1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 #include <linux/context_tracking.h> 27 28 #include <asm/irq_regs.h> 29 30 #include "tick-internal.h" 31 32 #include <trace/events/timer.h> 33 34 /* 35 * Per cpu nohz control structure 36 */ 37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 38 39 /* 40 * The time, when the last jiffy update happened. Protected by jiffies_lock. 41 */ 42 static ktime_t last_jiffies_update; 43 44 struct tick_sched *tick_get_tick_sched(int cpu) 45 { 46 return &per_cpu(tick_cpu_sched, cpu); 47 } 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta.tv64 < tick_period.tv64) 62 return; 63 64 /* Reevalute with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta.tv64 >= tick_period.tv64) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta.tv64 >= tick_period.tv64)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } else { 88 write_sequnlock(&jiffies_lock); 89 return; 90 } 91 write_sequnlock(&jiffies_lock); 92 update_wall_time(); 93 } 94 95 /* 96 * Initialize and return retrieve the jiffies update. 97 */ 98 static ktime_t tick_init_jiffy_update(void) 99 { 100 ktime_t period; 101 102 write_seqlock(&jiffies_lock); 103 /* Did we start the jiffies update yet ? */ 104 if (last_jiffies_update.tv64 == 0) 105 last_jiffies_update = tick_next_period; 106 period = last_jiffies_update; 107 write_sequnlock(&jiffies_lock); 108 return period; 109 } 110 111 112 static void tick_sched_do_timer(ktime_t now) 113 { 114 int cpu = smp_processor_id(); 115 116 #ifdef CONFIG_NO_HZ_COMMON 117 /* 118 * Check if the do_timer duty was dropped. We don't care about 119 * concurrency: This happens only when the cpu in charge went 120 * into a long sleep. If two cpus happen to assign themself to 121 * this duty, then the jiffies update is still serialized by 122 * jiffies_lock. 123 */ 124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 125 && !tick_nohz_full_cpu(cpu)) 126 tick_do_timer_cpu = cpu; 127 #endif 128 129 /* Check, if the jiffies need an update */ 130 if (tick_do_timer_cpu == cpu) 131 tick_do_update_jiffies64(now); 132 } 133 134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 135 { 136 #ifdef CONFIG_NO_HZ_COMMON 137 /* 138 * When we are idle and the tick is stopped, we have to touch 139 * the watchdog as we might not schedule for a really long 140 * time. This happens on complete idle SMP systems while 141 * waiting on the login prompt. We also increment the "start of 142 * idle" jiffy stamp so the idle accounting adjustment we do 143 * when we go busy again does not account too much ticks. 144 */ 145 if (ts->tick_stopped) { 146 touch_softlockup_watchdog(); 147 if (is_idle_task(current)) 148 ts->idle_jiffies++; 149 } 150 #endif 151 update_process_times(user_mode(regs)); 152 profile_tick(CPU_PROFILING); 153 } 154 155 #ifdef CONFIG_NO_HZ_FULL 156 cpumask_var_t tick_nohz_full_mask; 157 cpumask_var_t housekeeping_mask; 158 bool tick_nohz_full_running; 159 160 static bool can_stop_full_tick(void) 161 { 162 WARN_ON_ONCE(!irqs_disabled()); 163 164 if (!sched_can_stop_tick()) { 165 trace_tick_stop(0, "more than 1 task in runqueue\n"); 166 return false; 167 } 168 169 if (!posix_cpu_timers_can_stop_tick(current)) { 170 trace_tick_stop(0, "posix timers running\n"); 171 return false; 172 } 173 174 if (!perf_event_can_stop_tick()) { 175 trace_tick_stop(0, "perf events running\n"); 176 return false; 177 } 178 179 /* sched_clock_tick() needs us? */ 180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 181 /* 182 * TODO: kick full dynticks CPUs when 183 * sched_clock_stable is set. 184 */ 185 if (!sched_clock_stable()) { 186 trace_tick_stop(0, "unstable sched clock\n"); 187 /* 188 * Don't allow the user to think they can get 189 * full NO_HZ with this machine. 190 */ 191 WARN_ONCE(tick_nohz_full_running, 192 "NO_HZ FULL will not work with unstable sched clock"); 193 return false; 194 } 195 #endif 196 197 return true; 198 } 199 200 static void nohz_full_kick_work_func(struct irq_work *work) 201 { 202 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 203 } 204 205 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 206 .func = nohz_full_kick_work_func, 207 }; 208 209 /* 210 * Kick this CPU if it's full dynticks in order to force it to 211 * re-evaluate its dependency on the tick and restart it if necessary. 212 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 213 * is NMI safe. 214 */ 215 void tick_nohz_full_kick(void) 216 { 217 if (!tick_nohz_full_cpu(smp_processor_id())) 218 return; 219 220 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 221 } 222 223 /* 224 * Kick the CPU if it's full dynticks in order to force it to 225 * re-evaluate its dependency on the tick and restart it if necessary. 226 */ 227 void tick_nohz_full_kick_cpu(int cpu) 228 { 229 if (!tick_nohz_full_cpu(cpu)) 230 return; 231 232 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 233 } 234 235 static void nohz_full_kick_ipi(void *info) 236 { 237 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 238 } 239 240 /* 241 * Kick all full dynticks CPUs in order to force these to re-evaluate 242 * their dependency on the tick and restart it if necessary. 243 */ 244 void tick_nohz_full_kick_all(void) 245 { 246 if (!tick_nohz_full_running) 247 return; 248 249 preempt_disable(); 250 smp_call_function_many(tick_nohz_full_mask, 251 nohz_full_kick_ipi, NULL, false); 252 tick_nohz_full_kick(); 253 preempt_enable(); 254 } 255 256 /* 257 * Re-evaluate the need for the tick as we switch the current task. 258 * It might need the tick due to per task/process properties: 259 * perf events, posix cpu timers, ... 260 */ 261 void __tick_nohz_task_switch(void) 262 { 263 unsigned long flags; 264 265 local_irq_save(flags); 266 267 if (!tick_nohz_full_cpu(smp_processor_id())) 268 goto out; 269 270 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 271 tick_nohz_full_kick(); 272 273 out: 274 local_irq_restore(flags); 275 } 276 277 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 278 static int __init tick_nohz_full_setup(char *str) 279 { 280 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 281 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 282 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 283 free_bootmem_cpumask_var(tick_nohz_full_mask); 284 return 1; 285 } 286 tick_nohz_full_running = true; 287 288 return 1; 289 } 290 __setup("nohz_full=", tick_nohz_full_setup); 291 292 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 293 unsigned long action, 294 void *hcpu) 295 { 296 unsigned int cpu = (unsigned long)hcpu; 297 298 switch (action & ~CPU_TASKS_FROZEN) { 299 case CPU_DOWN_PREPARE: 300 /* 301 * If we handle the timekeeping duty for full dynticks CPUs, 302 * we can't safely shutdown that CPU. 303 */ 304 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 305 return NOTIFY_BAD; 306 break; 307 } 308 return NOTIFY_OK; 309 } 310 311 static int tick_nohz_init_all(void) 312 { 313 int err = -1; 314 315 #ifdef CONFIG_NO_HZ_FULL_ALL 316 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 317 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 318 return err; 319 } 320 err = 0; 321 cpumask_setall(tick_nohz_full_mask); 322 tick_nohz_full_running = true; 323 #endif 324 return err; 325 } 326 327 void __init tick_nohz_init(void) 328 { 329 int cpu; 330 331 if (!tick_nohz_full_running) { 332 if (tick_nohz_init_all() < 0) 333 return; 334 } 335 336 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 337 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 338 cpumask_clear(tick_nohz_full_mask); 339 tick_nohz_full_running = false; 340 return; 341 } 342 343 /* 344 * Full dynticks uses irq work to drive the tick rescheduling on safe 345 * locking contexts. But then we need irq work to raise its own 346 * interrupts to avoid circular dependency on the tick 347 */ 348 if (!arch_irq_work_has_interrupt()) { 349 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't " 350 "support irq work self-IPIs\n"); 351 cpumask_clear(tick_nohz_full_mask); 352 cpumask_copy(housekeeping_mask, cpu_possible_mask); 353 tick_nohz_full_running = false; 354 return; 355 } 356 357 cpu = smp_processor_id(); 358 359 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 360 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 361 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 362 } 363 364 cpumask_andnot(housekeeping_mask, 365 cpu_possible_mask, tick_nohz_full_mask); 366 367 for_each_cpu(cpu, tick_nohz_full_mask) 368 context_tracking_cpu_set(cpu); 369 370 cpu_notifier(tick_nohz_cpu_down_callback, 0); 371 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 372 cpumask_pr_args(tick_nohz_full_mask)); 373 } 374 #endif 375 376 /* 377 * NOHZ - aka dynamic tick functionality 378 */ 379 #ifdef CONFIG_NO_HZ_COMMON 380 /* 381 * NO HZ enabled ? 382 */ 383 static int tick_nohz_enabled __read_mostly = 1; 384 unsigned long tick_nohz_active __read_mostly; 385 /* 386 * Enable / Disable tickless mode 387 */ 388 static int __init setup_tick_nohz(char *str) 389 { 390 if (!strcmp(str, "off")) 391 tick_nohz_enabled = 0; 392 else if (!strcmp(str, "on")) 393 tick_nohz_enabled = 1; 394 else 395 return 0; 396 return 1; 397 } 398 399 __setup("nohz=", setup_tick_nohz); 400 401 int tick_nohz_tick_stopped(void) 402 { 403 return __this_cpu_read(tick_cpu_sched.tick_stopped); 404 } 405 406 /** 407 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 408 * 409 * Called from interrupt entry when the CPU was idle 410 * 411 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 412 * must be updated. Otherwise an interrupt handler could use a stale jiffy 413 * value. We do this unconditionally on any cpu, as we don't know whether the 414 * cpu, which has the update task assigned is in a long sleep. 415 */ 416 static void tick_nohz_update_jiffies(ktime_t now) 417 { 418 unsigned long flags; 419 420 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 421 422 local_irq_save(flags); 423 tick_do_update_jiffies64(now); 424 local_irq_restore(flags); 425 426 touch_softlockup_watchdog(); 427 } 428 429 /* 430 * Updates the per cpu time idle statistics counters 431 */ 432 static void 433 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 434 { 435 ktime_t delta; 436 437 if (ts->idle_active) { 438 delta = ktime_sub(now, ts->idle_entrytime); 439 if (nr_iowait_cpu(cpu) > 0) 440 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 441 else 442 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 443 ts->idle_entrytime = now; 444 } 445 446 if (last_update_time) 447 *last_update_time = ktime_to_us(now); 448 449 } 450 451 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 452 { 453 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 454 ts->idle_active = 0; 455 456 sched_clock_idle_wakeup_event(0); 457 } 458 459 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 460 { 461 ktime_t now = ktime_get(); 462 463 ts->idle_entrytime = now; 464 ts->idle_active = 1; 465 sched_clock_idle_sleep_event(); 466 return now; 467 } 468 469 /** 470 * get_cpu_idle_time_us - get the total idle time of a cpu 471 * @cpu: CPU number to query 472 * @last_update_time: variable to store update time in. Do not update 473 * counters if NULL. 474 * 475 * Return the cummulative idle time (since boot) for a given 476 * CPU, in microseconds. 477 * 478 * This time is measured via accounting rather than sampling, 479 * and is as accurate as ktime_get() is. 480 * 481 * This function returns -1 if NOHZ is not enabled. 482 */ 483 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 484 { 485 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 486 ktime_t now, idle; 487 488 if (!tick_nohz_active) 489 return -1; 490 491 now = ktime_get(); 492 if (last_update_time) { 493 update_ts_time_stats(cpu, ts, now, last_update_time); 494 idle = ts->idle_sleeptime; 495 } else { 496 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 497 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 498 499 idle = ktime_add(ts->idle_sleeptime, delta); 500 } else { 501 idle = ts->idle_sleeptime; 502 } 503 } 504 505 return ktime_to_us(idle); 506 507 } 508 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 509 510 /** 511 * get_cpu_iowait_time_us - get the total iowait time of a cpu 512 * @cpu: CPU number to query 513 * @last_update_time: variable to store update time in. Do not update 514 * counters if NULL. 515 * 516 * Return the cummulative iowait time (since boot) for a given 517 * CPU, in microseconds. 518 * 519 * This time is measured via accounting rather than sampling, 520 * and is as accurate as ktime_get() is. 521 * 522 * This function returns -1 if NOHZ is not enabled. 523 */ 524 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 525 { 526 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 527 ktime_t now, iowait; 528 529 if (!tick_nohz_active) 530 return -1; 531 532 now = ktime_get(); 533 if (last_update_time) { 534 update_ts_time_stats(cpu, ts, now, last_update_time); 535 iowait = ts->iowait_sleeptime; 536 } else { 537 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 538 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 539 540 iowait = ktime_add(ts->iowait_sleeptime, delta); 541 } else { 542 iowait = ts->iowait_sleeptime; 543 } 544 } 545 546 return ktime_to_us(iowait); 547 } 548 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 549 550 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 551 { 552 hrtimer_cancel(&ts->sched_timer); 553 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 554 555 /* Forward the time to expire in the future */ 556 hrtimer_forward(&ts->sched_timer, now, tick_period); 557 558 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 559 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 560 else 561 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 562 } 563 564 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 565 ktime_t now, int cpu) 566 { 567 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 568 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 569 unsigned long seq, basejiff; 570 ktime_t tick; 571 572 /* Read jiffies and the time when jiffies were updated last */ 573 do { 574 seq = read_seqbegin(&jiffies_lock); 575 basemono = last_jiffies_update.tv64; 576 basejiff = jiffies; 577 } while (read_seqretry(&jiffies_lock, seq)); 578 ts->last_jiffies = basejiff; 579 580 if (rcu_needs_cpu(basemono, &next_rcu) || 581 arch_needs_cpu() || irq_work_needs_cpu()) { 582 next_tick = basemono + TICK_NSEC; 583 } else { 584 /* 585 * Get the next pending timer. If high resolution 586 * timers are enabled this only takes the timer wheel 587 * timers into account. If high resolution timers are 588 * disabled this also looks at the next expiring 589 * hrtimer. 590 */ 591 next_tmr = get_next_timer_interrupt(basejiff, basemono); 592 ts->next_timer = next_tmr; 593 /* Take the next rcu event into account */ 594 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 595 } 596 597 /* 598 * If the tick is due in the next period, keep it ticking or 599 * restart it proper. 600 */ 601 delta = next_tick - basemono; 602 if (delta <= (u64)TICK_NSEC) { 603 tick.tv64 = 0; 604 if (!ts->tick_stopped) 605 goto out; 606 if (delta == 0) { 607 /* Tick is stopped, but required now. Enforce it */ 608 tick_nohz_restart(ts, now); 609 goto out; 610 } 611 } 612 613 /* 614 * If this cpu is the one which updates jiffies, then give up 615 * the assignment and let it be taken by the cpu which runs 616 * the tick timer next, which might be this cpu as well. If we 617 * don't drop this here the jiffies might be stale and 618 * do_timer() never invoked. Keep track of the fact that it 619 * was the one which had the do_timer() duty last. If this cpu 620 * is the one which had the do_timer() duty last, we limit the 621 * sleep time to the timekeeping max_deferement value. 622 * Otherwise we can sleep as long as we want. 623 */ 624 delta = timekeeping_max_deferment(); 625 if (cpu == tick_do_timer_cpu) { 626 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 627 ts->do_timer_last = 1; 628 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 629 delta = KTIME_MAX; 630 ts->do_timer_last = 0; 631 } else if (!ts->do_timer_last) { 632 delta = KTIME_MAX; 633 } 634 635 #ifdef CONFIG_NO_HZ_FULL 636 /* Limit the tick delta to the maximum scheduler deferment */ 637 if (!ts->inidle) 638 delta = min(delta, scheduler_tick_max_deferment()); 639 #endif 640 641 /* Calculate the next expiry time */ 642 if (delta < (KTIME_MAX - basemono)) 643 expires = basemono + delta; 644 else 645 expires = KTIME_MAX; 646 647 expires = min_t(u64, expires, next_tick); 648 tick.tv64 = expires; 649 650 /* Skip reprogram of event if its not changed */ 651 if (ts->tick_stopped && (expires == dev->next_event.tv64)) 652 goto out; 653 654 /* 655 * nohz_stop_sched_tick can be called several times before 656 * the nohz_restart_sched_tick is called. This happens when 657 * interrupts arrive which do not cause a reschedule. In the 658 * first call we save the current tick time, so we can restart 659 * the scheduler tick in nohz_restart_sched_tick. 660 */ 661 if (!ts->tick_stopped) { 662 nohz_balance_enter_idle(cpu); 663 calc_load_enter_idle(); 664 665 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 666 ts->tick_stopped = 1; 667 trace_tick_stop(1, " "); 668 } 669 670 /* 671 * If the expiration time == KTIME_MAX, then we simply stop 672 * the tick timer. 673 */ 674 if (unlikely(expires == KTIME_MAX)) { 675 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 676 hrtimer_cancel(&ts->sched_timer); 677 goto out; 678 } 679 680 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 681 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 682 else 683 tick_program_event(tick, 1); 684 out: 685 /* Update the estimated sleep length */ 686 ts->sleep_length = ktime_sub(dev->next_event, now); 687 return tick; 688 } 689 690 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 691 { 692 /* Update jiffies first */ 693 tick_do_update_jiffies64(now); 694 update_cpu_load_nohz(); 695 696 calc_load_exit_idle(); 697 touch_softlockup_watchdog(); 698 /* 699 * Cancel the scheduled timer and restore the tick 700 */ 701 ts->tick_stopped = 0; 702 ts->idle_exittime = now; 703 704 tick_nohz_restart(ts, now); 705 } 706 707 static void tick_nohz_full_update_tick(struct tick_sched *ts) 708 { 709 #ifdef CONFIG_NO_HZ_FULL 710 int cpu = smp_processor_id(); 711 712 if (!tick_nohz_full_cpu(cpu)) 713 return; 714 715 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 716 return; 717 718 if (can_stop_full_tick()) 719 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 720 else if (ts->tick_stopped) 721 tick_nohz_restart_sched_tick(ts, ktime_get()); 722 #endif 723 } 724 725 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 726 { 727 /* 728 * If this cpu is offline and it is the one which updates 729 * jiffies, then give up the assignment and let it be taken by 730 * the cpu which runs the tick timer next. If we don't drop 731 * this here the jiffies might be stale and do_timer() never 732 * invoked. 733 */ 734 if (unlikely(!cpu_online(cpu))) { 735 if (cpu == tick_do_timer_cpu) 736 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 737 return false; 738 } 739 740 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 741 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ }; 742 return false; 743 } 744 745 if (need_resched()) 746 return false; 747 748 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 749 static int ratelimit; 750 751 if (ratelimit < 10 && 752 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 753 pr_warn("NOHZ: local_softirq_pending %02x\n", 754 (unsigned int) local_softirq_pending()); 755 ratelimit++; 756 } 757 return false; 758 } 759 760 if (tick_nohz_full_enabled()) { 761 /* 762 * Keep the tick alive to guarantee timekeeping progression 763 * if there are full dynticks CPUs around 764 */ 765 if (tick_do_timer_cpu == cpu) 766 return false; 767 /* 768 * Boot safety: make sure the timekeeping duty has been 769 * assigned before entering dyntick-idle mode, 770 */ 771 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 772 return false; 773 } 774 775 return true; 776 } 777 778 static void __tick_nohz_idle_enter(struct tick_sched *ts) 779 { 780 ktime_t now, expires; 781 int cpu = smp_processor_id(); 782 783 now = tick_nohz_start_idle(ts); 784 785 if (can_stop_idle_tick(cpu, ts)) { 786 int was_stopped = ts->tick_stopped; 787 788 ts->idle_calls++; 789 790 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 791 if (expires.tv64 > 0LL) { 792 ts->idle_sleeps++; 793 ts->idle_expires = expires; 794 } 795 796 if (!was_stopped && ts->tick_stopped) 797 ts->idle_jiffies = ts->last_jiffies; 798 } 799 } 800 801 /** 802 * tick_nohz_idle_enter - stop the idle tick from the idle task 803 * 804 * When the next event is more than a tick into the future, stop the idle tick 805 * Called when we start the idle loop. 806 * 807 * The arch is responsible of calling: 808 * 809 * - rcu_idle_enter() after its last use of RCU before the CPU is put 810 * to sleep. 811 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 812 */ 813 void tick_nohz_idle_enter(void) 814 { 815 struct tick_sched *ts; 816 817 WARN_ON_ONCE(irqs_disabled()); 818 819 /* 820 * Update the idle state in the scheduler domain hierarchy 821 * when tick_nohz_stop_sched_tick() is called from the idle loop. 822 * State will be updated to busy during the first busy tick after 823 * exiting idle. 824 */ 825 set_cpu_sd_state_idle(); 826 827 local_irq_disable(); 828 829 ts = this_cpu_ptr(&tick_cpu_sched); 830 ts->inidle = 1; 831 __tick_nohz_idle_enter(ts); 832 833 local_irq_enable(); 834 } 835 836 /** 837 * tick_nohz_irq_exit - update next tick event from interrupt exit 838 * 839 * When an interrupt fires while we are idle and it doesn't cause 840 * a reschedule, it may still add, modify or delete a timer, enqueue 841 * an RCU callback, etc... 842 * So we need to re-calculate and reprogram the next tick event. 843 */ 844 void tick_nohz_irq_exit(void) 845 { 846 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 847 848 if (ts->inidle) 849 __tick_nohz_idle_enter(ts); 850 else 851 tick_nohz_full_update_tick(ts); 852 } 853 854 /** 855 * tick_nohz_get_sleep_length - return the length of the current sleep 856 * 857 * Called from power state control code with interrupts disabled 858 */ 859 ktime_t tick_nohz_get_sleep_length(void) 860 { 861 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 862 863 return ts->sleep_length; 864 } 865 866 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 867 { 868 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 869 unsigned long ticks; 870 871 if (vtime_accounting_enabled()) 872 return; 873 /* 874 * We stopped the tick in idle. Update process times would miss the 875 * time we slept as update_process_times does only a 1 tick 876 * accounting. Enforce that this is accounted to idle ! 877 */ 878 ticks = jiffies - ts->idle_jiffies; 879 /* 880 * We might be one off. Do not randomly account a huge number of ticks! 881 */ 882 if (ticks && ticks < LONG_MAX) 883 account_idle_ticks(ticks); 884 #endif 885 } 886 887 /** 888 * tick_nohz_idle_exit - restart the idle tick from the idle task 889 * 890 * Restart the idle tick when the CPU is woken up from idle 891 * This also exit the RCU extended quiescent state. The CPU 892 * can use RCU again after this function is called. 893 */ 894 void tick_nohz_idle_exit(void) 895 { 896 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 897 ktime_t now; 898 899 local_irq_disable(); 900 901 WARN_ON_ONCE(!ts->inidle); 902 903 ts->inidle = 0; 904 905 if (ts->idle_active || ts->tick_stopped) 906 now = ktime_get(); 907 908 if (ts->idle_active) 909 tick_nohz_stop_idle(ts, now); 910 911 if (ts->tick_stopped) { 912 tick_nohz_restart_sched_tick(ts, now); 913 tick_nohz_account_idle_ticks(ts); 914 } 915 916 local_irq_enable(); 917 } 918 919 /* 920 * The nohz low res interrupt handler 921 */ 922 static void tick_nohz_handler(struct clock_event_device *dev) 923 { 924 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 925 struct pt_regs *regs = get_irq_regs(); 926 ktime_t now = ktime_get(); 927 928 dev->next_event.tv64 = KTIME_MAX; 929 930 tick_sched_do_timer(now); 931 tick_sched_handle(ts, regs); 932 933 /* No need to reprogram if we are running tickless */ 934 if (unlikely(ts->tick_stopped)) 935 return; 936 937 hrtimer_forward(&ts->sched_timer, now, tick_period); 938 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 939 } 940 941 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 942 { 943 if (!tick_nohz_enabled) 944 return; 945 ts->nohz_mode = mode; 946 /* One update is enough */ 947 if (!test_and_set_bit(0, &tick_nohz_active)) 948 timers_update_migration(true); 949 } 950 951 /** 952 * tick_nohz_switch_to_nohz - switch to nohz mode 953 */ 954 static void tick_nohz_switch_to_nohz(void) 955 { 956 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 957 ktime_t next; 958 959 if (!tick_nohz_enabled) 960 return; 961 962 if (tick_switch_to_oneshot(tick_nohz_handler)) 963 return; 964 965 /* 966 * Recycle the hrtimer in ts, so we can share the 967 * hrtimer_forward with the highres code. 968 */ 969 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 970 /* Get the next period */ 971 next = tick_init_jiffy_update(); 972 973 hrtimer_forward_now(&ts->sched_timer, tick_period); 974 hrtimer_set_expires(&ts->sched_timer, next); 975 tick_program_event(next, 1); 976 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 977 } 978 979 /* 980 * When NOHZ is enabled and the tick is stopped, we need to kick the 981 * tick timer from irq_enter() so that the jiffies update is kept 982 * alive during long running softirqs. That's ugly as hell, but 983 * correctness is key even if we need to fix the offending softirq in 984 * the first place. 985 * 986 * Note, this is different to tick_nohz_restart. We just kick the 987 * timer and do not touch the other magic bits which need to be done 988 * when idle is left. 989 */ 990 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now) 991 { 992 #if 0 993 /* Switch back to 2.6.27 behaviour */ 994 ktime_t delta; 995 996 /* 997 * Do not touch the tick device, when the next expiry is either 998 * already reached or less/equal than the tick period. 999 */ 1000 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1001 if (delta.tv64 <= tick_period.tv64) 1002 return; 1003 1004 tick_nohz_restart(ts, now); 1005 #endif 1006 } 1007 1008 static inline void tick_nohz_irq_enter(void) 1009 { 1010 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1011 ktime_t now; 1012 1013 if (!ts->idle_active && !ts->tick_stopped) 1014 return; 1015 now = ktime_get(); 1016 if (ts->idle_active) 1017 tick_nohz_stop_idle(ts, now); 1018 if (ts->tick_stopped) { 1019 tick_nohz_update_jiffies(now); 1020 tick_nohz_kick_tick(ts, now); 1021 } 1022 } 1023 1024 #else 1025 1026 static inline void tick_nohz_switch_to_nohz(void) { } 1027 static inline void tick_nohz_irq_enter(void) { } 1028 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1029 1030 #endif /* CONFIG_NO_HZ_COMMON */ 1031 1032 /* 1033 * Called from irq_enter to notify about the possible interruption of idle() 1034 */ 1035 void tick_irq_enter(void) 1036 { 1037 tick_check_oneshot_broadcast_this_cpu(); 1038 tick_nohz_irq_enter(); 1039 } 1040 1041 /* 1042 * High resolution timer specific code 1043 */ 1044 #ifdef CONFIG_HIGH_RES_TIMERS 1045 /* 1046 * We rearm the timer until we get disabled by the idle code. 1047 * Called with interrupts disabled. 1048 */ 1049 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1050 { 1051 struct tick_sched *ts = 1052 container_of(timer, struct tick_sched, sched_timer); 1053 struct pt_regs *regs = get_irq_regs(); 1054 ktime_t now = ktime_get(); 1055 1056 tick_sched_do_timer(now); 1057 1058 /* 1059 * Do not call, when we are not in irq context and have 1060 * no valid regs pointer 1061 */ 1062 if (regs) 1063 tick_sched_handle(ts, regs); 1064 1065 /* No need to reprogram if we are in idle or full dynticks mode */ 1066 if (unlikely(ts->tick_stopped)) 1067 return HRTIMER_NORESTART; 1068 1069 hrtimer_forward(timer, now, tick_period); 1070 1071 return HRTIMER_RESTART; 1072 } 1073 1074 static int sched_skew_tick; 1075 1076 static int __init skew_tick(char *str) 1077 { 1078 get_option(&str, &sched_skew_tick); 1079 1080 return 0; 1081 } 1082 early_param("skew_tick", skew_tick); 1083 1084 /** 1085 * tick_setup_sched_timer - setup the tick emulation timer 1086 */ 1087 void tick_setup_sched_timer(void) 1088 { 1089 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1090 ktime_t now = ktime_get(); 1091 1092 /* 1093 * Emulate tick processing via per-CPU hrtimers: 1094 */ 1095 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1096 ts->sched_timer.function = tick_sched_timer; 1097 1098 /* Get the next period (per cpu) */ 1099 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1100 1101 /* Offset the tick to avert jiffies_lock contention. */ 1102 if (sched_skew_tick) { 1103 u64 offset = ktime_to_ns(tick_period) >> 1; 1104 do_div(offset, num_possible_cpus()); 1105 offset *= smp_processor_id(); 1106 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1107 } 1108 1109 hrtimer_forward(&ts->sched_timer, now, tick_period); 1110 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1111 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1112 } 1113 #endif /* HIGH_RES_TIMERS */ 1114 1115 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1116 void tick_cancel_sched_timer(int cpu) 1117 { 1118 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1119 1120 # ifdef CONFIG_HIGH_RES_TIMERS 1121 if (ts->sched_timer.base) 1122 hrtimer_cancel(&ts->sched_timer); 1123 # endif 1124 1125 memset(ts, 0, sizeof(*ts)); 1126 } 1127 #endif 1128 1129 /** 1130 * Async notification about clocksource changes 1131 */ 1132 void tick_clock_notify(void) 1133 { 1134 int cpu; 1135 1136 for_each_possible_cpu(cpu) 1137 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1138 } 1139 1140 /* 1141 * Async notification about clock event changes 1142 */ 1143 void tick_oneshot_notify(void) 1144 { 1145 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1146 1147 set_bit(0, &ts->check_clocks); 1148 } 1149 1150 /** 1151 * Check, if a change happened, which makes oneshot possible. 1152 * 1153 * Called cyclic from the hrtimer softirq (driven by the timer 1154 * softirq) allow_nohz signals, that we can switch into low-res nohz 1155 * mode, because high resolution timers are disabled (either compile 1156 * or runtime). Called with interrupts disabled. 1157 */ 1158 int tick_check_oneshot_change(int allow_nohz) 1159 { 1160 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1161 1162 if (!test_and_clear_bit(0, &ts->check_clocks)) 1163 return 0; 1164 1165 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1166 return 0; 1167 1168 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1169 return 0; 1170 1171 if (!allow_nohz) 1172 return 1; 1173 1174 tick_nohz_switch_to_nohz(); 1175 return 0; 1176 } 1177