1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 * The READ_ONCE() pairs with two updates done later in this function. 62 */ 63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update)); 64 if (delta < tick_period) 65 return; 66 67 /* Reevaluate with jiffies_lock held */ 68 raw_spin_lock(&jiffies_lock); 69 write_seqcount_begin(&jiffies_seq); 70 71 delta = ktime_sub(now, last_jiffies_update); 72 if (delta >= tick_period) { 73 74 delta = ktime_sub(delta, tick_period); 75 /* Pairs with the lockless read in this function. */ 76 WRITE_ONCE(last_jiffies_update, 77 ktime_add(last_jiffies_update, tick_period)); 78 79 /* Slow path for long timeouts */ 80 if (unlikely(delta >= tick_period)) { 81 s64 incr = ktime_to_ns(tick_period); 82 83 ticks = ktime_divns(delta, incr); 84 85 /* Pairs with the lockless read in this function. */ 86 WRITE_ONCE(last_jiffies_update, 87 ktime_add_ns(last_jiffies_update, 88 incr * ticks)); 89 } 90 do_timer(++ticks); 91 92 /* Keep the tick_next_period variable up to date */ 93 tick_next_period = ktime_add(last_jiffies_update, tick_period); 94 } else { 95 write_seqcount_end(&jiffies_seq); 96 raw_spin_unlock(&jiffies_lock); 97 return; 98 } 99 write_seqcount_end(&jiffies_seq); 100 raw_spin_unlock(&jiffies_lock); 101 update_wall_time(); 102 } 103 104 /* 105 * Initialize and return retrieve the jiffies update. 106 */ 107 static ktime_t tick_init_jiffy_update(void) 108 { 109 ktime_t period; 110 111 raw_spin_lock(&jiffies_lock); 112 write_seqcount_begin(&jiffies_seq); 113 /* Did we start the jiffies update yet ? */ 114 if (last_jiffies_update == 0) 115 last_jiffies_update = tick_next_period; 116 period = last_jiffies_update; 117 write_seqcount_end(&jiffies_seq); 118 raw_spin_unlock(&jiffies_lock); 119 return period; 120 } 121 122 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 123 { 124 int cpu = smp_processor_id(); 125 126 #ifdef CONFIG_NO_HZ_COMMON 127 /* 128 * Check if the do_timer duty was dropped. We don't care about 129 * concurrency: This happens only when the CPU in charge went 130 * into a long sleep. If two CPUs happen to assign themselves to 131 * this duty, then the jiffies update is still serialized by 132 * jiffies_lock. 133 * 134 * If nohz_full is enabled, this should not happen because the 135 * tick_do_timer_cpu never relinquishes. 136 */ 137 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 138 #ifdef CONFIG_NO_HZ_FULL 139 WARN_ON(tick_nohz_full_running); 140 #endif 141 tick_do_timer_cpu = cpu; 142 } 143 #endif 144 145 /* Check, if the jiffies need an update */ 146 if (tick_do_timer_cpu == cpu) 147 tick_do_update_jiffies64(now); 148 149 if (ts->inidle) 150 ts->got_idle_tick = 1; 151 } 152 153 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 154 { 155 #ifdef CONFIG_NO_HZ_COMMON 156 /* 157 * When we are idle and the tick is stopped, we have to touch 158 * the watchdog as we might not schedule for a really long 159 * time. This happens on complete idle SMP systems while 160 * waiting on the login prompt. We also increment the "start of 161 * idle" jiffy stamp so the idle accounting adjustment we do 162 * when we go busy again does not account too much ticks. 163 */ 164 if (ts->tick_stopped) { 165 touch_softlockup_watchdog_sched(); 166 if (is_idle_task(current)) 167 ts->idle_jiffies++; 168 /* 169 * In case the current tick fired too early past its expected 170 * expiration, make sure we don't bypass the next clock reprogramming 171 * to the same deadline. 172 */ 173 ts->next_tick = 0; 174 } 175 #endif 176 update_process_times(user_mode(regs)); 177 profile_tick(CPU_PROFILING); 178 } 179 #endif 180 181 #ifdef CONFIG_NO_HZ_FULL 182 cpumask_var_t tick_nohz_full_mask; 183 bool tick_nohz_full_running; 184 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 185 static atomic_t tick_dep_mask; 186 187 static bool check_tick_dependency(atomic_t *dep) 188 { 189 int val = atomic_read(dep); 190 191 if (val & TICK_DEP_MASK_POSIX_TIMER) { 192 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 193 return true; 194 } 195 196 if (val & TICK_DEP_MASK_PERF_EVENTS) { 197 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 198 return true; 199 } 200 201 if (val & TICK_DEP_MASK_SCHED) { 202 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 203 return true; 204 } 205 206 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 207 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 208 return true; 209 } 210 211 if (val & TICK_DEP_MASK_RCU) { 212 trace_tick_stop(0, TICK_DEP_MASK_RCU); 213 return true; 214 } 215 216 return false; 217 } 218 219 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 220 { 221 lockdep_assert_irqs_disabled(); 222 223 if (unlikely(!cpu_online(cpu))) 224 return false; 225 226 if (check_tick_dependency(&tick_dep_mask)) 227 return false; 228 229 if (check_tick_dependency(&ts->tick_dep_mask)) 230 return false; 231 232 if (check_tick_dependency(¤t->tick_dep_mask)) 233 return false; 234 235 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 236 return false; 237 238 return true; 239 } 240 241 static void nohz_full_kick_func(struct irq_work *work) 242 { 243 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 244 } 245 246 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 247 .func = nohz_full_kick_func, 248 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ), 249 }; 250 251 /* 252 * Kick this CPU if it's full dynticks in order to force it to 253 * re-evaluate its dependency on the tick and restart it if necessary. 254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 255 * is NMI safe. 256 */ 257 static void tick_nohz_full_kick(void) 258 { 259 if (!tick_nohz_full_cpu(smp_processor_id())) 260 return; 261 262 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 263 } 264 265 /* 266 * Kick the CPU if it's full dynticks in order to force it to 267 * re-evaluate its dependency on the tick and restart it if necessary. 268 */ 269 void tick_nohz_full_kick_cpu(int cpu) 270 { 271 if (!tick_nohz_full_cpu(cpu)) 272 return; 273 274 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 275 } 276 277 /* 278 * Kick all full dynticks CPUs in order to force these to re-evaluate 279 * their dependency on the tick and restart it if necessary. 280 */ 281 static void tick_nohz_full_kick_all(void) 282 { 283 int cpu; 284 285 if (!tick_nohz_full_running) 286 return; 287 288 preempt_disable(); 289 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 290 tick_nohz_full_kick_cpu(cpu); 291 preempt_enable(); 292 } 293 294 static void tick_nohz_dep_set_all(atomic_t *dep, 295 enum tick_dep_bits bit) 296 { 297 int prev; 298 299 prev = atomic_fetch_or(BIT(bit), dep); 300 if (!prev) 301 tick_nohz_full_kick_all(); 302 } 303 304 /* 305 * Set a global tick dependency. Used by perf events that rely on freq and 306 * by unstable clock. 307 */ 308 void tick_nohz_dep_set(enum tick_dep_bits bit) 309 { 310 tick_nohz_dep_set_all(&tick_dep_mask, bit); 311 } 312 313 void tick_nohz_dep_clear(enum tick_dep_bits bit) 314 { 315 atomic_andnot(BIT(bit), &tick_dep_mask); 316 } 317 318 /* 319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 320 * manage events throttling. 321 */ 322 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 323 { 324 int prev; 325 struct tick_sched *ts; 326 327 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 328 329 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 330 if (!prev) { 331 preempt_disable(); 332 /* Perf needs local kick that is NMI safe */ 333 if (cpu == smp_processor_id()) { 334 tick_nohz_full_kick(); 335 } else { 336 /* Remote irq work not NMI-safe */ 337 if (!WARN_ON_ONCE(in_nmi())) 338 tick_nohz_full_kick_cpu(cpu); 339 } 340 preempt_enable(); 341 } 342 } 343 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 344 345 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 346 { 347 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 348 349 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 350 } 351 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 352 353 /* 354 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 355 * per task timers. 356 */ 357 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 358 { 359 /* 360 * We could optimize this with just kicking the target running the task 361 * if that noise matters for nohz full users. 362 */ 363 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 364 } 365 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 366 367 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 368 { 369 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 370 } 371 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 372 373 /* 374 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 375 * per process timers. 376 */ 377 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 378 { 379 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 380 } 381 382 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 383 { 384 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 385 } 386 387 /* 388 * Re-evaluate the need for the tick as we switch the current task. 389 * It might need the tick due to per task/process properties: 390 * perf events, posix CPU timers, ... 391 */ 392 void __tick_nohz_task_switch(void) 393 { 394 unsigned long flags; 395 struct tick_sched *ts; 396 397 local_irq_save(flags); 398 399 if (!tick_nohz_full_cpu(smp_processor_id())) 400 goto out; 401 402 ts = this_cpu_ptr(&tick_cpu_sched); 403 404 if (ts->tick_stopped) { 405 if (atomic_read(¤t->tick_dep_mask) || 406 atomic_read(¤t->signal->tick_dep_mask)) 407 tick_nohz_full_kick(); 408 } 409 out: 410 local_irq_restore(flags); 411 } 412 413 /* Get the boot-time nohz CPU list from the kernel parameters. */ 414 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 415 { 416 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 417 cpumask_copy(tick_nohz_full_mask, cpumask); 418 tick_nohz_full_running = true; 419 } 420 EXPORT_SYMBOL_GPL(tick_nohz_full_setup); 421 422 static int tick_nohz_cpu_down(unsigned int cpu) 423 { 424 /* 425 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 426 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 427 * CPUs. It must remain online when nohz full is enabled. 428 */ 429 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 430 return -EBUSY; 431 return 0; 432 } 433 434 void __init tick_nohz_init(void) 435 { 436 int cpu, ret; 437 438 if (!tick_nohz_full_running) 439 return; 440 441 /* 442 * Full dynticks uses irq work to drive the tick rescheduling on safe 443 * locking contexts. But then we need irq work to raise its own 444 * interrupts to avoid circular dependency on the tick 445 */ 446 if (!arch_irq_work_has_interrupt()) { 447 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 448 cpumask_clear(tick_nohz_full_mask); 449 tick_nohz_full_running = false; 450 return; 451 } 452 453 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 454 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 455 cpu = smp_processor_id(); 456 457 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 458 pr_warn("NO_HZ: Clearing %d from nohz_full range " 459 "for timekeeping\n", cpu); 460 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 461 } 462 } 463 464 for_each_cpu(cpu, tick_nohz_full_mask) 465 context_tracking_cpu_set(cpu); 466 467 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 468 "kernel/nohz:predown", NULL, 469 tick_nohz_cpu_down); 470 WARN_ON(ret < 0); 471 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 472 cpumask_pr_args(tick_nohz_full_mask)); 473 } 474 #endif 475 476 /* 477 * NOHZ - aka dynamic tick functionality 478 */ 479 #ifdef CONFIG_NO_HZ_COMMON 480 /* 481 * NO HZ enabled ? 482 */ 483 bool tick_nohz_enabled __read_mostly = true; 484 unsigned long tick_nohz_active __read_mostly; 485 /* 486 * Enable / Disable tickless mode 487 */ 488 static int __init setup_tick_nohz(char *str) 489 { 490 return (kstrtobool(str, &tick_nohz_enabled) == 0); 491 } 492 493 __setup("nohz=", setup_tick_nohz); 494 495 bool tick_nohz_tick_stopped(void) 496 { 497 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 498 499 return ts->tick_stopped; 500 } 501 502 bool tick_nohz_tick_stopped_cpu(int cpu) 503 { 504 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 505 506 return ts->tick_stopped; 507 } 508 509 /** 510 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 511 * 512 * Called from interrupt entry when the CPU was idle 513 * 514 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 515 * must be updated. Otherwise an interrupt handler could use a stale jiffy 516 * value. We do this unconditionally on any CPU, as we don't know whether the 517 * CPU, which has the update task assigned is in a long sleep. 518 */ 519 static void tick_nohz_update_jiffies(ktime_t now) 520 { 521 unsigned long flags; 522 523 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 524 525 local_irq_save(flags); 526 tick_do_update_jiffies64(now); 527 local_irq_restore(flags); 528 529 touch_softlockup_watchdog_sched(); 530 } 531 532 /* 533 * Updates the per-CPU time idle statistics counters 534 */ 535 static void 536 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 537 { 538 ktime_t delta; 539 540 if (ts->idle_active) { 541 delta = ktime_sub(now, ts->idle_entrytime); 542 if (nr_iowait_cpu(cpu) > 0) 543 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 544 else 545 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 546 ts->idle_entrytime = now; 547 } 548 549 if (last_update_time) 550 *last_update_time = ktime_to_us(now); 551 552 } 553 554 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 555 { 556 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 557 ts->idle_active = 0; 558 559 sched_clock_idle_wakeup_event(); 560 } 561 562 static void tick_nohz_start_idle(struct tick_sched *ts) 563 { 564 ts->idle_entrytime = ktime_get(); 565 ts->idle_active = 1; 566 sched_clock_idle_sleep_event(); 567 } 568 569 /** 570 * get_cpu_idle_time_us - get the total idle time of a CPU 571 * @cpu: CPU number to query 572 * @last_update_time: variable to store update time in. Do not update 573 * counters if NULL. 574 * 575 * Return the cumulative idle time (since boot) for a given 576 * CPU, in microseconds. 577 * 578 * This time is measured via accounting rather than sampling, 579 * and is as accurate as ktime_get() is. 580 * 581 * This function returns -1 if NOHZ is not enabled. 582 */ 583 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 584 { 585 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 586 ktime_t now, idle; 587 588 if (!tick_nohz_active) 589 return -1; 590 591 now = ktime_get(); 592 if (last_update_time) { 593 update_ts_time_stats(cpu, ts, now, last_update_time); 594 idle = ts->idle_sleeptime; 595 } else { 596 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 597 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 598 599 idle = ktime_add(ts->idle_sleeptime, delta); 600 } else { 601 idle = ts->idle_sleeptime; 602 } 603 } 604 605 return ktime_to_us(idle); 606 607 } 608 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 609 610 /** 611 * get_cpu_iowait_time_us - get the total iowait time of a CPU 612 * @cpu: CPU number to query 613 * @last_update_time: variable to store update time in. Do not update 614 * counters if NULL. 615 * 616 * Return the cumulative iowait time (since boot) for a given 617 * CPU, in microseconds. 618 * 619 * This time is measured via accounting rather than sampling, 620 * and is as accurate as ktime_get() is. 621 * 622 * This function returns -1 if NOHZ is not enabled. 623 */ 624 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 625 { 626 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 627 ktime_t now, iowait; 628 629 if (!tick_nohz_active) 630 return -1; 631 632 now = ktime_get(); 633 if (last_update_time) { 634 update_ts_time_stats(cpu, ts, now, last_update_time); 635 iowait = ts->iowait_sleeptime; 636 } else { 637 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 638 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 639 640 iowait = ktime_add(ts->iowait_sleeptime, delta); 641 } else { 642 iowait = ts->iowait_sleeptime; 643 } 644 } 645 646 return ktime_to_us(iowait); 647 } 648 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 649 650 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 651 { 652 hrtimer_cancel(&ts->sched_timer); 653 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 654 655 /* Forward the time to expire in the future */ 656 hrtimer_forward(&ts->sched_timer, now, tick_period); 657 658 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 659 hrtimer_start_expires(&ts->sched_timer, 660 HRTIMER_MODE_ABS_PINNED_HARD); 661 } else { 662 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 663 } 664 665 /* 666 * Reset to make sure next tick stop doesn't get fooled by past 667 * cached clock deadline. 668 */ 669 ts->next_tick = 0; 670 } 671 672 static inline bool local_timer_softirq_pending(void) 673 { 674 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 675 } 676 677 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 678 { 679 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 680 unsigned long basejiff; 681 unsigned int seq; 682 683 /* Read jiffies and the time when jiffies were updated last */ 684 do { 685 seq = read_seqcount_begin(&jiffies_seq); 686 basemono = last_jiffies_update; 687 basejiff = jiffies; 688 } while (read_seqcount_retry(&jiffies_seq, seq)); 689 ts->last_jiffies = basejiff; 690 ts->timer_expires_base = basemono; 691 692 /* 693 * Keep the periodic tick, when RCU, architecture or irq_work 694 * requests it. 695 * Aside of that check whether the local timer softirq is 696 * pending. If so its a bad idea to call get_next_timer_interrupt() 697 * because there is an already expired timer, so it will request 698 * immeditate expiry, which rearms the hardware timer with a 699 * minimal delta which brings us back to this place 700 * immediately. Lather, rinse and repeat... 701 */ 702 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 703 irq_work_needs_cpu() || local_timer_softirq_pending()) { 704 next_tick = basemono + TICK_NSEC; 705 } else { 706 /* 707 * Get the next pending timer. If high resolution 708 * timers are enabled this only takes the timer wheel 709 * timers into account. If high resolution timers are 710 * disabled this also looks at the next expiring 711 * hrtimer. 712 */ 713 next_tmr = get_next_timer_interrupt(basejiff, basemono); 714 ts->next_timer = next_tmr; 715 /* Take the next rcu event into account */ 716 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 717 } 718 719 /* 720 * If the tick is due in the next period, keep it ticking or 721 * force prod the timer. 722 */ 723 delta = next_tick - basemono; 724 if (delta <= (u64)TICK_NSEC) { 725 /* 726 * Tell the timer code that the base is not idle, i.e. undo 727 * the effect of get_next_timer_interrupt(): 728 */ 729 timer_clear_idle(); 730 /* 731 * We've not stopped the tick yet, and there's a timer in the 732 * next period, so no point in stopping it either, bail. 733 */ 734 if (!ts->tick_stopped) { 735 ts->timer_expires = 0; 736 goto out; 737 } 738 } 739 740 /* 741 * If this CPU is the one which had the do_timer() duty last, we limit 742 * the sleep time to the timekeeping max_deferment value. 743 * Otherwise we can sleep as long as we want. 744 */ 745 delta = timekeeping_max_deferment(); 746 if (cpu != tick_do_timer_cpu && 747 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 748 delta = KTIME_MAX; 749 750 /* Calculate the next expiry time */ 751 if (delta < (KTIME_MAX - basemono)) 752 expires = basemono + delta; 753 else 754 expires = KTIME_MAX; 755 756 ts->timer_expires = min_t(u64, expires, next_tick); 757 758 out: 759 return ts->timer_expires; 760 } 761 762 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 763 { 764 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 765 u64 basemono = ts->timer_expires_base; 766 u64 expires = ts->timer_expires; 767 ktime_t tick = expires; 768 769 /* Make sure we won't be trying to stop it twice in a row. */ 770 ts->timer_expires_base = 0; 771 772 /* 773 * If this CPU is the one which updates jiffies, then give up 774 * the assignment and let it be taken by the CPU which runs 775 * the tick timer next, which might be this CPU as well. If we 776 * don't drop this here the jiffies might be stale and 777 * do_timer() never invoked. Keep track of the fact that it 778 * was the one which had the do_timer() duty last. 779 */ 780 if (cpu == tick_do_timer_cpu) { 781 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 782 ts->do_timer_last = 1; 783 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 784 ts->do_timer_last = 0; 785 } 786 787 /* Skip reprogram of event if its not changed */ 788 if (ts->tick_stopped && (expires == ts->next_tick)) { 789 /* Sanity check: make sure clockevent is actually programmed */ 790 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 791 return; 792 793 WARN_ON_ONCE(1); 794 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 795 basemono, ts->next_tick, dev->next_event, 796 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 797 } 798 799 /* 800 * nohz_stop_sched_tick can be called several times before 801 * the nohz_restart_sched_tick is called. This happens when 802 * interrupts arrive which do not cause a reschedule. In the 803 * first call we save the current tick time, so we can restart 804 * the scheduler tick in nohz_restart_sched_tick. 805 */ 806 if (!ts->tick_stopped) { 807 calc_load_nohz_start(); 808 quiet_vmstat(); 809 810 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 811 ts->tick_stopped = 1; 812 trace_tick_stop(1, TICK_DEP_MASK_NONE); 813 } 814 815 ts->next_tick = tick; 816 817 /* 818 * If the expiration time == KTIME_MAX, then we simply stop 819 * the tick timer. 820 */ 821 if (unlikely(expires == KTIME_MAX)) { 822 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 823 hrtimer_cancel(&ts->sched_timer); 824 return; 825 } 826 827 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 828 hrtimer_start(&ts->sched_timer, tick, 829 HRTIMER_MODE_ABS_PINNED_HARD); 830 } else { 831 hrtimer_set_expires(&ts->sched_timer, tick); 832 tick_program_event(tick, 1); 833 } 834 } 835 836 static void tick_nohz_retain_tick(struct tick_sched *ts) 837 { 838 ts->timer_expires_base = 0; 839 } 840 841 #ifdef CONFIG_NO_HZ_FULL 842 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 843 { 844 if (tick_nohz_next_event(ts, cpu)) 845 tick_nohz_stop_tick(ts, cpu); 846 else 847 tick_nohz_retain_tick(ts); 848 } 849 #endif /* CONFIG_NO_HZ_FULL */ 850 851 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 852 { 853 /* Update jiffies first */ 854 tick_do_update_jiffies64(now); 855 856 /* 857 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 858 * the clock forward checks in the enqueue path: 859 */ 860 timer_clear_idle(); 861 862 calc_load_nohz_stop(); 863 touch_softlockup_watchdog_sched(); 864 /* 865 * Cancel the scheduled timer and restore the tick 866 */ 867 ts->tick_stopped = 0; 868 ts->idle_exittime = now; 869 870 tick_nohz_restart(ts, now); 871 } 872 873 static void tick_nohz_full_update_tick(struct tick_sched *ts) 874 { 875 #ifdef CONFIG_NO_HZ_FULL 876 int cpu = smp_processor_id(); 877 878 if (!tick_nohz_full_cpu(cpu)) 879 return; 880 881 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 882 return; 883 884 if (can_stop_full_tick(cpu, ts)) 885 tick_nohz_stop_sched_tick(ts, cpu); 886 else if (ts->tick_stopped) 887 tick_nohz_restart_sched_tick(ts, ktime_get()); 888 #endif 889 } 890 891 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 892 { 893 /* 894 * If this CPU is offline and it is the one which updates 895 * jiffies, then give up the assignment and let it be taken by 896 * the CPU which runs the tick timer next. If we don't drop 897 * this here the jiffies might be stale and do_timer() never 898 * invoked. 899 */ 900 if (unlikely(!cpu_online(cpu))) { 901 if (cpu == tick_do_timer_cpu) 902 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 903 /* 904 * Make sure the CPU doesn't get fooled by obsolete tick 905 * deadline if it comes back online later. 906 */ 907 ts->next_tick = 0; 908 return false; 909 } 910 911 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 912 return false; 913 914 if (need_resched()) 915 return false; 916 917 if (unlikely(local_softirq_pending())) { 918 static int ratelimit; 919 920 if (ratelimit < 10 && 921 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 922 pr_warn("NOHZ: local_softirq_pending %02x\n", 923 (unsigned int) local_softirq_pending()); 924 ratelimit++; 925 } 926 return false; 927 } 928 929 if (tick_nohz_full_enabled()) { 930 /* 931 * Keep the tick alive to guarantee timekeeping progression 932 * if there are full dynticks CPUs around 933 */ 934 if (tick_do_timer_cpu == cpu) 935 return false; 936 /* 937 * Boot safety: make sure the timekeeping duty has been 938 * assigned before entering dyntick-idle mode, 939 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 940 */ 941 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 942 return false; 943 944 /* Should not happen for nohz-full */ 945 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 946 return false; 947 } 948 949 return true; 950 } 951 952 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 953 { 954 ktime_t expires; 955 int cpu = smp_processor_id(); 956 957 /* 958 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 959 * tick timer expiration time is known already. 960 */ 961 if (ts->timer_expires_base) 962 expires = ts->timer_expires; 963 else if (can_stop_idle_tick(cpu, ts)) 964 expires = tick_nohz_next_event(ts, cpu); 965 else 966 return; 967 968 ts->idle_calls++; 969 970 if (expires > 0LL) { 971 int was_stopped = ts->tick_stopped; 972 973 tick_nohz_stop_tick(ts, cpu); 974 975 ts->idle_sleeps++; 976 ts->idle_expires = expires; 977 978 if (!was_stopped && ts->tick_stopped) { 979 ts->idle_jiffies = ts->last_jiffies; 980 nohz_balance_enter_idle(cpu); 981 } 982 } else { 983 tick_nohz_retain_tick(ts); 984 } 985 } 986 987 /** 988 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 989 * 990 * When the next event is more than a tick into the future, stop the idle tick 991 */ 992 void tick_nohz_idle_stop_tick(void) 993 { 994 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 995 } 996 997 void tick_nohz_idle_retain_tick(void) 998 { 999 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1000 /* 1001 * Undo the effect of get_next_timer_interrupt() called from 1002 * tick_nohz_next_event(). 1003 */ 1004 timer_clear_idle(); 1005 } 1006 1007 /** 1008 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1009 * 1010 * Called when we start the idle loop. 1011 */ 1012 void tick_nohz_idle_enter(void) 1013 { 1014 struct tick_sched *ts; 1015 1016 lockdep_assert_irqs_enabled(); 1017 1018 local_irq_disable(); 1019 1020 ts = this_cpu_ptr(&tick_cpu_sched); 1021 1022 WARN_ON_ONCE(ts->timer_expires_base); 1023 1024 ts->inidle = 1; 1025 tick_nohz_start_idle(ts); 1026 1027 local_irq_enable(); 1028 } 1029 1030 /** 1031 * tick_nohz_irq_exit - update next tick event from interrupt exit 1032 * 1033 * When an interrupt fires while we are idle and it doesn't cause 1034 * a reschedule, it may still add, modify or delete a timer, enqueue 1035 * an RCU callback, etc... 1036 * So we need to re-calculate and reprogram the next tick event. 1037 */ 1038 void tick_nohz_irq_exit(void) 1039 { 1040 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1041 1042 if (ts->inidle) 1043 tick_nohz_start_idle(ts); 1044 else 1045 tick_nohz_full_update_tick(ts); 1046 } 1047 1048 /** 1049 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1050 */ 1051 bool tick_nohz_idle_got_tick(void) 1052 { 1053 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1054 1055 if (ts->got_idle_tick) { 1056 ts->got_idle_tick = 0; 1057 return true; 1058 } 1059 return false; 1060 } 1061 1062 /** 1063 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1064 * or the tick, whatever that expires first. Note that, if the tick has been 1065 * stopped, it returns the next hrtimer. 1066 * 1067 * Called from power state control code with interrupts disabled 1068 */ 1069 ktime_t tick_nohz_get_next_hrtimer(void) 1070 { 1071 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1072 } 1073 1074 /** 1075 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1076 * @delta_next: duration until the next event if the tick cannot be stopped 1077 * 1078 * Called from power state control code with interrupts disabled 1079 */ 1080 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1081 { 1082 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1083 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1084 int cpu = smp_processor_id(); 1085 /* 1086 * The idle entry time is expected to be a sufficient approximation of 1087 * the current time at this point. 1088 */ 1089 ktime_t now = ts->idle_entrytime; 1090 ktime_t next_event; 1091 1092 WARN_ON_ONCE(!ts->inidle); 1093 1094 *delta_next = ktime_sub(dev->next_event, now); 1095 1096 if (!can_stop_idle_tick(cpu, ts)) 1097 return *delta_next; 1098 1099 next_event = tick_nohz_next_event(ts, cpu); 1100 if (!next_event) 1101 return *delta_next; 1102 1103 /* 1104 * If the next highres timer to expire is earlier than next_event, the 1105 * idle governor needs to know that. 1106 */ 1107 next_event = min_t(u64, next_event, 1108 hrtimer_next_event_without(&ts->sched_timer)); 1109 1110 return ktime_sub(next_event, now); 1111 } 1112 1113 /** 1114 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1115 * for a particular CPU. 1116 * 1117 * Called from the schedutil frequency scaling governor in scheduler context. 1118 */ 1119 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1120 { 1121 struct tick_sched *ts = tick_get_tick_sched(cpu); 1122 1123 return ts->idle_calls; 1124 } 1125 1126 /** 1127 * tick_nohz_get_idle_calls - return the current idle calls counter value 1128 * 1129 * Called from the schedutil frequency scaling governor in scheduler context. 1130 */ 1131 unsigned long tick_nohz_get_idle_calls(void) 1132 { 1133 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1134 1135 return ts->idle_calls; 1136 } 1137 1138 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1139 { 1140 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1141 unsigned long ticks; 1142 1143 if (vtime_accounting_enabled_this_cpu()) 1144 return; 1145 /* 1146 * We stopped the tick in idle. Update process times would miss the 1147 * time we slept as update_process_times does only a 1 tick 1148 * accounting. Enforce that this is accounted to idle ! 1149 */ 1150 ticks = jiffies - ts->idle_jiffies; 1151 /* 1152 * We might be one off. Do not randomly account a huge number of ticks! 1153 */ 1154 if (ticks && ticks < LONG_MAX) 1155 account_idle_ticks(ticks); 1156 #endif 1157 } 1158 1159 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1160 { 1161 tick_nohz_restart_sched_tick(ts, now); 1162 tick_nohz_account_idle_ticks(ts); 1163 } 1164 1165 void tick_nohz_idle_restart_tick(void) 1166 { 1167 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1168 1169 if (ts->tick_stopped) 1170 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1171 } 1172 1173 /** 1174 * tick_nohz_idle_exit - restart the idle tick from the idle task 1175 * 1176 * Restart the idle tick when the CPU is woken up from idle 1177 * This also exit the RCU extended quiescent state. The CPU 1178 * can use RCU again after this function is called. 1179 */ 1180 void tick_nohz_idle_exit(void) 1181 { 1182 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1183 bool idle_active, tick_stopped; 1184 ktime_t now; 1185 1186 local_irq_disable(); 1187 1188 WARN_ON_ONCE(!ts->inidle); 1189 WARN_ON_ONCE(ts->timer_expires_base); 1190 1191 ts->inidle = 0; 1192 idle_active = ts->idle_active; 1193 tick_stopped = ts->tick_stopped; 1194 1195 if (idle_active || tick_stopped) 1196 now = ktime_get(); 1197 1198 if (idle_active) 1199 tick_nohz_stop_idle(ts, now); 1200 1201 if (tick_stopped) 1202 __tick_nohz_idle_restart_tick(ts, now); 1203 1204 local_irq_enable(); 1205 } 1206 1207 /* 1208 * The nohz low res interrupt handler 1209 */ 1210 static void tick_nohz_handler(struct clock_event_device *dev) 1211 { 1212 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1213 struct pt_regs *regs = get_irq_regs(); 1214 ktime_t now = ktime_get(); 1215 1216 dev->next_event = KTIME_MAX; 1217 1218 tick_sched_do_timer(ts, now); 1219 tick_sched_handle(ts, regs); 1220 1221 /* No need to reprogram if we are running tickless */ 1222 if (unlikely(ts->tick_stopped)) 1223 return; 1224 1225 hrtimer_forward(&ts->sched_timer, now, tick_period); 1226 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1227 } 1228 1229 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1230 { 1231 if (!tick_nohz_enabled) 1232 return; 1233 ts->nohz_mode = mode; 1234 /* One update is enough */ 1235 if (!test_and_set_bit(0, &tick_nohz_active)) 1236 timers_update_nohz(); 1237 } 1238 1239 /** 1240 * tick_nohz_switch_to_nohz - switch to nohz mode 1241 */ 1242 static void tick_nohz_switch_to_nohz(void) 1243 { 1244 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1245 ktime_t next; 1246 1247 if (!tick_nohz_enabled) 1248 return; 1249 1250 if (tick_switch_to_oneshot(tick_nohz_handler)) 1251 return; 1252 1253 /* 1254 * Recycle the hrtimer in ts, so we can share the 1255 * hrtimer_forward with the highres code. 1256 */ 1257 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1258 /* Get the next period */ 1259 next = tick_init_jiffy_update(); 1260 1261 hrtimer_set_expires(&ts->sched_timer, next); 1262 hrtimer_forward_now(&ts->sched_timer, tick_period); 1263 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1264 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1265 } 1266 1267 static inline void tick_nohz_irq_enter(void) 1268 { 1269 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1270 ktime_t now; 1271 1272 if (!ts->idle_active && !ts->tick_stopped) 1273 return; 1274 now = ktime_get(); 1275 if (ts->idle_active) 1276 tick_nohz_stop_idle(ts, now); 1277 if (ts->tick_stopped) 1278 tick_nohz_update_jiffies(now); 1279 } 1280 1281 #else 1282 1283 static inline void tick_nohz_switch_to_nohz(void) { } 1284 static inline void tick_nohz_irq_enter(void) { } 1285 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1286 1287 #endif /* CONFIG_NO_HZ_COMMON */ 1288 1289 /* 1290 * Called from irq_enter to notify about the possible interruption of idle() 1291 */ 1292 void tick_irq_enter(void) 1293 { 1294 tick_check_oneshot_broadcast_this_cpu(); 1295 tick_nohz_irq_enter(); 1296 } 1297 1298 /* 1299 * High resolution timer specific code 1300 */ 1301 #ifdef CONFIG_HIGH_RES_TIMERS 1302 /* 1303 * We rearm the timer until we get disabled by the idle code. 1304 * Called with interrupts disabled. 1305 */ 1306 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1307 { 1308 struct tick_sched *ts = 1309 container_of(timer, struct tick_sched, sched_timer); 1310 struct pt_regs *regs = get_irq_regs(); 1311 ktime_t now = ktime_get(); 1312 1313 tick_sched_do_timer(ts, now); 1314 1315 /* 1316 * Do not call, when we are not in irq context and have 1317 * no valid regs pointer 1318 */ 1319 if (regs) 1320 tick_sched_handle(ts, regs); 1321 else 1322 ts->next_tick = 0; 1323 1324 /* No need to reprogram if we are in idle or full dynticks mode */ 1325 if (unlikely(ts->tick_stopped)) 1326 return HRTIMER_NORESTART; 1327 1328 hrtimer_forward(timer, now, tick_period); 1329 1330 return HRTIMER_RESTART; 1331 } 1332 1333 static int sched_skew_tick; 1334 1335 static int __init skew_tick(char *str) 1336 { 1337 get_option(&str, &sched_skew_tick); 1338 1339 return 0; 1340 } 1341 early_param("skew_tick", skew_tick); 1342 1343 /** 1344 * tick_setup_sched_timer - setup the tick emulation timer 1345 */ 1346 void tick_setup_sched_timer(void) 1347 { 1348 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1349 ktime_t now = ktime_get(); 1350 1351 /* 1352 * Emulate tick processing via per-CPU hrtimers: 1353 */ 1354 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1355 ts->sched_timer.function = tick_sched_timer; 1356 1357 /* Get the next period (per-CPU) */ 1358 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1359 1360 /* Offset the tick to avert jiffies_lock contention. */ 1361 if (sched_skew_tick) { 1362 u64 offset = ktime_to_ns(tick_period) >> 1; 1363 do_div(offset, num_possible_cpus()); 1364 offset *= smp_processor_id(); 1365 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1366 } 1367 1368 hrtimer_forward(&ts->sched_timer, now, tick_period); 1369 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1370 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1371 } 1372 #endif /* HIGH_RES_TIMERS */ 1373 1374 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1375 void tick_cancel_sched_timer(int cpu) 1376 { 1377 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1378 1379 # ifdef CONFIG_HIGH_RES_TIMERS 1380 if (ts->sched_timer.base) 1381 hrtimer_cancel(&ts->sched_timer); 1382 # endif 1383 1384 memset(ts, 0, sizeof(*ts)); 1385 } 1386 #endif 1387 1388 /** 1389 * Async notification about clocksource changes 1390 */ 1391 void tick_clock_notify(void) 1392 { 1393 int cpu; 1394 1395 for_each_possible_cpu(cpu) 1396 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1397 } 1398 1399 /* 1400 * Async notification about clock event changes 1401 */ 1402 void tick_oneshot_notify(void) 1403 { 1404 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1405 1406 set_bit(0, &ts->check_clocks); 1407 } 1408 1409 /** 1410 * Check, if a change happened, which makes oneshot possible. 1411 * 1412 * Called cyclic from the hrtimer softirq (driven by the timer 1413 * softirq) allow_nohz signals, that we can switch into low-res nohz 1414 * mode, because high resolution timers are disabled (either compile 1415 * or runtime). Called with interrupts disabled. 1416 */ 1417 int tick_check_oneshot_change(int allow_nohz) 1418 { 1419 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1420 1421 if (!test_and_clear_bit(0, &ts->check_clocks)) 1422 return 0; 1423 1424 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1425 return 0; 1426 1427 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1428 return 0; 1429 1430 if (!allow_nohz) 1431 return 1; 1432 1433 tick_nohz_switch_to_nohz(); 1434 return 0; 1435 } 1436