1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 static int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 ts->idle_waketime = now; 143 144 local_irq_save(flags); 145 tick_do_update_jiffies64(now); 146 local_irq_restore(flags); 147 148 touch_softlockup_watchdog(); 149 } 150 151 /* 152 * Updates the per cpu time idle statistics counters 153 */ 154 static void 155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 156 { 157 ktime_t delta; 158 159 if (ts->idle_active) { 160 delta = ktime_sub(now, ts->idle_entrytime); 161 if (nr_iowait_cpu(cpu) > 0) 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 163 else 164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now = ktime_get(); 186 187 ts->idle_entrytime = now; 188 ts->idle_active = 1; 189 sched_clock_idle_sleep_event(); 190 return now; 191 } 192 193 /** 194 * get_cpu_idle_time_us - get the total idle time of a cpu 195 * @cpu: CPU number to query 196 * @last_update_time: variable to store update time in. Do not update 197 * counters if NULL. 198 * 199 * Return the cummulative idle time (since boot) for a given 200 * CPU, in microseconds. 201 * 202 * This time is measured via accounting rather than sampling, 203 * and is as accurate as ktime_get() is. 204 * 205 * This function returns -1 if NOHZ is not enabled. 206 */ 207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 208 { 209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 210 ktime_t now, idle; 211 212 if (!tick_nohz_enabled) 213 return -1; 214 215 now = ktime_get(); 216 if (last_update_time) { 217 update_ts_time_stats(cpu, ts, now, last_update_time); 218 idle = ts->idle_sleeptime; 219 } else { 220 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 221 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 222 223 idle = ktime_add(ts->idle_sleeptime, delta); 224 } else { 225 idle = ts->idle_sleeptime; 226 } 227 } 228 229 return ktime_to_us(idle); 230 231 } 232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 233 234 /** 235 * get_cpu_iowait_time_us - get the total iowait time of a cpu 236 * @cpu: CPU number to query 237 * @last_update_time: variable to store update time in. Do not update 238 * counters if NULL. 239 * 240 * Return the cummulative iowait time (since boot) for a given 241 * CPU, in microseconds. 242 * 243 * This time is measured via accounting rather than sampling, 244 * and is as accurate as ktime_get() is. 245 * 246 * This function returns -1 if NOHZ is not enabled. 247 */ 248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 249 { 250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 251 ktime_t now, iowait; 252 253 if (!tick_nohz_enabled) 254 return -1; 255 256 now = ktime_get(); 257 if (last_update_time) { 258 update_ts_time_stats(cpu, ts, now, last_update_time); 259 iowait = ts->iowait_sleeptime; 260 } else { 261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 262 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 263 264 iowait = ktime_add(ts->iowait_sleeptime, delta); 265 } else { 266 iowait = ts->iowait_sleeptime; 267 } 268 } 269 270 return ktime_to_us(iowait); 271 } 272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 273 274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts) 275 { 276 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 277 unsigned long rcu_delta_jiffies; 278 ktime_t last_update, expires, now; 279 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 280 u64 time_delta; 281 int cpu; 282 283 cpu = smp_processor_id(); 284 ts = &per_cpu(tick_cpu_sched, cpu); 285 286 now = tick_nohz_start_idle(cpu, ts); 287 288 /* 289 * If this cpu is offline and it is the one which updates 290 * jiffies, then give up the assignment and let it be taken by 291 * the cpu which runs the tick timer next. If we don't drop 292 * this here the jiffies might be stale and do_timer() never 293 * invoked. 294 */ 295 if (unlikely(!cpu_online(cpu))) { 296 if (cpu == tick_do_timer_cpu) 297 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 298 } 299 300 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 301 return; 302 303 if (need_resched()) 304 return; 305 306 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 307 static int ratelimit; 308 309 if (ratelimit < 10) { 310 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 311 (unsigned int) local_softirq_pending()); 312 ratelimit++; 313 } 314 return; 315 } 316 317 ts->idle_calls++; 318 /* Read jiffies and the time when jiffies were updated last */ 319 do { 320 seq = read_seqbegin(&xtime_lock); 321 last_update = last_jiffies_update; 322 last_jiffies = jiffies; 323 time_delta = timekeeping_max_deferment(); 324 } while (read_seqretry(&xtime_lock, seq)); 325 326 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) || 327 arch_needs_cpu(cpu)) { 328 next_jiffies = last_jiffies + 1; 329 delta_jiffies = 1; 330 } else { 331 /* Get the next timer wheel timer */ 332 next_jiffies = get_next_timer_interrupt(last_jiffies); 333 delta_jiffies = next_jiffies - last_jiffies; 334 if (rcu_delta_jiffies < delta_jiffies) { 335 next_jiffies = last_jiffies + rcu_delta_jiffies; 336 delta_jiffies = rcu_delta_jiffies; 337 } 338 } 339 /* 340 * Do not stop the tick, if we are only one off 341 * or if the cpu is required for rcu 342 */ 343 if (!ts->tick_stopped && delta_jiffies == 1) 344 goto out; 345 346 /* Schedule the tick, if we are at least one jiffie off */ 347 if ((long)delta_jiffies >= 1) { 348 349 /* 350 * If this cpu is the one which updates jiffies, then 351 * give up the assignment and let it be taken by the 352 * cpu which runs the tick timer next, which might be 353 * this cpu as well. If we don't drop this here the 354 * jiffies might be stale and do_timer() never 355 * invoked. Keep track of the fact that it was the one 356 * which had the do_timer() duty last. If this cpu is 357 * the one which had the do_timer() duty last, we 358 * limit the sleep time to the timekeeping 359 * max_deferement value which we retrieved 360 * above. Otherwise we can sleep as long as we want. 361 */ 362 if (cpu == tick_do_timer_cpu) { 363 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 364 ts->do_timer_last = 1; 365 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 366 time_delta = KTIME_MAX; 367 ts->do_timer_last = 0; 368 } else if (!ts->do_timer_last) { 369 time_delta = KTIME_MAX; 370 } 371 372 /* 373 * calculate the expiry time for the next timer wheel 374 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 375 * that there is no timer pending or at least extremely 376 * far into the future (12 days for HZ=1000). In this 377 * case we set the expiry to the end of time. 378 */ 379 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 380 /* 381 * Calculate the time delta for the next timer event. 382 * If the time delta exceeds the maximum time delta 383 * permitted by the current clocksource then adjust 384 * the time delta accordingly to ensure the 385 * clocksource does not wrap. 386 */ 387 time_delta = min_t(u64, time_delta, 388 tick_period.tv64 * delta_jiffies); 389 } 390 391 if (time_delta < KTIME_MAX) 392 expires = ktime_add_ns(last_update, time_delta); 393 else 394 expires.tv64 = KTIME_MAX; 395 396 /* Skip reprogram of event if its not changed */ 397 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 398 goto out; 399 400 /* 401 * nohz_stop_sched_tick can be called several times before 402 * the nohz_restart_sched_tick is called. This happens when 403 * interrupts arrive which do not cause a reschedule. In the 404 * first call we save the current tick time, so we can restart 405 * the scheduler tick in nohz_restart_sched_tick. 406 */ 407 if (!ts->tick_stopped) { 408 select_nohz_load_balancer(1); 409 calc_load_enter_idle(); 410 411 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 412 ts->tick_stopped = 1; 413 ts->idle_jiffies = last_jiffies; 414 } 415 416 ts->idle_sleeps++; 417 418 /* Mark expires */ 419 ts->idle_expires = expires; 420 421 /* 422 * If the expiration time == KTIME_MAX, then 423 * in this case we simply stop the tick timer. 424 */ 425 if (unlikely(expires.tv64 == KTIME_MAX)) { 426 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 427 hrtimer_cancel(&ts->sched_timer); 428 goto out; 429 } 430 431 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 432 hrtimer_start(&ts->sched_timer, expires, 433 HRTIMER_MODE_ABS_PINNED); 434 /* Check, if the timer was already in the past */ 435 if (hrtimer_active(&ts->sched_timer)) 436 goto out; 437 } else if (!tick_program_event(expires, 0)) 438 goto out; 439 /* 440 * We are past the event already. So we crossed a 441 * jiffie boundary. Update jiffies and raise the 442 * softirq. 443 */ 444 tick_do_update_jiffies64(ktime_get()); 445 } 446 raise_softirq_irqoff(TIMER_SOFTIRQ); 447 out: 448 ts->next_jiffies = next_jiffies; 449 ts->last_jiffies = last_jiffies; 450 ts->sleep_length = ktime_sub(dev->next_event, now); 451 } 452 453 /** 454 * tick_nohz_idle_enter - stop the idle tick from the idle task 455 * 456 * When the next event is more than a tick into the future, stop the idle tick 457 * Called when we start the idle loop. 458 * 459 * The arch is responsible of calling: 460 * 461 * - rcu_idle_enter() after its last use of RCU before the CPU is put 462 * to sleep. 463 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 464 */ 465 void tick_nohz_idle_enter(void) 466 { 467 struct tick_sched *ts; 468 469 WARN_ON_ONCE(irqs_disabled()); 470 471 /* 472 * Update the idle state in the scheduler domain hierarchy 473 * when tick_nohz_stop_sched_tick() is called from the idle loop. 474 * State will be updated to busy during the first busy tick after 475 * exiting idle. 476 */ 477 set_cpu_sd_state_idle(); 478 479 local_irq_disable(); 480 481 ts = &__get_cpu_var(tick_cpu_sched); 482 /* 483 * set ts->inidle unconditionally. even if the system did not 484 * switch to nohz mode the cpu frequency governers rely on the 485 * update of the idle time accounting in tick_nohz_start_idle(). 486 */ 487 ts->inidle = 1; 488 tick_nohz_stop_sched_tick(ts); 489 490 local_irq_enable(); 491 } 492 493 /** 494 * tick_nohz_irq_exit - update next tick event from interrupt exit 495 * 496 * When an interrupt fires while we are idle and it doesn't cause 497 * a reschedule, it may still add, modify or delete a timer, enqueue 498 * an RCU callback, etc... 499 * So we need to re-calculate and reprogram the next tick event. 500 */ 501 void tick_nohz_irq_exit(void) 502 { 503 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 504 505 if (!ts->inidle) 506 return; 507 508 tick_nohz_stop_sched_tick(ts); 509 } 510 511 /** 512 * tick_nohz_get_sleep_length - return the length of the current sleep 513 * 514 * Called from power state control code with interrupts disabled 515 */ 516 ktime_t tick_nohz_get_sleep_length(void) 517 { 518 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 519 520 return ts->sleep_length; 521 } 522 523 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 524 { 525 hrtimer_cancel(&ts->sched_timer); 526 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 527 528 while (1) { 529 /* Forward the time to expire in the future */ 530 hrtimer_forward(&ts->sched_timer, now, tick_period); 531 532 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 533 hrtimer_start_expires(&ts->sched_timer, 534 HRTIMER_MODE_ABS_PINNED); 535 /* Check, if the timer was already in the past */ 536 if (hrtimer_active(&ts->sched_timer)) 537 break; 538 } else { 539 if (!tick_program_event( 540 hrtimer_get_expires(&ts->sched_timer), 0)) 541 break; 542 } 543 /* Reread time and update jiffies */ 544 now = ktime_get(); 545 tick_do_update_jiffies64(now); 546 } 547 } 548 549 /** 550 * tick_nohz_idle_exit - restart the idle tick from the idle task 551 * 552 * Restart the idle tick when the CPU is woken up from idle 553 * This also exit the RCU extended quiescent state. The CPU 554 * can use RCU again after this function is called. 555 */ 556 void tick_nohz_idle_exit(void) 557 { 558 int cpu = smp_processor_id(); 559 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 561 unsigned long ticks; 562 #endif 563 ktime_t now; 564 565 local_irq_disable(); 566 567 WARN_ON_ONCE(!ts->inidle); 568 569 ts->inidle = 0; 570 571 if (ts->idle_active || ts->tick_stopped) 572 now = ktime_get(); 573 574 if (ts->idle_active) 575 tick_nohz_stop_idle(cpu, now); 576 577 if (!ts->tick_stopped) { 578 local_irq_enable(); 579 return; 580 } 581 582 /* Update jiffies first */ 583 select_nohz_load_balancer(0); 584 tick_do_update_jiffies64(now); 585 update_cpu_load_nohz(); 586 587 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 588 /* 589 * We stopped the tick in idle. Update process times would miss the 590 * time we slept as update_process_times does only a 1 tick 591 * accounting. Enforce that this is accounted to idle ! 592 */ 593 ticks = jiffies - ts->idle_jiffies; 594 /* 595 * We might be one off. Do not randomly account a huge number of ticks! 596 */ 597 if (ticks && ticks < LONG_MAX) 598 account_idle_ticks(ticks); 599 #endif 600 601 calc_load_exit_idle(); 602 touch_softlockup_watchdog(); 603 /* 604 * Cancel the scheduled timer and restore the tick 605 */ 606 ts->tick_stopped = 0; 607 ts->idle_exittime = now; 608 609 tick_nohz_restart(ts, now); 610 611 local_irq_enable(); 612 } 613 614 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 615 { 616 hrtimer_forward(&ts->sched_timer, now, tick_period); 617 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 618 } 619 620 /* 621 * The nohz low res interrupt handler 622 */ 623 static void tick_nohz_handler(struct clock_event_device *dev) 624 { 625 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 626 struct pt_regs *regs = get_irq_regs(); 627 int cpu = smp_processor_id(); 628 ktime_t now = ktime_get(); 629 630 dev->next_event.tv64 = KTIME_MAX; 631 632 /* 633 * Check if the do_timer duty was dropped. We don't care about 634 * concurrency: This happens only when the cpu in charge went 635 * into a long sleep. If two cpus happen to assign themself to 636 * this duty, then the jiffies update is still serialized by 637 * xtime_lock. 638 */ 639 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 640 tick_do_timer_cpu = cpu; 641 642 /* Check, if the jiffies need an update */ 643 if (tick_do_timer_cpu == cpu) 644 tick_do_update_jiffies64(now); 645 646 /* 647 * When we are idle and the tick is stopped, we have to touch 648 * the watchdog as we might not schedule for a really long 649 * time. This happens on complete idle SMP systems while 650 * waiting on the login prompt. We also increment the "start 651 * of idle" jiffy stamp so the idle accounting adjustment we 652 * do when we go busy again does not account too much ticks. 653 */ 654 if (ts->tick_stopped) { 655 touch_softlockup_watchdog(); 656 ts->idle_jiffies++; 657 } 658 659 update_process_times(user_mode(regs)); 660 profile_tick(CPU_PROFILING); 661 662 while (tick_nohz_reprogram(ts, now)) { 663 now = ktime_get(); 664 tick_do_update_jiffies64(now); 665 } 666 } 667 668 /** 669 * tick_nohz_switch_to_nohz - switch to nohz mode 670 */ 671 static void tick_nohz_switch_to_nohz(void) 672 { 673 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 674 ktime_t next; 675 676 if (!tick_nohz_enabled) 677 return; 678 679 local_irq_disable(); 680 if (tick_switch_to_oneshot(tick_nohz_handler)) { 681 local_irq_enable(); 682 return; 683 } 684 685 ts->nohz_mode = NOHZ_MODE_LOWRES; 686 687 /* 688 * Recycle the hrtimer in ts, so we can share the 689 * hrtimer_forward with the highres code. 690 */ 691 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 692 /* Get the next period */ 693 next = tick_init_jiffy_update(); 694 695 for (;;) { 696 hrtimer_set_expires(&ts->sched_timer, next); 697 if (!tick_program_event(next, 0)) 698 break; 699 next = ktime_add(next, tick_period); 700 } 701 local_irq_enable(); 702 } 703 704 /* 705 * When NOHZ is enabled and the tick is stopped, we need to kick the 706 * tick timer from irq_enter() so that the jiffies update is kept 707 * alive during long running softirqs. That's ugly as hell, but 708 * correctness is key even if we need to fix the offending softirq in 709 * the first place. 710 * 711 * Note, this is different to tick_nohz_restart. We just kick the 712 * timer and do not touch the other magic bits which need to be done 713 * when idle is left. 714 */ 715 static void tick_nohz_kick_tick(int cpu, ktime_t now) 716 { 717 #if 0 718 /* Switch back to 2.6.27 behaviour */ 719 720 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 721 ktime_t delta; 722 723 /* 724 * Do not touch the tick device, when the next expiry is either 725 * already reached or less/equal than the tick period. 726 */ 727 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 728 if (delta.tv64 <= tick_period.tv64) 729 return; 730 731 tick_nohz_restart(ts, now); 732 #endif 733 } 734 735 static inline void tick_check_nohz(int cpu) 736 { 737 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 738 ktime_t now; 739 740 if (!ts->idle_active && !ts->tick_stopped) 741 return; 742 now = ktime_get(); 743 if (ts->idle_active) 744 tick_nohz_stop_idle(cpu, now); 745 if (ts->tick_stopped) { 746 tick_nohz_update_jiffies(now); 747 tick_nohz_kick_tick(cpu, now); 748 } 749 } 750 751 #else 752 753 static inline void tick_nohz_switch_to_nohz(void) { } 754 static inline void tick_check_nohz(int cpu) { } 755 756 #endif /* NO_HZ */ 757 758 /* 759 * Called from irq_enter to notify about the possible interruption of idle() 760 */ 761 void tick_check_idle(int cpu) 762 { 763 tick_check_oneshot_broadcast(cpu); 764 tick_check_nohz(cpu); 765 } 766 767 /* 768 * High resolution timer specific code 769 */ 770 #ifdef CONFIG_HIGH_RES_TIMERS 771 /* 772 * We rearm the timer until we get disabled by the idle code. 773 * Called with interrupts disabled and timer->base->cpu_base->lock held. 774 */ 775 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 776 { 777 struct tick_sched *ts = 778 container_of(timer, struct tick_sched, sched_timer); 779 struct pt_regs *regs = get_irq_regs(); 780 ktime_t now = ktime_get(); 781 int cpu = smp_processor_id(); 782 783 #ifdef CONFIG_NO_HZ 784 /* 785 * Check if the do_timer duty was dropped. We don't care about 786 * concurrency: This happens only when the cpu in charge went 787 * into a long sleep. If two cpus happen to assign themself to 788 * this duty, then the jiffies update is still serialized by 789 * xtime_lock. 790 */ 791 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 792 tick_do_timer_cpu = cpu; 793 #endif 794 795 /* Check, if the jiffies need an update */ 796 if (tick_do_timer_cpu == cpu) 797 tick_do_update_jiffies64(now); 798 799 /* 800 * Do not call, when we are not in irq context and have 801 * no valid regs pointer 802 */ 803 if (regs) { 804 /* 805 * When we are idle and the tick is stopped, we have to touch 806 * the watchdog as we might not schedule for a really long 807 * time. This happens on complete idle SMP systems while 808 * waiting on the login prompt. We also increment the "start of 809 * idle" jiffy stamp so the idle accounting adjustment we do 810 * when we go busy again does not account too much ticks. 811 */ 812 if (ts->tick_stopped) { 813 touch_softlockup_watchdog(); 814 ts->idle_jiffies++; 815 } 816 update_process_times(user_mode(regs)); 817 profile_tick(CPU_PROFILING); 818 } 819 820 hrtimer_forward(timer, now, tick_period); 821 822 return HRTIMER_RESTART; 823 } 824 825 static int sched_skew_tick; 826 827 static int __init skew_tick(char *str) 828 { 829 get_option(&str, &sched_skew_tick); 830 831 return 0; 832 } 833 early_param("skew_tick", skew_tick); 834 835 /** 836 * tick_setup_sched_timer - setup the tick emulation timer 837 */ 838 void tick_setup_sched_timer(void) 839 { 840 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 841 ktime_t now = ktime_get(); 842 843 /* 844 * Emulate tick processing via per-CPU hrtimers: 845 */ 846 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 847 ts->sched_timer.function = tick_sched_timer; 848 849 /* Get the next period (per cpu) */ 850 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 851 852 /* Offset the tick to avert xtime_lock contention. */ 853 if (sched_skew_tick) { 854 u64 offset = ktime_to_ns(tick_period) >> 1; 855 do_div(offset, num_possible_cpus()); 856 offset *= smp_processor_id(); 857 hrtimer_add_expires_ns(&ts->sched_timer, offset); 858 } 859 860 for (;;) { 861 hrtimer_forward(&ts->sched_timer, now, tick_period); 862 hrtimer_start_expires(&ts->sched_timer, 863 HRTIMER_MODE_ABS_PINNED); 864 /* Check, if the timer was already in the past */ 865 if (hrtimer_active(&ts->sched_timer)) 866 break; 867 now = ktime_get(); 868 } 869 870 #ifdef CONFIG_NO_HZ 871 if (tick_nohz_enabled) 872 ts->nohz_mode = NOHZ_MODE_HIGHRES; 873 #endif 874 } 875 #endif /* HIGH_RES_TIMERS */ 876 877 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 878 void tick_cancel_sched_timer(int cpu) 879 { 880 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 881 882 # ifdef CONFIG_HIGH_RES_TIMERS 883 if (ts->sched_timer.base) 884 hrtimer_cancel(&ts->sched_timer); 885 # endif 886 887 ts->nohz_mode = NOHZ_MODE_INACTIVE; 888 } 889 #endif 890 891 /** 892 * Async notification about clocksource changes 893 */ 894 void tick_clock_notify(void) 895 { 896 int cpu; 897 898 for_each_possible_cpu(cpu) 899 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 900 } 901 902 /* 903 * Async notification about clock event changes 904 */ 905 void tick_oneshot_notify(void) 906 { 907 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 908 909 set_bit(0, &ts->check_clocks); 910 } 911 912 /** 913 * Check, if a change happened, which makes oneshot possible. 914 * 915 * Called cyclic from the hrtimer softirq (driven by the timer 916 * softirq) allow_nohz signals, that we can switch into low-res nohz 917 * mode, because high resolution timers are disabled (either compile 918 * or runtime). 919 */ 920 int tick_check_oneshot_change(int allow_nohz) 921 { 922 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 923 924 if (!test_and_clear_bit(0, &ts->check_clocks)) 925 return 0; 926 927 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 928 return 0; 929 930 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 931 return 0; 932 933 if (!allow_nohz) 934 return 1; 935 936 tick_nohz_switch_to_nohz(); 937 return 0; 938 } 939