1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 /* 47 * The time when the last jiffy update happened. Write access must hold 48 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 49 * consistent view of jiffies and last_jiffies_update. 50 */ 51 static ktime_t last_jiffies_update; 52 53 /* 54 * Must be called with interrupts disabled ! 55 */ 56 static void tick_do_update_jiffies64(ktime_t now) 57 { 58 unsigned long ticks = 1; 59 ktime_t delta, nextp; 60 61 /* 62 * 64-bit can do a quick check without holding the jiffies lock and 63 * without looking at the sequence count. The smp_load_acquire() 64 * pairs with the update done later in this function. 65 * 66 * 32-bit cannot do that because the store of 'tick_next_period' 67 * consists of two 32-bit stores, and the first store could be 68 * moved by the CPU to a random point in the future. 69 */ 70 if (IS_ENABLED(CONFIG_64BIT)) { 71 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 72 return; 73 } else { 74 unsigned int seq; 75 76 /* 77 * Avoid contention on 'jiffies_lock' and protect the quick 78 * check with the sequence count. 79 */ 80 do { 81 seq = read_seqcount_begin(&jiffies_seq); 82 nextp = tick_next_period; 83 } while (read_seqcount_retry(&jiffies_seq, seq)); 84 85 if (ktime_before(now, nextp)) 86 return; 87 } 88 89 /* Quick check failed, i.e. update is required. */ 90 raw_spin_lock(&jiffies_lock); 91 /* 92 * Re-evaluate with the lock held. Another CPU might have done the 93 * update already. 94 */ 95 if (ktime_before(now, tick_next_period)) { 96 raw_spin_unlock(&jiffies_lock); 97 return; 98 } 99 100 write_seqcount_begin(&jiffies_seq); 101 102 delta = ktime_sub(now, tick_next_period); 103 if (unlikely(delta >= TICK_NSEC)) { 104 /* Slow path for long idle sleep times */ 105 s64 incr = TICK_NSEC; 106 107 ticks += ktime_divns(delta, incr); 108 109 last_jiffies_update = ktime_add_ns(last_jiffies_update, 110 incr * ticks); 111 } else { 112 last_jiffies_update = ktime_add_ns(last_jiffies_update, 113 TICK_NSEC); 114 } 115 116 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 117 jiffies_64 += ticks; 118 119 /* Keep the tick_next_period variable up to date */ 120 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 121 122 if (IS_ENABLED(CONFIG_64BIT)) { 123 /* 124 * Pairs with smp_load_acquire() in the lockless quick 125 * check above, and ensures that the update to 'jiffies_64' is 126 * not reordered vs. the store to 'tick_next_period', neither 127 * by the compiler nor by the CPU. 128 */ 129 smp_store_release(&tick_next_period, nextp); 130 } else { 131 /* 132 * A plain store is good enough on 32-bit, as the quick check 133 * above is protected by the sequence count. 134 */ 135 tick_next_period = nextp; 136 } 137 138 /* 139 * Release the sequence count. calc_global_load() below is not 140 * protected by it, but 'jiffies_lock' needs to be held to prevent 141 * concurrent invocations. 142 */ 143 write_seqcount_end(&jiffies_seq); 144 145 calc_global_load(); 146 147 raw_spin_unlock(&jiffies_lock); 148 update_wall_time(); 149 } 150 151 /* 152 * Initialize and return retrieve the jiffies update. 153 */ 154 static ktime_t tick_init_jiffy_update(void) 155 { 156 ktime_t period; 157 158 raw_spin_lock(&jiffies_lock); 159 write_seqcount_begin(&jiffies_seq); 160 161 /* Have we started the jiffies update yet ? */ 162 if (last_jiffies_update == 0) { 163 u32 rem; 164 165 /* 166 * Ensure that the tick is aligned to a multiple of 167 * TICK_NSEC. 168 */ 169 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 170 if (rem) 171 tick_next_period += TICK_NSEC - rem; 172 173 last_jiffies_update = tick_next_period; 174 } 175 period = last_jiffies_update; 176 177 write_seqcount_end(&jiffies_seq); 178 raw_spin_unlock(&jiffies_lock); 179 180 return period; 181 } 182 183 static inline int tick_sched_flag_test(struct tick_sched *ts, 184 unsigned long flag) 185 { 186 return !!(ts->flags & flag); 187 } 188 189 static inline void tick_sched_flag_set(struct tick_sched *ts, 190 unsigned long flag) 191 { 192 lockdep_assert_irqs_disabled(); 193 ts->flags |= flag; 194 } 195 196 static inline void tick_sched_flag_clear(struct tick_sched *ts, 197 unsigned long flag) 198 { 199 lockdep_assert_irqs_disabled(); 200 ts->flags &= ~flag; 201 } 202 203 #define MAX_STALLED_JIFFIES 5 204 205 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 206 { 207 int cpu = smp_processor_id(); 208 209 /* 210 * Check if the do_timer duty was dropped. We don't care about 211 * concurrency: This happens only when the CPU in charge went 212 * into a long sleep. If two CPUs happen to assign themselves to 213 * this duty, then the jiffies update is still serialized by 214 * 'jiffies_lock'. 215 * 216 * If nohz_full is enabled, this should not happen because the 217 * 'tick_do_timer_cpu' CPU never relinquishes. 218 */ 219 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 220 unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 221 #ifdef CONFIG_NO_HZ_FULL 222 WARN_ON_ONCE(tick_nohz_full_running); 223 #endif 224 tick_do_timer_cpu = cpu; 225 } 226 227 /* Check if jiffies need an update */ 228 if (tick_do_timer_cpu == cpu) 229 tick_do_update_jiffies64(now); 230 231 /* 232 * If the jiffies update stalled for too long (timekeeper in stop_machine() 233 * or VMEXIT'ed for several msecs), force an update. 234 */ 235 if (ts->last_tick_jiffies != jiffies) { 236 ts->stalled_jiffies = 0; 237 ts->last_tick_jiffies = READ_ONCE(jiffies); 238 } else { 239 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 240 tick_do_update_jiffies64(now); 241 ts->stalled_jiffies = 0; 242 ts->last_tick_jiffies = READ_ONCE(jiffies); 243 } 244 } 245 246 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 247 ts->got_idle_tick = 1; 248 } 249 250 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 251 { 252 /* 253 * When we are idle and the tick is stopped, we have to touch 254 * the watchdog as we might not schedule for a really long 255 * time. This happens on completely idle SMP systems while 256 * waiting on the login prompt. We also increment the "start of 257 * idle" jiffy stamp so the idle accounting adjustment we do 258 * when we go busy again does not account too many ticks. 259 */ 260 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 261 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 262 touch_softlockup_watchdog_sched(); 263 if (is_idle_task(current)) 264 ts->idle_jiffies++; 265 /* 266 * In case the current tick fired too early past its expected 267 * expiration, make sure we don't bypass the next clock reprogramming 268 * to the same deadline. 269 */ 270 ts->next_tick = 0; 271 } 272 273 update_process_times(user_mode(regs)); 274 profile_tick(CPU_PROFILING); 275 } 276 277 /* 278 * We rearm the timer until we get disabled by the idle code. 279 * Called with interrupts disabled. 280 */ 281 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) 282 { 283 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); 284 struct pt_regs *regs = get_irq_regs(); 285 ktime_t now = ktime_get(); 286 287 tick_sched_do_timer(ts, now); 288 289 /* 290 * Do not call when we are not in IRQ context and have 291 * no valid 'regs' pointer 292 */ 293 if (regs) 294 tick_sched_handle(ts, regs); 295 else 296 ts->next_tick = 0; 297 298 /* 299 * In dynticks mode, tick reprogram is deferred: 300 * - to the idle task if in dynticks-idle 301 * - to IRQ exit if in full-dynticks. 302 */ 303 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) 304 return HRTIMER_NORESTART; 305 306 hrtimer_forward(timer, now, TICK_NSEC); 307 308 return HRTIMER_RESTART; 309 } 310 311 static void tick_sched_timer_cancel(struct tick_sched *ts) 312 { 313 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 314 hrtimer_cancel(&ts->sched_timer); 315 else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 316 tick_program_event(KTIME_MAX, 1); 317 } 318 319 #ifdef CONFIG_NO_HZ_FULL 320 cpumask_var_t tick_nohz_full_mask; 321 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 322 bool tick_nohz_full_running; 323 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 324 static atomic_t tick_dep_mask; 325 326 static bool check_tick_dependency(atomic_t *dep) 327 { 328 int val = atomic_read(dep); 329 330 if (val & TICK_DEP_MASK_POSIX_TIMER) { 331 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 332 return true; 333 } 334 335 if (val & TICK_DEP_MASK_PERF_EVENTS) { 336 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 337 return true; 338 } 339 340 if (val & TICK_DEP_MASK_SCHED) { 341 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 342 return true; 343 } 344 345 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 346 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 347 return true; 348 } 349 350 if (val & TICK_DEP_MASK_RCU) { 351 trace_tick_stop(0, TICK_DEP_MASK_RCU); 352 return true; 353 } 354 355 if (val & TICK_DEP_MASK_RCU_EXP) { 356 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 357 return true; 358 } 359 360 return false; 361 } 362 363 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 364 { 365 lockdep_assert_irqs_disabled(); 366 367 if (unlikely(!cpu_online(cpu))) 368 return false; 369 370 if (check_tick_dependency(&tick_dep_mask)) 371 return false; 372 373 if (check_tick_dependency(&ts->tick_dep_mask)) 374 return false; 375 376 if (check_tick_dependency(¤t->tick_dep_mask)) 377 return false; 378 379 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 380 return false; 381 382 return true; 383 } 384 385 static void nohz_full_kick_func(struct irq_work *work) 386 { 387 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 388 } 389 390 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 391 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 392 393 /* 394 * Kick this CPU if it's full dynticks in order to force it to 395 * re-evaluate its dependency on the tick and restart it if necessary. 396 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 397 * is NMI safe. 398 */ 399 static void tick_nohz_full_kick(void) 400 { 401 if (!tick_nohz_full_cpu(smp_processor_id())) 402 return; 403 404 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 405 } 406 407 /* 408 * Kick the CPU if it's full dynticks in order to force it to 409 * re-evaluate its dependency on the tick and restart it if necessary. 410 */ 411 void tick_nohz_full_kick_cpu(int cpu) 412 { 413 if (!tick_nohz_full_cpu(cpu)) 414 return; 415 416 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 417 } 418 419 static void tick_nohz_kick_task(struct task_struct *tsk) 420 { 421 int cpu; 422 423 /* 424 * If the task is not running, run_posix_cpu_timers() 425 * has nothing to elapse, and an IPI can then be optimized out. 426 * 427 * activate_task() STORE p->tick_dep_mask 428 * STORE p->on_rq 429 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 430 * LOCK rq->lock LOAD p->on_rq 431 * smp_mb__after_spin_lock() 432 * tick_nohz_task_switch() 433 * LOAD p->tick_dep_mask 434 */ 435 if (!sched_task_on_rq(tsk)) 436 return; 437 438 /* 439 * If the task concurrently migrates to another CPU, 440 * we guarantee it sees the new tick dependency upon 441 * schedule. 442 * 443 * set_task_cpu(p, cpu); 444 * STORE p->cpu = @cpu 445 * __schedule() (switch to task 'p') 446 * LOCK rq->lock 447 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 448 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 449 * LOAD p->tick_dep_mask LOAD p->cpu 450 */ 451 cpu = task_cpu(tsk); 452 453 preempt_disable(); 454 if (cpu_online(cpu)) 455 tick_nohz_full_kick_cpu(cpu); 456 preempt_enable(); 457 } 458 459 /* 460 * Kick all full dynticks CPUs in order to force these to re-evaluate 461 * their dependency on the tick and restart it if necessary. 462 */ 463 static void tick_nohz_full_kick_all(void) 464 { 465 int cpu; 466 467 if (!tick_nohz_full_running) 468 return; 469 470 preempt_disable(); 471 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 472 tick_nohz_full_kick_cpu(cpu); 473 preempt_enable(); 474 } 475 476 static void tick_nohz_dep_set_all(atomic_t *dep, 477 enum tick_dep_bits bit) 478 { 479 int prev; 480 481 prev = atomic_fetch_or(BIT(bit), dep); 482 if (!prev) 483 tick_nohz_full_kick_all(); 484 } 485 486 /* 487 * Set a global tick dependency. Used by perf events that rely on freq and 488 * unstable clocks. 489 */ 490 void tick_nohz_dep_set(enum tick_dep_bits bit) 491 { 492 tick_nohz_dep_set_all(&tick_dep_mask, bit); 493 } 494 495 void tick_nohz_dep_clear(enum tick_dep_bits bit) 496 { 497 atomic_andnot(BIT(bit), &tick_dep_mask); 498 } 499 500 /* 501 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 502 * manage event-throttling. 503 */ 504 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 505 { 506 int prev; 507 struct tick_sched *ts; 508 509 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 510 511 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 512 if (!prev) { 513 preempt_disable(); 514 /* Perf needs local kick that is NMI safe */ 515 if (cpu == smp_processor_id()) { 516 tick_nohz_full_kick(); 517 } else { 518 /* Remote IRQ work not NMI-safe */ 519 if (!WARN_ON_ONCE(in_nmi())) 520 tick_nohz_full_kick_cpu(cpu); 521 } 522 preempt_enable(); 523 } 524 } 525 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 526 527 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 528 { 529 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 530 531 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 532 } 533 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 534 535 /* 536 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 537 * in order to elapse per task timers. 538 */ 539 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 540 { 541 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 542 tick_nohz_kick_task(tsk); 543 } 544 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 545 546 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 547 { 548 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 549 } 550 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 551 552 /* 553 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 554 * per process timers. 555 */ 556 void tick_nohz_dep_set_signal(struct task_struct *tsk, 557 enum tick_dep_bits bit) 558 { 559 int prev; 560 struct signal_struct *sig = tsk->signal; 561 562 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 563 if (!prev) { 564 struct task_struct *t; 565 566 lockdep_assert_held(&tsk->sighand->siglock); 567 __for_each_thread(sig, t) 568 tick_nohz_kick_task(t); 569 } 570 } 571 572 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 573 { 574 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 575 } 576 577 /* 578 * Re-evaluate the need for the tick as we switch the current task. 579 * It might need the tick due to per task/process properties: 580 * perf events, posix CPU timers, ... 581 */ 582 void __tick_nohz_task_switch(void) 583 { 584 struct tick_sched *ts; 585 586 if (!tick_nohz_full_cpu(smp_processor_id())) 587 return; 588 589 ts = this_cpu_ptr(&tick_cpu_sched); 590 591 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 592 if (atomic_read(¤t->tick_dep_mask) || 593 atomic_read(¤t->signal->tick_dep_mask)) 594 tick_nohz_full_kick(); 595 } 596 } 597 598 /* Get the boot-time nohz CPU list from the kernel parameters. */ 599 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 600 { 601 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 602 cpumask_copy(tick_nohz_full_mask, cpumask); 603 tick_nohz_full_running = true; 604 } 605 606 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 607 { 608 /* 609 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 610 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 611 * CPUs. It must remain online when nohz full is enabled. 612 */ 613 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 614 return false; 615 return true; 616 } 617 618 static int tick_nohz_cpu_down(unsigned int cpu) 619 { 620 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 621 } 622 623 void __init tick_nohz_init(void) 624 { 625 int cpu, ret; 626 627 if (!tick_nohz_full_running) 628 return; 629 630 /* 631 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 632 * locking contexts. But then we need IRQ work to raise its own 633 * interrupts to avoid circular dependency on the tick. 634 */ 635 if (!arch_irq_work_has_interrupt()) { 636 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 637 cpumask_clear(tick_nohz_full_mask); 638 tick_nohz_full_running = false; 639 return; 640 } 641 642 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 643 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 644 cpu = smp_processor_id(); 645 646 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 647 pr_warn("NO_HZ: Clearing %d from nohz_full range " 648 "for timekeeping\n", cpu); 649 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 650 } 651 } 652 653 for_each_cpu(cpu, tick_nohz_full_mask) 654 ct_cpu_track_user(cpu); 655 656 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 657 "kernel/nohz:predown", NULL, 658 tick_nohz_cpu_down); 659 WARN_ON(ret < 0); 660 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 661 cpumask_pr_args(tick_nohz_full_mask)); 662 } 663 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 664 665 /* 666 * NOHZ - aka dynamic tick functionality 667 */ 668 #ifdef CONFIG_NO_HZ_COMMON 669 /* 670 * NO HZ enabled ? 671 */ 672 bool tick_nohz_enabled __read_mostly = true; 673 unsigned long tick_nohz_active __read_mostly; 674 /* 675 * Enable / Disable tickless mode 676 */ 677 static int __init setup_tick_nohz(char *str) 678 { 679 return (kstrtobool(str, &tick_nohz_enabled) == 0); 680 } 681 682 __setup("nohz=", setup_tick_nohz); 683 684 bool tick_nohz_tick_stopped(void) 685 { 686 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 687 688 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 689 } 690 691 bool tick_nohz_tick_stopped_cpu(int cpu) 692 { 693 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 694 695 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 696 } 697 698 /** 699 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 700 * 701 * Called from interrupt entry when the CPU was idle 702 * 703 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 704 * must be updated. Otherwise an interrupt handler could use a stale jiffy 705 * value. We do this unconditionally on any CPU, as we don't know whether the 706 * CPU, which has the update task assigned, is in a long sleep. 707 */ 708 static void tick_nohz_update_jiffies(ktime_t now) 709 { 710 unsigned long flags; 711 712 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 713 714 local_irq_save(flags); 715 tick_do_update_jiffies64(now); 716 local_irq_restore(flags); 717 718 touch_softlockup_watchdog_sched(); 719 } 720 721 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 722 { 723 ktime_t delta; 724 725 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) 726 return; 727 728 delta = ktime_sub(now, ts->idle_entrytime); 729 730 write_seqcount_begin(&ts->idle_sleeptime_seq); 731 if (nr_iowait_cpu(smp_processor_id()) > 0) 732 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 733 else 734 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 735 736 ts->idle_entrytime = now; 737 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); 738 write_seqcount_end(&ts->idle_sleeptime_seq); 739 740 sched_clock_idle_wakeup_event(); 741 } 742 743 static void tick_nohz_start_idle(struct tick_sched *ts) 744 { 745 write_seqcount_begin(&ts->idle_sleeptime_seq); 746 ts->idle_entrytime = ktime_get(); 747 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); 748 write_seqcount_end(&ts->idle_sleeptime_seq); 749 750 sched_clock_idle_sleep_event(); 751 } 752 753 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 754 bool compute_delta, u64 *last_update_time) 755 { 756 ktime_t now, idle; 757 unsigned int seq; 758 759 if (!tick_nohz_active) 760 return -1; 761 762 now = ktime_get(); 763 if (last_update_time) 764 *last_update_time = ktime_to_us(now); 765 766 do { 767 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 768 769 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { 770 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 771 772 idle = ktime_add(*sleeptime, delta); 773 } else { 774 idle = *sleeptime; 775 } 776 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 777 778 return ktime_to_us(idle); 779 780 } 781 782 /** 783 * get_cpu_idle_time_us - get the total idle time of a CPU 784 * @cpu: CPU number to query 785 * @last_update_time: variable to store update time in. Do not update 786 * counters if NULL. 787 * 788 * Return the cumulative idle time (since boot) for a given 789 * CPU, in microseconds. Note that this is partially broken due to 790 * the counter of iowait tasks that can be remotely updated without 791 * any synchronization. Therefore it is possible to observe backward 792 * values within two consecutive reads. 793 * 794 * This time is measured via accounting rather than sampling, 795 * and is as accurate as ktime_get() is. 796 * 797 * This function returns -1 if NOHZ is not enabled. 798 */ 799 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 800 { 801 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 802 803 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 804 !nr_iowait_cpu(cpu), last_update_time); 805 } 806 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 807 808 /** 809 * get_cpu_iowait_time_us - get the total iowait time of a CPU 810 * @cpu: CPU number to query 811 * @last_update_time: variable to store update time in. Do not update 812 * counters if NULL. 813 * 814 * Return the cumulative iowait time (since boot) for a given 815 * CPU, in microseconds. Note this is partially broken due to 816 * the counter of iowait tasks that can be remotely updated without 817 * any synchronization. Therefore it is possible to observe backward 818 * values within two consecutive reads. 819 * 820 * This time is measured via accounting rather than sampling, 821 * and is as accurate as ktime_get() is. 822 * 823 * This function returns -1 if NOHZ is not enabled. 824 */ 825 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 826 { 827 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 828 829 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 830 nr_iowait_cpu(cpu), last_update_time); 831 } 832 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 833 834 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 835 { 836 hrtimer_cancel(&ts->sched_timer); 837 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 838 839 /* Forward the time to expire in the future */ 840 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 841 842 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 843 hrtimer_start_expires(&ts->sched_timer, 844 HRTIMER_MODE_ABS_PINNED_HARD); 845 } else { 846 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 847 } 848 849 /* 850 * Reset to make sure the next tick stop doesn't get fooled by past 851 * cached clock deadline. 852 */ 853 ts->next_tick = 0; 854 } 855 856 static inline bool local_timer_softirq_pending(void) 857 { 858 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 859 } 860 861 /* 862 * Read jiffies and the time when jiffies were updated last 863 */ 864 u64 get_jiffies_update(unsigned long *basej) 865 { 866 unsigned long basejiff; 867 unsigned int seq; 868 u64 basemono; 869 870 do { 871 seq = read_seqcount_begin(&jiffies_seq); 872 basemono = last_jiffies_update; 873 basejiff = jiffies; 874 } while (read_seqcount_retry(&jiffies_seq, seq)); 875 *basej = basejiff; 876 return basemono; 877 } 878 879 /** 880 * tick_nohz_next_event() - return the clock monotonic based next event 881 * @ts: pointer to tick_sched struct 882 * @cpu: CPU number 883 * 884 * Return: 885 * *%0 - When the next event is a maximum of TICK_NSEC in the future 886 * and the tick is not stopped yet 887 * *%next_event - Next event based on clock monotonic 888 */ 889 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 890 { 891 u64 basemono, next_tick, delta, expires; 892 unsigned long basejiff; 893 894 basemono = get_jiffies_update(&basejiff); 895 ts->last_jiffies = basejiff; 896 ts->timer_expires_base = basemono; 897 898 /* 899 * Keep the periodic tick, when RCU, architecture or irq_work 900 * requests it. 901 * Aside of that, check whether the local timer softirq is 902 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 903 * because there is an already expired timer, so it will request 904 * immediate expiry, which rearms the hardware timer with a 905 * minimal delta, which brings us back to this place 906 * immediately. Lather, rinse and repeat... 907 */ 908 if (rcu_needs_cpu() || arch_needs_cpu() || 909 irq_work_needs_cpu() || local_timer_softirq_pending()) { 910 next_tick = basemono + TICK_NSEC; 911 } else { 912 /* 913 * Get the next pending timer. If high resolution 914 * timers are enabled this only takes the timer wheel 915 * timers into account. If high resolution timers are 916 * disabled this also looks at the next expiring 917 * hrtimer. 918 */ 919 next_tick = get_next_timer_interrupt(basejiff, basemono); 920 ts->next_timer = next_tick; 921 } 922 923 /* Make sure next_tick is never before basemono! */ 924 if (WARN_ON_ONCE(basemono > next_tick)) 925 next_tick = basemono; 926 927 /* 928 * If the tick is due in the next period, keep it ticking or 929 * force prod the timer. 930 */ 931 delta = next_tick - basemono; 932 if (delta <= (u64)TICK_NSEC) { 933 /* 934 * We've not stopped the tick yet, and there's a timer in the 935 * next period, so no point in stopping it either, bail. 936 */ 937 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 938 ts->timer_expires = 0; 939 goto out; 940 } 941 } 942 943 /* 944 * If this CPU is the one which had the do_timer() duty last, we limit 945 * the sleep time to the timekeeping 'max_deferment' value. 946 * Otherwise we can sleep as long as we want. 947 */ 948 delta = timekeeping_max_deferment(); 949 if (cpu != tick_do_timer_cpu && 950 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || 951 !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) 952 delta = KTIME_MAX; 953 954 /* Calculate the next expiry time */ 955 if (delta < (KTIME_MAX - basemono)) 956 expires = basemono + delta; 957 else 958 expires = KTIME_MAX; 959 960 ts->timer_expires = min_t(u64, expires, next_tick); 961 962 out: 963 return ts->timer_expires; 964 } 965 966 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 967 { 968 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 969 unsigned long basejiff = ts->last_jiffies; 970 u64 basemono = ts->timer_expires_base; 971 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 972 u64 expires; 973 974 /* Make sure we won't be trying to stop it twice in a row. */ 975 ts->timer_expires_base = 0; 976 977 /* 978 * Now the tick should be stopped definitely - so the timer base needs 979 * to be marked idle as well to not miss a newly queued timer. 980 */ 981 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); 982 if (expires > ts->timer_expires) { 983 /* 984 * This path could only happen when the first timer was removed 985 * between calculating the possible sleep length and now (when 986 * high resolution mode is not active, timer could also be a 987 * hrtimer). 988 * 989 * We have to stick to the original calculated expiry value to 990 * not stop the tick for too long with a shallow C-state (which 991 * was programmed by cpuidle because of an early next expiration 992 * value). 993 */ 994 expires = ts->timer_expires; 995 } 996 997 /* If the timer base is not idle, retain the not yet stopped tick. */ 998 if (!timer_idle) 999 return; 1000 1001 /* 1002 * If this CPU is the one which updates jiffies, then give up 1003 * the assignment and let it be taken by the CPU which runs 1004 * the tick timer next, which might be this CPU as well. If we 1005 * don't drop this here, the jiffies might be stale and 1006 * do_timer() never gets invoked. Keep track of the fact that it 1007 * was the one which had the do_timer() duty last. 1008 */ 1009 if (cpu == tick_do_timer_cpu) { 1010 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 1011 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); 1012 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 1013 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); 1014 } 1015 1016 /* Skip reprogram of event if it's not changed */ 1017 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { 1018 /* Sanity check: make sure clockevent is actually programmed */ 1019 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 1020 return; 1021 1022 WARN_ON_ONCE(1); 1023 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 1024 basemono, ts->next_tick, dev->next_event, 1025 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 1026 } 1027 1028 /* 1029 * tick_nohz_stop_tick() can be called several times before 1030 * tick_nohz_restart_sched_tick() is called. This happens when 1031 * interrupts arrive which do not cause a reschedule. In the first 1032 * call we save the current tick time, so we can restart the 1033 * scheduler tick in tick_nohz_restart_sched_tick(). 1034 */ 1035 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1036 calc_load_nohz_start(); 1037 quiet_vmstat(); 1038 1039 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 1040 tick_sched_flag_set(ts, TS_FLAG_STOPPED); 1041 trace_tick_stop(1, TICK_DEP_MASK_NONE); 1042 } 1043 1044 ts->next_tick = expires; 1045 1046 /* 1047 * If the expiration time == KTIME_MAX, then we simply stop 1048 * the tick timer. 1049 */ 1050 if (unlikely(expires == KTIME_MAX)) { 1051 tick_sched_timer_cancel(ts); 1052 return; 1053 } 1054 1055 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 1056 hrtimer_start(&ts->sched_timer, expires, 1057 HRTIMER_MODE_ABS_PINNED_HARD); 1058 } else { 1059 hrtimer_set_expires(&ts->sched_timer, expires); 1060 tick_program_event(expires, 1); 1061 } 1062 } 1063 1064 static void tick_nohz_retain_tick(struct tick_sched *ts) 1065 { 1066 ts->timer_expires_base = 0; 1067 } 1068 1069 #ifdef CONFIG_NO_HZ_FULL 1070 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) 1071 { 1072 if (tick_nohz_next_event(ts, cpu)) 1073 tick_nohz_stop_tick(ts, cpu); 1074 else 1075 tick_nohz_retain_tick(ts); 1076 } 1077 #endif /* CONFIG_NO_HZ_FULL */ 1078 1079 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 1080 { 1081 /* Update jiffies first */ 1082 tick_do_update_jiffies64(now); 1083 1084 /* 1085 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 1086 * the clock forward checks in the enqueue path: 1087 */ 1088 timer_clear_idle(); 1089 1090 calc_load_nohz_stop(); 1091 touch_softlockup_watchdog_sched(); 1092 1093 /* Cancel the scheduled timer and restore the tick: */ 1094 tick_sched_flag_clear(ts, TS_FLAG_STOPPED); 1095 tick_nohz_restart(ts, now); 1096 } 1097 1098 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 1099 ktime_t now) 1100 { 1101 #ifdef CONFIG_NO_HZ_FULL 1102 int cpu = smp_processor_id(); 1103 1104 if (can_stop_full_tick(cpu, ts)) 1105 tick_nohz_full_stop_tick(ts, cpu); 1106 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1107 tick_nohz_restart_sched_tick(ts, now); 1108 #endif 1109 } 1110 1111 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1112 { 1113 if (!tick_nohz_full_cpu(smp_processor_id())) 1114 return; 1115 1116 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1117 return; 1118 1119 __tick_nohz_full_update_tick(ts, ktime_get()); 1120 } 1121 1122 /* 1123 * A pending softirq outside an IRQ (or softirq disabled section) context 1124 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1125 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1126 * 1127 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1128 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1129 * triggering the code below, since wakep_softirqd() is ignored. 1130 * 1131 */ 1132 static bool report_idle_softirq(void) 1133 { 1134 static int ratelimit; 1135 unsigned int pending = local_softirq_pending(); 1136 1137 if (likely(!pending)) 1138 return false; 1139 1140 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1141 if (!cpu_active(smp_processor_id())) { 1142 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1143 if (!pending) 1144 return false; 1145 } 1146 1147 if (ratelimit >= 10) 1148 return false; 1149 1150 /* On RT, softirq handling may be waiting on some lock */ 1151 if (local_bh_blocked()) 1152 return false; 1153 1154 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1155 pending); 1156 ratelimit++; 1157 1158 return true; 1159 } 1160 1161 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1162 { 1163 WARN_ON_ONCE(cpu_is_offline(cpu)); 1164 1165 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) 1166 return false; 1167 1168 if (need_resched()) 1169 return false; 1170 1171 if (unlikely(report_idle_softirq())) 1172 return false; 1173 1174 if (tick_nohz_full_enabled()) { 1175 /* 1176 * Keep the tick alive to guarantee timekeeping progression 1177 * if there are full dynticks CPUs around 1178 */ 1179 if (tick_do_timer_cpu == cpu) 1180 return false; 1181 1182 /* Should not happen for nohz-full */ 1183 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 1184 return false; 1185 } 1186 1187 return true; 1188 } 1189 1190 /** 1191 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1192 * 1193 * When the next event is more than a tick into the future, stop the idle tick 1194 */ 1195 void tick_nohz_idle_stop_tick(void) 1196 { 1197 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1198 int cpu = smp_processor_id(); 1199 ktime_t expires; 1200 1201 /* 1202 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1203 * tick timer expiration time is known already. 1204 */ 1205 if (ts->timer_expires_base) 1206 expires = ts->timer_expires; 1207 else if (can_stop_idle_tick(cpu, ts)) 1208 expires = tick_nohz_next_event(ts, cpu); 1209 else 1210 return; 1211 1212 ts->idle_calls++; 1213 1214 if (expires > 0LL) { 1215 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1216 1217 tick_nohz_stop_tick(ts, cpu); 1218 1219 ts->idle_sleeps++; 1220 ts->idle_expires = expires; 1221 1222 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1223 ts->idle_jiffies = ts->last_jiffies; 1224 nohz_balance_enter_idle(cpu); 1225 } 1226 } else { 1227 tick_nohz_retain_tick(ts); 1228 } 1229 } 1230 1231 void tick_nohz_idle_retain_tick(void) 1232 { 1233 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1234 } 1235 1236 /** 1237 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1238 * 1239 * Called when we start the idle loop. 1240 */ 1241 void tick_nohz_idle_enter(void) 1242 { 1243 struct tick_sched *ts; 1244 1245 lockdep_assert_irqs_enabled(); 1246 1247 local_irq_disable(); 1248 1249 ts = this_cpu_ptr(&tick_cpu_sched); 1250 1251 WARN_ON_ONCE(ts->timer_expires_base); 1252 1253 tick_sched_flag_set(ts, TS_FLAG_INIDLE); 1254 tick_nohz_start_idle(ts); 1255 1256 local_irq_enable(); 1257 } 1258 1259 /** 1260 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1261 * 1262 * A timer may have been added/modified/deleted either by the current IRQ, 1263 * or by another place using this IRQ as a notification. This IRQ may have 1264 * also updated the RCU callback list. These events may require a 1265 * re-evaluation of the next tick. Depending on the context: 1266 * 1267 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1268 * time accounting. The next tick will be re-evaluated on the next idle 1269 * loop iteration. 1270 * 1271 * 2) If the CPU is nohz_full: 1272 * 1273 * 2.1) If there is any tick dependency, restart the tick if stopped. 1274 * 1275 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1276 * stop/update it accordingly. 1277 */ 1278 void tick_nohz_irq_exit(void) 1279 { 1280 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1281 1282 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 1283 tick_nohz_start_idle(ts); 1284 else 1285 tick_nohz_full_update_tick(ts); 1286 } 1287 1288 /** 1289 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1290 */ 1291 bool tick_nohz_idle_got_tick(void) 1292 { 1293 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1294 1295 if (ts->got_idle_tick) { 1296 ts->got_idle_tick = 0; 1297 return true; 1298 } 1299 return false; 1300 } 1301 1302 /** 1303 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1304 * or the tick, whichever expires first. Note that, if the tick has been 1305 * stopped, it returns the next hrtimer. 1306 * 1307 * Called from power state control code with interrupts disabled 1308 */ 1309 ktime_t tick_nohz_get_next_hrtimer(void) 1310 { 1311 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1312 } 1313 1314 /** 1315 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1316 * @delta_next: duration until the next event if the tick cannot be stopped 1317 * 1318 * Called from power state control code with interrupts disabled. 1319 * 1320 * The return value of this function and/or the value returned by it through the 1321 * @delta_next pointer can be negative which must be taken into account by its 1322 * callers. 1323 */ 1324 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1325 { 1326 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1327 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1328 int cpu = smp_processor_id(); 1329 /* 1330 * The idle entry time is expected to be a sufficient approximation of 1331 * the current time at this point. 1332 */ 1333 ktime_t now = ts->idle_entrytime; 1334 ktime_t next_event; 1335 1336 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1337 1338 *delta_next = ktime_sub(dev->next_event, now); 1339 1340 if (!can_stop_idle_tick(cpu, ts)) 1341 return *delta_next; 1342 1343 next_event = tick_nohz_next_event(ts, cpu); 1344 if (!next_event) 1345 return *delta_next; 1346 1347 /* 1348 * If the next highres timer to expire is earlier than 'next_event', the 1349 * idle governor needs to know that. 1350 */ 1351 next_event = min_t(u64, next_event, 1352 hrtimer_next_event_without(&ts->sched_timer)); 1353 1354 return ktime_sub(next_event, now); 1355 } 1356 1357 /** 1358 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1359 * for a particular CPU. 1360 * 1361 * Called from the schedutil frequency scaling governor in scheduler context. 1362 */ 1363 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1364 { 1365 struct tick_sched *ts = tick_get_tick_sched(cpu); 1366 1367 return ts->idle_calls; 1368 } 1369 1370 /** 1371 * tick_nohz_get_idle_calls - return the current idle calls counter value 1372 * 1373 * Called from the schedutil frequency scaling governor in scheduler context. 1374 */ 1375 unsigned long tick_nohz_get_idle_calls(void) 1376 { 1377 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1378 1379 return ts->idle_calls; 1380 } 1381 1382 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1383 ktime_t now) 1384 { 1385 unsigned long ticks; 1386 1387 ts->idle_exittime = now; 1388 1389 if (vtime_accounting_enabled_this_cpu()) 1390 return; 1391 /* 1392 * We stopped the tick in idle. update_process_times() would miss the 1393 * time we slept, as it does only a 1 tick accounting. 1394 * Enforce that this is accounted to idle ! 1395 */ 1396 ticks = jiffies - ts->idle_jiffies; 1397 /* 1398 * We might be one off. Do not randomly account a huge number of ticks! 1399 */ 1400 if (ticks && ticks < LONG_MAX) 1401 account_idle_ticks(ticks); 1402 } 1403 1404 void tick_nohz_idle_restart_tick(void) 1405 { 1406 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1407 1408 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1409 ktime_t now = ktime_get(); 1410 tick_nohz_restart_sched_tick(ts, now); 1411 tick_nohz_account_idle_time(ts, now); 1412 } 1413 } 1414 1415 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1416 { 1417 if (tick_nohz_full_cpu(smp_processor_id())) 1418 __tick_nohz_full_update_tick(ts, now); 1419 else 1420 tick_nohz_restart_sched_tick(ts, now); 1421 1422 tick_nohz_account_idle_time(ts, now); 1423 } 1424 1425 /** 1426 * tick_nohz_idle_exit - Update the tick upon idle task exit 1427 * 1428 * When the idle task exits, update the tick depending on the 1429 * following situations: 1430 * 1431 * 1) If the CPU is not in nohz_full mode (most cases), then 1432 * restart the tick. 1433 * 1434 * 2) If the CPU is in nohz_full mode (corner case): 1435 * 2.1) If the tick can be kept stopped (no tick dependencies) 1436 * then re-evaluate the next tick and try to keep it stopped 1437 * as long as possible. 1438 * 2.2) If the tick has dependencies, restart the tick. 1439 * 1440 */ 1441 void tick_nohz_idle_exit(void) 1442 { 1443 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1444 bool idle_active, tick_stopped; 1445 ktime_t now; 1446 1447 local_irq_disable(); 1448 1449 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1450 WARN_ON_ONCE(ts->timer_expires_base); 1451 1452 tick_sched_flag_clear(ts, TS_FLAG_INIDLE); 1453 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); 1454 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1455 1456 if (idle_active || tick_stopped) 1457 now = ktime_get(); 1458 1459 if (idle_active) 1460 tick_nohz_stop_idle(ts, now); 1461 1462 if (tick_stopped) 1463 tick_nohz_idle_update_tick(ts, now); 1464 1465 local_irq_enable(); 1466 } 1467 1468 /* 1469 * In low-resolution mode, the tick handler must be implemented directly 1470 * at the clockevent level. hrtimer can't be used instead, because its 1471 * infrastructure actually relies on the tick itself as a backend in 1472 * low-resolution mode (see hrtimer_run_queues()). 1473 */ 1474 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1475 { 1476 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1477 1478 dev->next_event = KTIME_MAX; 1479 1480 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) 1481 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1482 } 1483 1484 static inline void tick_nohz_activate(struct tick_sched *ts) 1485 { 1486 if (!tick_nohz_enabled) 1487 return; 1488 tick_sched_flag_set(ts, TS_FLAG_NOHZ); 1489 /* One update is enough */ 1490 if (!test_and_set_bit(0, &tick_nohz_active)) 1491 timers_update_nohz(); 1492 } 1493 1494 /** 1495 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1496 */ 1497 static void tick_nohz_switch_to_nohz(void) 1498 { 1499 if (!tick_nohz_enabled) 1500 return; 1501 1502 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1503 return; 1504 1505 /* 1506 * Recycle the hrtimer in 'ts', so we can share the 1507 * highres code. 1508 */ 1509 tick_setup_sched_timer(false); 1510 } 1511 1512 static inline void tick_nohz_irq_enter(void) 1513 { 1514 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1515 ktime_t now; 1516 1517 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) 1518 return; 1519 now = ktime_get(); 1520 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) 1521 tick_nohz_stop_idle(ts, now); 1522 /* 1523 * If all CPUs are idle we may need to update a stale jiffies value. 1524 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1525 * alive but it might be busy looping with interrupts disabled in some 1526 * rare case (typically stop machine). So we must make sure we have a 1527 * last resort. 1528 */ 1529 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1530 tick_nohz_update_jiffies(now); 1531 } 1532 1533 #else 1534 1535 static inline void tick_nohz_switch_to_nohz(void) { } 1536 static inline void tick_nohz_irq_enter(void) { } 1537 static inline void tick_nohz_activate(struct tick_sched *ts) { } 1538 1539 #endif /* CONFIG_NO_HZ_COMMON */ 1540 1541 /* 1542 * Called from irq_enter() to notify about the possible interruption of idle() 1543 */ 1544 void tick_irq_enter(void) 1545 { 1546 tick_check_oneshot_broadcast_this_cpu(); 1547 tick_nohz_irq_enter(); 1548 } 1549 1550 static int sched_skew_tick; 1551 1552 static int __init skew_tick(char *str) 1553 { 1554 get_option(&str, &sched_skew_tick); 1555 1556 return 0; 1557 } 1558 early_param("skew_tick", skew_tick); 1559 1560 /** 1561 * tick_setup_sched_timer - setup the tick emulation timer 1562 * @mode: tick_nohz_mode to setup for 1563 */ 1564 void tick_setup_sched_timer(bool hrtimer) 1565 { 1566 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1567 1568 /* Emulate tick processing via per-CPU hrtimers: */ 1569 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1570 1571 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) { 1572 tick_sched_flag_set(ts, TS_FLAG_HIGHRES); 1573 ts->sched_timer.function = tick_nohz_handler; 1574 } 1575 1576 /* Get the next period (per-CPU) */ 1577 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1578 1579 /* Offset the tick to avert 'jiffies_lock' contention. */ 1580 if (sched_skew_tick) { 1581 u64 offset = TICK_NSEC >> 1; 1582 do_div(offset, num_possible_cpus()); 1583 offset *= smp_processor_id(); 1584 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1585 } 1586 1587 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1588 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1589 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1590 else 1591 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1592 tick_nohz_activate(ts); 1593 } 1594 1595 /* 1596 * Shut down the tick and make sure the CPU won't try to retake the timekeeping 1597 * duty before disabling IRQs in idle for the last time. 1598 */ 1599 void tick_sched_timer_dying(int cpu) 1600 { 1601 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 1602 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1603 struct clock_event_device *dev = td->evtdev; 1604 ktime_t idle_sleeptime, iowait_sleeptime; 1605 unsigned long idle_calls, idle_sleeps; 1606 1607 /* This must happen before hrtimers are migrated! */ 1608 tick_sched_timer_cancel(ts); 1609 1610 /* 1611 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED, 1612 * make sure not to call low-res tick handler. 1613 */ 1614 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1615 dev->event_handler = clockevents_handle_noop; 1616 1617 idle_sleeptime = ts->idle_sleeptime; 1618 iowait_sleeptime = ts->iowait_sleeptime; 1619 idle_calls = ts->idle_calls; 1620 idle_sleeps = ts->idle_sleeps; 1621 memset(ts, 0, sizeof(*ts)); 1622 ts->idle_sleeptime = idle_sleeptime; 1623 ts->iowait_sleeptime = iowait_sleeptime; 1624 ts->idle_calls = idle_calls; 1625 ts->idle_sleeps = idle_sleeps; 1626 } 1627 1628 /* 1629 * Async notification about clocksource changes 1630 */ 1631 void tick_clock_notify(void) 1632 { 1633 int cpu; 1634 1635 for_each_possible_cpu(cpu) 1636 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1637 } 1638 1639 /* 1640 * Async notification about clock event changes 1641 */ 1642 void tick_oneshot_notify(void) 1643 { 1644 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1645 1646 set_bit(0, &ts->check_clocks); 1647 } 1648 1649 /* 1650 * Check if a change happened, which makes oneshot possible. 1651 * 1652 * Called cyclically from the hrtimer softirq (driven by the timer 1653 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1654 * mode, because high resolution timers are disabled (either compile 1655 * or runtime). Called with interrupts disabled. 1656 */ 1657 int tick_check_oneshot_change(int allow_nohz) 1658 { 1659 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1660 1661 if (!test_and_clear_bit(0, &ts->check_clocks)) 1662 return 0; 1663 1664 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1665 return 0; 1666 1667 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1668 return 0; 1669 1670 if (!allow_nohz) 1671 return 1; 1672 1673 tick_nohz_switch_to_nohz(); 1674 return 0; 1675 } 1676