xref: /linux/kernel/time/tick-sched.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void nohz_full_kick_work_func(struct irq_work *work)
201 {
202 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
203 }
204 
205 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
206 	.func = nohz_full_kick_work_func,
207 };
208 
209 /*
210  * Kick this CPU if it's full dynticks in order to force it to
211  * re-evaluate its dependency on the tick and restart it if necessary.
212  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
213  * is NMI safe.
214  */
215 void tick_nohz_full_kick(void)
216 {
217 	if (!tick_nohz_full_cpu(smp_processor_id()))
218 		return;
219 
220 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
221 }
222 
223 /*
224  * Kick the CPU if it's full dynticks in order to force it to
225  * re-evaluate its dependency on the tick and restart it if necessary.
226  */
227 void tick_nohz_full_kick_cpu(int cpu)
228 {
229 	if (!tick_nohz_full_cpu(cpu))
230 		return;
231 
232 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
233 }
234 
235 static void nohz_full_kick_ipi(void *info)
236 {
237 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
238 }
239 
240 /*
241  * Kick all full dynticks CPUs in order to force these to re-evaluate
242  * their dependency on the tick and restart it if necessary.
243  */
244 void tick_nohz_full_kick_all(void)
245 {
246 	if (!tick_nohz_full_running)
247 		return;
248 
249 	preempt_disable();
250 	smp_call_function_many(tick_nohz_full_mask,
251 			       nohz_full_kick_ipi, NULL, false);
252 	tick_nohz_full_kick();
253 	preempt_enable();
254 }
255 
256 /*
257  * Re-evaluate the need for the tick as we switch the current task.
258  * It might need the tick due to per task/process properties:
259  * perf events, posix cpu timers, ...
260  */
261 void __tick_nohz_task_switch(void)
262 {
263 	unsigned long flags;
264 
265 	local_irq_save(flags);
266 
267 	if (!tick_nohz_full_cpu(smp_processor_id()))
268 		goto out;
269 
270 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
271 		tick_nohz_full_kick();
272 
273 out:
274 	local_irq_restore(flags);
275 }
276 
277 /* Parse the boot-time nohz CPU list from the kernel parameters. */
278 static int __init tick_nohz_full_setup(char *str)
279 {
280 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
281 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
282 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
283 		free_bootmem_cpumask_var(tick_nohz_full_mask);
284 		return 1;
285 	}
286 	tick_nohz_full_running = true;
287 
288 	return 1;
289 }
290 __setup("nohz_full=", tick_nohz_full_setup);
291 
292 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
293 						 unsigned long action,
294 						 void *hcpu)
295 {
296 	unsigned int cpu = (unsigned long)hcpu;
297 
298 	switch (action & ~CPU_TASKS_FROZEN) {
299 	case CPU_DOWN_PREPARE:
300 		/*
301 		 * If we handle the timekeeping duty for full dynticks CPUs,
302 		 * we can't safely shutdown that CPU.
303 		 */
304 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
305 			return NOTIFY_BAD;
306 		break;
307 	}
308 	return NOTIFY_OK;
309 }
310 
311 static int tick_nohz_init_all(void)
312 {
313 	int err = -1;
314 
315 #ifdef CONFIG_NO_HZ_FULL_ALL
316 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
317 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
318 		return err;
319 	}
320 	err = 0;
321 	cpumask_setall(tick_nohz_full_mask);
322 	tick_nohz_full_running = true;
323 #endif
324 	return err;
325 }
326 
327 void __init tick_nohz_init(void)
328 {
329 	int cpu;
330 
331 	if (!tick_nohz_full_running) {
332 		if (tick_nohz_init_all() < 0)
333 			return;
334 	}
335 
336 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
337 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
338 		cpumask_clear(tick_nohz_full_mask);
339 		tick_nohz_full_running = false;
340 		return;
341 	}
342 
343 	/*
344 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
345 	 * locking contexts. But then we need irq work to raise its own
346 	 * interrupts to avoid circular dependency on the tick
347 	 */
348 	if (!arch_irq_work_has_interrupt()) {
349 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
350 			   "support irq work self-IPIs\n");
351 		cpumask_clear(tick_nohz_full_mask);
352 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
353 		tick_nohz_full_running = false;
354 		return;
355 	}
356 
357 	cpu = smp_processor_id();
358 
359 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
360 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
361 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
362 	}
363 
364 	cpumask_andnot(housekeeping_mask,
365 		       cpu_possible_mask, tick_nohz_full_mask);
366 
367 	for_each_cpu(cpu, tick_nohz_full_mask)
368 		context_tracking_cpu_set(cpu);
369 
370 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
371 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
372 		cpumask_pr_args(tick_nohz_full_mask));
373 }
374 #endif
375 
376 /*
377  * NOHZ - aka dynamic tick functionality
378  */
379 #ifdef CONFIG_NO_HZ_COMMON
380 /*
381  * NO HZ enabled ?
382  */
383 static int tick_nohz_enabled __read_mostly  = 1;
384 unsigned long tick_nohz_active  __read_mostly;
385 /*
386  * Enable / Disable tickless mode
387  */
388 static int __init setup_tick_nohz(char *str)
389 {
390 	if (!strcmp(str, "off"))
391 		tick_nohz_enabled = 0;
392 	else if (!strcmp(str, "on"))
393 		tick_nohz_enabled = 1;
394 	else
395 		return 0;
396 	return 1;
397 }
398 
399 __setup("nohz=", setup_tick_nohz);
400 
401 int tick_nohz_tick_stopped(void)
402 {
403 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
404 }
405 
406 /**
407  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
408  *
409  * Called from interrupt entry when the CPU was idle
410  *
411  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
412  * must be updated. Otherwise an interrupt handler could use a stale jiffy
413  * value. We do this unconditionally on any cpu, as we don't know whether the
414  * cpu, which has the update task assigned is in a long sleep.
415  */
416 static void tick_nohz_update_jiffies(ktime_t now)
417 {
418 	unsigned long flags;
419 
420 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
421 
422 	local_irq_save(flags);
423 	tick_do_update_jiffies64(now);
424 	local_irq_restore(flags);
425 
426 	touch_softlockup_watchdog();
427 }
428 
429 /*
430  * Updates the per cpu time idle statistics counters
431  */
432 static void
433 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
434 {
435 	ktime_t delta;
436 
437 	if (ts->idle_active) {
438 		delta = ktime_sub(now, ts->idle_entrytime);
439 		if (nr_iowait_cpu(cpu) > 0)
440 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
441 		else
442 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
443 		ts->idle_entrytime = now;
444 	}
445 
446 	if (last_update_time)
447 		*last_update_time = ktime_to_us(now);
448 
449 }
450 
451 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
452 {
453 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
454 	ts->idle_active = 0;
455 
456 	sched_clock_idle_wakeup_event(0);
457 }
458 
459 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
460 {
461 	ktime_t now = ktime_get();
462 
463 	ts->idle_entrytime = now;
464 	ts->idle_active = 1;
465 	sched_clock_idle_sleep_event();
466 	return now;
467 }
468 
469 /**
470  * get_cpu_idle_time_us - get the total idle time of a cpu
471  * @cpu: CPU number to query
472  * @last_update_time: variable to store update time in. Do not update
473  * counters if NULL.
474  *
475  * Return the cummulative idle time (since boot) for a given
476  * CPU, in microseconds.
477  *
478  * This time is measured via accounting rather than sampling,
479  * and is as accurate as ktime_get() is.
480  *
481  * This function returns -1 if NOHZ is not enabled.
482  */
483 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
484 {
485 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
486 	ktime_t now, idle;
487 
488 	if (!tick_nohz_active)
489 		return -1;
490 
491 	now = ktime_get();
492 	if (last_update_time) {
493 		update_ts_time_stats(cpu, ts, now, last_update_time);
494 		idle = ts->idle_sleeptime;
495 	} else {
496 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
497 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
498 
499 			idle = ktime_add(ts->idle_sleeptime, delta);
500 		} else {
501 			idle = ts->idle_sleeptime;
502 		}
503 	}
504 
505 	return ktime_to_us(idle);
506 
507 }
508 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
509 
510 /**
511  * get_cpu_iowait_time_us - get the total iowait time of a cpu
512  * @cpu: CPU number to query
513  * @last_update_time: variable to store update time in. Do not update
514  * counters if NULL.
515  *
516  * Return the cummulative iowait time (since boot) for a given
517  * CPU, in microseconds.
518  *
519  * This time is measured via accounting rather than sampling,
520  * and is as accurate as ktime_get() is.
521  *
522  * This function returns -1 if NOHZ is not enabled.
523  */
524 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
525 {
526 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
527 	ktime_t now, iowait;
528 
529 	if (!tick_nohz_active)
530 		return -1;
531 
532 	now = ktime_get();
533 	if (last_update_time) {
534 		update_ts_time_stats(cpu, ts, now, last_update_time);
535 		iowait = ts->iowait_sleeptime;
536 	} else {
537 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
538 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
539 
540 			iowait = ktime_add(ts->iowait_sleeptime, delta);
541 		} else {
542 			iowait = ts->iowait_sleeptime;
543 		}
544 	}
545 
546 	return ktime_to_us(iowait);
547 }
548 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
549 
550 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
551 {
552 	hrtimer_cancel(&ts->sched_timer);
553 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
554 
555 	/* Forward the time to expire in the future */
556 	hrtimer_forward(&ts->sched_timer, now, tick_period);
557 
558 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
559 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
560 	else
561 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
562 }
563 
564 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
565 					 ktime_t now, int cpu)
566 {
567 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
568 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
569 	unsigned long seq, basejiff;
570 	ktime_t	tick;
571 
572 	/* Read jiffies and the time when jiffies were updated last */
573 	do {
574 		seq = read_seqbegin(&jiffies_lock);
575 		basemono = last_jiffies_update.tv64;
576 		basejiff = jiffies;
577 	} while (read_seqretry(&jiffies_lock, seq));
578 	ts->last_jiffies = basejiff;
579 
580 	if (rcu_needs_cpu(basemono, &next_rcu) ||
581 	    arch_needs_cpu() || irq_work_needs_cpu()) {
582 		next_tick = basemono + TICK_NSEC;
583 	} else {
584 		/*
585 		 * Get the next pending timer. If high resolution
586 		 * timers are enabled this only takes the timer wheel
587 		 * timers into account. If high resolution timers are
588 		 * disabled this also looks at the next expiring
589 		 * hrtimer.
590 		 */
591 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
592 		ts->next_timer = next_tmr;
593 		/* Take the next rcu event into account */
594 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
595 	}
596 
597 	/*
598 	 * If the tick is due in the next period, keep it ticking or
599 	 * restart it proper.
600 	 */
601 	delta = next_tick - basemono;
602 	if (delta <= (u64)TICK_NSEC) {
603 		tick.tv64 = 0;
604 		if (!ts->tick_stopped)
605 			goto out;
606 		if (delta == 0) {
607 			/* Tick is stopped, but required now. Enforce it */
608 			tick_nohz_restart(ts, now);
609 			goto out;
610 		}
611 	}
612 
613 	/*
614 	 * If this cpu is the one which updates jiffies, then give up
615 	 * the assignment and let it be taken by the cpu which runs
616 	 * the tick timer next, which might be this cpu as well. If we
617 	 * don't drop this here the jiffies might be stale and
618 	 * do_timer() never invoked. Keep track of the fact that it
619 	 * was the one which had the do_timer() duty last. If this cpu
620 	 * is the one which had the do_timer() duty last, we limit the
621 	 * sleep time to the timekeeping max_deferement value.
622 	 * Otherwise we can sleep as long as we want.
623 	 */
624 	delta = timekeeping_max_deferment();
625 	if (cpu == tick_do_timer_cpu) {
626 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
627 		ts->do_timer_last = 1;
628 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
629 		delta = KTIME_MAX;
630 		ts->do_timer_last = 0;
631 	} else if (!ts->do_timer_last) {
632 		delta = KTIME_MAX;
633 	}
634 
635 #ifdef CONFIG_NO_HZ_FULL
636 	/* Limit the tick delta to the maximum scheduler deferment */
637 	if (!ts->inidle)
638 		delta = min(delta, scheduler_tick_max_deferment());
639 #endif
640 
641 	/* Calculate the next expiry time */
642 	if (delta < (KTIME_MAX - basemono))
643 		expires = basemono + delta;
644 	else
645 		expires = KTIME_MAX;
646 
647 	expires = min_t(u64, expires, next_tick);
648 	tick.tv64 = expires;
649 
650 	/* Skip reprogram of event if its not changed */
651 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
652 		goto out;
653 
654 	/*
655 	 * nohz_stop_sched_tick can be called several times before
656 	 * the nohz_restart_sched_tick is called. This happens when
657 	 * interrupts arrive which do not cause a reschedule. In the
658 	 * first call we save the current tick time, so we can restart
659 	 * the scheduler tick in nohz_restart_sched_tick.
660 	 */
661 	if (!ts->tick_stopped) {
662 		nohz_balance_enter_idle(cpu);
663 		calc_load_enter_idle();
664 
665 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
666 		ts->tick_stopped = 1;
667 		trace_tick_stop(1, " ");
668 	}
669 
670 	/*
671 	 * If the expiration time == KTIME_MAX, then we simply stop
672 	 * the tick timer.
673 	 */
674 	if (unlikely(expires == KTIME_MAX)) {
675 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
676 			hrtimer_cancel(&ts->sched_timer);
677 		goto out;
678 	}
679 
680 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
681 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
682 	else
683 		tick_program_event(tick, 1);
684 out:
685 	/* Update the estimated sleep length */
686 	ts->sleep_length = ktime_sub(dev->next_event, now);
687 	return tick;
688 }
689 
690 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
691 {
692 	/* Update jiffies first */
693 	tick_do_update_jiffies64(now);
694 	update_cpu_load_nohz();
695 
696 	calc_load_exit_idle();
697 	touch_softlockup_watchdog();
698 	/*
699 	 * Cancel the scheduled timer and restore the tick
700 	 */
701 	ts->tick_stopped  = 0;
702 	ts->idle_exittime = now;
703 
704 	tick_nohz_restart(ts, now);
705 }
706 
707 static void tick_nohz_full_update_tick(struct tick_sched *ts)
708 {
709 #ifdef CONFIG_NO_HZ_FULL
710 	int cpu = smp_processor_id();
711 
712 	if (!tick_nohz_full_cpu(cpu))
713 		return;
714 
715 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
716 		return;
717 
718 	if (can_stop_full_tick())
719 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
720 	else if (ts->tick_stopped)
721 		tick_nohz_restart_sched_tick(ts, ktime_get());
722 #endif
723 }
724 
725 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
726 {
727 	/*
728 	 * If this cpu is offline and it is the one which updates
729 	 * jiffies, then give up the assignment and let it be taken by
730 	 * the cpu which runs the tick timer next. If we don't drop
731 	 * this here the jiffies might be stale and do_timer() never
732 	 * invoked.
733 	 */
734 	if (unlikely(!cpu_online(cpu))) {
735 		if (cpu == tick_do_timer_cpu)
736 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
737 		return false;
738 	}
739 
740 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
741 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
742 		return false;
743 	}
744 
745 	if (need_resched())
746 		return false;
747 
748 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
749 		static int ratelimit;
750 
751 		if (ratelimit < 10 &&
752 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
753 			pr_warn("NOHZ: local_softirq_pending %02x\n",
754 				(unsigned int) local_softirq_pending());
755 			ratelimit++;
756 		}
757 		return false;
758 	}
759 
760 	if (tick_nohz_full_enabled()) {
761 		/*
762 		 * Keep the tick alive to guarantee timekeeping progression
763 		 * if there are full dynticks CPUs around
764 		 */
765 		if (tick_do_timer_cpu == cpu)
766 			return false;
767 		/*
768 		 * Boot safety: make sure the timekeeping duty has been
769 		 * assigned before entering dyntick-idle mode,
770 		 */
771 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
772 			return false;
773 	}
774 
775 	return true;
776 }
777 
778 static void __tick_nohz_idle_enter(struct tick_sched *ts)
779 {
780 	ktime_t now, expires;
781 	int cpu = smp_processor_id();
782 
783 	now = tick_nohz_start_idle(ts);
784 
785 	if (can_stop_idle_tick(cpu, ts)) {
786 		int was_stopped = ts->tick_stopped;
787 
788 		ts->idle_calls++;
789 
790 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
791 		if (expires.tv64 > 0LL) {
792 			ts->idle_sleeps++;
793 			ts->idle_expires = expires;
794 		}
795 
796 		if (!was_stopped && ts->tick_stopped)
797 			ts->idle_jiffies = ts->last_jiffies;
798 	}
799 }
800 
801 /**
802  * tick_nohz_idle_enter - stop the idle tick from the idle task
803  *
804  * When the next event is more than a tick into the future, stop the idle tick
805  * Called when we start the idle loop.
806  *
807  * The arch is responsible of calling:
808  *
809  * - rcu_idle_enter() after its last use of RCU before the CPU is put
810  *  to sleep.
811  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
812  */
813 void tick_nohz_idle_enter(void)
814 {
815 	struct tick_sched *ts;
816 
817 	WARN_ON_ONCE(irqs_disabled());
818 
819 	/*
820  	 * Update the idle state in the scheduler domain hierarchy
821  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
822  	 * State will be updated to busy during the first busy tick after
823  	 * exiting idle.
824  	 */
825 	set_cpu_sd_state_idle();
826 
827 	local_irq_disable();
828 
829 	ts = this_cpu_ptr(&tick_cpu_sched);
830 	ts->inidle = 1;
831 	__tick_nohz_idle_enter(ts);
832 
833 	local_irq_enable();
834 }
835 
836 /**
837  * tick_nohz_irq_exit - update next tick event from interrupt exit
838  *
839  * When an interrupt fires while we are idle and it doesn't cause
840  * a reschedule, it may still add, modify or delete a timer, enqueue
841  * an RCU callback, etc...
842  * So we need to re-calculate and reprogram the next tick event.
843  */
844 void tick_nohz_irq_exit(void)
845 {
846 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
847 
848 	if (ts->inidle)
849 		__tick_nohz_idle_enter(ts);
850 	else
851 		tick_nohz_full_update_tick(ts);
852 }
853 
854 /**
855  * tick_nohz_get_sleep_length - return the length of the current sleep
856  *
857  * Called from power state control code with interrupts disabled
858  */
859 ktime_t tick_nohz_get_sleep_length(void)
860 {
861 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
862 
863 	return ts->sleep_length;
864 }
865 
866 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
867 {
868 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
869 	unsigned long ticks;
870 
871 	if (vtime_accounting_enabled())
872 		return;
873 	/*
874 	 * We stopped the tick in idle. Update process times would miss the
875 	 * time we slept as update_process_times does only a 1 tick
876 	 * accounting. Enforce that this is accounted to idle !
877 	 */
878 	ticks = jiffies - ts->idle_jiffies;
879 	/*
880 	 * We might be one off. Do not randomly account a huge number of ticks!
881 	 */
882 	if (ticks && ticks < LONG_MAX)
883 		account_idle_ticks(ticks);
884 #endif
885 }
886 
887 /**
888  * tick_nohz_idle_exit - restart the idle tick from the idle task
889  *
890  * Restart the idle tick when the CPU is woken up from idle
891  * This also exit the RCU extended quiescent state. The CPU
892  * can use RCU again after this function is called.
893  */
894 void tick_nohz_idle_exit(void)
895 {
896 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
897 	ktime_t now;
898 
899 	local_irq_disable();
900 
901 	WARN_ON_ONCE(!ts->inidle);
902 
903 	ts->inidle = 0;
904 
905 	if (ts->idle_active || ts->tick_stopped)
906 		now = ktime_get();
907 
908 	if (ts->idle_active)
909 		tick_nohz_stop_idle(ts, now);
910 
911 	if (ts->tick_stopped) {
912 		tick_nohz_restart_sched_tick(ts, now);
913 		tick_nohz_account_idle_ticks(ts);
914 	}
915 
916 	local_irq_enable();
917 }
918 
919 /*
920  * The nohz low res interrupt handler
921  */
922 static void tick_nohz_handler(struct clock_event_device *dev)
923 {
924 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
925 	struct pt_regs *regs = get_irq_regs();
926 	ktime_t now = ktime_get();
927 
928 	dev->next_event.tv64 = KTIME_MAX;
929 
930 	tick_sched_do_timer(now);
931 	tick_sched_handle(ts, regs);
932 
933 	/* No need to reprogram if we are running tickless  */
934 	if (unlikely(ts->tick_stopped))
935 		return;
936 
937 	hrtimer_forward(&ts->sched_timer, now, tick_period);
938 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
939 }
940 
941 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
942 {
943 	if (!tick_nohz_enabled)
944 		return;
945 	ts->nohz_mode = mode;
946 	/* One update is enough */
947 	if (!test_and_set_bit(0, &tick_nohz_active))
948 		timers_update_migration(true);
949 }
950 
951 /**
952  * tick_nohz_switch_to_nohz - switch to nohz mode
953  */
954 static void tick_nohz_switch_to_nohz(void)
955 {
956 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
957 	ktime_t next;
958 
959 	if (!tick_nohz_enabled)
960 		return;
961 
962 	if (tick_switch_to_oneshot(tick_nohz_handler))
963 		return;
964 
965 	/*
966 	 * Recycle the hrtimer in ts, so we can share the
967 	 * hrtimer_forward with the highres code.
968 	 */
969 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
970 	/* Get the next period */
971 	next = tick_init_jiffy_update();
972 
973 	hrtimer_forward_now(&ts->sched_timer, tick_period);
974 	hrtimer_set_expires(&ts->sched_timer, next);
975 	tick_program_event(next, 1);
976 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
977 }
978 
979 /*
980  * When NOHZ is enabled and the tick is stopped, we need to kick the
981  * tick timer from irq_enter() so that the jiffies update is kept
982  * alive during long running softirqs. That's ugly as hell, but
983  * correctness is key even if we need to fix the offending softirq in
984  * the first place.
985  *
986  * Note, this is different to tick_nohz_restart. We just kick the
987  * timer and do not touch the other magic bits which need to be done
988  * when idle is left.
989  */
990 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
991 {
992 #if 0
993 	/* Switch back to 2.6.27 behaviour */
994 	ktime_t delta;
995 
996 	/*
997 	 * Do not touch the tick device, when the next expiry is either
998 	 * already reached or less/equal than the tick period.
999 	 */
1000 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1001 	if (delta.tv64 <= tick_period.tv64)
1002 		return;
1003 
1004 	tick_nohz_restart(ts, now);
1005 #endif
1006 }
1007 
1008 static inline void tick_nohz_irq_enter(void)
1009 {
1010 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1011 	ktime_t now;
1012 
1013 	if (!ts->idle_active && !ts->tick_stopped)
1014 		return;
1015 	now = ktime_get();
1016 	if (ts->idle_active)
1017 		tick_nohz_stop_idle(ts, now);
1018 	if (ts->tick_stopped) {
1019 		tick_nohz_update_jiffies(now);
1020 		tick_nohz_kick_tick(ts, now);
1021 	}
1022 }
1023 
1024 #else
1025 
1026 static inline void tick_nohz_switch_to_nohz(void) { }
1027 static inline void tick_nohz_irq_enter(void) { }
1028 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1029 
1030 #endif /* CONFIG_NO_HZ_COMMON */
1031 
1032 /*
1033  * Called from irq_enter to notify about the possible interruption of idle()
1034  */
1035 void tick_irq_enter(void)
1036 {
1037 	tick_check_oneshot_broadcast_this_cpu();
1038 	tick_nohz_irq_enter();
1039 }
1040 
1041 /*
1042  * High resolution timer specific code
1043  */
1044 #ifdef CONFIG_HIGH_RES_TIMERS
1045 /*
1046  * We rearm the timer until we get disabled by the idle code.
1047  * Called with interrupts disabled.
1048  */
1049 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1050 {
1051 	struct tick_sched *ts =
1052 		container_of(timer, struct tick_sched, sched_timer);
1053 	struct pt_regs *regs = get_irq_regs();
1054 	ktime_t now = ktime_get();
1055 
1056 	tick_sched_do_timer(now);
1057 
1058 	/*
1059 	 * Do not call, when we are not in irq context and have
1060 	 * no valid regs pointer
1061 	 */
1062 	if (regs)
1063 		tick_sched_handle(ts, regs);
1064 
1065 	/* No need to reprogram if we are in idle or full dynticks mode */
1066 	if (unlikely(ts->tick_stopped))
1067 		return HRTIMER_NORESTART;
1068 
1069 	hrtimer_forward(timer, now, tick_period);
1070 
1071 	return HRTIMER_RESTART;
1072 }
1073 
1074 static int sched_skew_tick;
1075 
1076 static int __init skew_tick(char *str)
1077 {
1078 	get_option(&str, &sched_skew_tick);
1079 
1080 	return 0;
1081 }
1082 early_param("skew_tick", skew_tick);
1083 
1084 /**
1085  * tick_setup_sched_timer - setup the tick emulation timer
1086  */
1087 void tick_setup_sched_timer(void)
1088 {
1089 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1090 	ktime_t now = ktime_get();
1091 
1092 	/*
1093 	 * Emulate tick processing via per-CPU hrtimers:
1094 	 */
1095 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1096 	ts->sched_timer.function = tick_sched_timer;
1097 
1098 	/* Get the next period (per cpu) */
1099 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1100 
1101 	/* Offset the tick to avert jiffies_lock contention. */
1102 	if (sched_skew_tick) {
1103 		u64 offset = ktime_to_ns(tick_period) >> 1;
1104 		do_div(offset, num_possible_cpus());
1105 		offset *= smp_processor_id();
1106 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1107 	}
1108 
1109 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1110 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1111 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1112 }
1113 #endif /* HIGH_RES_TIMERS */
1114 
1115 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1116 void tick_cancel_sched_timer(int cpu)
1117 {
1118 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1119 
1120 # ifdef CONFIG_HIGH_RES_TIMERS
1121 	if (ts->sched_timer.base)
1122 		hrtimer_cancel(&ts->sched_timer);
1123 # endif
1124 
1125 	memset(ts, 0, sizeof(*ts));
1126 }
1127 #endif
1128 
1129 /**
1130  * Async notification about clocksource changes
1131  */
1132 void tick_clock_notify(void)
1133 {
1134 	int cpu;
1135 
1136 	for_each_possible_cpu(cpu)
1137 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1138 }
1139 
1140 /*
1141  * Async notification about clock event changes
1142  */
1143 void tick_oneshot_notify(void)
1144 {
1145 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1146 
1147 	set_bit(0, &ts->check_clocks);
1148 }
1149 
1150 /**
1151  * Check, if a change happened, which makes oneshot possible.
1152  *
1153  * Called cyclic from the hrtimer softirq (driven by the timer
1154  * softirq) allow_nohz signals, that we can switch into low-res nohz
1155  * mode, because high resolution timers are disabled (either compile
1156  * or runtime). Called with interrupts disabled.
1157  */
1158 int tick_check_oneshot_change(int allow_nohz)
1159 {
1160 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1161 
1162 	if (!test_and_clear_bit(0, &ts->check_clocks))
1163 		return 0;
1164 
1165 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1166 		return 0;
1167 
1168 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1169 		return 0;
1170 
1171 	if (!allow_nohz)
1172 		return 1;
1173 
1174 	tick_nohz_switch_to_nohz();
1175 	return 0;
1176 }
1177