to_nohz - switch to nohz mode 979 */ 980 static void tick_nohz_switch_to_nohz(void) 981 { 982 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 983 ktime_t next; 984 985 if (!tick_nohz_enabled) 986 return; 987 988 local_irq_disable(); 989 if (tick_switch_to_oneshot(tick_nohz_handler)) { 990 local_irq_enable(); 991 return; 992 } 993 994 ts->nohz_mode = NOHZ_MODE_LOWRES; 995 996 /* 997 * Recycle the hrtimer in ts, so we can share the 998 * hrtimer_forward with the highres code. 999 */ 1000 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1001 /* Get the next period */ 1002 next = tick_init_jiffy_update(); 1003 1004 for (;;) { 1005 hrtimer_set_expires(&ts->sched_timer, next); 1006 if (!tick_program_event(next, 0)) 1007 break; 1008 next = ktime_add(next, tick_period); 1009 } 1010 local_irq_enable(); 1011 } 1012 1013 /* 1014 * When NOHZ is enabled and the tick is stopped, we need to kick the 1015 * tick timer from irq_enter() so that the jiffies update is kept 1016 * alive during long running softirqs. That's ugly as hell, but 1017 * correctness is key even if we need to fix the offending softirq in 1018 * the first place. 1019 * 1020 * Note, this is different to tick_nohz_restart. We just kick the 1021 * timer and do not touch the other magic bits which need to be done 1022 * when idle is left. 1023 */ 1024 static void tick_nohz_kick_tick(int cpu, ktime_t now) 1025 { 1026 #if 0 1027 /* Switch back to 2.6.27 behaviour */ 1028 1029 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1030 ktime_t delta; 1031 1032 /* 1033 * Do not touch the tick device, when the next expiry is either 1034 * already reached or less/equal than the tick period. 1035 */ 1036 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1037 if (delta.tv64 <= tick_period.tv64) 1038 return; 1039 1040 tick_nohz_restart(ts, now); 1041 #endif 1042 } 1043 1044 static inline void tick_check_nohz(int cpu) 1045 { 1046 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1047 ktime_t now; 1048 1049 if (!ts->idle_active && !ts->tick_stopped) 1050 return; 1051 now = ktime_get(); 1052 if (ts->idle_active) 1053 tick_nohz_stop_idle(cpu, now); 1054 if (ts->tick_stopped) { 1055 tick_nohz_update_jiffies(now); 1056 tick_nohz_kick_tick(cpu, now); 1057 } 1058 } 1059 1060 #else 1061 1062 static inline void tick_nohz_switch_to_nohz(void) { } 1063 static inline void tick_check_nohz(int cpu) { } 1064 1065 #endif /* CONFIG_NO_HZ_COMMON */ 1066 1067 /* 1068 * Called from irq_enter to notify about the possible interruption of idle() 1069 */ 1070 void tick_check_idle(int cpu) 1071 { 1072 tick_check_oneshot_broadcast(cpu); 1073 tick_check_nohz(cpu); 1074 } 1075 1076 /* 1077 * High resolution timer specific code 1078 */ 1079 #ifdef CONFIG_HIGH_RES_TIMERS 1080 /* 1081 * We rearm the timer until we get disabled by the idle code. 1082 * Called with interrupts disabled. 1083 */ 1084 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1085 { 1086 struct tick_sched *ts = 1087 container_of(timer, struct tick_sched, sched_timer); 1088 struct pt_regs *regs = get_irq_regs(); 1089 ktime_t now = ktime_get(); 1090 1091 tick_sched_do_timer(now); 1092 1093 /* 1094 * Do not call, when we are not in irq context and have 1095 * no valid regs pointer 1096 */ 1097 if (regs) 1098 tick_sched_handle(ts, regs); 1099 1100 hrtimer_forward(timer, now, tick_period); 1101 1102 return HRTIMER_RESTART; 1103 } 1104 1105 static int sched_skew_tick; 1106 1107 static int __init skew_tick(char *str) 1108 { 1109 get_option(&str, &sched_skew_tick); 1110 1111 return 0; 1112 } 1113 early_param("skew_tick", skew_tick); 1114 1115 /** 1116 * tick_setup_sched_timer - setup the tick emulation timer 1117 */ 1118 void tick_setup_sched_timer(void) 1119 { 1120 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1121 ktime_t now = ktime_get(); 1122 1123 /* 1124 * Emulate tick processing via per-CPU hrtimers: 1125 */ 1126 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1127 ts->sched_timer.function = tick_sched_timer; 1128 1129 /* Get the next period (per cpu) */ 1130 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1131 1132 /* Offset the tick to avert jiffies_lock contention. */ 1133 if (sched_skew_tick) { 1134 u64 offset = ktime_to_ns(tick_period) >> 1; 1135 do_div(offset, num_possible_cpus()); 1136 offset *= smp_processor_id(); 1137 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1138 } 1139 1140 for (;;) { 1141 hrtimer_forward(&ts->sched_timer, now, tick_period); 1142 hrtimer_start_expires(&ts->sched_timer, 1143 HRTIMER_MODE_ABS_PINNED); 1144 /* Check, if the timer was already in the past */ 1145 if (hrtimer_active(&ts->sched_timer)) 1146 break; 1147 now = ktime_get(); 1148 } 1149 1150 #ifdef CONFIG_NO_HZ_COMMON 1151 if (tick_nohz_enabled) 1152 ts->nohz_mode = NOHZ_MODE_HIGHRES; 1153 #endif 1154 } 1155 #endif /* HIGH_RES_TIMERS */ 1156 1157 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1158 void tick_cancel_sched_timer(int cpu) 1159 { 1160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1161 1162 # ifdef CONFIG_HIGH_RES_TIMERS 1163 if (ts->sched_timer.base) 1164 hrtimer_cancel(&ts->sched_timer); 1165 # endif 1166 1167 memset(ts, 0, sizeof(*ts)); 1168 } 1169 #endif 1170 1171 /** 1172 * Async notification about clocksource changes 1173 */ 1174 void tick_clock_notify(void) 1175 { 1176 int cpu; 1177 1178 for_each_possible_cpu(cpu) 1179 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1180 } 1181 1182 /* 1183 * Async notification about clock event changes 1184 */ 1185 void tick_oneshot_notify(void) 1186 { 1187 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1188 1189 set_bit(0, &ts->check_clocks); 1190 } 1191 1192 /** 1193 * Check, if a change happened, which makes oneshot possible. 1194 * 1195 * Called cyclic from the hrtimer softirq (driven by the timer 1196 * softirq) allow_nohz signals, that we can switch into low-res nohz 1197 * mode, because high resolution timers are disabled (either compile 1198 * or runtime). 1199 */ 1200 int tick_check_oneshot_change(int allow_nohz) 1201 { 1202 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1203 1204 if (!test_and_clear_bit(0, &ts->check_clocks)) 1205 return 0; 1206 1207 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1208 return 0; 1209 1210 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1211 return 0; 1212 1213 if (!allow_nohz) 1214 return 1; 1215 1216 tick_nohz_switch_to_nohz(); 1217 return 0; 1218 } 1219