1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 ts->idle_waketime = now; 143 144 local_irq_save(flags); 145 tick_do_update_jiffies64(now); 146 local_irq_restore(flags); 147 148 touch_softlockup_watchdog(); 149 } 150 151 /* 152 * Updates the per cpu time idle statistics counters 153 */ 154 static void 155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 156 { 157 ktime_t delta; 158 159 if (ts->idle_active) { 160 delta = ktime_sub(now, ts->idle_entrytime); 161 if (nr_iowait_cpu(cpu) > 0) 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 163 else 164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now = ktime_get(); 186 187 ts->idle_entrytime = now; 188 ts->idle_active = 1; 189 sched_clock_idle_sleep_event(); 190 return now; 191 } 192 193 /** 194 * get_cpu_idle_time_us - get the total idle time of a cpu 195 * @cpu: CPU number to query 196 * @last_update_time: variable to store update time in. Do not update 197 * counters if NULL. 198 * 199 * Return the cummulative idle time (since boot) for a given 200 * CPU, in microseconds. 201 * 202 * This time is measured via accounting rather than sampling, 203 * and is as accurate as ktime_get() is. 204 * 205 * This function returns -1 if NOHZ is not enabled. 206 */ 207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 208 { 209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 210 ktime_t now, idle; 211 212 if (!tick_nohz_enabled) 213 return -1; 214 215 now = ktime_get(); 216 if (last_update_time) { 217 update_ts_time_stats(cpu, ts, now, last_update_time); 218 idle = ts->idle_sleeptime; 219 } else { 220 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 221 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 222 223 idle = ktime_add(ts->idle_sleeptime, delta); 224 } else { 225 idle = ts->idle_sleeptime; 226 } 227 } 228 229 return ktime_to_us(idle); 230 231 } 232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 233 234 /** 235 * get_cpu_iowait_time_us - get the total iowait time of a cpu 236 * @cpu: CPU number to query 237 * @last_update_time: variable to store update time in. Do not update 238 * counters if NULL. 239 * 240 * Return the cummulative iowait time (since boot) for a given 241 * CPU, in microseconds. 242 * 243 * This time is measured via accounting rather than sampling, 244 * and is as accurate as ktime_get() is. 245 * 246 * This function returns -1 if NOHZ is not enabled. 247 */ 248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 249 { 250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 251 ktime_t now, iowait; 252 253 if (!tick_nohz_enabled) 254 return -1; 255 256 now = ktime_get(); 257 if (last_update_time) { 258 update_ts_time_stats(cpu, ts, now, last_update_time); 259 iowait = ts->iowait_sleeptime; 260 } else { 261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 262 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 263 264 iowait = ktime_add(ts->iowait_sleeptime, delta); 265 } else { 266 iowait = ts->iowait_sleeptime; 267 } 268 } 269 270 return ktime_to_us(iowait); 271 } 272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 273 274 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 275 ktime_t now, int cpu) 276 { 277 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 278 ktime_t last_update, expires, ret = { .tv64 = 0 }; 279 unsigned long rcu_delta_jiffies; 280 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 281 u64 time_delta; 282 283 /* Read jiffies and the time when jiffies were updated last */ 284 do { 285 seq = read_seqbegin(&xtime_lock); 286 last_update = last_jiffies_update; 287 last_jiffies = jiffies; 288 time_delta = timekeeping_max_deferment(); 289 } while (read_seqretry(&xtime_lock, seq)); 290 291 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) || 292 arch_needs_cpu(cpu)) { 293 next_jiffies = last_jiffies + 1; 294 delta_jiffies = 1; 295 } else { 296 /* Get the next timer wheel timer */ 297 next_jiffies = get_next_timer_interrupt(last_jiffies); 298 delta_jiffies = next_jiffies - last_jiffies; 299 if (rcu_delta_jiffies < delta_jiffies) { 300 next_jiffies = last_jiffies + rcu_delta_jiffies; 301 delta_jiffies = rcu_delta_jiffies; 302 } 303 } 304 /* 305 * Do not stop the tick, if we are only one off 306 * or if the cpu is required for rcu 307 */ 308 if (!ts->tick_stopped && delta_jiffies == 1) 309 goto out; 310 311 /* Schedule the tick, if we are at least one jiffie off */ 312 if ((long)delta_jiffies >= 1) { 313 314 /* 315 * If this cpu is the one which updates jiffies, then 316 * give up the assignment and let it be taken by the 317 * cpu which runs the tick timer next, which might be 318 * this cpu as well. If we don't drop this here the 319 * jiffies might be stale and do_timer() never 320 * invoked. Keep track of the fact that it was the one 321 * which had the do_timer() duty last. If this cpu is 322 * the one which had the do_timer() duty last, we 323 * limit the sleep time to the timekeeping 324 * max_deferement value which we retrieved 325 * above. Otherwise we can sleep as long as we want. 326 */ 327 if (cpu == tick_do_timer_cpu) { 328 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 329 ts->do_timer_last = 1; 330 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 331 time_delta = KTIME_MAX; 332 ts->do_timer_last = 0; 333 } else if (!ts->do_timer_last) { 334 time_delta = KTIME_MAX; 335 } 336 337 /* 338 * calculate the expiry time for the next timer wheel 339 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 340 * that there is no timer pending or at least extremely 341 * far into the future (12 days for HZ=1000). In this 342 * case we set the expiry to the end of time. 343 */ 344 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 345 /* 346 * Calculate the time delta for the next timer event. 347 * If the time delta exceeds the maximum time delta 348 * permitted by the current clocksource then adjust 349 * the time delta accordingly to ensure the 350 * clocksource does not wrap. 351 */ 352 time_delta = min_t(u64, time_delta, 353 tick_period.tv64 * delta_jiffies); 354 } 355 356 if (time_delta < KTIME_MAX) 357 expires = ktime_add_ns(last_update, time_delta); 358 else 359 expires.tv64 = KTIME_MAX; 360 361 /* Skip reprogram of event if its not changed */ 362 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 363 goto out; 364 365 ret = expires; 366 367 /* 368 * nohz_stop_sched_tick can be called several times before 369 * the nohz_restart_sched_tick is called. This happens when 370 * interrupts arrive which do not cause a reschedule. In the 371 * first call we save the current tick time, so we can restart 372 * the scheduler tick in nohz_restart_sched_tick. 373 */ 374 if (!ts->tick_stopped) { 375 nohz_balance_enter_idle(cpu); 376 calc_load_enter_idle(); 377 378 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 379 ts->tick_stopped = 1; 380 } 381 382 /* 383 * If the expiration time == KTIME_MAX, then 384 * in this case we simply stop the tick timer. 385 */ 386 if (unlikely(expires.tv64 == KTIME_MAX)) { 387 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 388 hrtimer_cancel(&ts->sched_timer); 389 goto out; 390 } 391 392 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 393 hrtimer_start(&ts->sched_timer, expires, 394 HRTIMER_MODE_ABS_PINNED); 395 /* Check, if the timer was already in the past */ 396 if (hrtimer_active(&ts->sched_timer)) 397 goto out; 398 } else if (!tick_program_event(expires, 0)) 399 goto out; 400 /* 401 * We are past the event already. So we crossed a 402 * jiffie boundary. Update jiffies and raise the 403 * softirq. 404 */ 405 tick_do_update_jiffies64(ktime_get()); 406 } 407 raise_softirq_irqoff(TIMER_SOFTIRQ); 408 out: 409 ts->next_jiffies = next_jiffies; 410 ts->last_jiffies = last_jiffies; 411 ts->sleep_length = ktime_sub(dev->next_event, now); 412 413 return ret; 414 } 415 416 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 417 { 418 /* 419 * If this cpu is offline and it is the one which updates 420 * jiffies, then give up the assignment and let it be taken by 421 * the cpu which runs the tick timer next. If we don't drop 422 * this here the jiffies might be stale and do_timer() never 423 * invoked. 424 */ 425 if (unlikely(!cpu_online(cpu))) { 426 if (cpu == tick_do_timer_cpu) 427 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 428 } 429 430 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 431 return false; 432 433 if (need_resched()) 434 return false; 435 436 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 437 static int ratelimit; 438 439 if (ratelimit < 10 && 440 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 441 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 442 (unsigned int) local_softirq_pending()); 443 ratelimit++; 444 } 445 return false; 446 } 447 448 return true; 449 } 450 451 static void __tick_nohz_idle_enter(struct tick_sched *ts) 452 { 453 ktime_t now, expires; 454 int cpu = smp_processor_id(); 455 456 now = tick_nohz_start_idle(cpu, ts); 457 458 if (can_stop_idle_tick(cpu, ts)) { 459 int was_stopped = ts->tick_stopped; 460 461 ts->idle_calls++; 462 463 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 464 if (expires.tv64 > 0LL) { 465 ts->idle_sleeps++; 466 ts->idle_expires = expires; 467 } 468 469 if (!was_stopped && ts->tick_stopped) 470 ts->idle_jiffies = ts->last_jiffies; 471 } 472 } 473 474 /** 475 * tick_nohz_idle_enter - stop the idle tick from the idle task 476 * 477 * When the next event is more than a tick into the future, stop the idle tick 478 * Called when we start the idle loop. 479 * 480 * The arch is responsible of calling: 481 * 482 * - rcu_idle_enter() after its last use of RCU before the CPU is put 483 * to sleep. 484 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 485 */ 486 void tick_nohz_idle_enter(void) 487 { 488 struct tick_sched *ts; 489 490 WARN_ON_ONCE(irqs_disabled()); 491 492 /* 493 * Update the idle state in the scheduler domain hierarchy 494 * when tick_nohz_stop_sched_tick() is called from the idle loop. 495 * State will be updated to busy during the first busy tick after 496 * exiting idle. 497 */ 498 set_cpu_sd_state_idle(); 499 500 local_irq_disable(); 501 502 ts = &__get_cpu_var(tick_cpu_sched); 503 /* 504 * set ts->inidle unconditionally. even if the system did not 505 * switch to nohz mode the cpu frequency governers rely on the 506 * update of the idle time accounting in tick_nohz_start_idle(). 507 */ 508 ts->inidle = 1; 509 __tick_nohz_idle_enter(ts); 510 511 local_irq_enable(); 512 } 513 514 /** 515 * tick_nohz_irq_exit - update next tick event from interrupt exit 516 * 517 * When an interrupt fires while we are idle and it doesn't cause 518 * a reschedule, it may still add, modify or delete a timer, enqueue 519 * an RCU callback, etc... 520 * So we need to re-calculate and reprogram the next tick event. 521 */ 522 void tick_nohz_irq_exit(void) 523 { 524 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 525 526 if (!ts->inidle) 527 return; 528 529 /* Cancel the timer because CPU already waken up from the C-states*/ 530 menu_hrtimer_cancel(); 531 __tick_nohz_idle_enter(ts); 532 } 533 534 /** 535 * tick_nohz_get_sleep_length - return the length of the current sleep 536 * 537 * Called from power state control code with interrupts disabled 538 */ 539 ktime_t tick_nohz_get_sleep_length(void) 540 { 541 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 542 543 return ts->sleep_length; 544 } 545 546 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 547 { 548 hrtimer_cancel(&ts->sched_timer); 549 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 550 551 while (1) { 552 /* Forward the time to expire in the future */ 553 hrtimer_forward(&ts->sched_timer, now, tick_period); 554 555 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 556 hrtimer_start_expires(&ts->sched_timer, 557 HRTIMER_MODE_ABS_PINNED); 558 /* Check, if the timer was already in the past */ 559 if (hrtimer_active(&ts->sched_timer)) 560 break; 561 } else { 562 if (!tick_program_event( 563 hrtimer_get_expires(&ts->sched_timer), 0)) 564 break; 565 } 566 /* Reread time and update jiffies */ 567 now = ktime_get(); 568 tick_do_update_jiffies64(now); 569 } 570 } 571 572 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 573 { 574 /* Update jiffies first */ 575 tick_do_update_jiffies64(now); 576 update_cpu_load_nohz(); 577 578 calc_load_exit_idle(); 579 touch_softlockup_watchdog(); 580 /* 581 * Cancel the scheduled timer and restore the tick 582 */ 583 ts->tick_stopped = 0; 584 ts->idle_exittime = now; 585 586 tick_nohz_restart(ts, now); 587 } 588 589 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 590 { 591 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 592 unsigned long ticks; 593 /* 594 * We stopped the tick in idle. Update process times would miss the 595 * time we slept as update_process_times does only a 1 tick 596 * accounting. Enforce that this is accounted to idle ! 597 */ 598 ticks = jiffies - ts->idle_jiffies; 599 /* 600 * We might be one off. Do not randomly account a huge number of ticks! 601 */ 602 if (ticks && ticks < LONG_MAX) 603 account_idle_ticks(ticks); 604 #endif 605 } 606 607 /** 608 * tick_nohz_idle_exit - restart the idle tick from the idle task 609 * 610 * Restart the idle tick when the CPU is woken up from idle 611 * This also exit the RCU extended quiescent state. The CPU 612 * can use RCU again after this function is called. 613 */ 614 void tick_nohz_idle_exit(void) 615 { 616 int cpu = smp_processor_id(); 617 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 618 ktime_t now; 619 620 local_irq_disable(); 621 622 WARN_ON_ONCE(!ts->inidle); 623 624 ts->inidle = 0; 625 626 /* Cancel the timer because CPU already waken up from the C-states*/ 627 menu_hrtimer_cancel(); 628 if (ts->idle_active || ts->tick_stopped) 629 now = ktime_get(); 630 631 if (ts->idle_active) 632 tick_nohz_stop_idle(cpu, now); 633 634 if (ts->tick_stopped) { 635 tick_nohz_restart_sched_tick(ts, now); 636 tick_nohz_account_idle_ticks(ts); 637 } 638 639 local_irq_enable(); 640 } 641 642 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 643 { 644 hrtimer_forward(&ts->sched_timer, now, tick_period); 645 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 646 } 647 648 /* 649 * The nohz low res interrupt handler 650 */ 651 static void tick_nohz_handler(struct clock_event_device *dev) 652 { 653 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 654 struct pt_regs *regs = get_irq_regs(); 655 int cpu = smp_processor_id(); 656 ktime_t now = ktime_get(); 657 658 dev->next_event.tv64 = KTIME_MAX; 659 660 /* 661 * Check if the do_timer duty was dropped. We don't care about 662 * concurrency: This happens only when the cpu in charge went 663 * into a long sleep. If two cpus happen to assign themself to 664 * this duty, then the jiffies update is still serialized by 665 * xtime_lock. 666 */ 667 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 668 tick_do_timer_cpu = cpu; 669 670 /* Check, if the jiffies need an update */ 671 if (tick_do_timer_cpu == cpu) 672 tick_do_update_jiffies64(now); 673 674 /* 675 * When we are idle and the tick is stopped, we have to touch 676 * the watchdog as we might not schedule for a really long 677 * time. This happens on complete idle SMP systems while 678 * waiting on the login prompt. We also increment the "start 679 * of idle" jiffy stamp so the idle accounting adjustment we 680 * do when we go busy again does not account too much ticks. 681 */ 682 if (ts->tick_stopped) { 683 touch_softlockup_watchdog(); 684 ts->idle_jiffies++; 685 } 686 687 update_process_times(user_mode(regs)); 688 profile_tick(CPU_PROFILING); 689 690 while (tick_nohz_reprogram(ts, now)) { 691 now = ktime_get(); 692 tick_do_update_jiffies64(now); 693 } 694 } 695 696 /** 697 * tick_nohz_switch_to_nohz - switch to nohz mode 698 */ 699 static void tick_nohz_switch_to_nohz(void) 700 { 701 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 702 ktime_t next; 703 704 if (!tick_nohz_enabled) 705 return; 706 707 local_irq_disable(); 708 if (tick_switch_to_oneshot(tick_nohz_handler)) { 709 local_irq_enable(); 710 return; 711 } 712 713 ts->nohz_mode = NOHZ_MODE_LOWRES; 714 715 /* 716 * Recycle the hrtimer in ts, so we can share the 717 * hrtimer_forward with the highres code. 718 */ 719 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 720 /* Get the next period */ 721 next = tick_init_jiffy_update(); 722 723 for (;;) { 724 hrtimer_set_expires(&ts->sched_timer, next); 725 if (!tick_program_event(next, 0)) 726 break; 727 next = ktime_add(next, tick_period); 728 } 729 local_irq_enable(); 730 } 731 732 /* 733 * When NOHZ is enabled and the tick is stopped, we need to kick the 734 * tick timer from irq_enter() so that the jiffies update is kept 735 * alive during long running softirqs. That's ugly as hell, but 736 * correctness is key even if we need to fix the offending softirq in 737 * the first place. 738 * 739 * Note, this is different to tick_nohz_restart. We just kick the 740 * timer and do not touch the other magic bits which need to be done 741 * when idle is left. 742 */ 743 static void tick_nohz_kick_tick(int cpu, ktime_t now) 744 { 745 #if 0 746 /* Switch back to 2.6.27 behaviour */ 747 748 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 749 ktime_t delta; 750 751 /* 752 * Do not touch the tick device, when the next expiry is either 753 * already reached or less/equal than the tick period. 754 */ 755 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 756 if (delta.tv64 <= tick_period.tv64) 757 return; 758 759 tick_nohz_restart(ts, now); 760 #endif 761 } 762 763 static inline void tick_check_nohz(int cpu) 764 { 765 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 766 ktime_t now; 767 768 if (!ts->idle_active && !ts->tick_stopped) 769 return; 770 now = ktime_get(); 771 if (ts->idle_active) 772 tick_nohz_stop_idle(cpu, now); 773 if (ts->tick_stopped) { 774 tick_nohz_update_jiffies(now); 775 tick_nohz_kick_tick(cpu, now); 776 } 777 } 778 779 #else 780 781 static inline void tick_nohz_switch_to_nohz(void) { } 782 static inline void tick_check_nohz(int cpu) { } 783 784 #endif /* NO_HZ */ 785 786 /* 787 * Called from irq_enter to notify about the possible interruption of idle() 788 */ 789 void tick_check_idle(int cpu) 790 { 791 tick_check_oneshot_broadcast(cpu); 792 tick_check_nohz(cpu); 793 } 794 795 /* 796 * High resolution timer specific code 797 */ 798 #ifdef CONFIG_HIGH_RES_TIMERS 799 /* 800 * We rearm the timer until we get disabled by the idle code. 801 * Called with interrupts disabled and timer->base->cpu_base->lock held. 802 */ 803 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 804 { 805 struct tick_sched *ts = 806 container_of(timer, struct tick_sched, sched_timer); 807 struct pt_regs *regs = get_irq_regs(); 808 ktime_t now = ktime_get(); 809 int cpu = smp_processor_id(); 810 811 #ifdef CONFIG_NO_HZ 812 /* 813 * Check if the do_timer duty was dropped. We don't care about 814 * concurrency: This happens only when the cpu in charge went 815 * into a long sleep. If two cpus happen to assign themself to 816 * this duty, then the jiffies update is still serialized by 817 * xtime_lock. 818 */ 819 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 820 tick_do_timer_cpu = cpu; 821 #endif 822 823 /* Check, if the jiffies need an update */ 824 if (tick_do_timer_cpu == cpu) 825 tick_do_update_jiffies64(now); 826 827 /* 828 * Do not call, when we are not in irq context and have 829 * no valid regs pointer 830 */ 831 if (regs) { 832 /* 833 * When we are idle and the tick is stopped, we have to touch 834 * the watchdog as we might not schedule for a really long 835 * time. This happens on complete idle SMP systems while 836 * waiting on the login prompt. We also increment the "start of 837 * idle" jiffy stamp so the idle accounting adjustment we do 838 * when we go busy again does not account too much ticks. 839 */ 840 if (ts->tick_stopped) { 841 touch_softlockup_watchdog(); 842 if (is_idle_task(current)) 843 ts->idle_jiffies++; 844 } 845 update_process_times(user_mode(regs)); 846 profile_tick(CPU_PROFILING); 847 } 848 849 hrtimer_forward(timer, now, tick_period); 850 851 return HRTIMER_RESTART; 852 } 853 854 static int sched_skew_tick; 855 856 static int __init skew_tick(char *str) 857 { 858 get_option(&str, &sched_skew_tick); 859 860 return 0; 861 } 862 early_param("skew_tick", skew_tick); 863 864 /** 865 * tick_setup_sched_timer - setup the tick emulation timer 866 */ 867 void tick_setup_sched_timer(void) 868 { 869 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 870 ktime_t now = ktime_get(); 871 872 /* 873 * Emulate tick processing via per-CPU hrtimers: 874 */ 875 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 876 ts->sched_timer.function = tick_sched_timer; 877 878 /* Get the next period (per cpu) */ 879 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 880 881 /* Offset the tick to avert xtime_lock contention. */ 882 if (sched_skew_tick) { 883 u64 offset = ktime_to_ns(tick_period) >> 1; 884 do_div(offset, num_possible_cpus()); 885 offset *= smp_processor_id(); 886 hrtimer_add_expires_ns(&ts->sched_timer, offset); 887 } 888 889 for (;;) { 890 hrtimer_forward(&ts->sched_timer, now, tick_period); 891 hrtimer_start_expires(&ts->sched_timer, 892 HRTIMER_MODE_ABS_PINNED); 893 /* Check, if the timer was already in the past */ 894 if (hrtimer_active(&ts->sched_timer)) 895 break; 896 now = ktime_get(); 897 } 898 899 #ifdef CONFIG_NO_HZ 900 if (tick_nohz_enabled) 901 ts->nohz_mode = NOHZ_MODE_HIGHRES; 902 #endif 903 } 904 #endif /* HIGH_RES_TIMERS */ 905 906 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 907 void tick_cancel_sched_timer(int cpu) 908 { 909 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 910 911 # ifdef CONFIG_HIGH_RES_TIMERS 912 if (ts->sched_timer.base) 913 hrtimer_cancel(&ts->sched_timer); 914 # endif 915 916 ts->nohz_mode = NOHZ_MODE_INACTIVE; 917 } 918 #endif 919 920 /** 921 * Async notification about clocksource changes 922 */ 923 void tick_clock_notify(void) 924 { 925 int cpu; 926 927 for_each_possible_cpu(cpu) 928 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 929 } 930 931 /* 932 * Async notification about clock event changes 933 */ 934 void tick_oneshot_notify(void) 935 { 936 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 937 938 set_bit(0, &ts->check_clocks); 939 } 940 941 /** 942 * Check, if a change happened, which makes oneshot possible. 943 * 944 * Called cyclic from the hrtimer softirq (driven by the timer 945 * softirq) allow_nohz signals, that we can switch into low-res nohz 946 * mode, because high resolution timers are disabled (either compile 947 * or runtime). 948 */ 949 int tick_check_oneshot_change(int allow_nohz) 950 { 951 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 952 953 if (!test_and_clear_bit(0, &ts->check_clocks)) 954 return 0; 955 956 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 957 return 0; 958 959 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 960 return 0; 961 962 if (!allow_nohz) 963 return 1; 964 965 tick_nohz_switch_to_nohz(); 966 return 0; 967 } 968