1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 /* 47 * The time when the last jiffy update happened. Write access must hold 48 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 49 * consistent view of jiffies and last_jiffies_update. 50 */ 51 static ktime_t last_jiffies_update; 52 53 /* 54 * Must be called with interrupts disabled ! 55 */ 56 static void tick_do_update_jiffies64(ktime_t now) 57 { 58 unsigned long ticks = 1; 59 ktime_t delta, nextp; 60 61 /* 62 * 64-bit can do a quick check without holding the jiffies lock and 63 * without looking at the sequence count. The smp_load_acquire() 64 * pairs with the update done later in this function. 65 * 66 * 32-bit cannot do that because the store of 'tick_next_period' 67 * consists of two 32-bit stores, and the first store could be 68 * moved by the CPU to a random point in the future. 69 */ 70 if (IS_ENABLED(CONFIG_64BIT)) { 71 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 72 return; 73 } else { 74 unsigned int seq; 75 76 /* 77 * Avoid contention on 'jiffies_lock' and protect the quick 78 * check with the sequence count. 79 */ 80 do { 81 seq = read_seqcount_begin(&jiffies_seq); 82 nextp = tick_next_period; 83 } while (read_seqcount_retry(&jiffies_seq, seq)); 84 85 if (ktime_before(now, nextp)) 86 return; 87 } 88 89 /* Quick check failed, i.e. update is required. */ 90 raw_spin_lock(&jiffies_lock); 91 /* 92 * Re-evaluate with the lock held. Another CPU might have done the 93 * update already. 94 */ 95 if (ktime_before(now, tick_next_period)) { 96 raw_spin_unlock(&jiffies_lock); 97 return; 98 } 99 100 write_seqcount_begin(&jiffies_seq); 101 102 delta = ktime_sub(now, tick_next_period); 103 if (unlikely(delta >= TICK_NSEC)) { 104 /* Slow path for long idle sleep times */ 105 s64 incr = TICK_NSEC; 106 107 ticks += ktime_divns(delta, incr); 108 109 last_jiffies_update = ktime_add_ns(last_jiffies_update, 110 incr * ticks); 111 } else { 112 last_jiffies_update = ktime_add_ns(last_jiffies_update, 113 TICK_NSEC); 114 } 115 116 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 117 jiffies_64 += ticks; 118 119 /* Keep the tick_next_period variable up to date */ 120 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 121 122 if (IS_ENABLED(CONFIG_64BIT)) { 123 /* 124 * Pairs with smp_load_acquire() in the lockless quick 125 * check above, and ensures that the update to 'jiffies_64' is 126 * not reordered vs. the store to 'tick_next_period', neither 127 * by the compiler nor by the CPU. 128 */ 129 smp_store_release(&tick_next_period, nextp); 130 } else { 131 /* 132 * A plain store is good enough on 32-bit, as the quick check 133 * above is protected by the sequence count. 134 */ 135 tick_next_period = nextp; 136 } 137 138 /* 139 * Release the sequence count. calc_global_load() below is not 140 * protected by it, but 'jiffies_lock' needs to be held to prevent 141 * concurrent invocations. 142 */ 143 write_seqcount_end(&jiffies_seq); 144 145 calc_global_load(); 146 147 raw_spin_unlock(&jiffies_lock); 148 update_wall_time(); 149 } 150 151 /* 152 * Initialize and return retrieve the jiffies update. 153 */ 154 static ktime_t tick_init_jiffy_update(void) 155 { 156 ktime_t period; 157 158 raw_spin_lock(&jiffies_lock); 159 write_seqcount_begin(&jiffies_seq); 160 161 /* Have we started the jiffies update yet ? */ 162 if (last_jiffies_update == 0) { 163 u32 rem; 164 165 /* 166 * Ensure that the tick is aligned to a multiple of 167 * TICK_NSEC. 168 */ 169 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 170 if (rem) 171 tick_next_period += TICK_NSEC - rem; 172 173 last_jiffies_update = tick_next_period; 174 } 175 period = last_jiffies_update; 176 177 write_seqcount_end(&jiffies_seq); 178 raw_spin_unlock(&jiffies_lock); 179 180 return period; 181 } 182 183 static inline int tick_sched_flag_test(struct tick_sched *ts, 184 unsigned long flag) 185 { 186 return !!(ts->flags & flag); 187 } 188 189 static inline void tick_sched_flag_set(struct tick_sched *ts, 190 unsigned long flag) 191 { 192 lockdep_assert_irqs_disabled(); 193 ts->flags |= flag; 194 } 195 196 static inline void tick_sched_flag_clear(struct tick_sched *ts, 197 unsigned long flag) 198 { 199 lockdep_assert_irqs_disabled(); 200 ts->flags &= ~flag; 201 } 202 203 #define MAX_STALLED_JIFFIES 5 204 205 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 206 { 207 int cpu = smp_processor_id(); 208 209 /* 210 * Check if the do_timer duty was dropped. We don't care about 211 * concurrency: This happens only when the CPU in charge went 212 * into a long sleep. If two CPUs happen to assign themselves to 213 * this duty, then the jiffies update is still serialized by 214 * 'jiffies_lock'. 215 * 216 * If nohz_full is enabled, this should not happen because the 217 * 'tick_do_timer_cpu' CPU never relinquishes. 218 */ 219 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 220 unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 221 #ifdef CONFIG_NO_HZ_FULL 222 WARN_ON_ONCE(tick_nohz_full_running); 223 #endif 224 tick_do_timer_cpu = cpu; 225 } 226 227 /* Check if jiffies need an update */ 228 if (tick_do_timer_cpu == cpu) 229 tick_do_update_jiffies64(now); 230 231 /* 232 * If the jiffies update stalled for too long (timekeeper in stop_machine() 233 * or VMEXIT'ed for several msecs), force an update. 234 */ 235 if (ts->last_tick_jiffies != jiffies) { 236 ts->stalled_jiffies = 0; 237 ts->last_tick_jiffies = READ_ONCE(jiffies); 238 } else { 239 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 240 tick_do_update_jiffies64(now); 241 ts->stalled_jiffies = 0; 242 ts->last_tick_jiffies = READ_ONCE(jiffies); 243 } 244 } 245 246 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 247 ts->got_idle_tick = 1; 248 } 249 250 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 251 { 252 /* 253 * When we are idle and the tick is stopped, we have to touch 254 * the watchdog as we might not schedule for a really long 255 * time. This happens on completely idle SMP systems while 256 * waiting on the login prompt. We also increment the "start of 257 * idle" jiffy stamp so the idle accounting adjustment we do 258 * when we go busy again does not account too many ticks. 259 */ 260 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 261 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 262 touch_softlockup_watchdog_sched(); 263 if (is_idle_task(current)) 264 ts->idle_jiffies++; 265 /* 266 * In case the current tick fired too early past its expected 267 * expiration, make sure we don't bypass the next clock reprogramming 268 * to the same deadline. 269 */ 270 ts->next_tick = 0; 271 } 272 273 update_process_times(user_mode(regs)); 274 profile_tick(CPU_PROFILING); 275 } 276 277 /* 278 * We rearm the timer until we get disabled by the idle code. 279 * Called with interrupts disabled. 280 */ 281 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) 282 { 283 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); 284 struct pt_regs *regs = get_irq_regs(); 285 ktime_t now = ktime_get(); 286 287 tick_sched_do_timer(ts, now); 288 289 /* 290 * Do not call when we are not in IRQ context and have 291 * no valid 'regs' pointer 292 */ 293 if (regs) 294 tick_sched_handle(ts, regs); 295 else 296 ts->next_tick = 0; 297 298 /* 299 * In dynticks mode, tick reprogram is deferred: 300 * - to the idle task if in dynticks-idle 301 * - to IRQ exit if in full-dynticks. 302 */ 303 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) 304 return HRTIMER_NORESTART; 305 306 hrtimer_forward(timer, now, TICK_NSEC); 307 308 return HRTIMER_RESTART; 309 } 310 311 static void tick_sched_timer_cancel(struct tick_sched *ts) 312 { 313 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 314 hrtimer_cancel(&ts->sched_timer); 315 else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 316 tick_program_event(KTIME_MAX, 1); 317 } 318 319 #ifdef CONFIG_NO_HZ_FULL 320 cpumask_var_t tick_nohz_full_mask; 321 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 322 bool tick_nohz_full_running; 323 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 324 static atomic_t tick_dep_mask; 325 326 static bool check_tick_dependency(atomic_t *dep) 327 { 328 int val = atomic_read(dep); 329 330 if (val & TICK_DEP_MASK_POSIX_TIMER) { 331 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 332 return true; 333 } 334 335 if (val & TICK_DEP_MASK_PERF_EVENTS) { 336 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 337 return true; 338 } 339 340 if (val & TICK_DEP_MASK_SCHED) { 341 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 342 return true; 343 } 344 345 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 346 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 347 return true; 348 } 349 350 if (val & TICK_DEP_MASK_RCU) { 351 trace_tick_stop(0, TICK_DEP_MASK_RCU); 352 return true; 353 } 354 355 if (val & TICK_DEP_MASK_RCU_EXP) { 356 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 357 return true; 358 } 359 360 return false; 361 } 362 363 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 364 { 365 lockdep_assert_irqs_disabled(); 366 367 if (unlikely(!cpu_online(cpu))) 368 return false; 369 370 if (check_tick_dependency(&tick_dep_mask)) 371 return false; 372 373 if (check_tick_dependency(&ts->tick_dep_mask)) 374 return false; 375 376 if (check_tick_dependency(¤t->tick_dep_mask)) 377 return false; 378 379 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 380 return false; 381 382 return true; 383 } 384 385 static void nohz_full_kick_func(struct irq_work *work) 386 { 387 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 388 } 389 390 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 391 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 392 393 /* 394 * Kick this CPU if it's full dynticks in order to force it to 395 * re-evaluate its dependency on the tick and restart it if necessary. 396 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 397 * is NMI safe. 398 */ 399 static void tick_nohz_full_kick(void) 400 { 401 if (!tick_nohz_full_cpu(smp_processor_id())) 402 return; 403 404 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 405 } 406 407 /* 408 * Kick the CPU if it's full dynticks in order to force it to 409 * re-evaluate its dependency on the tick and restart it if necessary. 410 */ 411 void tick_nohz_full_kick_cpu(int cpu) 412 { 413 if (!tick_nohz_full_cpu(cpu)) 414 return; 415 416 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 417 } 418 419 static void tick_nohz_kick_task(struct task_struct *tsk) 420 { 421 int cpu; 422 423 /* 424 * If the task is not running, run_posix_cpu_timers() 425 * has nothing to elapse, and an IPI can then be optimized out. 426 * 427 * activate_task() STORE p->tick_dep_mask 428 * STORE p->on_rq 429 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 430 * LOCK rq->lock LOAD p->on_rq 431 * smp_mb__after_spin_lock() 432 * tick_nohz_task_switch() 433 * LOAD p->tick_dep_mask 434 */ 435 if (!sched_task_on_rq(tsk)) 436 return; 437 438 /* 439 * If the task concurrently migrates to another CPU, 440 * we guarantee it sees the new tick dependency upon 441 * schedule. 442 * 443 * set_task_cpu(p, cpu); 444 * STORE p->cpu = @cpu 445 * __schedule() (switch to task 'p') 446 * LOCK rq->lock 447 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 448 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 449 * LOAD p->tick_dep_mask LOAD p->cpu 450 */ 451 cpu = task_cpu(tsk); 452 453 preempt_disable(); 454 if (cpu_online(cpu)) 455 tick_nohz_full_kick_cpu(cpu); 456 preempt_enable(); 457 } 458 459 /* 460 * Kick all full dynticks CPUs in order to force these to re-evaluate 461 * their dependency on the tick and restart it if necessary. 462 */ 463 static void tick_nohz_full_kick_all(void) 464 { 465 int cpu; 466 467 if (!tick_nohz_full_running) 468 return; 469 470 preempt_disable(); 471 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 472 tick_nohz_full_kick_cpu(cpu); 473 preempt_enable(); 474 } 475 476 static void tick_nohz_dep_set_all(atomic_t *dep, 477 enum tick_dep_bits bit) 478 { 479 int prev; 480 481 prev = atomic_fetch_or(BIT(bit), dep); 482 if (!prev) 483 tick_nohz_full_kick_all(); 484 } 485 486 /* 487 * Set a global tick dependency. Used by perf events that rely on freq and 488 * unstable clocks. 489 */ 490 void tick_nohz_dep_set(enum tick_dep_bits bit) 491 { 492 tick_nohz_dep_set_all(&tick_dep_mask, bit); 493 } 494 495 void tick_nohz_dep_clear(enum tick_dep_bits bit) 496 { 497 atomic_andnot(BIT(bit), &tick_dep_mask); 498 } 499 500 /* 501 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 502 * manage event-throttling. 503 */ 504 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 505 { 506 int prev; 507 struct tick_sched *ts; 508 509 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 510 511 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 512 if (!prev) { 513 preempt_disable(); 514 /* Perf needs local kick that is NMI safe */ 515 if (cpu == smp_processor_id()) { 516 tick_nohz_full_kick(); 517 } else { 518 /* Remote IRQ work not NMI-safe */ 519 if (!WARN_ON_ONCE(in_nmi())) 520 tick_nohz_full_kick_cpu(cpu); 521 } 522 preempt_enable(); 523 } 524 } 525 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 526 527 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 528 { 529 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 530 531 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 532 } 533 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 534 535 /* 536 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 537 * in order to elapse per task timers. 538 */ 539 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 540 { 541 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 542 tick_nohz_kick_task(tsk); 543 } 544 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 545 546 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 547 { 548 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 549 } 550 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 551 552 /* 553 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 554 * per process timers. 555 */ 556 void tick_nohz_dep_set_signal(struct task_struct *tsk, 557 enum tick_dep_bits bit) 558 { 559 int prev; 560 struct signal_struct *sig = tsk->signal; 561 562 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 563 if (!prev) { 564 struct task_struct *t; 565 566 lockdep_assert_held(&tsk->sighand->siglock); 567 __for_each_thread(sig, t) 568 tick_nohz_kick_task(t); 569 } 570 } 571 572 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 573 { 574 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 575 } 576 577 /* 578 * Re-evaluate the need for the tick as we switch the current task. 579 * It might need the tick due to per task/process properties: 580 * perf events, posix CPU timers, ... 581 */ 582 void __tick_nohz_task_switch(void) 583 { 584 struct tick_sched *ts; 585 586 if (!tick_nohz_full_cpu(smp_processor_id())) 587 return; 588 589 ts = this_cpu_ptr(&tick_cpu_sched); 590 591 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 592 if (atomic_read(¤t->tick_dep_mask) || 593 atomic_read(¤t->signal->tick_dep_mask)) 594 tick_nohz_full_kick(); 595 } 596 } 597 598 /* Get the boot-time nohz CPU list from the kernel parameters. */ 599 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 600 { 601 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 602 cpumask_copy(tick_nohz_full_mask, cpumask); 603 tick_nohz_full_running = true; 604 } 605 606 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 607 { 608 /* 609 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 610 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 611 * CPUs. It must remain online when nohz full is enabled. 612 */ 613 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 614 return false; 615 return true; 616 } 617 618 static int tick_nohz_cpu_down(unsigned int cpu) 619 { 620 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 621 } 622 623 void __init tick_nohz_init(void) 624 { 625 int cpu, ret; 626 627 if (!tick_nohz_full_running) 628 return; 629 630 /* 631 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 632 * locking contexts. But then we need IRQ work to raise its own 633 * interrupts to avoid circular dependency on the tick. 634 */ 635 if (!arch_irq_work_has_interrupt()) { 636 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 637 cpumask_clear(tick_nohz_full_mask); 638 tick_nohz_full_running = false; 639 return; 640 } 641 642 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 643 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 644 cpu = smp_processor_id(); 645 646 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 647 pr_warn("NO_HZ: Clearing %d from nohz_full range " 648 "for timekeeping\n", cpu); 649 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 650 } 651 } 652 653 for_each_cpu(cpu, tick_nohz_full_mask) 654 ct_cpu_track_user(cpu); 655 656 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 657 "kernel/nohz:predown", NULL, 658 tick_nohz_cpu_down); 659 WARN_ON(ret < 0); 660 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 661 cpumask_pr_args(tick_nohz_full_mask)); 662 } 663 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 664 665 /* 666 * NOHZ - aka dynamic tick functionality 667 */ 668 #ifdef CONFIG_NO_HZ_COMMON 669 /* 670 * NO HZ enabled ? 671 */ 672 bool tick_nohz_enabled __read_mostly = true; 673 unsigned long tick_nohz_active __read_mostly; 674 /* 675 * Enable / Disable tickless mode 676 */ 677 static int __init setup_tick_nohz(char *str) 678 { 679 return (kstrtobool(str, &tick_nohz_enabled) == 0); 680 } 681 682 __setup("nohz=", setup_tick_nohz); 683 684 bool tick_nohz_tick_stopped(void) 685 { 686 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 687 688 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 689 } 690 691 bool tick_nohz_tick_stopped_cpu(int cpu) 692 { 693 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 694 695 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 696 } 697 698 /** 699 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 700 * @now: current ktime_t 701 * 702 * Called from interrupt entry when the CPU was idle 703 * 704 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 705 * must be updated. Otherwise an interrupt handler could use a stale jiffy 706 * value. We do this unconditionally on any CPU, as we don't know whether the 707 * CPU, which has the update task assigned, is in a long sleep. 708 */ 709 static void tick_nohz_update_jiffies(ktime_t now) 710 { 711 unsigned long flags; 712 713 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 714 715 local_irq_save(flags); 716 tick_do_update_jiffies64(now); 717 local_irq_restore(flags); 718 719 touch_softlockup_watchdog_sched(); 720 } 721 722 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 723 { 724 ktime_t delta; 725 726 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) 727 return; 728 729 delta = ktime_sub(now, ts->idle_entrytime); 730 731 write_seqcount_begin(&ts->idle_sleeptime_seq); 732 if (nr_iowait_cpu(smp_processor_id()) > 0) 733 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 734 else 735 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 736 737 ts->idle_entrytime = now; 738 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); 739 write_seqcount_end(&ts->idle_sleeptime_seq); 740 741 sched_clock_idle_wakeup_event(); 742 } 743 744 static void tick_nohz_start_idle(struct tick_sched *ts) 745 { 746 write_seqcount_begin(&ts->idle_sleeptime_seq); 747 ts->idle_entrytime = ktime_get(); 748 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); 749 write_seqcount_end(&ts->idle_sleeptime_seq); 750 751 sched_clock_idle_sleep_event(); 752 } 753 754 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 755 bool compute_delta, u64 *last_update_time) 756 { 757 ktime_t now, idle; 758 unsigned int seq; 759 760 if (!tick_nohz_active) 761 return -1; 762 763 now = ktime_get(); 764 if (last_update_time) 765 *last_update_time = ktime_to_us(now); 766 767 do { 768 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 769 770 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { 771 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 772 773 idle = ktime_add(*sleeptime, delta); 774 } else { 775 idle = *sleeptime; 776 } 777 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 778 779 return ktime_to_us(idle); 780 781 } 782 783 /** 784 * get_cpu_idle_time_us - get the total idle time of a CPU 785 * @cpu: CPU number to query 786 * @last_update_time: variable to store update time in. Do not update 787 * counters if NULL. 788 * 789 * Return the cumulative idle time (since boot) for a given 790 * CPU, in microseconds. Note that this is partially broken due to 791 * the counter of iowait tasks that can be remotely updated without 792 * any synchronization. Therefore it is possible to observe backward 793 * values within two consecutive reads. 794 * 795 * This time is measured via accounting rather than sampling, 796 * and is as accurate as ktime_get() is. 797 * 798 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu 799 */ 800 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 801 { 802 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 803 804 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 805 !nr_iowait_cpu(cpu), last_update_time); 806 } 807 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 808 809 /** 810 * get_cpu_iowait_time_us - get the total iowait time of a CPU 811 * @cpu: CPU number to query 812 * @last_update_time: variable to store update time in. Do not update 813 * counters if NULL. 814 * 815 * Return the cumulative iowait time (since boot) for a given 816 * CPU, in microseconds. Note this is partially broken due to 817 * the counter of iowait tasks that can be remotely updated without 818 * any synchronization. Therefore it is possible to observe backward 819 * values within two consecutive reads. 820 * 821 * This time is measured via accounting rather than sampling, 822 * and is as accurate as ktime_get() is. 823 * 824 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu 825 */ 826 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 827 { 828 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 829 830 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 831 nr_iowait_cpu(cpu), last_update_time); 832 } 833 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 834 835 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 836 { 837 hrtimer_cancel(&ts->sched_timer); 838 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 839 840 /* Forward the time to expire in the future */ 841 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 842 843 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 844 hrtimer_start_expires(&ts->sched_timer, 845 HRTIMER_MODE_ABS_PINNED_HARD); 846 } else { 847 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 848 } 849 850 /* 851 * Reset to make sure the next tick stop doesn't get fooled by past 852 * cached clock deadline. 853 */ 854 ts->next_tick = 0; 855 } 856 857 static inline bool local_timer_softirq_pending(void) 858 { 859 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 860 } 861 862 /* 863 * Read jiffies and the time when jiffies were updated last 864 */ 865 u64 get_jiffies_update(unsigned long *basej) 866 { 867 unsigned long basejiff; 868 unsigned int seq; 869 u64 basemono; 870 871 do { 872 seq = read_seqcount_begin(&jiffies_seq); 873 basemono = last_jiffies_update; 874 basejiff = jiffies; 875 } while (read_seqcount_retry(&jiffies_seq, seq)); 876 *basej = basejiff; 877 return basemono; 878 } 879 880 /** 881 * tick_nohz_next_event() - return the clock monotonic based next event 882 * @ts: pointer to tick_sched struct 883 * @cpu: CPU number 884 * 885 * Return: 886 * *%0 - When the next event is a maximum of TICK_NSEC in the future 887 * and the tick is not stopped yet 888 * *%next_event - Next event based on clock monotonic 889 */ 890 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 891 { 892 u64 basemono, next_tick, delta, expires; 893 unsigned long basejiff; 894 895 basemono = get_jiffies_update(&basejiff); 896 ts->last_jiffies = basejiff; 897 ts->timer_expires_base = basemono; 898 899 /* 900 * Keep the periodic tick, when RCU, architecture or irq_work 901 * requests it. 902 * Aside of that, check whether the local timer softirq is 903 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 904 * because there is an already expired timer, so it will request 905 * immediate expiry, which rearms the hardware timer with a 906 * minimal delta, which brings us back to this place 907 * immediately. Lather, rinse and repeat... 908 */ 909 if (rcu_needs_cpu() || arch_needs_cpu() || 910 irq_work_needs_cpu() || local_timer_softirq_pending()) { 911 next_tick = basemono + TICK_NSEC; 912 } else { 913 /* 914 * Get the next pending timer. If high resolution 915 * timers are enabled this only takes the timer wheel 916 * timers into account. If high resolution timers are 917 * disabled this also looks at the next expiring 918 * hrtimer. 919 */ 920 next_tick = get_next_timer_interrupt(basejiff, basemono); 921 ts->next_timer = next_tick; 922 } 923 924 /* Make sure next_tick is never before basemono! */ 925 if (WARN_ON_ONCE(basemono > next_tick)) 926 next_tick = basemono; 927 928 /* 929 * If the tick is due in the next period, keep it ticking or 930 * force prod the timer. 931 */ 932 delta = next_tick - basemono; 933 if (delta <= (u64)TICK_NSEC) { 934 /* 935 * We've not stopped the tick yet, and there's a timer in the 936 * next period, so no point in stopping it either, bail. 937 */ 938 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 939 ts->timer_expires = 0; 940 goto out; 941 } 942 } 943 944 /* 945 * If this CPU is the one which had the do_timer() duty last, we limit 946 * the sleep time to the timekeeping 'max_deferment' value. 947 * Otherwise we can sleep as long as we want. 948 */ 949 delta = timekeeping_max_deferment(); 950 if (cpu != tick_do_timer_cpu && 951 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || 952 !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) 953 delta = KTIME_MAX; 954 955 /* Calculate the next expiry time */ 956 if (delta < (KTIME_MAX - basemono)) 957 expires = basemono + delta; 958 else 959 expires = KTIME_MAX; 960 961 ts->timer_expires = min_t(u64, expires, next_tick); 962 963 out: 964 return ts->timer_expires; 965 } 966 967 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 968 { 969 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 970 unsigned long basejiff = ts->last_jiffies; 971 u64 basemono = ts->timer_expires_base; 972 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 973 u64 expires; 974 975 /* Make sure we won't be trying to stop it twice in a row. */ 976 ts->timer_expires_base = 0; 977 978 /* 979 * Now the tick should be stopped definitely - so the timer base needs 980 * to be marked idle as well to not miss a newly queued timer. 981 */ 982 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); 983 if (expires > ts->timer_expires) { 984 /* 985 * This path could only happen when the first timer was removed 986 * between calculating the possible sleep length and now (when 987 * high resolution mode is not active, timer could also be a 988 * hrtimer). 989 * 990 * We have to stick to the original calculated expiry value to 991 * not stop the tick for too long with a shallow C-state (which 992 * was programmed by cpuidle because of an early next expiration 993 * value). 994 */ 995 expires = ts->timer_expires; 996 } 997 998 /* If the timer base is not idle, retain the not yet stopped tick. */ 999 if (!timer_idle) 1000 return; 1001 1002 /* 1003 * If this CPU is the one which updates jiffies, then give up 1004 * the assignment and let it be taken by the CPU which runs 1005 * the tick timer next, which might be this CPU as well. If we 1006 * don't drop this here, the jiffies might be stale and 1007 * do_timer() never gets invoked. Keep track of the fact that it 1008 * was the one which had the do_timer() duty last. 1009 */ 1010 if (cpu == tick_do_timer_cpu) { 1011 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 1012 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); 1013 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 1014 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); 1015 } 1016 1017 /* Skip reprogram of event if it's not changed */ 1018 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { 1019 /* Sanity check: make sure clockevent is actually programmed */ 1020 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 1021 return; 1022 1023 WARN_ON_ONCE(1); 1024 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 1025 basemono, ts->next_tick, dev->next_event, 1026 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 1027 } 1028 1029 /* 1030 * tick_nohz_stop_tick() can be called several times before 1031 * tick_nohz_restart_sched_tick() is called. This happens when 1032 * interrupts arrive which do not cause a reschedule. In the first 1033 * call we save the current tick time, so we can restart the 1034 * scheduler tick in tick_nohz_restart_sched_tick(). 1035 */ 1036 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1037 calc_load_nohz_start(); 1038 quiet_vmstat(); 1039 1040 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 1041 tick_sched_flag_set(ts, TS_FLAG_STOPPED); 1042 trace_tick_stop(1, TICK_DEP_MASK_NONE); 1043 } 1044 1045 ts->next_tick = expires; 1046 1047 /* 1048 * If the expiration time == KTIME_MAX, then we simply stop 1049 * the tick timer. 1050 */ 1051 if (unlikely(expires == KTIME_MAX)) { 1052 tick_sched_timer_cancel(ts); 1053 return; 1054 } 1055 1056 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 1057 hrtimer_start(&ts->sched_timer, expires, 1058 HRTIMER_MODE_ABS_PINNED_HARD); 1059 } else { 1060 hrtimer_set_expires(&ts->sched_timer, expires); 1061 tick_program_event(expires, 1); 1062 } 1063 } 1064 1065 static void tick_nohz_retain_tick(struct tick_sched *ts) 1066 { 1067 ts->timer_expires_base = 0; 1068 } 1069 1070 #ifdef CONFIG_NO_HZ_FULL 1071 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) 1072 { 1073 if (tick_nohz_next_event(ts, cpu)) 1074 tick_nohz_stop_tick(ts, cpu); 1075 else 1076 tick_nohz_retain_tick(ts); 1077 } 1078 #endif /* CONFIG_NO_HZ_FULL */ 1079 1080 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 1081 { 1082 /* Update jiffies first */ 1083 tick_do_update_jiffies64(now); 1084 1085 /* 1086 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 1087 * the clock forward checks in the enqueue path: 1088 */ 1089 timer_clear_idle(); 1090 1091 calc_load_nohz_stop(); 1092 touch_softlockup_watchdog_sched(); 1093 1094 /* Cancel the scheduled timer and restore the tick: */ 1095 tick_sched_flag_clear(ts, TS_FLAG_STOPPED); 1096 tick_nohz_restart(ts, now); 1097 } 1098 1099 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 1100 ktime_t now) 1101 { 1102 #ifdef CONFIG_NO_HZ_FULL 1103 int cpu = smp_processor_id(); 1104 1105 if (can_stop_full_tick(cpu, ts)) 1106 tick_nohz_full_stop_tick(ts, cpu); 1107 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1108 tick_nohz_restart_sched_tick(ts, now); 1109 #endif 1110 } 1111 1112 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1113 { 1114 if (!tick_nohz_full_cpu(smp_processor_id())) 1115 return; 1116 1117 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1118 return; 1119 1120 __tick_nohz_full_update_tick(ts, ktime_get()); 1121 } 1122 1123 /* 1124 * A pending softirq outside an IRQ (or softirq disabled section) context 1125 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1126 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1127 * 1128 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1129 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1130 * triggering the code below, since wakep_softirqd() is ignored. 1131 * 1132 */ 1133 static bool report_idle_softirq(void) 1134 { 1135 static int ratelimit; 1136 unsigned int pending = local_softirq_pending(); 1137 1138 if (likely(!pending)) 1139 return false; 1140 1141 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1142 if (!cpu_active(smp_processor_id())) { 1143 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1144 if (!pending) 1145 return false; 1146 } 1147 1148 if (ratelimit >= 10) 1149 return false; 1150 1151 /* On RT, softirq handling may be waiting on some lock */ 1152 if (local_bh_blocked()) 1153 return false; 1154 1155 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1156 pending); 1157 ratelimit++; 1158 1159 return true; 1160 } 1161 1162 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1163 { 1164 WARN_ON_ONCE(cpu_is_offline(cpu)); 1165 1166 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) 1167 return false; 1168 1169 if (need_resched()) 1170 return false; 1171 1172 if (unlikely(report_idle_softirq())) 1173 return false; 1174 1175 if (tick_nohz_full_enabled()) { 1176 /* 1177 * Keep the tick alive to guarantee timekeeping progression 1178 * if there are full dynticks CPUs around 1179 */ 1180 if (tick_do_timer_cpu == cpu) 1181 return false; 1182 1183 /* Should not happen for nohz-full */ 1184 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 1185 return false; 1186 } 1187 1188 return true; 1189 } 1190 1191 /** 1192 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1193 * 1194 * When the next event is more than a tick into the future, stop the idle tick 1195 */ 1196 void tick_nohz_idle_stop_tick(void) 1197 { 1198 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1199 int cpu = smp_processor_id(); 1200 ktime_t expires; 1201 1202 /* 1203 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1204 * tick timer expiration time is known already. 1205 */ 1206 if (ts->timer_expires_base) 1207 expires = ts->timer_expires; 1208 else if (can_stop_idle_tick(cpu, ts)) 1209 expires = tick_nohz_next_event(ts, cpu); 1210 else 1211 return; 1212 1213 ts->idle_calls++; 1214 1215 if (expires > 0LL) { 1216 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1217 1218 tick_nohz_stop_tick(ts, cpu); 1219 1220 ts->idle_sleeps++; 1221 ts->idle_expires = expires; 1222 1223 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1224 ts->idle_jiffies = ts->last_jiffies; 1225 nohz_balance_enter_idle(cpu); 1226 } 1227 } else { 1228 tick_nohz_retain_tick(ts); 1229 } 1230 } 1231 1232 void tick_nohz_idle_retain_tick(void) 1233 { 1234 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1235 } 1236 1237 /** 1238 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1239 * 1240 * Called when we start the idle loop. 1241 */ 1242 void tick_nohz_idle_enter(void) 1243 { 1244 struct tick_sched *ts; 1245 1246 lockdep_assert_irqs_enabled(); 1247 1248 local_irq_disable(); 1249 1250 ts = this_cpu_ptr(&tick_cpu_sched); 1251 1252 WARN_ON_ONCE(ts->timer_expires_base); 1253 1254 tick_sched_flag_set(ts, TS_FLAG_INIDLE); 1255 tick_nohz_start_idle(ts); 1256 1257 local_irq_enable(); 1258 } 1259 1260 /** 1261 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1262 * 1263 * A timer may have been added/modified/deleted either by the current IRQ, 1264 * or by another place using this IRQ as a notification. This IRQ may have 1265 * also updated the RCU callback list. These events may require a 1266 * re-evaluation of the next tick. Depending on the context: 1267 * 1268 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1269 * time accounting. The next tick will be re-evaluated on the next idle 1270 * loop iteration. 1271 * 1272 * 2) If the CPU is nohz_full: 1273 * 1274 * 2.1) If there is any tick dependency, restart the tick if stopped. 1275 * 1276 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1277 * stop/update it accordingly. 1278 */ 1279 void tick_nohz_irq_exit(void) 1280 { 1281 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1282 1283 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 1284 tick_nohz_start_idle(ts); 1285 else 1286 tick_nohz_full_update_tick(ts); 1287 } 1288 1289 /** 1290 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1291 * 1292 * Return: %true if the tick handler has run, otherwise %false 1293 */ 1294 bool tick_nohz_idle_got_tick(void) 1295 { 1296 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1297 1298 if (ts->got_idle_tick) { 1299 ts->got_idle_tick = 0; 1300 return true; 1301 } 1302 return false; 1303 } 1304 1305 /** 1306 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1307 * or the tick, whichever expires first. Note that, if the tick has been 1308 * stopped, it returns the next hrtimer. 1309 * 1310 * Called from power state control code with interrupts disabled 1311 * 1312 * Return: the next expiration time 1313 */ 1314 ktime_t tick_nohz_get_next_hrtimer(void) 1315 { 1316 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1317 } 1318 1319 /** 1320 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1321 * @delta_next: duration until the next event if the tick cannot be stopped 1322 * 1323 * Called from power state control code with interrupts disabled. 1324 * 1325 * The return value of this function and/or the value returned by it through the 1326 * @delta_next pointer can be negative which must be taken into account by its 1327 * callers. 1328 * 1329 * Return: the expected length of the current sleep 1330 */ 1331 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1332 { 1333 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1334 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1335 int cpu = smp_processor_id(); 1336 /* 1337 * The idle entry time is expected to be a sufficient approximation of 1338 * the current time at this point. 1339 */ 1340 ktime_t now = ts->idle_entrytime; 1341 ktime_t next_event; 1342 1343 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1344 1345 *delta_next = ktime_sub(dev->next_event, now); 1346 1347 if (!can_stop_idle_tick(cpu, ts)) 1348 return *delta_next; 1349 1350 next_event = tick_nohz_next_event(ts, cpu); 1351 if (!next_event) 1352 return *delta_next; 1353 1354 /* 1355 * If the next highres timer to expire is earlier than 'next_event', the 1356 * idle governor needs to know that. 1357 */ 1358 next_event = min_t(u64, next_event, 1359 hrtimer_next_event_without(&ts->sched_timer)); 1360 1361 return ktime_sub(next_event, now); 1362 } 1363 1364 /** 1365 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1366 * for a particular CPU. 1367 * @cpu: target CPU number 1368 * 1369 * Called from the schedutil frequency scaling governor in scheduler context. 1370 * 1371 * Return: the current idle calls counter value for @cpu 1372 */ 1373 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1374 { 1375 struct tick_sched *ts = tick_get_tick_sched(cpu); 1376 1377 return ts->idle_calls; 1378 } 1379 1380 /** 1381 * tick_nohz_get_idle_calls - return the current idle calls counter value 1382 * 1383 * Called from the schedutil frequency scaling governor in scheduler context. 1384 * 1385 * Return: the current idle calls counter value for the current CPU 1386 */ 1387 unsigned long tick_nohz_get_idle_calls(void) 1388 { 1389 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1390 1391 return ts->idle_calls; 1392 } 1393 1394 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1395 ktime_t now) 1396 { 1397 unsigned long ticks; 1398 1399 ts->idle_exittime = now; 1400 1401 if (vtime_accounting_enabled_this_cpu()) 1402 return; 1403 /* 1404 * We stopped the tick in idle. update_process_times() would miss the 1405 * time we slept, as it does only a 1 tick accounting. 1406 * Enforce that this is accounted to idle ! 1407 */ 1408 ticks = jiffies - ts->idle_jiffies; 1409 /* 1410 * We might be one off. Do not randomly account a huge number of ticks! 1411 */ 1412 if (ticks && ticks < LONG_MAX) 1413 account_idle_ticks(ticks); 1414 } 1415 1416 void tick_nohz_idle_restart_tick(void) 1417 { 1418 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1419 1420 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1421 ktime_t now = ktime_get(); 1422 tick_nohz_restart_sched_tick(ts, now); 1423 tick_nohz_account_idle_time(ts, now); 1424 } 1425 } 1426 1427 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1428 { 1429 if (tick_nohz_full_cpu(smp_processor_id())) 1430 __tick_nohz_full_update_tick(ts, now); 1431 else 1432 tick_nohz_restart_sched_tick(ts, now); 1433 1434 tick_nohz_account_idle_time(ts, now); 1435 } 1436 1437 /** 1438 * tick_nohz_idle_exit - Update the tick upon idle task exit 1439 * 1440 * When the idle task exits, update the tick depending on the 1441 * following situations: 1442 * 1443 * 1) If the CPU is not in nohz_full mode (most cases), then 1444 * restart the tick. 1445 * 1446 * 2) If the CPU is in nohz_full mode (corner case): 1447 * 2.1) If the tick can be kept stopped (no tick dependencies) 1448 * then re-evaluate the next tick and try to keep it stopped 1449 * as long as possible. 1450 * 2.2) If the tick has dependencies, restart the tick. 1451 * 1452 */ 1453 void tick_nohz_idle_exit(void) 1454 { 1455 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1456 bool idle_active, tick_stopped; 1457 ktime_t now; 1458 1459 local_irq_disable(); 1460 1461 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1462 WARN_ON_ONCE(ts->timer_expires_base); 1463 1464 tick_sched_flag_clear(ts, TS_FLAG_INIDLE); 1465 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); 1466 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1467 1468 if (idle_active || tick_stopped) 1469 now = ktime_get(); 1470 1471 if (idle_active) 1472 tick_nohz_stop_idle(ts, now); 1473 1474 if (tick_stopped) 1475 tick_nohz_idle_update_tick(ts, now); 1476 1477 local_irq_enable(); 1478 } 1479 1480 /* 1481 * In low-resolution mode, the tick handler must be implemented directly 1482 * at the clockevent level. hrtimer can't be used instead, because its 1483 * infrastructure actually relies on the tick itself as a backend in 1484 * low-resolution mode (see hrtimer_run_queues()). 1485 */ 1486 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1487 { 1488 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1489 1490 dev->next_event = KTIME_MAX; 1491 1492 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) 1493 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1494 } 1495 1496 static inline void tick_nohz_activate(struct tick_sched *ts) 1497 { 1498 if (!tick_nohz_enabled) 1499 return; 1500 tick_sched_flag_set(ts, TS_FLAG_NOHZ); 1501 /* One update is enough */ 1502 if (!test_and_set_bit(0, &tick_nohz_active)) 1503 timers_update_nohz(); 1504 } 1505 1506 /** 1507 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1508 */ 1509 static void tick_nohz_switch_to_nohz(void) 1510 { 1511 if (!tick_nohz_enabled) 1512 return; 1513 1514 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1515 return; 1516 1517 /* 1518 * Recycle the hrtimer in 'ts', so we can share the 1519 * highres code. 1520 */ 1521 tick_setup_sched_timer(false); 1522 } 1523 1524 static inline void tick_nohz_irq_enter(void) 1525 { 1526 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1527 ktime_t now; 1528 1529 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) 1530 return; 1531 now = ktime_get(); 1532 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) 1533 tick_nohz_stop_idle(ts, now); 1534 /* 1535 * If all CPUs are idle we may need to update a stale jiffies value. 1536 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1537 * alive but it might be busy looping with interrupts disabled in some 1538 * rare case (typically stop machine). So we must make sure we have a 1539 * last resort. 1540 */ 1541 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1542 tick_nohz_update_jiffies(now); 1543 } 1544 1545 #else 1546 1547 static inline void tick_nohz_switch_to_nohz(void) { } 1548 static inline void tick_nohz_irq_enter(void) { } 1549 static inline void tick_nohz_activate(struct tick_sched *ts) { } 1550 1551 #endif /* CONFIG_NO_HZ_COMMON */ 1552 1553 /* 1554 * Called from irq_enter() to notify about the possible interruption of idle() 1555 */ 1556 void tick_irq_enter(void) 1557 { 1558 tick_check_oneshot_broadcast_this_cpu(); 1559 tick_nohz_irq_enter(); 1560 } 1561 1562 static int sched_skew_tick; 1563 1564 static int __init skew_tick(char *str) 1565 { 1566 get_option(&str, &sched_skew_tick); 1567 1568 return 0; 1569 } 1570 early_param("skew_tick", skew_tick); 1571 1572 /** 1573 * tick_setup_sched_timer - setup the tick emulation timer 1574 * @hrtimer: whether to use the hrtimer or not 1575 */ 1576 void tick_setup_sched_timer(bool hrtimer) 1577 { 1578 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1579 1580 /* Emulate tick processing via per-CPU hrtimers: */ 1581 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1582 1583 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) { 1584 tick_sched_flag_set(ts, TS_FLAG_HIGHRES); 1585 ts->sched_timer.function = tick_nohz_handler; 1586 } 1587 1588 /* Get the next period (per-CPU) */ 1589 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1590 1591 /* Offset the tick to avert 'jiffies_lock' contention. */ 1592 if (sched_skew_tick) { 1593 u64 offset = TICK_NSEC >> 1; 1594 do_div(offset, num_possible_cpus()); 1595 offset *= smp_processor_id(); 1596 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1597 } 1598 1599 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1600 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1601 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1602 else 1603 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1604 tick_nohz_activate(ts); 1605 } 1606 1607 /* 1608 * Shut down the tick and make sure the CPU won't try to retake the timekeeping 1609 * duty before disabling IRQs in idle for the last time. 1610 */ 1611 void tick_sched_timer_dying(int cpu) 1612 { 1613 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 1614 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1615 struct clock_event_device *dev = td->evtdev; 1616 ktime_t idle_sleeptime, iowait_sleeptime; 1617 unsigned long idle_calls, idle_sleeps; 1618 1619 /* This must happen before hrtimers are migrated! */ 1620 tick_sched_timer_cancel(ts); 1621 1622 /* 1623 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED, 1624 * make sure not to call low-res tick handler. 1625 */ 1626 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1627 dev->event_handler = clockevents_handle_noop; 1628 1629 idle_sleeptime = ts->idle_sleeptime; 1630 iowait_sleeptime = ts->iowait_sleeptime; 1631 idle_calls = ts->idle_calls; 1632 idle_sleeps = ts->idle_sleeps; 1633 memset(ts, 0, sizeof(*ts)); 1634 ts->idle_sleeptime = idle_sleeptime; 1635 ts->iowait_sleeptime = iowait_sleeptime; 1636 ts->idle_calls = idle_calls; 1637 ts->idle_sleeps = idle_sleeps; 1638 } 1639 1640 /* 1641 * Async notification about clocksource changes 1642 */ 1643 void tick_clock_notify(void) 1644 { 1645 int cpu; 1646 1647 for_each_possible_cpu(cpu) 1648 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1649 } 1650 1651 /* 1652 * Async notification about clock event changes 1653 */ 1654 void tick_oneshot_notify(void) 1655 { 1656 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1657 1658 set_bit(0, &ts->check_clocks); 1659 } 1660 1661 /* 1662 * Check if a change happened, which makes oneshot possible. 1663 * 1664 * Called cyclically from the hrtimer softirq (driven by the timer 1665 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1666 * mode, because high resolution timers are disabled (either compile 1667 * or runtime). Called with interrupts disabled. 1668 */ 1669 int tick_check_oneshot_change(int allow_nohz) 1670 { 1671 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1672 1673 if (!test_and_clear_bit(0, &ts->check_clocks)) 1674 return 0; 1675 1676 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1677 return 0; 1678 1679 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1680 return 0; 1681 1682 if (!allow_nohz) 1683 return 1; 1684 1685 tick_nohz_switch_to_nohz(); 1686 return 0; 1687 } 1688