1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/compiler.h> 12 #include <linux/cpu.h> 13 #include <linux/err.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/percpu.h> 18 #include <linux/nmi.h> 19 #include <linux/profile.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/clock.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/nohz.h> 24 #include <linux/sched/loadavg.h> 25 #include <linux/module.h> 26 #include <linux/irq_work.h> 27 #include <linux/posix-timers.h> 28 #include <linux/context_tracking.h> 29 #include <linux/mm.h> 30 31 #include <asm/irq_regs.h> 32 33 #include "tick-internal.h" 34 35 #include <trace/events/timer.h> 36 37 /* 38 * Per-CPU nohz control structure 39 */ 40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 41 42 struct tick_sched *tick_get_tick_sched(int cpu) 43 { 44 return &per_cpu(tick_cpu_sched, cpu); 45 } 46 47 /* 48 * The time when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64-bit can do a quick check without holding the jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32-bit cannot do that because the store of 'tick_next_period' 68 * consists of two 32-bit stores, and the first store could be 69 * moved by the CPU to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on 'jiffies_lock' and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Re-evaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 118 jiffies_64 += ticks; 119 120 /* Keep the tick_next_period variable up to date */ 121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 122 123 if (IS_ENABLED(CONFIG_64BIT)) { 124 /* 125 * Pairs with smp_load_acquire() in the lockless quick 126 * check above, and ensures that the update to 'jiffies_64' is 127 * not reordered vs. the store to 'tick_next_period', neither 128 * by the compiler nor by the CPU. 129 */ 130 smp_store_release(&tick_next_period, nextp); 131 } else { 132 /* 133 * A plain store is good enough on 32-bit, as the quick check 134 * above is protected by the sequence count. 135 */ 136 tick_next_period = nextp; 137 } 138 139 /* 140 * Release the sequence count. calc_global_load() below is not 141 * protected by it, but 'jiffies_lock' needs to be held to prevent 142 * concurrent invocations. 143 */ 144 write_seqcount_end(&jiffies_seq); 145 146 calc_global_load(); 147 148 raw_spin_unlock(&jiffies_lock); 149 update_wall_time(); 150 } 151 152 /* 153 * Initialize and return retrieve the jiffies update. 154 */ 155 static ktime_t tick_init_jiffy_update(void) 156 { 157 ktime_t period; 158 159 raw_spin_lock(&jiffies_lock); 160 write_seqcount_begin(&jiffies_seq); 161 162 /* Have we started the jiffies update yet ? */ 163 if (last_jiffies_update == 0) { 164 u32 rem; 165 166 /* 167 * Ensure that the tick is aligned to a multiple of 168 * TICK_NSEC. 169 */ 170 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 171 if (rem) 172 tick_next_period += TICK_NSEC - rem; 173 174 last_jiffies_update = tick_next_period; 175 } 176 period = last_jiffies_update; 177 178 write_seqcount_end(&jiffies_seq); 179 raw_spin_unlock(&jiffies_lock); 180 181 return period; 182 } 183 184 static inline int tick_sched_flag_test(struct tick_sched *ts, 185 unsigned long flag) 186 { 187 return !!(ts->flags & flag); 188 } 189 190 static inline void tick_sched_flag_set(struct tick_sched *ts, 191 unsigned long flag) 192 { 193 lockdep_assert_irqs_disabled(); 194 ts->flags |= flag; 195 } 196 197 static inline void tick_sched_flag_clear(struct tick_sched *ts, 198 unsigned long flag) 199 { 200 lockdep_assert_irqs_disabled(); 201 ts->flags &= ~flag; 202 } 203 204 #define MAX_STALLED_JIFFIES 5 205 206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 207 { 208 int tick_cpu, cpu = smp_processor_id(); 209 210 /* 211 * Check if the do_timer duty was dropped. We don't care about 212 * concurrency: This happens only when the CPU in charge went 213 * into a long sleep. If two CPUs happen to assign themselves to 214 * this duty, then the jiffies update is still serialized by 215 * 'jiffies_lock'. 216 * 217 * If nohz_full is enabled, this should not happen because the 218 * 'tick_do_timer_cpu' CPU never relinquishes. 219 */ 220 tick_cpu = READ_ONCE(tick_do_timer_cpu); 221 222 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) { 223 #ifdef CONFIG_NO_HZ_FULL 224 WARN_ON_ONCE(tick_nohz_full_running); 225 #endif 226 WRITE_ONCE(tick_do_timer_cpu, cpu); 227 tick_cpu = cpu; 228 } 229 230 /* Check if jiffies need an update */ 231 if (tick_cpu == cpu) 232 tick_do_update_jiffies64(now); 233 234 /* 235 * If the jiffies update stalled for too long (timekeeper in stop_machine() 236 * or VMEXIT'ed for several msecs), force an update. 237 */ 238 if (ts->last_tick_jiffies != jiffies) { 239 ts->stalled_jiffies = 0; 240 ts->last_tick_jiffies = READ_ONCE(jiffies); 241 } else { 242 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 243 tick_do_update_jiffies64(now); 244 ts->stalled_jiffies = 0; 245 ts->last_tick_jiffies = READ_ONCE(jiffies); 246 } 247 } 248 249 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 250 ts->got_idle_tick = 1; 251 } 252 253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 254 { 255 /* 256 * When we are idle and the tick is stopped, we have to touch 257 * the watchdog as we might not schedule for a really long 258 * time. This happens on completely idle SMP systems while 259 * waiting on the login prompt. We also increment the "start of 260 * idle" jiffy stamp so the idle accounting adjustment we do 261 * when we go busy again does not account too many ticks. 262 */ 263 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 264 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 265 touch_softlockup_watchdog_sched(); 266 if (is_idle_task(current)) 267 ts->idle_jiffies++; 268 /* 269 * In case the current tick fired too early past its expected 270 * expiration, make sure we don't bypass the next clock reprogramming 271 * to the same deadline. 272 */ 273 ts->next_tick = 0; 274 } 275 276 update_process_times(user_mode(regs)); 277 profile_tick(CPU_PROFILING); 278 } 279 280 /* 281 * We rearm the timer until we get disabled by the idle code. 282 * Called with interrupts disabled. 283 */ 284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) 285 { 286 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); 287 struct pt_regs *regs = get_irq_regs(); 288 ktime_t now = ktime_get(); 289 290 tick_sched_do_timer(ts, now); 291 292 /* 293 * Do not call when we are not in IRQ context and have 294 * no valid 'regs' pointer 295 */ 296 if (regs) 297 tick_sched_handle(ts, regs); 298 else 299 ts->next_tick = 0; 300 301 /* 302 * In dynticks mode, tick reprogram is deferred: 303 * - to the idle task if in dynticks-idle 304 * - to IRQ exit if in full-dynticks. 305 */ 306 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) 307 return HRTIMER_NORESTART; 308 309 hrtimer_forward(timer, now, TICK_NSEC); 310 311 return HRTIMER_RESTART; 312 } 313 314 static void tick_sched_timer_cancel(struct tick_sched *ts) 315 { 316 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 317 hrtimer_cancel(&ts->sched_timer); 318 else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 319 tick_program_event(KTIME_MAX, 1); 320 } 321 322 #ifdef CONFIG_NO_HZ_FULL 323 cpumask_var_t tick_nohz_full_mask; 324 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 325 bool tick_nohz_full_running; 326 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 327 static atomic_t tick_dep_mask; 328 329 static bool check_tick_dependency(atomic_t *dep) 330 { 331 int val = atomic_read(dep); 332 333 if (val & TICK_DEP_MASK_POSIX_TIMER) { 334 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 335 return true; 336 } 337 338 if (val & TICK_DEP_MASK_PERF_EVENTS) { 339 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 340 return true; 341 } 342 343 if (val & TICK_DEP_MASK_SCHED) { 344 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 345 return true; 346 } 347 348 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 349 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 350 return true; 351 } 352 353 if (val & TICK_DEP_MASK_RCU) { 354 trace_tick_stop(0, TICK_DEP_MASK_RCU); 355 return true; 356 } 357 358 if (val & TICK_DEP_MASK_RCU_EXP) { 359 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 360 return true; 361 } 362 363 return false; 364 } 365 366 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 367 { 368 lockdep_assert_irqs_disabled(); 369 370 if (unlikely(!cpu_online(cpu))) 371 return false; 372 373 if (check_tick_dependency(&tick_dep_mask)) 374 return false; 375 376 if (check_tick_dependency(&ts->tick_dep_mask)) 377 return false; 378 379 if (check_tick_dependency(¤t->tick_dep_mask)) 380 return false; 381 382 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 383 return false; 384 385 return true; 386 } 387 388 static void nohz_full_kick_func(struct irq_work *work) 389 { 390 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 391 } 392 393 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 394 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 395 396 /* 397 * Kick this CPU if it's full dynticks in order to force it to 398 * re-evaluate its dependency on the tick and restart it if necessary. 399 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 400 * is NMI safe. 401 */ 402 static void tick_nohz_full_kick(void) 403 { 404 if (!tick_nohz_full_cpu(smp_processor_id())) 405 return; 406 407 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 408 } 409 410 /* 411 * Kick the CPU if it's full dynticks in order to force it to 412 * re-evaluate its dependency on the tick and restart it if necessary. 413 */ 414 void tick_nohz_full_kick_cpu(int cpu) 415 { 416 if (!tick_nohz_full_cpu(cpu)) 417 return; 418 419 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 420 } 421 422 static void tick_nohz_kick_task(struct task_struct *tsk) 423 { 424 int cpu; 425 426 /* 427 * If the task is not running, run_posix_cpu_timers() 428 * has nothing to elapse, and an IPI can then be optimized out. 429 * 430 * activate_task() STORE p->tick_dep_mask 431 * STORE p->on_rq 432 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 433 * LOCK rq->lock LOAD p->on_rq 434 * smp_mb__after_spin_lock() 435 * tick_nohz_task_switch() 436 * LOAD p->tick_dep_mask 437 * 438 * XXX given a task picks up the dependency on schedule(), should we 439 * only care about tasks that are currently on the CPU instead of all 440 * that are on the runqueue? 441 * 442 * That is, does this want to be: task_on_cpu() / task_curr()? 443 */ 444 if (!sched_task_on_rq(tsk)) 445 return; 446 447 /* 448 * If the task concurrently migrates to another CPU, 449 * we guarantee it sees the new tick dependency upon 450 * schedule. 451 * 452 * set_task_cpu(p, cpu); 453 * STORE p->cpu = @cpu 454 * __schedule() (switch to task 'p') 455 * LOCK rq->lock 456 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 457 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 458 * LOAD p->tick_dep_mask LOAD p->cpu 459 */ 460 cpu = task_cpu(tsk); 461 462 preempt_disable(); 463 if (cpu_online(cpu)) 464 tick_nohz_full_kick_cpu(cpu); 465 preempt_enable(); 466 } 467 468 /* 469 * Kick all full dynticks CPUs in order to force these to re-evaluate 470 * their dependency on the tick and restart it if necessary. 471 */ 472 static void tick_nohz_full_kick_all(void) 473 { 474 int cpu; 475 476 if (!tick_nohz_full_running) 477 return; 478 479 preempt_disable(); 480 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 481 tick_nohz_full_kick_cpu(cpu); 482 preempt_enable(); 483 } 484 485 static void tick_nohz_dep_set_all(atomic_t *dep, 486 enum tick_dep_bits bit) 487 { 488 int prev; 489 490 prev = atomic_fetch_or(BIT(bit), dep); 491 if (!prev) 492 tick_nohz_full_kick_all(); 493 } 494 495 /* 496 * Set a global tick dependency. Used by perf events that rely on freq and 497 * unstable clocks. 498 */ 499 void tick_nohz_dep_set(enum tick_dep_bits bit) 500 { 501 tick_nohz_dep_set_all(&tick_dep_mask, bit); 502 } 503 504 void tick_nohz_dep_clear(enum tick_dep_bits bit) 505 { 506 atomic_andnot(BIT(bit), &tick_dep_mask); 507 } 508 509 /* 510 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 511 * manage event-throttling. 512 */ 513 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 514 { 515 int prev; 516 struct tick_sched *ts; 517 518 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 519 520 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 521 if (!prev) { 522 preempt_disable(); 523 /* Perf needs local kick that is NMI safe */ 524 if (cpu == smp_processor_id()) { 525 tick_nohz_full_kick(); 526 } else { 527 /* Remote IRQ work not NMI-safe */ 528 if (!WARN_ON_ONCE(in_nmi())) 529 tick_nohz_full_kick_cpu(cpu); 530 } 531 preempt_enable(); 532 } 533 } 534 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 535 536 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 537 { 538 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 539 540 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 541 } 542 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 543 544 /* 545 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 546 * in order to elapse per task timers. 547 */ 548 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 549 { 550 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 551 tick_nohz_kick_task(tsk); 552 } 553 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 554 555 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 556 { 557 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 558 } 559 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 560 561 /* 562 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 563 * per process timers. 564 */ 565 void tick_nohz_dep_set_signal(struct task_struct *tsk, 566 enum tick_dep_bits bit) 567 { 568 int prev; 569 struct signal_struct *sig = tsk->signal; 570 571 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 572 if (!prev) { 573 struct task_struct *t; 574 575 lockdep_assert_held(&tsk->sighand->siglock); 576 __for_each_thread(sig, t) 577 tick_nohz_kick_task(t); 578 } 579 } 580 581 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 582 { 583 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 584 } 585 586 /* 587 * Re-evaluate the need for the tick as we switch the current task. 588 * It might need the tick due to per task/process properties: 589 * perf events, posix CPU timers, ... 590 */ 591 void __tick_nohz_task_switch(void) 592 { 593 struct tick_sched *ts; 594 595 if (!tick_nohz_full_cpu(smp_processor_id())) 596 return; 597 598 ts = this_cpu_ptr(&tick_cpu_sched); 599 600 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 601 if (atomic_read(¤t->tick_dep_mask) || 602 atomic_read(¤t->signal->tick_dep_mask)) 603 tick_nohz_full_kick(); 604 } 605 } 606 607 /* Get the boot-time nohz CPU list from the kernel parameters. */ 608 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 609 { 610 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 611 cpumask_copy(tick_nohz_full_mask, cpumask); 612 tick_nohz_full_running = true; 613 } 614 615 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 616 { 617 /* 618 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 619 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 620 * CPUs. It must remain online when nohz full is enabled. 621 */ 622 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu) 623 return false; 624 return true; 625 } 626 627 static int tick_nohz_cpu_down(unsigned int cpu) 628 { 629 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 630 } 631 632 void __init tick_nohz_init(void) 633 { 634 int cpu, ret; 635 636 if (!tick_nohz_full_running) 637 return; 638 639 /* 640 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 641 * locking contexts. But then we need IRQ work to raise its own 642 * interrupts to avoid circular dependency on the tick. 643 */ 644 if (!arch_irq_work_has_interrupt()) { 645 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 646 cpumask_clear(tick_nohz_full_mask); 647 tick_nohz_full_running = false; 648 return; 649 } 650 651 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 652 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 653 cpu = smp_processor_id(); 654 655 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 656 pr_warn("NO_HZ: Clearing %d from nohz_full range " 657 "for timekeeping\n", cpu); 658 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 659 } 660 } 661 662 for_each_cpu(cpu, tick_nohz_full_mask) 663 ct_cpu_track_user(cpu); 664 665 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 666 "kernel/nohz:predown", NULL, 667 tick_nohz_cpu_down); 668 WARN_ON(ret < 0); 669 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 670 cpumask_pr_args(tick_nohz_full_mask)); 671 } 672 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 673 674 /* 675 * NOHZ - aka dynamic tick functionality 676 */ 677 #ifdef CONFIG_NO_HZ_COMMON 678 /* 679 * NO HZ enabled ? 680 */ 681 bool tick_nohz_enabled __read_mostly = true; 682 unsigned long tick_nohz_active __read_mostly; 683 /* 684 * Enable / Disable tickless mode 685 */ 686 static int __init setup_tick_nohz(char *str) 687 { 688 return (kstrtobool(str, &tick_nohz_enabled) == 0); 689 } 690 691 __setup("nohz=", setup_tick_nohz); 692 693 bool tick_nohz_tick_stopped(void) 694 { 695 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 696 697 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 698 } 699 700 bool tick_nohz_tick_stopped_cpu(int cpu) 701 { 702 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 703 704 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 705 } 706 707 /** 708 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 709 * @now: current ktime_t 710 * 711 * Called from interrupt entry when the CPU was idle 712 * 713 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 714 * must be updated. Otherwise an interrupt handler could use a stale jiffy 715 * value. We do this unconditionally on any CPU, as we don't know whether the 716 * CPU, which has the update task assigned, is in a long sleep. 717 */ 718 static void tick_nohz_update_jiffies(ktime_t now) 719 { 720 unsigned long flags; 721 722 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 723 724 local_irq_save(flags); 725 tick_do_update_jiffies64(now); 726 local_irq_restore(flags); 727 728 touch_softlockup_watchdog_sched(); 729 } 730 731 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 732 { 733 ktime_t delta; 734 735 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) 736 return; 737 738 delta = ktime_sub(now, ts->idle_entrytime); 739 740 write_seqcount_begin(&ts->idle_sleeptime_seq); 741 if (nr_iowait_cpu(smp_processor_id()) > 0) 742 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 743 else 744 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 745 746 ts->idle_entrytime = now; 747 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); 748 write_seqcount_end(&ts->idle_sleeptime_seq); 749 750 sched_clock_idle_wakeup_event(); 751 } 752 753 static void tick_nohz_start_idle(struct tick_sched *ts) 754 { 755 write_seqcount_begin(&ts->idle_sleeptime_seq); 756 ts->idle_entrytime = ktime_get(); 757 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); 758 write_seqcount_end(&ts->idle_sleeptime_seq); 759 760 sched_clock_idle_sleep_event(); 761 } 762 763 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 764 bool compute_delta, u64 *last_update_time) 765 { 766 ktime_t now, idle; 767 unsigned int seq; 768 769 if (!tick_nohz_active) 770 return -1; 771 772 now = ktime_get(); 773 if (last_update_time) 774 *last_update_time = ktime_to_us(now); 775 776 do { 777 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 778 779 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { 780 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 781 782 idle = ktime_add(*sleeptime, delta); 783 } else { 784 idle = *sleeptime; 785 } 786 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 787 788 return ktime_to_us(idle); 789 790 } 791 792 /** 793 * get_cpu_idle_time_us - get the total idle time of a CPU 794 * @cpu: CPU number to query 795 * @last_update_time: variable to store update time in. Do not update 796 * counters if NULL. 797 * 798 * Return the cumulative idle time (since boot) for a given 799 * CPU, in microseconds. Note that this is partially broken due to 800 * the counter of iowait tasks that can be remotely updated without 801 * any synchronization. Therefore it is possible to observe backward 802 * values within two consecutive reads. 803 * 804 * This time is measured via accounting rather than sampling, 805 * and is as accurate as ktime_get() is. 806 * 807 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu 808 */ 809 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 810 { 811 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 812 813 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 814 !nr_iowait_cpu(cpu), last_update_time); 815 } 816 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 817 818 /** 819 * get_cpu_iowait_time_us - get the total iowait time of a CPU 820 * @cpu: CPU number to query 821 * @last_update_time: variable to store update time in. Do not update 822 * counters if NULL. 823 * 824 * Return the cumulative iowait time (since boot) for a given 825 * CPU, in microseconds. Note this is partially broken due to 826 * the counter of iowait tasks that can be remotely updated without 827 * any synchronization. Therefore it is possible to observe backward 828 * values within two consecutive reads. 829 * 830 * This time is measured via accounting rather than sampling, 831 * and is as accurate as ktime_get() is. 832 * 833 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu 834 */ 835 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 836 { 837 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 838 839 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 840 nr_iowait_cpu(cpu), last_update_time); 841 } 842 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 843 844 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 845 { 846 hrtimer_cancel(&ts->sched_timer); 847 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 848 849 /* Forward the time to expire in the future */ 850 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 851 852 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 853 hrtimer_start_expires(&ts->sched_timer, 854 HRTIMER_MODE_ABS_PINNED_HARD); 855 } else { 856 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 857 } 858 859 /* 860 * Reset to make sure the next tick stop doesn't get fooled by past 861 * cached clock deadline. 862 */ 863 ts->next_tick = 0; 864 } 865 866 static inline bool local_timer_softirq_pending(void) 867 { 868 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 869 } 870 871 /* 872 * Read jiffies and the time when jiffies were updated last 873 */ 874 u64 get_jiffies_update(unsigned long *basej) 875 { 876 unsigned long basejiff; 877 unsigned int seq; 878 u64 basemono; 879 880 do { 881 seq = read_seqcount_begin(&jiffies_seq); 882 basemono = last_jiffies_update; 883 basejiff = jiffies; 884 } while (read_seqcount_retry(&jiffies_seq, seq)); 885 *basej = basejiff; 886 return basemono; 887 } 888 889 /** 890 * tick_nohz_next_event() - return the clock monotonic based next event 891 * @ts: pointer to tick_sched struct 892 * @cpu: CPU number 893 * 894 * Return: 895 * *%0 - When the next event is a maximum of TICK_NSEC in the future 896 * and the tick is not stopped yet 897 * *%next_event - Next event based on clock monotonic 898 */ 899 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 900 { 901 u64 basemono, next_tick, delta, expires; 902 unsigned long basejiff; 903 int tick_cpu; 904 905 basemono = get_jiffies_update(&basejiff); 906 ts->last_jiffies = basejiff; 907 ts->timer_expires_base = basemono; 908 909 /* 910 * Keep the periodic tick, when RCU, architecture or irq_work 911 * requests it. 912 * Aside of that, check whether the local timer softirq is 913 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 914 * because there is an already expired timer, so it will request 915 * immediate expiry, which rearms the hardware timer with a 916 * minimal delta, which brings us back to this place 917 * immediately. Lather, rinse and repeat... 918 */ 919 if (rcu_needs_cpu() || arch_needs_cpu() || 920 irq_work_needs_cpu() || local_timer_softirq_pending()) { 921 next_tick = basemono + TICK_NSEC; 922 } else { 923 /* 924 * Get the next pending timer. If high resolution 925 * timers are enabled this only takes the timer wheel 926 * timers into account. If high resolution timers are 927 * disabled this also looks at the next expiring 928 * hrtimer. 929 */ 930 next_tick = get_next_timer_interrupt(basejiff, basemono); 931 ts->next_timer = next_tick; 932 } 933 934 /* Make sure next_tick is never before basemono! */ 935 if (WARN_ON_ONCE(basemono > next_tick)) 936 next_tick = basemono; 937 938 /* 939 * If the tick is due in the next period, keep it ticking or 940 * force prod the timer. 941 */ 942 delta = next_tick - basemono; 943 if (delta <= (u64)TICK_NSEC) { 944 /* 945 * We've not stopped the tick yet, and there's a timer in the 946 * next period, so no point in stopping it either, bail. 947 */ 948 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 949 ts->timer_expires = 0; 950 goto out; 951 } 952 } 953 954 /* 955 * If this CPU is the one which had the do_timer() duty last, we limit 956 * the sleep time to the timekeeping 'max_deferment' value. 957 * Otherwise we can sleep as long as we want. 958 */ 959 delta = timekeeping_max_deferment(); 960 tick_cpu = READ_ONCE(tick_do_timer_cpu); 961 if (tick_cpu != cpu && 962 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) 963 delta = KTIME_MAX; 964 965 /* Calculate the next expiry time */ 966 if (delta < (KTIME_MAX - basemono)) 967 expires = basemono + delta; 968 else 969 expires = KTIME_MAX; 970 971 ts->timer_expires = min_t(u64, expires, next_tick); 972 973 out: 974 return ts->timer_expires; 975 } 976 977 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 978 { 979 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 980 unsigned long basejiff = ts->last_jiffies; 981 u64 basemono = ts->timer_expires_base; 982 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 983 int tick_cpu; 984 u64 expires; 985 986 /* Make sure we won't be trying to stop it twice in a row. */ 987 ts->timer_expires_base = 0; 988 989 /* 990 * Now the tick should be stopped definitely - so the timer base needs 991 * to be marked idle as well to not miss a newly queued timer. 992 */ 993 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); 994 if (expires > ts->timer_expires) { 995 /* 996 * This path could only happen when the first timer was removed 997 * between calculating the possible sleep length and now (when 998 * high resolution mode is not active, timer could also be a 999 * hrtimer). 1000 * 1001 * We have to stick to the original calculated expiry value to 1002 * not stop the tick for too long with a shallow C-state (which 1003 * was programmed by cpuidle because of an early next expiration 1004 * value). 1005 */ 1006 expires = ts->timer_expires; 1007 } 1008 1009 /* If the timer base is not idle, retain the not yet stopped tick. */ 1010 if (!timer_idle) 1011 return; 1012 1013 /* 1014 * If this CPU is the one which updates jiffies, then give up 1015 * the assignment and let it be taken by the CPU which runs 1016 * the tick timer next, which might be this CPU as well. If we 1017 * don't drop this here, the jiffies might be stale and 1018 * do_timer() never gets invoked. Keep track of the fact that it 1019 * was the one which had the do_timer() duty last. 1020 */ 1021 tick_cpu = READ_ONCE(tick_do_timer_cpu); 1022 if (tick_cpu == cpu) { 1023 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE); 1024 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); 1025 } else if (tick_cpu != TICK_DO_TIMER_NONE) { 1026 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); 1027 } 1028 1029 /* Skip reprogram of event if it's not changed */ 1030 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { 1031 /* Sanity check: make sure clockevent is actually programmed */ 1032 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 1033 return; 1034 1035 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu " 1036 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, 1037 dev->next_event, hrtimer_active(&ts->sched_timer), 1038 hrtimer_get_expires(&ts->sched_timer)); 1039 } 1040 1041 /* 1042 * tick_nohz_stop_tick() can be called several times before 1043 * tick_nohz_restart_sched_tick() is called. This happens when 1044 * interrupts arrive which do not cause a reschedule. In the first 1045 * call we save the current tick time, so we can restart the 1046 * scheduler tick in tick_nohz_restart_sched_tick(). 1047 */ 1048 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1049 calc_load_nohz_start(); 1050 quiet_vmstat(); 1051 1052 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 1053 tick_sched_flag_set(ts, TS_FLAG_STOPPED); 1054 trace_tick_stop(1, TICK_DEP_MASK_NONE); 1055 } 1056 1057 ts->next_tick = expires; 1058 1059 /* 1060 * If the expiration time == KTIME_MAX, then we simply stop 1061 * the tick timer. 1062 */ 1063 if (unlikely(expires == KTIME_MAX)) { 1064 tick_sched_timer_cancel(ts); 1065 return; 1066 } 1067 1068 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 1069 hrtimer_start(&ts->sched_timer, expires, 1070 HRTIMER_MODE_ABS_PINNED_HARD); 1071 } else { 1072 hrtimer_set_expires(&ts->sched_timer, expires); 1073 tick_program_event(expires, 1); 1074 } 1075 } 1076 1077 static void tick_nohz_retain_tick(struct tick_sched *ts) 1078 { 1079 ts->timer_expires_base = 0; 1080 } 1081 1082 #ifdef CONFIG_NO_HZ_FULL 1083 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) 1084 { 1085 if (tick_nohz_next_event(ts, cpu)) 1086 tick_nohz_stop_tick(ts, cpu); 1087 else 1088 tick_nohz_retain_tick(ts); 1089 } 1090 #endif /* CONFIG_NO_HZ_FULL */ 1091 1092 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 1093 { 1094 /* Update jiffies first */ 1095 tick_do_update_jiffies64(now); 1096 1097 /* 1098 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 1099 * the clock forward checks in the enqueue path: 1100 */ 1101 timer_clear_idle(); 1102 1103 calc_load_nohz_stop(); 1104 touch_softlockup_watchdog_sched(); 1105 1106 /* Cancel the scheduled timer and restore the tick: */ 1107 tick_sched_flag_clear(ts, TS_FLAG_STOPPED); 1108 tick_nohz_restart(ts, now); 1109 } 1110 1111 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 1112 ktime_t now) 1113 { 1114 #ifdef CONFIG_NO_HZ_FULL 1115 int cpu = smp_processor_id(); 1116 1117 if (can_stop_full_tick(cpu, ts)) 1118 tick_nohz_full_stop_tick(ts, cpu); 1119 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1120 tick_nohz_restart_sched_tick(ts, now); 1121 #endif 1122 } 1123 1124 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1125 { 1126 if (!tick_nohz_full_cpu(smp_processor_id())) 1127 return; 1128 1129 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1130 return; 1131 1132 __tick_nohz_full_update_tick(ts, ktime_get()); 1133 } 1134 1135 /* 1136 * A pending softirq outside an IRQ (or softirq disabled section) context 1137 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1138 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1139 * 1140 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1141 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1142 * triggering the code below, since wakep_softirqd() is ignored. 1143 * 1144 */ 1145 static bool report_idle_softirq(void) 1146 { 1147 static int ratelimit; 1148 unsigned int pending = local_softirq_pending(); 1149 1150 if (likely(!pending)) 1151 return false; 1152 1153 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1154 if (!cpu_active(smp_processor_id())) { 1155 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1156 if (!pending) 1157 return false; 1158 } 1159 1160 if (ratelimit >= 10) 1161 return false; 1162 1163 /* On RT, softirq handling may be waiting on some lock */ 1164 if (local_bh_blocked()) 1165 return false; 1166 1167 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1168 pending); 1169 ratelimit++; 1170 1171 return true; 1172 } 1173 1174 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1175 { 1176 WARN_ON_ONCE(cpu_is_offline(cpu)); 1177 1178 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) 1179 return false; 1180 1181 if (need_resched()) 1182 return false; 1183 1184 if (unlikely(report_idle_softirq())) 1185 return false; 1186 1187 if (tick_nohz_full_enabled()) { 1188 int tick_cpu = READ_ONCE(tick_do_timer_cpu); 1189 1190 /* 1191 * Keep the tick alive to guarantee timekeeping progression 1192 * if there are full dynticks CPUs around 1193 */ 1194 if (tick_cpu == cpu) 1195 return false; 1196 1197 /* Should not happen for nohz-full */ 1198 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE)) 1199 return false; 1200 } 1201 1202 return true; 1203 } 1204 1205 /** 1206 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1207 * 1208 * When the next event is more than a tick into the future, stop the idle tick 1209 */ 1210 void tick_nohz_idle_stop_tick(void) 1211 { 1212 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1213 int cpu = smp_processor_id(); 1214 ktime_t expires; 1215 1216 /* 1217 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1218 * tick timer expiration time is known already. 1219 */ 1220 if (ts->timer_expires_base) 1221 expires = ts->timer_expires; 1222 else if (can_stop_idle_tick(cpu, ts)) 1223 expires = tick_nohz_next_event(ts, cpu); 1224 else 1225 return; 1226 1227 ts->idle_calls++; 1228 1229 if (expires > 0LL) { 1230 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1231 1232 tick_nohz_stop_tick(ts, cpu); 1233 1234 ts->idle_sleeps++; 1235 ts->idle_expires = expires; 1236 1237 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1238 ts->idle_jiffies = ts->last_jiffies; 1239 nohz_balance_enter_idle(cpu); 1240 } 1241 } else { 1242 tick_nohz_retain_tick(ts); 1243 } 1244 } 1245 1246 void tick_nohz_idle_retain_tick(void) 1247 { 1248 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1249 } 1250 1251 /** 1252 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1253 * 1254 * Called when we start the idle loop. 1255 */ 1256 void tick_nohz_idle_enter(void) 1257 { 1258 struct tick_sched *ts; 1259 1260 lockdep_assert_irqs_enabled(); 1261 1262 local_irq_disable(); 1263 1264 ts = this_cpu_ptr(&tick_cpu_sched); 1265 1266 WARN_ON_ONCE(ts->timer_expires_base); 1267 1268 tick_sched_flag_set(ts, TS_FLAG_INIDLE); 1269 tick_nohz_start_idle(ts); 1270 1271 local_irq_enable(); 1272 } 1273 1274 /** 1275 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1276 * 1277 * A timer may have been added/modified/deleted either by the current IRQ, 1278 * or by another place using this IRQ as a notification. This IRQ may have 1279 * also updated the RCU callback list. These events may require a 1280 * re-evaluation of the next tick. Depending on the context: 1281 * 1282 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1283 * time accounting. The next tick will be re-evaluated on the next idle 1284 * loop iteration. 1285 * 1286 * 2) If the CPU is nohz_full: 1287 * 1288 * 2.1) If there is any tick dependency, restart the tick if stopped. 1289 * 1290 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1291 * stop/update it accordingly. 1292 */ 1293 void tick_nohz_irq_exit(void) 1294 { 1295 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1296 1297 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 1298 tick_nohz_start_idle(ts); 1299 else 1300 tick_nohz_full_update_tick(ts); 1301 } 1302 1303 /** 1304 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1305 * 1306 * Return: %true if the tick handler has run, otherwise %false 1307 */ 1308 bool tick_nohz_idle_got_tick(void) 1309 { 1310 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1311 1312 if (ts->got_idle_tick) { 1313 ts->got_idle_tick = 0; 1314 return true; 1315 } 1316 return false; 1317 } 1318 1319 /** 1320 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1321 * or the tick, whichever expires first. Note that, if the tick has been 1322 * stopped, it returns the next hrtimer. 1323 * 1324 * Called from power state control code with interrupts disabled 1325 * 1326 * Return: the next expiration time 1327 */ 1328 ktime_t tick_nohz_get_next_hrtimer(void) 1329 { 1330 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1331 } 1332 1333 /** 1334 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1335 * @delta_next: duration until the next event if the tick cannot be stopped 1336 * 1337 * Called from power state control code with interrupts disabled. 1338 * 1339 * The return value of this function and/or the value returned by it through the 1340 * @delta_next pointer can be negative which must be taken into account by its 1341 * callers. 1342 * 1343 * Return: the expected length of the current sleep 1344 */ 1345 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1346 { 1347 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1348 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1349 int cpu = smp_processor_id(); 1350 /* 1351 * The idle entry time is expected to be a sufficient approximation of 1352 * the current time at this point. 1353 */ 1354 ktime_t now = ts->idle_entrytime; 1355 ktime_t next_event; 1356 1357 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1358 1359 *delta_next = ktime_sub(dev->next_event, now); 1360 1361 if (!can_stop_idle_tick(cpu, ts)) 1362 return *delta_next; 1363 1364 next_event = tick_nohz_next_event(ts, cpu); 1365 if (!next_event) 1366 return *delta_next; 1367 1368 /* 1369 * If the next highres timer to expire is earlier than 'next_event', the 1370 * idle governor needs to know that. 1371 */ 1372 next_event = min_t(u64, next_event, 1373 hrtimer_next_event_without(&ts->sched_timer)); 1374 1375 return ktime_sub(next_event, now); 1376 } 1377 1378 /** 1379 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1380 * for a particular CPU. 1381 * @cpu: target CPU number 1382 * 1383 * Called from the schedutil frequency scaling governor in scheduler context. 1384 * 1385 * Return: the current idle calls counter value for @cpu 1386 */ 1387 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1388 { 1389 struct tick_sched *ts = tick_get_tick_sched(cpu); 1390 1391 return ts->idle_calls; 1392 } 1393 1394 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1395 ktime_t now) 1396 { 1397 unsigned long ticks; 1398 1399 ts->idle_exittime = now; 1400 1401 if (vtime_accounting_enabled_this_cpu()) 1402 return; 1403 /* 1404 * We stopped the tick in idle. update_process_times() would miss the 1405 * time we slept, as it does only a 1 tick accounting. 1406 * Enforce that this is accounted to idle ! 1407 */ 1408 ticks = jiffies - ts->idle_jiffies; 1409 /* 1410 * We might be one off. Do not randomly account a huge number of ticks! 1411 */ 1412 if (ticks && ticks < LONG_MAX) 1413 account_idle_ticks(ticks); 1414 } 1415 1416 void tick_nohz_idle_restart_tick(void) 1417 { 1418 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1419 1420 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1421 ktime_t now = ktime_get(); 1422 tick_nohz_restart_sched_tick(ts, now); 1423 tick_nohz_account_idle_time(ts, now); 1424 } 1425 } 1426 1427 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1428 { 1429 if (tick_nohz_full_cpu(smp_processor_id())) 1430 __tick_nohz_full_update_tick(ts, now); 1431 else 1432 tick_nohz_restart_sched_tick(ts, now); 1433 1434 tick_nohz_account_idle_time(ts, now); 1435 } 1436 1437 /** 1438 * tick_nohz_idle_exit - Update the tick upon idle task exit 1439 * 1440 * When the idle task exits, update the tick depending on the 1441 * following situations: 1442 * 1443 * 1) If the CPU is not in nohz_full mode (most cases), then 1444 * restart the tick. 1445 * 1446 * 2) If the CPU is in nohz_full mode (corner case): 1447 * 2.1) If the tick can be kept stopped (no tick dependencies) 1448 * then re-evaluate the next tick and try to keep it stopped 1449 * as long as possible. 1450 * 2.2) If the tick has dependencies, restart the tick. 1451 * 1452 */ 1453 void tick_nohz_idle_exit(void) 1454 { 1455 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1456 bool idle_active, tick_stopped; 1457 ktime_t now; 1458 1459 local_irq_disable(); 1460 1461 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1462 WARN_ON_ONCE(ts->timer_expires_base); 1463 1464 tick_sched_flag_clear(ts, TS_FLAG_INIDLE); 1465 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); 1466 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1467 1468 if (idle_active || tick_stopped) 1469 now = ktime_get(); 1470 1471 if (idle_active) 1472 tick_nohz_stop_idle(ts, now); 1473 1474 if (tick_stopped) 1475 tick_nohz_idle_update_tick(ts, now); 1476 1477 local_irq_enable(); 1478 } 1479 1480 /* 1481 * In low-resolution mode, the tick handler must be implemented directly 1482 * at the clockevent level. hrtimer can't be used instead, because its 1483 * infrastructure actually relies on the tick itself as a backend in 1484 * low-resolution mode (see hrtimer_run_queues()). 1485 */ 1486 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1487 { 1488 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1489 1490 dev->next_event = KTIME_MAX; 1491 1492 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) 1493 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1494 } 1495 1496 static inline void tick_nohz_activate(struct tick_sched *ts) 1497 { 1498 if (!tick_nohz_enabled) 1499 return; 1500 tick_sched_flag_set(ts, TS_FLAG_NOHZ); 1501 /* One update is enough */ 1502 if (!test_and_set_bit(0, &tick_nohz_active)) 1503 timers_update_nohz(); 1504 } 1505 1506 /** 1507 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1508 */ 1509 static void tick_nohz_switch_to_nohz(void) 1510 { 1511 if (!tick_nohz_enabled) 1512 return; 1513 1514 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1515 return; 1516 1517 /* 1518 * Recycle the hrtimer in 'ts', so we can share the 1519 * highres code. 1520 */ 1521 tick_setup_sched_timer(false); 1522 } 1523 1524 static inline void tick_nohz_irq_enter(void) 1525 { 1526 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1527 ktime_t now; 1528 1529 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) 1530 return; 1531 now = ktime_get(); 1532 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) 1533 tick_nohz_stop_idle(ts, now); 1534 /* 1535 * If all CPUs are idle we may need to update a stale jiffies value. 1536 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1537 * alive but it might be busy looping with interrupts disabled in some 1538 * rare case (typically stop machine). So we must make sure we have a 1539 * last resort. 1540 */ 1541 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1542 tick_nohz_update_jiffies(now); 1543 } 1544 1545 #else 1546 1547 static inline void tick_nohz_switch_to_nohz(void) { } 1548 static inline void tick_nohz_irq_enter(void) { } 1549 static inline void tick_nohz_activate(struct tick_sched *ts) { } 1550 1551 #endif /* CONFIG_NO_HZ_COMMON */ 1552 1553 /* 1554 * Called from irq_enter() to notify about the possible interruption of idle() 1555 */ 1556 void tick_irq_enter(void) 1557 { 1558 tick_check_oneshot_broadcast_this_cpu(); 1559 tick_nohz_irq_enter(); 1560 } 1561 1562 static int sched_skew_tick; 1563 1564 static int __init skew_tick(char *str) 1565 { 1566 get_option(&str, &sched_skew_tick); 1567 1568 return 0; 1569 } 1570 early_param("skew_tick", skew_tick); 1571 1572 /** 1573 * tick_setup_sched_timer - setup the tick emulation timer 1574 * @hrtimer: whether to use the hrtimer or not 1575 */ 1576 void tick_setup_sched_timer(bool hrtimer) 1577 { 1578 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1579 1580 /* Emulate tick processing via per-CPU hrtimers: */ 1581 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1582 1583 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) { 1584 tick_sched_flag_set(ts, TS_FLAG_HIGHRES); 1585 ts->sched_timer.function = tick_nohz_handler; 1586 } 1587 1588 /* Get the next period (per-CPU) */ 1589 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1590 1591 /* Offset the tick to avert 'jiffies_lock' contention. */ 1592 if (sched_skew_tick) { 1593 u64 offset = TICK_NSEC >> 1; 1594 do_div(offset, num_possible_cpus()); 1595 offset *= smp_processor_id(); 1596 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1597 } 1598 1599 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1600 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1601 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1602 else 1603 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1604 tick_nohz_activate(ts); 1605 } 1606 1607 /* 1608 * Shut down the tick and make sure the CPU won't try to retake the timekeeping 1609 * duty before disabling IRQs in idle for the last time. 1610 */ 1611 void tick_sched_timer_dying(int cpu) 1612 { 1613 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 1614 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1615 struct clock_event_device *dev = td->evtdev; 1616 ktime_t idle_sleeptime, iowait_sleeptime; 1617 unsigned long idle_calls, idle_sleeps; 1618 1619 /* This must happen before hrtimers are migrated! */ 1620 tick_sched_timer_cancel(ts); 1621 1622 /* 1623 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED, 1624 * make sure not to call low-res tick handler. 1625 */ 1626 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1627 dev->event_handler = clockevents_handle_noop; 1628 1629 idle_sleeptime = ts->idle_sleeptime; 1630 iowait_sleeptime = ts->iowait_sleeptime; 1631 idle_calls = ts->idle_calls; 1632 idle_sleeps = ts->idle_sleeps; 1633 memset(ts, 0, sizeof(*ts)); 1634 ts->idle_sleeptime = idle_sleeptime; 1635 ts->iowait_sleeptime = iowait_sleeptime; 1636 ts->idle_calls = idle_calls; 1637 ts->idle_sleeps = idle_sleeps; 1638 } 1639 1640 /* 1641 * Async notification about clocksource changes 1642 */ 1643 void tick_clock_notify(void) 1644 { 1645 int cpu; 1646 1647 for_each_possible_cpu(cpu) 1648 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1649 } 1650 1651 /* 1652 * Async notification about clock event changes 1653 */ 1654 void tick_oneshot_notify(void) 1655 { 1656 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1657 1658 set_bit(0, &ts->check_clocks); 1659 } 1660 1661 /* 1662 * Check if a change happened, which makes oneshot possible. 1663 * 1664 * Called cyclically from the hrtimer softirq (driven by the timer 1665 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1666 * mode, because high resolution timers are disabled (either compile 1667 * or runtime). Called with interrupts disabled. 1668 */ 1669 int tick_check_oneshot_change(int allow_nohz) 1670 { 1671 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1672 1673 if (!test_and_clear_bit(0, &ts->check_clocks)) 1674 return 0; 1675 1676 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1677 return 0; 1678 1679 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1680 return 0; 1681 1682 if (!allow_nohz) 1683 return 1; 1684 1685 tick_nohz_switch_to_nohz(); 1686 return 0; 1687 } 1688