xref: /linux/kernel/time/tick-sched.c (revision d44d26987bb3df6d76556827097fc9ce17565cb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  NOHZ implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 /*
48  * The time when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64-bit can do a quick check without holding the jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32-bit cannot do that because the store of 'tick_next_period'
68 	 * consists of two 32-bit stores, and the first store could be
69 	 * moved by the CPU to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on 'jiffies_lock' and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Re-evaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the 'jiffies_seq' protected job */
118 	jiffies_64 += ticks;
119 
120 	/* Keep the tick_next_period variable up to date */
121 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122 
123 	if (IS_ENABLED(CONFIG_64BIT)) {
124 		/*
125 		 * Pairs with smp_load_acquire() in the lockless quick
126 		 * check above, and ensures that the update to 'jiffies_64' is
127 		 * not reordered vs. the store to 'tick_next_period', neither
128 		 * by the compiler nor by the CPU.
129 		 */
130 		smp_store_release(&tick_next_period, nextp);
131 	} else {
132 		/*
133 		 * A plain store is good enough on 32-bit, as the quick check
134 		 * above is protected by the sequence count.
135 		 */
136 		tick_next_period = nextp;
137 	}
138 
139 	/*
140 	 * Release the sequence count. calc_global_load() below is not
141 	 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 	 * concurrent invocations.
143 	 */
144 	write_seqcount_end(&jiffies_seq);
145 
146 	calc_global_load();
147 
148 	raw_spin_unlock(&jiffies_lock);
149 	update_wall_time();
150 }
151 
152 /*
153  * Initialize and return retrieve the jiffies update.
154  */
155 static ktime_t tick_init_jiffy_update(void)
156 {
157 	ktime_t period;
158 
159 	raw_spin_lock(&jiffies_lock);
160 	write_seqcount_begin(&jiffies_seq);
161 
162 	/* Have we started the jiffies update yet ? */
163 	if (last_jiffies_update == 0) {
164 		u32 rem;
165 
166 		/*
167 		 * Ensure that the tick is aligned to a multiple of
168 		 * TICK_NSEC.
169 		 */
170 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 		if (rem)
172 			tick_next_period += TICK_NSEC - rem;
173 
174 		last_jiffies_update = tick_next_period;
175 	}
176 	period = last_jiffies_update;
177 
178 	write_seqcount_end(&jiffies_seq);
179 	raw_spin_unlock(&jiffies_lock);
180 
181 	return period;
182 }
183 
184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 				       unsigned long flag)
186 {
187 	return !!(ts->flags & flag);
188 }
189 
190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 				       unsigned long flag)
192 {
193 	lockdep_assert_irqs_disabled();
194 	ts->flags |= flag;
195 }
196 
197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 					 unsigned long flag)
199 {
200 	lockdep_assert_irqs_disabled();
201 	ts->flags &= ~flag;
202 }
203 
204 #define MAX_STALLED_JIFFIES 5
205 
206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
207 {
208 	int tick_cpu, cpu = smp_processor_id();
209 
210 	/*
211 	 * Check if the do_timer duty was dropped. We don't care about
212 	 * concurrency: This happens only when the CPU in charge went
213 	 * into a long sleep. If two CPUs happen to assign themselves to
214 	 * this duty, then the jiffies update is still serialized by
215 	 * 'jiffies_lock'.
216 	 *
217 	 * If nohz_full is enabled, this should not happen because the
218 	 * 'tick_do_timer_cpu' CPU never relinquishes.
219 	 */
220 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
221 
222 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
223 #ifdef CONFIG_NO_HZ_FULL
224 		WARN_ON_ONCE(tick_nohz_full_running);
225 #endif
226 		WRITE_ONCE(tick_do_timer_cpu, cpu);
227 		tick_cpu = cpu;
228 	}
229 
230 	/* Check if jiffies need an update */
231 	if (tick_cpu == cpu)
232 		tick_do_update_jiffies64(now);
233 
234 	/*
235 	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
236 	 * or VMEXIT'ed for several msecs), force an update.
237 	 */
238 	if (ts->last_tick_jiffies != jiffies) {
239 		ts->stalled_jiffies = 0;
240 		ts->last_tick_jiffies = READ_ONCE(jiffies);
241 	} else {
242 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
243 			tick_do_update_jiffies64(now);
244 			ts->stalled_jiffies = 0;
245 			ts->last_tick_jiffies = READ_ONCE(jiffies);
246 		}
247 	}
248 
249 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
250 		ts->got_idle_tick = 1;
251 }
252 
253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
254 {
255 	/*
256 	 * When we are idle and the tick is stopped, we have to touch
257 	 * the watchdog as we might not schedule for a really long
258 	 * time. This happens on completely idle SMP systems while
259 	 * waiting on the login prompt. We also increment the "start of
260 	 * idle" jiffy stamp so the idle accounting adjustment we do
261 	 * when we go busy again does not account too many ticks.
262 	 */
263 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
264 	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
265 		touch_softlockup_watchdog_sched();
266 		if (is_idle_task(current))
267 			ts->idle_jiffies++;
268 		/*
269 		 * In case the current tick fired too early past its expected
270 		 * expiration, make sure we don't bypass the next clock reprogramming
271 		 * to the same deadline.
272 		 */
273 		ts->next_tick = 0;
274 	}
275 
276 	update_process_times(user_mode(regs));
277 	profile_tick(CPU_PROFILING);
278 }
279 
280 /*
281  * We rearm the timer until we get disabled by the idle code.
282  * Called with interrupts disabled.
283  */
284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
285 {
286 	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
287 	struct pt_regs *regs = get_irq_regs();
288 	ktime_t now = ktime_get();
289 
290 	tick_sched_do_timer(ts, now);
291 
292 	/*
293 	 * Do not call when we are not in IRQ context and have
294 	 * no valid 'regs' pointer
295 	 */
296 	if (regs)
297 		tick_sched_handle(ts, regs);
298 	else
299 		ts->next_tick = 0;
300 
301 	/*
302 	 * In dynticks mode, tick reprogram is deferred:
303 	 * - to the idle task if in dynticks-idle
304 	 * - to IRQ exit if in full-dynticks.
305 	 */
306 	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
307 		return HRTIMER_NORESTART;
308 
309 	hrtimer_forward(timer, now, TICK_NSEC);
310 
311 	return HRTIMER_RESTART;
312 }
313 
314 #ifdef CONFIG_NO_HZ_FULL
315 cpumask_var_t tick_nohz_full_mask;
316 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
317 bool tick_nohz_full_running;
318 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
319 static atomic_t tick_dep_mask;
320 
321 static bool check_tick_dependency(atomic_t *dep)
322 {
323 	int val = atomic_read(dep);
324 
325 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
326 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
327 		return true;
328 	}
329 
330 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
331 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
332 		return true;
333 	}
334 
335 	if (val & TICK_DEP_MASK_SCHED) {
336 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
337 		return true;
338 	}
339 
340 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
341 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
342 		return true;
343 	}
344 
345 	if (val & TICK_DEP_MASK_RCU) {
346 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
347 		return true;
348 	}
349 
350 	if (val & TICK_DEP_MASK_RCU_EXP) {
351 		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
352 		return true;
353 	}
354 
355 	return false;
356 }
357 
358 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
359 {
360 	lockdep_assert_irqs_disabled();
361 
362 	if (unlikely(!cpu_online(cpu)))
363 		return false;
364 
365 	if (check_tick_dependency(&tick_dep_mask))
366 		return false;
367 
368 	if (check_tick_dependency(&ts->tick_dep_mask))
369 		return false;
370 
371 	if (check_tick_dependency(&current->tick_dep_mask))
372 		return false;
373 
374 	if (check_tick_dependency(&current->signal->tick_dep_mask))
375 		return false;
376 
377 	return true;
378 }
379 
380 static void nohz_full_kick_func(struct irq_work *work)
381 {
382 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
383 }
384 
385 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
386 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
387 
388 /*
389  * Kick this CPU if it's full dynticks in order to force it to
390  * re-evaluate its dependency on the tick and restart it if necessary.
391  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
392  * is NMI safe.
393  */
394 static void tick_nohz_full_kick(void)
395 {
396 	if (!tick_nohz_full_cpu(smp_processor_id()))
397 		return;
398 
399 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
400 }
401 
402 /*
403  * Kick the CPU if it's full dynticks in order to force it to
404  * re-evaluate its dependency on the tick and restart it if necessary.
405  */
406 void tick_nohz_full_kick_cpu(int cpu)
407 {
408 	if (!tick_nohz_full_cpu(cpu))
409 		return;
410 
411 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
412 }
413 
414 static void tick_nohz_kick_task(struct task_struct *tsk)
415 {
416 	int cpu;
417 
418 	/*
419 	 * If the task is not running, run_posix_cpu_timers()
420 	 * has nothing to elapse, and an IPI can then be optimized out.
421 	 *
422 	 * activate_task()                      STORE p->tick_dep_mask
423 	 *   STORE p->on_rq
424 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
425 	 *   LOCK rq->lock                      LOAD p->on_rq
426 	 *   smp_mb__after_spin_lock()
427 	 *   tick_nohz_task_switch()
428 	 *     LOAD p->tick_dep_mask
429 	 */
430 	if (!sched_task_on_rq(tsk))
431 		return;
432 
433 	/*
434 	 * If the task concurrently migrates to another CPU,
435 	 * we guarantee it sees the new tick dependency upon
436 	 * schedule.
437 	 *
438 	 * set_task_cpu(p, cpu);
439 	 *   STORE p->cpu = @cpu
440 	 * __schedule() (switch to task 'p')
441 	 *   LOCK rq->lock
442 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
443 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
444 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
445 	 */
446 	cpu = task_cpu(tsk);
447 
448 	preempt_disable();
449 	if (cpu_online(cpu))
450 		tick_nohz_full_kick_cpu(cpu);
451 	preempt_enable();
452 }
453 
454 /*
455  * Kick all full dynticks CPUs in order to force these to re-evaluate
456  * their dependency on the tick and restart it if necessary.
457  */
458 static void tick_nohz_full_kick_all(void)
459 {
460 	int cpu;
461 
462 	if (!tick_nohz_full_running)
463 		return;
464 
465 	preempt_disable();
466 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
467 		tick_nohz_full_kick_cpu(cpu);
468 	preempt_enable();
469 }
470 
471 static void tick_nohz_dep_set_all(atomic_t *dep,
472 				  enum tick_dep_bits bit)
473 {
474 	int prev;
475 
476 	prev = atomic_fetch_or(BIT(bit), dep);
477 	if (!prev)
478 		tick_nohz_full_kick_all();
479 }
480 
481 /*
482  * Set a global tick dependency. Used by perf events that rely on freq and
483  * unstable clocks.
484  */
485 void tick_nohz_dep_set(enum tick_dep_bits bit)
486 {
487 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
488 }
489 
490 void tick_nohz_dep_clear(enum tick_dep_bits bit)
491 {
492 	atomic_andnot(BIT(bit), &tick_dep_mask);
493 }
494 
495 /*
496  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
497  * manage event-throttling.
498  */
499 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
500 {
501 	int prev;
502 	struct tick_sched *ts;
503 
504 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
505 
506 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
507 	if (!prev) {
508 		preempt_disable();
509 		/* Perf needs local kick that is NMI safe */
510 		if (cpu == smp_processor_id()) {
511 			tick_nohz_full_kick();
512 		} else {
513 			/* Remote IRQ work not NMI-safe */
514 			if (!WARN_ON_ONCE(in_nmi()))
515 				tick_nohz_full_kick_cpu(cpu);
516 		}
517 		preempt_enable();
518 	}
519 }
520 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
521 
522 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
523 {
524 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
525 
526 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
527 }
528 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
529 
530 /*
531  * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
532  * in order to elapse per task timers.
533  */
534 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
535 {
536 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
537 		tick_nohz_kick_task(tsk);
538 }
539 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
540 
541 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
542 {
543 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
544 }
545 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
546 
547 /*
548  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
549  * per process timers.
550  */
551 void tick_nohz_dep_set_signal(struct task_struct *tsk,
552 			      enum tick_dep_bits bit)
553 {
554 	int prev;
555 	struct signal_struct *sig = tsk->signal;
556 
557 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
558 	if (!prev) {
559 		struct task_struct *t;
560 
561 		lockdep_assert_held(&tsk->sighand->siglock);
562 		__for_each_thread(sig, t)
563 			tick_nohz_kick_task(t);
564 	}
565 }
566 
567 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
568 {
569 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
570 }
571 
572 /*
573  * Re-evaluate the need for the tick as we switch the current task.
574  * It might need the tick due to per task/process properties:
575  * perf events, posix CPU timers, ...
576  */
577 void __tick_nohz_task_switch(void)
578 {
579 	struct tick_sched *ts;
580 
581 	if (!tick_nohz_full_cpu(smp_processor_id()))
582 		return;
583 
584 	ts = this_cpu_ptr(&tick_cpu_sched);
585 
586 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
587 		if (atomic_read(&current->tick_dep_mask) ||
588 		    atomic_read(&current->signal->tick_dep_mask))
589 			tick_nohz_full_kick();
590 	}
591 }
592 
593 /* Get the boot-time nohz CPU list from the kernel parameters. */
594 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
595 {
596 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
597 	cpumask_copy(tick_nohz_full_mask, cpumask);
598 	tick_nohz_full_running = true;
599 }
600 
601 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
602 {
603 	/*
604 	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
605 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
606 	 * CPUs. It must remain online when nohz full is enabled.
607 	 */
608 	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
609 		return false;
610 	return true;
611 }
612 
613 static int tick_nohz_cpu_down(unsigned int cpu)
614 {
615 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
616 }
617 
618 void __init tick_nohz_init(void)
619 {
620 	int cpu, ret;
621 
622 	if (!tick_nohz_full_running)
623 		return;
624 
625 	/*
626 	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
627 	 * locking contexts. But then we need IRQ work to raise its own
628 	 * interrupts to avoid circular dependency on the tick.
629 	 */
630 	if (!arch_irq_work_has_interrupt()) {
631 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
632 		cpumask_clear(tick_nohz_full_mask);
633 		tick_nohz_full_running = false;
634 		return;
635 	}
636 
637 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
638 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
639 		cpu = smp_processor_id();
640 
641 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
642 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
643 				"for timekeeping\n", cpu);
644 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
645 		}
646 	}
647 
648 	for_each_cpu(cpu, tick_nohz_full_mask)
649 		ct_cpu_track_user(cpu);
650 
651 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
652 					"kernel/nohz:predown", NULL,
653 					tick_nohz_cpu_down);
654 	WARN_ON(ret < 0);
655 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
656 		cpumask_pr_args(tick_nohz_full_mask));
657 }
658 #endif /* #ifdef CONFIG_NO_HZ_FULL */
659 
660 /*
661  * NOHZ - aka dynamic tick functionality
662  */
663 #ifdef CONFIG_NO_HZ_COMMON
664 /*
665  * NO HZ enabled ?
666  */
667 bool tick_nohz_enabled __read_mostly  = true;
668 unsigned long tick_nohz_active  __read_mostly;
669 /*
670  * Enable / Disable tickless mode
671  */
672 static int __init setup_tick_nohz(char *str)
673 {
674 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
675 }
676 
677 __setup("nohz=", setup_tick_nohz);
678 
679 bool tick_nohz_tick_stopped(void)
680 {
681 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
682 
683 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
684 }
685 
686 bool tick_nohz_tick_stopped_cpu(int cpu)
687 {
688 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
689 
690 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
691 }
692 
693 /**
694  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
695  * @now: current ktime_t
696  *
697  * Called from interrupt entry when the CPU was idle
698  *
699  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
700  * must be updated. Otherwise an interrupt handler could use a stale jiffy
701  * value. We do this unconditionally on any CPU, as we don't know whether the
702  * CPU, which has the update task assigned, is in a long sleep.
703  */
704 static void tick_nohz_update_jiffies(ktime_t now)
705 {
706 	unsigned long flags;
707 
708 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
709 
710 	local_irq_save(flags);
711 	tick_do_update_jiffies64(now);
712 	local_irq_restore(flags);
713 
714 	touch_softlockup_watchdog_sched();
715 }
716 
717 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
718 {
719 	ktime_t delta;
720 
721 	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
722 		return;
723 
724 	delta = ktime_sub(now, ts->idle_entrytime);
725 
726 	write_seqcount_begin(&ts->idle_sleeptime_seq);
727 	if (nr_iowait_cpu(smp_processor_id()) > 0)
728 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
729 	else
730 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
731 
732 	ts->idle_entrytime = now;
733 	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
734 	write_seqcount_end(&ts->idle_sleeptime_seq);
735 
736 	sched_clock_idle_wakeup_event();
737 }
738 
739 static void tick_nohz_start_idle(struct tick_sched *ts)
740 {
741 	write_seqcount_begin(&ts->idle_sleeptime_seq);
742 	ts->idle_entrytime = ktime_get();
743 	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
744 	write_seqcount_end(&ts->idle_sleeptime_seq);
745 
746 	sched_clock_idle_sleep_event();
747 }
748 
749 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
750 				 bool compute_delta, u64 *last_update_time)
751 {
752 	ktime_t now, idle;
753 	unsigned int seq;
754 
755 	if (!tick_nohz_active)
756 		return -1;
757 
758 	now = ktime_get();
759 	if (last_update_time)
760 		*last_update_time = ktime_to_us(now);
761 
762 	do {
763 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
764 
765 		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
766 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
767 
768 			idle = ktime_add(*sleeptime, delta);
769 		} else {
770 			idle = *sleeptime;
771 		}
772 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
773 
774 	return ktime_to_us(idle);
775 
776 }
777 
778 /**
779  * get_cpu_idle_time_us - get the total idle time of a CPU
780  * @cpu: CPU number to query
781  * @last_update_time: variable to store update time in. Do not update
782  * counters if NULL.
783  *
784  * Return the cumulative idle time (since boot) for a given
785  * CPU, in microseconds. Note that this is partially broken due to
786  * the counter of iowait tasks that can be remotely updated without
787  * any synchronization. Therefore it is possible to observe backward
788  * values within two consecutive reads.
789  *
790  * This time is measured via accounting rather than sampling,
791  * and is as accurate as ktime_get() is.
792  *
793  * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
794  */
795 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
796 {
797 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
798 
799 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
800 				     !nr_iowait_cpu(cpu), last_update_time);
801 }
802 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
803 
804 /**
805  * get_cpu_iowait_time_us - get the total iowait time of a CPU
806  * @cpu: CPU number to query
807  * @last_update_time: variable to store update time in. Do not update
808  * counters if NULL.
809  *
810  * Return the cumulative iowait time (since boot) for a given
811  * CPU, in microseconds. Note this is partially broken due to
812  * the counter of iowait tasks that can be remotely updated without
813  * any synchronization. Therefore it is possible to observe backward
814  * values within two consecutive reads.
815  *
816  * This time is measured via accounting rather than sampling,
817  * and is as accurate as ktime_get() is.
818  *
819  * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
820  */
821 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
822 {
823 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
824 
825 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
826 				     nr_iowait_cpu(cpu), last_update_time);
827 }
828 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
829 
830 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
831 {
832 	hrtimer_cancel(&ts->sched_timer);
833 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
834 
835 	/* Forward the time to expire in the future */
836 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
837 
838 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
839 		hrtimer_start_expires(&ts->sched_timer,
840 				      HRTIMER_MODE_ABS_PINNED_HARD);
841 	} else {
842 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
843 	}
844 
845 	/*
846 	 * Reset to make sure the next tick stop doesn't get fooled by past
847 	 * cached clock deadline.
848 	 */
849 	ts->next_tick = 0;
850 }
851 
852 static inline bool local_timer_softirq_pending(void)
853 {
854 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
855 }
856 
857 /*
858  * Read jiffies and the time when jiffies were updated last
859  */
860 u64 get_jiffies_update(unsigned long *basej)
861 {
862 	unsigned long basejiff;
863 	unsigned int seq;
864 	u64 basemono;
865 
866 	do {
867 		seq = read_seqcount_begin(&jiffies_seq);
868 		basemono = last_jiffies_update;
869 		basejiff = jiffies;
870 	} while (read_seqcount_retry(&jiffies_seq, seq));
871 	*basej = basejiff;
872 	return basemono;
873 }
874 
875 /**
876  * tick_nohz_next_event() - return the clock monotonic based next event
877  * @ts:		pointer to tick_sched struct
878  * @cpu:	CPU number
879  *
880  * Return:
881  * *%0		- When the next event is a maximum of TICK_NSEC in the future
882  *		  and the tick is not stopped yet
883  * *%next_event	- Next event based on clock monotonic
884  */
885 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
886 {
887 	u64 basemono, next_tick, delta, expires;
888 	unsigned long basejiff;
889 	int tick_cpu;
890 
891 	basemono = get_jiffies_update(&basejiff);
892 	ts->last_jiffies = basejiff;
893 	ts->timer_expires_base = basemono;
894 
895 	/*
896 	 * Keep the periodic tick, when RCU, architecture or irq_work
897 	 * requests it.
898 	 * Aside of that, check whether the local timer softirq is
899 	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
900 	 * because there is an already expired timer, so it will request
901 	 * immediate expiry, which rearms the hardware timer with a
902 	 * minimal delta, which brings us back to this place
903 	 * immediately. Lather, rinse and repeat...
904 	 */
905 	if (rcu_needs_cpu() || arch_needs_cpu() ||
906 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
907 		next_tick = basemono + TICK_NSEC;
908 	} else {
909 		/*
910 		 * Get the next pending timer. If high resolution
911 		 * timers are enabled this only takes the timer wheel
912 		 * timers into account. If high resolution timers are
913 		 * disabled this also looks at the next expiring
914 		 * hrtimer.
915 		 */
916 		next_tick = get_next_timer_interrupt(basejiff, basemono);
917 		ts->next_timer = next_tick;
918 	}
919 
920 	/* Make sure next_tick is never before basemono! */
921 	if (WARN_ON_ONCE(basemono > next_tick))
922 		next_tick = basemono;
923 
924 	/*
925 	 * If the tick is due in the next period, keep it ticking or
926 	 * force prod the timer.
927 	 */
928 	delta = next_tick - basemono;
929 	if (delta <= (u64)TICK_NSEC) {
930 		/*
931 		 * We've not stopped the tick yet, and there's a timer in the
932 		 * next period, so no point in stopping it either, bail.
933 		 */
934 		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
935 			ts->timer_expires = 0;
936 			goto out;
937 		}
938 	}
939 
940 	/*
941 	 * If this CPU is the one which had the do_timer() duty last, we limit
942 	 * the sleep time to the timekeeping 'max_deferment' value.
943 	 * Otherwise we can sleep as long as we want.
944 	 */
945 	delta = timekeeping_max_deferment();
946 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
947 	if (tick_cpu != cpu &&
948 	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
949 		delta = KTIME_MAX;
950 
951 	/* Calculate the next expiry time */
952 	if (delta < (KTIME_MAX - basemono))
953 		expires = basemono + delta;
954 	else
955 		expires = KTIME_MAX;
956 
957 	ts->timer_expires = min_t(u64, expires, next_tick);
958 
959 out:
960 	return ts->timer_expires;
961 }
962 
963 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
964 {
965 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
966 	unsigned long basejiff = ts->last_jiffies;
967 	u64 basemono = ts->timer_expires_base;
968 	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
969 	int tick_cpu;
970 	u64 expires;
971 
972 	/* Make sure we won't be trying to stop it twice in a row. */
973 	ts->timer_expires_base = 0;
974 
975 	/*
976 	 * Now the tick should be stopped definitely - so the timer base needs
977 	 * to be marked idle as well to not miss a newly queued timer.
978 	 */
979 	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
980 	if (expires > ts->timer_expires) {
981 		/*
982 		 * This path could only happen when the first timer was removed
983 		 * between calculating the possible sleep length and now (when
984 		 * high resolution mode is not active, timer could also be a
985 		 * hrtimer).
986 		 *
987 		 * We have to stick to the original calculated expiry value to
988 		 * not stop the tick for too long with a shallow C-state (which
989 		 * was programmed by cpuidle because of an early next expiration
990 		 * value).
991 		 */
992 		expires = ts->timer_expires;
993 	}
994 
995 	/* If the timer base is not idle, retain the not yet stopped tick. */
996 	if (!timer_idle)
997 		return;
998 
999 	/*
1000 	 * If this CPU is the one which updates jiffies, then give up
1001 	 * the assignment and let it be taken by the CPU which runs
1002 	 * the tick timer next, which might be this CPU as well. If we
1003 	 * don't drop this here, the jiffies might be stale and
1004 	 * do_timer() never gets invoked. Keep track of the fact that it
1005 	 * was the one which had the do_timer() duty last.
1006 	 */
1007 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1008 	if (tick_cpu == cpu) {
1009 		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1010 		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1011 	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1012 		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1013 	}
1014 
1015 	/* Skip reprogram of event if it's not changed */
1016 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1017 		/* Sanity check: make sure clockevent is actually programmed */
1018 		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1019 			return;
1020 
1021 		WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1022 			  "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1023 			  dev->next_event, hrtimer_active(&ts->sched_timer),
1024 			  hrtimer_get_expires(&ts->sched_timer));
1025 	}
1026 
1027 	/*
1028 	 * tick_nohz_stop_tick() can be called several times before
1029 	 * tick_nohz_restart_sched_tick() is called. This happens when
1030 	 * interrupts arrive which do not cause a reschedule. In the first
1031 	 * call we save the current tick time, so we can restart the
1032 	 * scheduler tick in tick_nohz_restart_sched_tick().
1033 	 */
1034 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1035 		calc_load_nohz_start();
1036 		quiet_vmstat();
1037 
1038 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1039 		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1040 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1041 	}
1042 
1043 	ts->next_tick = expires;
1044 
1045 	/*
1046 	 * If the expiration time == KTIME_MAX, then we simply stop
1047 	 * the tick timer.
1048 	 */
1049 	if (unlikely(expires == KTIME_MAX)) {
1050 		if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1051 			hrtimer_cancel(&ts->sched_timer);
1052 		else
1053 			tick_program_event(KTIME_MAX, 1);
1054 		return;
1055 	}
1056 
1057 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1058 		hrtimer_start(&ts->sched_timer, expires,
1059 			      HRTIMER_MODE_ABS_PINNED_HARD);
1060 	} else {
1061 		hrtimer_set_expires(&ts->sched_timer, expires);
1062 		tick_program_event(expires, 1);
1063 	}
1064 }
1065 
1066 static void tick_nohz_retain_tick(struct tick_sched *ts)
1067 {
1068 	ts->timer_expires_base = 0;
1069 }
1070 
1071 #ifdef CONFIG_NO_HZ_FULL
1072 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1073 {
1074 	if (tick_nohz_next_event(ts, cpu))
1075 		tick_nohz_stop_tick(ts, cpu);
1076 	else
1077 		tick_nohz_retain_tick(ts);
1078 }
1079 #endif /* CONFIG_NO_HZ_FULL */
1080 
1081 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1082 {
1083 	/* Update jiffies first */
1084 	tick_do_update_jiffies64(now);
1085 
1086 	/*
1087 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1088 	 * the clock forward checks in the enqueue path:
1089 	 */
1090 	timer_clear_idle();
1091 
1092 	calc_load_nohz_stop();
1093 	touch_softlockup_watchdog_sched();
1094 
1095 	/* Cancel the scheduled timer and restore the tick: */
1096 	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1097 	tick_nohz_restart(ts, now);
1098 }
1099 
1100 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1101 					 ktime_t now)
1102 {
1103 #ifdef CONFIG_NO_HZ_FULL
1104 	int cpu = smp_processor_id();
1105 
1106 	if (can_stop_full_tick(cpu, ts))
1107 		tick_nohz_full_stop_tick(ts, cpu);
1108 	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1109 		tick_nohz_restart_sched_tick(ts, now);
1110 #endif
1111 }
1112 
1113 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1114 {
1115 	if (!tick_nohz_full_cpu(smp_processor_id()))
1116 		return;
1117 
1118 	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1119 		return;
1120 
1121 	__tick_nohz_full_update_tick(ts, ktime_get());
1122 }
1123 
1124 /*
1125  * A pending softirq outside an IRQ (or softirq disabled section) context
1126  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1127  * reach this code due to the need_resched() early check in can_stop_idle_tick().
1128  *
1129  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1130  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1131  * triggering the code below, since wakep_softirqd() is ignored.
1132  *
1133  */
1134 static bool report_idle_softirq(void)
1135 {
1136 	static int ratelimit;
1137 	unsigned int pending = local_softirq_pending();
1138 
1139 	if (likely(!pending))
1140 		return false;
1141 
1142 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1143 	if (!cpu_active(smp_processor_id())) {
1144 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1145 		if (!pending)
1146 			return false;
1147 	}
1148 
1149 	if (ratelimit >= 10)
1150 		return false;
1151 
1152 	/* On RT, softirq handling may be waiting on some lock */
1153 	if (local_bh_blocked())
1154 		return false;
1155 
1156 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1157 		pending);
1158 	ratelimit++;
1159 
1160 	return true;
1161 }
1162 
1163 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1164 {
1165 	WARN_ON_ONCE(cpu_is_offline(cpu));
1166 
1167 	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1168 		return false;
1169 
1170 	if (need_resched())
1171 		return false;
1172 
1173 	if (unlikely(report_idle_softirq()))
1174 		return false;
1175 
1176 	if (tick_nohz_full_enabled()) {
1177 		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1178 
1179 		/*
1180 		 * Keep the tick alive to guarantee timekeeping progression
1181 		 * if there are full dynticks CPUs around
1182 		 */
1183 		if (tick_cpu == cpu)
1184 			return false;
1185 
1186 		/* Should not happen for nohz-full */
1187 		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1188 			return false;
1189 	}
1190 
1191 	return true;
1192 }
1193 
1194 /**
1195  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1196  *
1197  * When the next event is more than a tick into the future, stop the idle tick
1198  */
1199 void tick_nohz_idle_stop_tick(void)
1200 {
1201 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1202 	int cpu = smp_processor_id();
1203 	ktime_t expires;
1204 
1205 	/*
1206 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1207 	 * tick timer expiration time is known already.
1208 	 */
1209 	if (ts->timer_expires_base)
1210 		expires = ts->timer_expires;
1211 	else if (can_stop_idle_tick(cpu, ts))
1212 		expires = tick_nohz_next_event(ts, cpu);
1213 	else
1214 		return;
1215 
1216 	ts->idle_calls++;
1217 
1218 	if (expires > 0LL) {
1219 		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1220 
1221 		tick_nohz_stop_tick(ts, cpu);
1222 
1223 		ts->idle_sleeps++;
1224 		ts->idle_expires = expires;
1225 
1226 		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1227 			ts->idle_jiffies = ts->last_jiffies;
1228 			nohz_balance_enter_idle(cpu);
1229 		}
1230 	} else {
1231 		tick_nohz_retain_tick(ts);
1232 	}
1233 }
1234 
1235 void tick_nohz_idle_retain_tick(void)
1236 {
1237 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1238 }
1239 
1240 /**
1241  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1242  *
1243  * Called when we start the idle loop.
1244  */
1245 void tick_nohz_idle_enter(void)
1246 {
1247 	struct tick_sched *ts;
1248 
1249 	lockdep_assert_irqs_enabled();
1250 
1251 	local_irq_disable();
1252 
1253 	ts = this_cpu_ptr(&tick_cpu_sched);
1254 
1255 	WARN_ON_ONCE(ts->timer_expires_base);
1256 
1257 	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1258 	tick_nohz_start_idle(ts);
1259 
1260 	local_irq_enable();
1261 }
1262 
1263 /**
1264  * tick_nohz_irq_exit - Notify the tick about IRQ exit
1265  *
1266  * A timer may have been added/modified/deleted either by the current IRQ,
1267  * or by another place using this IRQ as a notification. This IRQ may have
1268  * also updated the RCU callback list. These events may require a
1269  * re-evaluation of the next tick. Depending on the context:
1270  *
1271  * 1) If the CPU is idle and no resched is pending, just proceed with idle
1272  *    time accounting. The next tick will be re-evaluated on the next idle
1273  *    loop iteration.
1274  *
1275  * 2) If the CPU is nohz_full:
1276  *
1277  *    2.1) If there is any tick dependency, restart the tick if stopped.
1278  *
1279  *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1280  *         stop/update it accordingly.
1281  */
1282 void tick_nohz_irq_exit(void)
1283 {
1284 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1285 
1286 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1287 		tick_nohz_start_idle(ts);
1288 	else
1289 		tick_nohz_full_update_tick(ts);
1290 }
1291 
1292 /**
1293  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1294  *
1295  * Return: %true if the tick handler has run, otherwise %false
1296  */
1297 bool tick_nohz_idle_got_tick(void)
1298 {
1299 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1300 
1301 	if (ts->got_idle_tick) {
1302 		ts->got_idle_tick = 0;
1303 		return true;
1304 	}
1305 	return false;
1306 }
1307 
1308 /**
1309  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1310  * or the tick, whichever expires first. Note that, if the tick has been
1311  * stopped, it returns the next hrtimer.
1312  *
1313  * Called from power state control code with interrupts disabled
1314  *
1315  * Return: the next expiration time
1316  */
1317 ktime_t tick_nohz_get_next_hrtimer(void)
1318 {
1319 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1320 }
1321 
1322 /**
1323  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1324  * @delta_next: duration until the next event if the tick cannot be stopped
1325  *
1326  * Called from power state control code with interrupts disabled.
1327  *
1328  * The return value of this function and/or the value returned by it through the
1329  * @delta_next pointer can be negative which must be taken into account by its
1330  * callers.
1331  *
1332  * Return: the expected length of the current sleep
1333  */
1334 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1335 {
1336 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1337 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1338 	int cpu = smp_processor_id();
1339 	/*
1340 	 * The idle entry time is expected to be a sufficient approximation of
1341 	 * the current time at this point.
1342 	 */
1343 	ktime_t now = ts->idle_entrytime;
1344 	ktime_t next_event;
1345 
1346 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1347 
1348 	*delta_next = ktime_sub(dev->next_event, now);
1349 
1350 	if (!can_stop_idle_tick(cpu, ts))
1351 		return *delta_next;
1352 
1353 	next_event = tick_nohz_next_event(ts, cpu);
1354 	if (!next_event)
1355 		return *delta_next;
1356 
1357 	/*
1358 	 * If the next highres timer to expire is earlier than 'next_event', the
1359 	 * idle governor needs to know that.
1360 	 */
1361 	next_event = min_t(u64, next_event,
1362 			   hrtimer_next_event_without(&ts->sched_timer));
1363 
1364 	return ktime_sub(next_event, now);
1365 }
1366 
1367 /**
1368  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1369  * for a particular CPU.
1370  * @cpu: target CPU number
1371  *
1372  * Called from the schedutil frequency scaling governor in scheduler context.
1373  *
1374  * Return: the current idle calls counter value for @cpu
1375  */
1376 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1377 {
1378 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1379 
1380 	return ts->idle_calls;
1381 }
1382 
1383 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1384 					ktime_t now)
1385 {
1386 	unsigned long ticks;
1387 
1388 	ts->idle_exittime = now;
1389 
1390 	if (vtime_accounting_enabled_this_cpu())
1391 		return;
1392 	/*
1393 	 * We stopped the tick in idle. update_process_times() would miss the
1394 	 * time we slept, as it does only a 1 tick accounting.
1395 	 * Enforce that this is accounted to idle !
1396 	 */
1397 	ticks = jiffies - ts->idle_jiffies;
1398 	/*
1399 	 * We might be one off. Do not randomly account a huge number of ticks!
1400 	 */
1401 	if (ticks && ticks < LONG_MAX)
1402 		account_idle_ticks(ticks);
1403 }
1404 
1405 void tick_nohz_idle_restart_tick(void)
1406 {
1407 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1408 
1409 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1410 		ktime_t now = ktime_get();
1411 		tick_nohz_restart_sched_tick(ts, now);
1412 		tick_nohz_account_idle_time(ts, now);
1413 	}
1414 }
1415 
1416 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1417 {
1418 	if (tick_nohz_full_cpu(smp_processor_id()))
1419 		__tick_nohz_full_update_tick(ts, now);
1420 	else
1421 		tick_nohz_restart_sched_tick(ts, now);
1422 
1423 	tick_nohz_account_idle_time(ts, now);
1424 }
1425 
1426 /**
1427  * tick_nohz_idle_exit - Update the tick upon idle task exit
1428  *
1429  * When the idle task exits, update the tick depending on the
1430  * following situations:
1431  *
1432  * 1) If the CPU is not in nohz_full mode (most cases), then
1433  *    restart the tick.
1434  *
1435  * 2) If the CPU is in nohz_full mode (corner case):
1436  *   2.1) If the tick can be kept stopped (no tick dependencies)
1437  *        then re-evaluate the next tick and try to keep it stopped
1438  *        as long as possible.
1439  *   2.2) If the tick has dependencies, restart the tick.
1440  *
1441  */
1442 void tick_nohz_idle_exit(void)
1443 {
1444 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1445 	bool idle_active, tick_stopped;
1446 	ktime_t now;
1447 
1448 	local_irq_disable();
1449 
1450 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1451 	WARN_ON_ONCE(ts->timer_expires_base);
1452 
1453 	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1454 	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1455 	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1456 
1457 	if (idle_active || tick_stopped)
1458 		now = ktime_get();
1459 
1460 	if (idle_active)
1461 		tick_nohz_stop_idle(ts, now);
1462 
1463 	if (tick_stopped)
1464 		tick_nohz_idle_update_tick(ts, now);
1465 
1466 	local_irq_enable();
1467 }
1468 
1469 /*
1470  * In low-resolution mode, the tick handler must be implemented directly
1471  * at the clockevent level. hrtimer can't be used instead, because its
1472  * infrastructure actually relies on the tick itself as a backend in
1473  * low-resolution mode (see hrtimer_run_queues()).
1474  */
1475 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1476 {
1477 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1478 
1479 	dev->next_event = KTIME_MAX;
1480 
1481 	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1482 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1483 }
1484 
1485 static inline void tick_nohz_activate(struct tick_sched *ts)
1486 {
1487 	if (!tick_nohz_enabled)
1488 		return;
1489 	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1490 	/* One update is enough */
1491 	if (!test_and_set_bit(0, &tick_nohz_active))
1492 		timers_update_nohz();
1493 }
1494 
1495 /**
1496  * tick_nohz_switch_to_nohz - switch to NOHZ mode
1497  */
1498 static void tick_nohz_switch_to_nohz(void)
1499 {
1500 	if (!tick_nohz_enabled)
1501 		return;
1502 
1503 	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1504 		return;
1505 
1506 	/*
1507 	 * Recycle the hrtimer in 'ts', so we can share the
1508 	 * highres code.
1509 	 */
1510 	tick_setup_sched_timer(false);
1511 }
1512 
1513 static inline void tick_nohz_irq_enter(void)
1514 {
1515 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1516 	ktime_t now;
1517 
1518 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1519 		return;
1520 	now = ktime_get();
1521 	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1522 		tick_nohz_stop_idle(ts, now);
1523 	/*
1524 	 * If all CPUs are idle we may need to update a stale jiffies value.
1525 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1526 	 * alive but it might be busy looping with interrupts disabled in some
1527 	 * rare case (typically stop machine). So we must make sure we have a
1528 	 * last resort.
1529 	 */
1530 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1531 		tick_nohz_update_jiffies(now);
1532 }
1533 
1534 #else
1535 
1536 static inline void tick_nohz_switch_to_nohz(void) { }
1537 static inline void tick_nohz_irq_enter(void) { }
1538 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1539 
1540 #endif /* CONFIG_NO_HZ_COMMON */
1541 
1542 /*
1543  * Called from irq_enter() to notify about the possible interruption of idle()
1544  */
1545 void tick_irq_enter(void)
1546 {
1547 	tick_check_oneshot_broadcast_this_cpu();
1548 	tick_nohz_irq_enter();
1549 }
1550 
1551 static int sched_skew_tick;
1552 
1553 static int __init skew_tick(char *str)
1554 {
1555 	get_option(&str, &sched_skew_tick);
1556 
1557 	return 0;
1558 }
1559 early_param("skew_tick", skew_tick);
1560 
1561 /**
1562  * tick_setup_sched_timer - setup the tick emulation timer
1563  * @hrtimer: whether to use the hrtimer or not
1564  */
1565 void tick_setup_sched_timer(bool hrtimer)
1566 {
1567 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1568 
1569 	/* Emulate tick processing via per-CPU hrtimers: */
1570 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1571 
1572 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1573 		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1574 		ts->sched_timer.function = tick_nohz_handler;
1575 	}
1576 
1577 	/* Get the next period (per-CPU) */
1578 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1579 
1580 	/* Offset the tick to avert 'jiffies_lock' contention. */
1581 	if (sched_skew_tick) {
1582 		u64 offset = TICK_NSEC >> 1;
1583 		do_div(offset, num_possible_cpus());
1584 		offset *= smp_processor_id();
1585 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1586 	}
1587 
1588 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1589 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1590 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1591 	else
1592 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1593 	tick_nohz_activate(ts);
1594 }
1595 
1596 /*
1597  * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1598  * duty before disabling IRQs in idle for the last time.
1599  */
1600 void tick_sched_timer_dying(int cpu)
1601 {
1602 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1603 	ktime_t idle_sleeptime, iowait_sleeptime;
1604 	unsigned long idle_calls, idle_sleeps;
1605 
1606 	/* This must happen before hrtimers are migrated! */
1607 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1608 		hrtimer_cancel(&ts->sched_timer);
1609 
1610 	idle_sleeptime = ts->idle_sleeptime;
1611 	iowait_sleeptime = ts->iowait_sleeptime;
1612 	idle_calls = ts->idle_calls;
1613 	idle_sleeps = ts->idle_sleeps;
1614 	memset(ts, 0, sizeof(*ts));
1615 	ts->idle_sleeptime = idle_sleeptime;
1616 	ts->iowait_sleeptime = iowait_sleeptime;
1617 	ts->idle_calls = idle_calls;
1618 	ts->idle_sleeps = idle_sleeps;
1619 }
1620 
1621 /*
1622  * Async notification about clocksource changes
1623  */
1624 void tick_clock_notify(void)
1625 {
1626 	int cpu;
1627 
1628 	for_each_possible_cpu(cpu)
1629 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1630 }
1631 
1632 /*
1633  * Async notification about clock event changes
1634  */
1635 void tick_oneshot_notify(void)
1636 {
1637 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1638 
1639 	set_bit(0, &ts->check_clocks);
1640 }
1641 
1642 /*
1643  * Check if a change happened, which makes oneshot possible.
1644  *
1645  * Called cyclically from the hrtimer softirq (driven by the timer
1646  * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1647  * mode, because high resolution timers are disabled (either compile
1648  * or runtime). Called with interrupts disabled.
1649  */
1650 int tick_check_oneshot_change(int allow_nohz)
1651 {
1652 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1653 
1654 	if (!test_and_clear_bit(0, &ts->check_clocks))
1655 		return 0;
1656 
1657 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1658 		return 0;
1659 
1660 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1661 		return 0;
1662 
1663 	if (!allow_nohz)
1664 		return 1;
1665 
1666 	tick_nohz_switch_to_nohz();
1667 	return 0;
1668 }
1669