xref: /linux/kernel/time/tick-sched.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	}
88 	write_sequnlock(&jiffies_lock);
89 	update_wall_time();
90 }
91 
92 /*
93  * Initialize and return retrieve the jiffies update.
94  */
95 static ktime_t tick_init_jiffy_update(void)
96 {
97 	ktime_t period;
98 
99 	write_seqlock(&jiffies_lock);
100 	/* Did we start the jiffies update yet ? */
101 	if (last_jiffies_update.tv64 == 0)
102 		last_jiffies_update = tick_next_period;
103 	period = last_jiffies_update;
104 	write_sequnlock(&jiffies_lock);
105 	return period;
106 }
107 
108 
109 static void tick_sched_do_timer(ktime_t now)
110 {
111 	int cpu = smp_processor_id();
112 
113 #ifdef CONFIG_NO_HZ_COMMON
114 	/*
115 	 * Check if the do_timer duty was dropped. We don't care about
116 	 * concurrency: This happens only when the cpu in charge went
117 	 * into a long sleep. If two cpus happen to assign themself to
118 	 * this duty, then the jiffies update is still serialized by
119 	 * jiffies_lock.
120 	 */
121 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
122 	    && !tick_nohz_full_cpu(cpu))
123 		tick_do_timer_cpu = cpu;
124 #endif
125 
126 	/* Check, if the jiffies need an update */
127 	if (tick_do_timer_cpu == cpu)
128 		tick_do_update_jiffies64(now);
129 }
130 
131 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
132 {
133 #ifdef CONFIG_NO_HZ_COMMON
134 	/*
135 	 * When we are idle and the tick is stopped, we have to touch
136 	 * the watchdog as we might not schedule for a really long
137 	 * time. This happens on complete idle SMP systems while
138 	 * waiting on the login prompt. We also increment the "start of
139 	 * idle" jiffy stamp so the idle accounting adjustment we do
140 	 * when we go busy again does not account too much ticks.
141 	 */
142 	if (ts->tick_stopped) {
143 		touch_softlockup_watchdog();
144 		if (is_idle_task(current))
145 			ts->idle_jiffies++;
146 	}
147 #endif
148 	update_process_times(user_mode(regs));
149 	profile_tick(CPU_PROFILING);
150 }
151 
152 #ifdef CONFIG_NO_HZ_FULL
153 cpumask_var_t tick_nohz_full_mask;
154 bool tick_nohz_full_running;
155 
156 static bool can_stop_full_tick(void)
157 {
158 	WARN_ON_ONCE(!irqs_disabled());
159 
160 	if (!sched_can_stop_tick()) {
161 		trace_tick_stop(0, "more than 1 task in runqueue\n");
162 		return false;
163 	}
164 
165 	if (!posix_cpu_timers_can_stop_tick(current)) {
166 		trace_tick_stop(0, "posix timers running\n");
167 		return false;
168 	}
169 
170 	if (!perf_event_can_stop_tick()) {
171 		trace_tick_stop(0, "perf events running\n");
172 		return false;
173 	}
174 
175 	/* sched_clock_tick() needs us? */
176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
177 	/*
178 	 * TODO: kick full dynticks CPUs when
179 	 * sched_clock_stable is set.
180 	 */
181 	if (!sched_clock_stable()) {
182 		trace_tick_stop(0, "unstable sched clock\n");
183 		/*
184 		 * Don't allow the user to think they can get
185 		 * full NO_HZ with this machine.
186 		 */
187 		WARN_ONCE(tick_nohz_full_running,
188 			  "NO_HZ FULL will not work with unstable sched clock");
189 		return false;
190 	}
191 #endif
192 
193 	return true;
194 }
195 
196 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
197 
198 /*
199  * Re-evaluate the need for the tick on the current CPU
200  * and restart it if necessary.
201  */
202 void __tick_nohz_full_check(void)
203 {
204 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
205 
206 	if (tick_nohz_full_cpu(smp_processor_id())) {
207 		if (ts->tick_stopped && !is_idle_task(current)) {
208 			if (!can_stop_full_tick())
209 				tick_nohz_restart_sched_tick(ts, ktime_get());
210 		}
211 	}
212 }
213 
214 static void nohz_full_kick_work_func(struct irq_work *work)
215 {
216 	__tick_nohz_full_check();
217 }
218 
219 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
220 	.func = nohz_full_kick_work_func,
221 };
222 
223 /*
224  * Kick the current CPU if it's full dynticks in order to force it to
225  * re-evaluate its dependency on the tick and restart it if necessary.
226  */
227 void tick_nohz_full_kick(void)
228 {
229 	if (tick_nohz_full_cpu(smp_processor_id()))
230 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
231 }
232 
233 static void nohz_full_kick_ipi(void *info)
234 {
235 	__tick_nohz_full_check();
236 }
237 
238 /*
239  * Kick all full dynticks CPUs in order to force these to re-evaluate
240  * their dependency on the tick and restart it if necessary.
241  */
242 void tick_nohz_full_kick_all(void)
243 {
244 	if (!tick_nohz_full_running)
245 		return;
246 
247 	preempt_disable();
248 	smp_call_function_many(tick_nohz_full_mask,
249 			       nohz_full_kick_ipi, NULL, false);
250 	tick_nohz_full_kick();
251 	preempt_enable();
252 }
253 
254 /*
255  * Re-evaluate the need for the tick as we switch the current task.
256  * It might need the tick due to per task/process properties:
257  * perf events, posix cpu timers, ...
258  */
259 void __tick_nohz_task_switch(struct task_struct *tsk)
260 {
261 	unsigned long flags;
262 
263 	local_irq_save(flags);
264 
265 	if (!tick_nohz_full_cpu(smp_processor_id()))
266 		goto out;
267 
268 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
269 		tick_nohz_full_kick();
270 
271 out:
272 	local_irq_restore(flags);
273 }
274 
275 /* Parse the boot-time nohz CPU list from the kernel parameters. */
276 static int __init tick_nohz_full_setup(char *str)
277 {
278 	int cpu;
279 
280 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
281 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
282 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
283 		return 1;
284 	}
285 
286 	cpu = smp_processor_id();
287 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
288 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
289 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
290 	}
291 	tick_nohz_full_running = true;
292 
293 	return 1;
294 }
295 __setup("nohz_full=", tick_nohz_full_setup);
296 
297 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
298 						 unsigned long action,
299 						 void *hcpu)
300 {
301 	unsigned int cpu = (unsigned long)hcpu;
302 
303 	switch (action & ~CPU_TASKS_FROZEN) {
304 	case CPU_DOWN_PREPARE:
305 		/*
306 		 * If we handle the timekeeping duty for full dynticks CPUs,
307 		 * we can't safely shutdown that CPU.
308 		 */
309 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
310 			return NOTIFY_BAD;
311 		break;
312 	}
313 	return NOTIFY_OK;
314 }
315 
316 /*
317  * Worst case string length in chunks of CPU range seems 2 steps
318  * separations: 0,2,4,6,...
319  * This is NR_CPUS + sizeof('\0')
320  */
321 static char __initdata nohz_full_buf[NR_CPUS + 1];
322 
323 static int tick_nohz_init_all(void)
324 {
325 	int err = -1;
326 
327 #ifdef CONFIG_NO_HZ_FULL_ALL
328 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
329 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
330 		return err;
331 	}
332 	err = 0;
333 	cpumask_setall(tick_nohz_full_mask);
334 	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
335 	tick_nohz_full_running = true;
336 #endif
337 	return err;
338 }
339 
340 void __init tick_nohz_init(void)
341 {
342 	int cpu;
343 
344 	if (!tick_nohz_full_running) {
345 		if (tick_nohz_init_all() < 0)
346 			return;
347 	}
348 
349 	for_each_cpu(cpu, tick_nohz_full_mask)
350 		context_tracking_cpu_set(cpu);
351 
352 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
353 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
354 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
355 }
356 #endif
357 
358 /*
359  * NOHZ - aka dynamic tick functionality
360  */
361 #ifdef CONFIG_NO_HZ_COMMON
362 /*
363  * NO HZ enabled ?
364  */
365 static int tick_nohz_enabled __read_mostly  = 1;
366 int tick_nohz_active  __read_mostly;
367 /*
368  * Enable / Disable tickless mode
369  */
370 static int __init setup_tick_nohz(char *str)
371 {
372 	if (!strcmp(str, "off"))
373 		tick_nohz_enabled = 0;
374 	else if (!strcmp(str, "on"))
375 		tick_nohz_enabled = 1;
376 	else
377 		return 0;
378 	return 1;
379 }
380 
381 __setup("nohz=", setup_tick_nohz);
382 
383 /**
384  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
385  *
386  * Called from interrupt entry when the CPU was idle
387  *
388  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
389  * must be updated. Otherwise an interrupt handler could use a stale jiffy
390  * value. We do this unconditionally on any cpu, as we don't know whether the
391  * cpu, which has the update task assigned is in a long sleep.
392  */
393 static void tick_nohz_update_jiffies(ktime_t now)
394 {
395 	unsigned long flags;
396 
397 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
398 
399 	local_irq_save(flags);
400 	tick_do_update_jiffies64(now);
401 	local_irq_restore(flags);
402 
403 	touch_softlockup_watchdog();
404 }
405 
406 /*
407  * Updates the per cpu time idle statistics counters
408  */
409 static void
410 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
411 {
412 	ktime_t delta;
413 
414 	if (ts->idle_active) {
415 		delta = ktime_sub(now, ts->idle_entrytime);
416 		if (nr_iowait_cpu(cpu) > 0)
417 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
418 		else
419 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
420 		ts->idle_entrytime = now;
421 	}
422 
423 	if (last_update_time)
424 		*last_update_time = ktime_to_us(now);
425 
426 }
427 
428 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
429 {
430 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
431 	ts->idle_active = 0;
432 
433 	sched_clock_idle_wakeup_event(0);
434 }
435 
436 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
437 {
438 	ktime_t now = ktime_get();
439 
440 	ts->idle_entrytime = now;
441 	ts->idle_active = 1;
442 	sched_clock_idle_sleep_event();
443 	return now;
444 }
445 
446 /**
447  * get_cpu_idle_time_us - get the total idle time of a cpu
448  * @cpu: CPU number to query
449  * @last_update_time: variable to store update time in. Do not update
450  * counters if NULL.
451  *
452  * Return the cummulative idle time (since boot) for a given
453  * CPU, in microseconds.
454  *
455  * This time is measured via accounting rather than sampling,
456  * and is as accurate as ktime_get() is.
457  *
458  * This function returns -1 if NOHZ is not enabled.
459  */
460 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
461 {
462 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
463 	ktime_t now, idle;
464 
465 	if (!tick_nohz_active)
466 		return -1;
467 
468 	now = ktime_get();
469 	if (last_update_time) {
470 		update_ts_time_stats(cpu, ts, now, last_update_time);
471 		idle = ts->idle_sleeptime;
472 	} else {
473 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
474 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
475 
476 			idle = ktime_add(ts->idle_sleeptime, delta);
477 		} else {
478 			idle = ts->idle_sleeptime;
479 		}
480 	}
481 
482 	return ktime_to_us(idle);
483 
484 }
485 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
486 
487 /**
488  * get_cpu_iowait_time_us - get the total iowait time of a cpu
489  * @cpu: CPU number to query
490  * @last_update_time: variable to store update time in. Do not update
491  * counters if NULL.
492  *
493  * Return the cummulative iowait time (since boot) for a given
494  * CPU, in microseconds.
495  *
496  * This time is measured via accounting rather than sampling,
497  * and is as accurate as ktime_get() is.
498  *
499  * This function returns -1 if NOHZ is not enabled.
500  */
501 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
502 {
503 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504 	ktime_t now, iowait;
505 
506 	if (!tick_nohz_active)
507 		return -1;
508 
509 	now = ktime_get();
510 	if (last_update_time) {
511 		update_ts_time_stats(cpu, ts, now, last_update_time);
512 		iowait = ts->iowait_sleeptime;
513 	} else {
514 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
515 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
516 
517 			iowait = ktime_add(ts->iowait_sleeptime, delta);
518 		} else {
519 			iowait = ts->iowait_sleeptime;
520 		}
521 	}
522 
523 	return ktime_to_us(iowait);
524 }
525 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
526 
527 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
528 					 ktime_t now, int cpu)
529 {
530 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
531 	ktime_t last_update, expires, ret = { .tv64 = 0 };
532 	unsigned long rcu_delta_jiffies;
533 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
534 	u64 time_delta;
535 
536 	time_delta = timekeeping_max_deferment();
537 
538 	/* Read jiffies and the time when jiffies were updated last */
539 	do {
540 		seq = read_seqbegin(&jiffies_lock);
541 		last_update = last_jiffies_update;
542 		last_jiffies = jiffies;
543 	} while (read_seqretry(&jiffies_lock, seq));
544 
545 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
546 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
547 		next_jiffies = last_jiffies + 1;
548 		delta_jiffies = 1;
549 	} else {
550 		/* Get the next timer wheel timer */
551 		next_jiffies = get_next_timer_interrupt(last_jiffies);
552 		delta_jiffies = next_jiffies - last_jiffies;
553 		if (rcu_delta_jiffies < delta_jiffies) {
554 			next_jiffies = last_jiffies + rcu_delta_jiffies;
555 			delta_jiffies = rcu_delta_jiffies;
556 		}
557 	}
558 
559 	/*
560 	 * Do not stop the tick, if we are only one off (or less)
561 	 * or if the cpu is required for RCU:
562 	 */
563 	if (!ts->tick_stopped && delta_jiffies <= 1)
564 		goto out;
565 
566 	/* Schedule the tick, if we are at least one jiffie off */
567 	if ((long)delta_jiffies >= 1) {
568 
569 		/*
570 		 * If this cpu is the one which updates jiffies, then
571 		 * give up the assignment and let it be taken by the
572 		 * cpu which runs the tick timer next, which might be
573 		 * this cpu as well. If we don't drop this here the
574 		 * jiffies might be stale and do_timer() never
575 		 * invoked. Keep track of the fact that it was the one
576 		 * which had the do_timer() duty last. If this cpu is
577 		 * the one which had the do_timer() duty last, we
578 		 * limit the sleep time to the timekeeping
579 		 * max_deferement value which we retrieved
580 		 * above. Otherwise we can sleep as long as we want.
581 		 */
582 		if (cpu == tick_do_timer_cpu) {
583 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
584 			ts->do_timer_last = 1;
585 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
586 			time_delta = KTIME_MAX;
587 			ts->do_timer_last = 0;
588 		} else if (!ts->do_timer_last) {
589 			time_delta = KTIME_MAX;
590 		}
591 
592 #ifdef CONFIG_NO_HZ_FULL
593 		if (!ts->inidle) {
594 			time_delta = min(time_delta,
595 					 scheduler_tick_max_deferment());
596 		}
597 #endif
598 
599 		/*
600 		 * calculate the expiry time for the next timer wheel
601 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
602 		 * that there is no timer pending or at least extremely
603 		 * far into the future (12 days for HZ=1000). In this
604 		 * case we set the expiry to the end of time.
605 		 */
606 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
607 			/*
608 			 * Calculate the time delta for the next timer event.
609 			 * If the time delta exceeds the maximum time delta
610 			 * permitted by the current clocksource then adjust
611 			 * the time delta accordingly to ensure the
612 			 * clocksource does not wrap.
613 			 */
614 			time_delta = min_t(u64, time_delta,
615 					   tick_period.tv64 * delta_jiffies);
616 		}
617 
618 		if (time_delta < KTIME_MAX)
619 			expires = ktime_add_ns(last_update, time_delta);
620 		else
621 			expires.tv64 = KTIME_MAX;
622 
623 		/* Skip reprogram of event if its not changed */
624 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
625 			goto out;
626 
627 		ret = expires;
628 
629 		/*
630 		 * nohz_stop_sched_tick can be called several times before
631 		 * the nohz_restart_sched_tick is called. This happens when
632 		 * interrupts arrive which do not cause a reschedule. In the
633 		 * first call we save the current tick time, so we can restart
634 		 * the scheduler tick in nohz_restart_sched_tick.
635 		 */
636 		if (!ts->tick_stopped) {
637 			nohz_balance_enter_idle(cpu);
638 			calc_load_enter_idle();
639 
640 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
641 			ts->tick_stopped = 1;
642 			trace_tick_stop(1, " ");
643 		}
644 
645 		/*
646 		 * If the expiration time == KTIME_MAX, then
647 		 * in this case we simply stop the tick timer.
648 		 */
649 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
650 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
651 				hrtimer_cancel(&ts->sched_timer);
652 			goto out;
653 		}
654 
655 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
656 			hrtimer_start(&ts->sched_timer, expires,
657 				      HRTIMER_MODE_ABS_PINNED);
658 			/* Check, if the timer was already in the past */
659 			if (hrtimer_active(&ts->sched_timer))
660 				goto out;
661 		} else if (!tick_program_event(expires, 0))
662 				goto out;
663 		/*
664 		 * We are past the event already. So we crossed a
665 		 * jiffie boundary. Update jiffies and raise the
666 		 * softirq.
667 		 */
668 		tick_do_update_jiffies64(ktime_get());
669 	}
670 	raise_softirq_irqoff(TIMER_SOFTIRQ);
671 out:
672 	ts->next_jiffies = next_jiffies;
673 	ts->last_jiffies = last_jiffies;
674 	ts->sleep_length = ktime_sub(dev->next_event, now);
675 
676 	return ret;
677 }
678 
679 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
680 {
681 #ifdef CONFIG_NO_HZ_FULL
682 	int cpu = smp_processor_id();
683 
684 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
685 		return;
686 
687 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
688 		return;
689 
690 	if (!can_stop_full_tick())
691 		return;
692 
693 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
694 #endif
695 }
696 
697 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
698 {
699 	/*
700 	 * If this cpu is offline and it is the one which updates
701 	 * jiffies, then give up the assignment and let it be taken by
702 	 * the cpu which runs the tick timer next. If we don't drop
703 	 * this here the jiffies might be stale and do_timer() never
704 	 * invoked.
705 	 */
706 	if (unlikely(!cpu_online(cpu))) {
707 		if (cpu == tick_do_timer_cpu)
708 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
709 		return false;
710 	}
711 
712 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
713 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
714 		return false;
715 	}
716 
717 	if (need_resched())
718 		return false;
719 
720 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
721 		static int ratelimit;
722 
723 		if (ratelimit < 10 &&
724 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
725 			pr_warn("NOHZ: local_softirq_pending %02x\n",
726 				(unsigned int) local_softirq_pending());
727 			ratelimit++;
728 		}
729 		return false;
730 	}
731 
732 	if (tick_nohz_full_enabled()) {
733 		/*
734 		 * Keep the tick alive to guarantee timekeeping progression
735 		 * if there are full dynticks CPUs around
736 		 */
737 		if (tick_do_timer_cpu == cpu)
738 			return false;
739 		/*
740 		 * Boot safety: make sure the timekeeping duty has been
741 		 * assigned before entering dyntick-idle mode,
742 		 */
743 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
744 			return false;
745 	}
746 
747 	return true;
748 }
749 
750 static void __tick_nohz_idle_enter(struct tick_sched *ts)
751 {
752 	ktime_t now, expires;
753 	int cpu = smp_processor_id();
754 
755 	now = tick_nohz_start_idle(ts);
756 
757 	if (can_stop_idle_tick(cpu, ts)) {
758 		int was_stopped = ts->tick_stopped;
759 
760 		ts->idle_calls++;
761 
762 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
763 		if (expires.tv64 > 0LL) {
764 			ts->idle_sleeps++;
765 			ts->idle_expires = expires;
766 		}
767 
768 		if (!was_stopped && ts->tick_stopped)
769 			ts->idle_jiffies = ts->last_jiffies;
770 	}
771 }
772 
773 /**
774  * tick_nohz_idle_enter - stop the idle tick from the idle task
775  *
776  * When the next event is more than a tick into the future, stop the idle tick
777  * Called when we start the idle loop.
778  *
779  * The arch is responsible of calling:
780  *
781  * - rcu_idle_enter() after its last use of RCU before the CPU is put
782  *  to sleep.
783  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
784  */
785 void tick_nohz_idle_enter(void)
786 {
787 	struct tick_sched *ts;
788 
789 	WARN_ON_ONCE(irqs_disabled());
790 
791 	/*
792  	 * Update the idle state in the scheduler domain hierarchy
793  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
794  	 * State will be updated to busy during the first busy tick after
795  	 * exiting idle.
796  	 */
797 	set_cpu_sd_state_idle();
798 
799 	local_irq_disable();
800 
801 	ts = &__get_cpu_var(tick_cpu_sched);
802 	ts->inidle = 1;
803 	__tick_nohz_idle_enter(ts);
804 
805 	local_irq_enable();
806 }
807 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
808 
809 /**
810  * tick_nohz_irq_exit - update next tick event from interrupt exit
811  *
812  * When an interrupt fires while we are idle and it doesn't cause
813  * a reschedule, it may still add, modify or delete a timer, enqueue
814  * an RCU callback, etc...
815  * So we need to re-calculate and reprogram the next tick event.
816  */
817 void tick_nohz_irq_exit(void)
818 {
819 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
820 
821 	if (ts->inidle)
822 		__tick_nohz_idle_enter(ts);
823 	else
824 		tick_nohz_full_stop_tick(ts);
825 }
826 
827 /**
828  * tick_nohz_get_sleep_length - return the length of the current sleep
829  *
830  * Called from power state control code with interrupts disabled
831  */
832 ktime_t tick_nohz_get_sleep_length(void)
833 {
834 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
835 
836 	return ts->sleep_length;
837 }
838 
839 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
840 {
841 	hrtimer_cancel(&ts->sched_timer);
842 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
843 
844 	while (1) {
845 		/* Forward the time to expire in the future */
846 		hrtimer_forward(&ts->sched_timer, now, tick_period);
847 
848 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
849 			hrtimer_start_expires(&ts->sched_timer,
850 					      HRTIMER_MODE_ABS_PINNED);
851 			/* Check, if the timer was already in the past */
852 			if (hrtimer_active(&ts->sched_timer))
853 				break;
854 		} else {
855 			if (!tick_program_event(
856 				hrtimer_get_expires(&ts->sched_timer), 0))
857 				break;
858 		}
859 		/* Reread time and update jiffies */
860 		now = ktime_get();
861 		tick_do_update_jiffies64(now);
862 	}
863 }
864 
865 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
866 {
867 	/* Update jiffies first */
868 	tick_do_update_jiffies64(now);
869 	update_cpu_load_nohz();
870 
871 	calc_load_exit_idle();
872 	touch_softlockup_watchdog();
873 	/*
874 	 * Cancel the scheduled timer and restore the tick
875 	 */
876 	ts->tick_stopped  = 0;
877 	ts->idle_exittime = now;
878 
879 	tick_nohz_restart(ts, now);
880 }
881 
882 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
883 {
884 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
885 	unsigned long ticks;
886 
887 	if (vtime_accounting_enabled())
888 		return;
889 	/*
890 	 * We stopped the tick in idle. Update process times would miss the
891 	 * time we slept as update_process_times does only a 1 tick
892 	 * accounting. Enforce that this is accounted to idle !
893 	 */
894 	ticks = jiffies - ts->idle_jiffies;
895 	/*
896 	 * We might be one off. Do not randomly account a huge number of ticks!
897 	 */
898 	if (ticks && ticks < LONG_MAX)
899 		account_idle_ticks(ticks);
900 #endif
901 }
902 
903 /**
904  * tick_nohz_idle_exit - restart the idle tick from the idle task
905  *
906  * Restart the idle tick when the CPU is woken up from idle
907  * This also exit the RCU extended quiescent state. The CPU
908  * can use RCU again after this function is called.
909  */
910 void tick_nohz_idle_exit(void)
911 {
912 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
913 	ktime_t now;
914 
915 	local_irq_disable();
916 
917 	WARN_ON_ONCE(!ts->inidle);
918 
919 	ts->inidle = 0;
920 
921 	if (ts->idle_active || ts->tick_stopped)
922 		now = ktime_get();
923 
924 	if (ts->idle_active)
925 		tick_nohz_stop_idle(ts, now);
926 
927 	if (ts->tick_stopped) {
928 		tick_nohz_restart_sched_tick(ts, now);
929 		tick_nohz_account_idle_ticks(ts);
930 	}
931 
932 	local_irq_enable();
933 }
934 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
935 
936 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
937 {
938 	hrtimer_forward(&ts->sched_timer, now, tick_period);
939 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
940 }
941 
942 /*
943  * The nohz low res interrupt handler
944  */
945 static void tick_nohz_handler(struct clock_event_device *dev)
946 {
947 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
948 	struct pt_regs *regs = get_irq_regs();
949 	ktime_t now = ktime_get();
950 
951 	dev->next_event.tv64 = KTIME_MAX;
952 
953 	tick_sched_do_timer(now);
954 	tick_sched_handle(ts, regs);
955 
956 	while (tick_nohz_reprogram(ts, now)) {
957 		now = ktime_get();
958 		tick_do_update_jiffies64(now);
959 	}
960 }
961 
962 /**
963  * tick_nohz_switch_to_nohz - switch to nohz mode
964  */
965 static void tick_nohz_switch_to_nohz(void)
966 {
967 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
968 	ktime_t next;
969 
970 	if (!tick_nohz_active)
971 		return;
972 
973 	local_irq_disable();
974 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
975 		local_irq_enable();
976 		return;
977 	}
978 	tick_nohz_active = 1;
979 	ts->nohz_mode = NOHZ_MODE_LOWRES;
980 
981 	/*
982 	 * Recycle the hrtimer in ts, so we can share the
983 	 * hrtimer_forward with the highres code.
984 	 */
985 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
986 	/* Get the next period */
987 	next = tick_init_jiffy_update();
988 
989 	for (;;) {
990 		hrtimer_set_expires(&ts->sched_timer, next);
991 		if (!tick_program_event(next, 0))
992 			break;
993 		next = ktime_add(next, tick_period);
994 	}
995 	local_irq_enable();
996 }
997 
998 /*
999  * When NOHZ is enabled and the tick is stopped, we need to kick the
1000  * tick timer from irq_enter() so that the jiffies update is kept
1001  * alive during long running softirqs. That's ugly as hell, but
1002  * correctness is key even if we need to fix the offending softirq in
1003  * the first place.
1004  *
1005  * Note, this is different to tick_nohz_restart. We just kick the
1006  * timer and do not touch the other magic bits which need to be done
1007  * when idle is left.
1008  */
1009 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1010 {
1011 #if 0
1012 	/* Switch back to 2.6.27 behaviour */
1013 	ktime_t delta;
1014 
1015 	/*
1016 	 * Do not touch the tick device, when the next expiry is either
1017 	 * already reached or less/equal than the tick period.
1018 	 */
1019 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1020 	if (delta.tv64 <= tick_period.tv64)
1021 		return;
1022 
1023 	tick_nohz_restart(ts, now);
1024 #endif
1025 }
1026 
1027 static inline void tick_nohz_irq_enter(void)
1028 {
1029 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1030 	ktime_t now;
1031 
1032 	if (!ts->idle_active && !ts->tick_stopped)
1033 		return;
1034 	now = ktime_get();
1035 	if (ts->idle_active)
1036 		tick_nohz_stop_idle(ts, now);
1037 	if (ts->tick_stopped) {
1038 		tick_nohz_update_jiffies(now);
1039 		tick_nohz_kick_tick(ts, now);
1040 	}
1041 }
1042 
1043 #else
1044 
1045 static inline void tick_nohz_switch_to_nohz(void) { }
1046 static inline void tick_nohz_irq_enter(void) { }
1047 
1048 #endif /* CONFIG_NO_HZ_COMMON */
1049 
1050 /*
1051  * Called from irq_enter to notify about the possible interruption of idle()
1052  */
1053 void tick_irq_enter(void)
1054 {
1055 	tick_check_oneshot_broadcast_this_cpu();
1056 	tick_nohz_irq_enter();
1057 }
1058 
1059 /*
1060  * High resolution timer specific code
1061  */
1062 #ifdef CONFIG_HIGH_RES_TIMERS
1063 /*
1064  * We rearm the timer until we get disabled by the idle code.
1065  * Called with interrupts disabled.
1066  */
1067 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1068 {
1069 	struct tick_sched *ts =
1070 		container_of(timer, struct tick_sched, sched_timer);
1071 	struct pt_regs *regs = get_irq_regs();
1072 	ktime_t now = ktime_get();
1073 
1074 	tick_sched_do_timer(now);
1075 
1076 	/*
1077 	 * Do not call, when we are not in irq context and have
1078 	 * no valid regs pointer
1079 	 */
1080 	if (regs)
1081 		tick_sched_handle(ts, regs);
1082 
1083 	hrtimer_forward(timer, now, tick_period);
1084 
1085 	return HRTIMER_RESTART;
1086 }
1087 
1088 static int sched_skew_tick;
1089 
1090 static int __init skew_tick(char *str)
1091 {
1092 	get_option(&str, &sched_skew_tick);
1093 
1094 	return 0;
1095 }
1096 early_param("skew_tick", skew_tick);
1097 
1098 /**
1099  * tick_setup_sched_timer - setup the tick emulation timer
1100  */
1101 void tick_setup_sched_timer(void)
1102 {
1103 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1104 	ktime_t now = ktime_get();
1105 
1106 	/*
1107 	 * Emulate tick processing via per-CPU hrtimers:
1108 	 */
1109 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1110 	ts->sched_timer.function = tick_sched_timer;
1111 
1112 	/* Get the next period (per cpu) */
1113 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1114 
1115 	/* Offset the tick to avert jiffies_lock contention. */
1116 	if (sched_skew_tick) {
1117 		u64 offset = ktime_to_ns(tick_period) >> 1;
1118 		do_div(offset, num_possible_cpus());
1119 		offset *= smp_processor_id();
1120 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1121 	}
1122 
1123 	for (;;) {
1124 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1125 		hrtimer_start_expires(&ts->sched_timer,
1126 				      HRTIMER_MODE_ABS_PINNED);
1127 		/* Check, if the timer was already in the past */
1128 		if (hrtimer_active(&ts->sched_timer))
1129 			break;
1130 		now = ktime_get();
1131 	}
1132 
1133 #ifdef CONFIG_NO_HZ_COMMON
1134 	if (tick_nohz_enabled) {
1135 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1136 		tick_nohz_active = 1;
1137 	}
1138 #endif
1139 }
1140 #endif /* HIGH_RES_TIMERS */
1141 
1142 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1143 void tick_cancel_sched_timer(int cpu)
1144 {
1145 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1146 
1147 # ifdef CONFIG_HIGH_RES_TIMERS
1148 	if (ts->sched_timer.base)
1149 		hrtimer_cancel(&ts->sched_timer);
1150 # endif
1151 
1152 	memset(ts, 0, sizeof(*ts));
1153 }
1154 #endif
1155 
1156 /**
1157  * Async notification about clocksource changes
1158  */
1159 void tick_clock_notify(void)
1160 {
1161 	int cpu;
1162 
1163 	for_each_possible_cpu(cpu)
1164 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1165 }
1166 
1167 /*
1168  * Async notification about clock event changes
1169  */
1170 void tick_oneshot_notify(void)
1171 {
1172 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1173 
1174 	set_bit(0, &ts->check_clocks);
1175 }
1176 
1177 /**
1178  * Check, if a change happened, which makes oneshot possible.
1179  *
1180  * Called cyclic from the hrtimer softirq (driven by the timer
1181  * softirq) allow_nohz signals, that we can switch into low-res nohz
1182  * mode, because high resolution timers are disabled (either compile
1183  * or runtime).
1184  */
1185 int tick_check_oneshot_change(int allow_nohz)
1186 {
1187 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1188 
1189 	if (!test_and_clear_bit(0, &ts->check_clocks))
1190 		return 0;
1191 
1192 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1193 		return 0;
1194 
1195 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1196 		return 0;
1197 
1198 	if (!allow_nohz)
1199 		return 1;
1200 
1201 	tick_nohz_switch_to_nohz();
1202 	return 0;
1203 }
1204