xref: /linux/kernel/time/tick-sched.c (revision c6bd5bcc4983f1a2d2f87a3769bf309482ee8c04)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	ts->idle_waketime = now;
143 
144 	local_irq_save(flags);
145 	tick_do_update_jiffies64(now);
146 	local_irq_restore(flags);
147 
148 	touch_softlockup_watchdog();
149 }
150 
151 /*
152  * Updates the per cpu time idle statistics counters
153  */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 	ktime_t delta;
158 
159 	if (ts->idle_active) {
160 		delta = ktime_sub(now, ts->idle_entrytime);
161 		if (nr_iowait_cpu(cpu) > 0)
162 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 		else
164 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now = ktime_get();
186 
187 	ts->idle_entrytime = now;
188 	ts->idle_active = 1;
189 	sched_clock_idle_sleep_event();
190 	return now;
191 }
192 
193 /**
194  * get_cpu_idle_time_us - get the total idle time of a cpu
195  * @cpu: CPU number to query
196  * @last_update_time: variable to store update time in. Do not update
197  * counters if NULL.
198  *
199  * Return the cummulative idle time (since boot) for a given
200  * CPU, in microseconds.
201  *
202  * This time is measured via accounting rather than sampling,
203  * and is as accurate as ktime_get() is.
204  *
205  * This function returns -1 if NOHZ is not enabled.
206  */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 	ktime_t now, idle;
211 
212 	if (!tick_nohz_enabled)
213 		return -1;
214 
215 	now = ktime_get();
216 	if (last_update_time) {
217 		update_ts_time_stats(cpu, ts, now, last_update_time);
218 		idle = ts->idle_sleeptime;
219 	} else {
220 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222 
223 			idle = ktime_add(ts->idle_sleeptime, delta);
224 		} else {
225 			idle = ts->idle_sleeptime;
226 		}
227 	}
228 
229 	return ktime_to_us(idle);
230 
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233 
234 /**
235  * get_cpu_iowait_time_us - get the total iowait time of a cpu
236  * @cpu: CPU number to query
237  * @last_update_time: variable to store update time in. Do not update
238  * counters if NULL.
239  *
240  * Return the cummulative iowait time (since boot) for a given
241  * CPU, in microseconds.
242  *
243  * This time is measured via accounting rather than sampling,
244  * and is as accurate as ktime_get() is.
245  *
246  * This function returns -1 if NOHZ is not enabled.
247  */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 	ktime_t now, iowait;
252 
253 	if (!tick_nohz_enabled)
254 		return -1;
255 
256 	now = ktime_get();
257 	if (last_update_time) {
258 		update_ts_time_stats(cpu, ts, now, last_update_time);
259 		iowait = ts->iowait_sleeptime;
260 	} else {
261 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263 
264 			iowait = ktime_add(ts->iowait_sleeptime, delta);
265 		} else {
266 			iowait = ts->iowait_sleeptime;
267 		}
268 	}
269 
270 	return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273 
274 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
275 					 ktime_t now, int cpu)
276 {
277 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
278 	ktime_t last_update, expires, ret = { .tv64 = 0 };
279 	unsigned long rcu_delta_jiffies;
280 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
281 	u64 time_delta;
282 
283 	/* Read jiffies and the time when jiffies were updated last */
284 	do {
285 		seq = read_seqbegin(&xtime_lock);
286 		last_update = last_jiffies_update;
287 		last_jiffies = jiffies;
288 		time_delta = timekeeping_max_deferment();
289 	} while (read_seqretry(&xtime_lock, seq));
290 
291 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
292 	    arch_needs_cpu(cpu)) {
293 		next_jiffies = last_jiffies + 1;
294 		delta_jiffies = 1;
295 	} else {
296 		/* Get the next timer wheel timer */
297 		next_jiffies = get_next_timer_interrupt(last_jiffies);
298 		delta_jiffies = next_jiffies - last_jiffies;
299 		if (rcu_delta_jiffies < delta_jiffies) {
300 			next_jiffies = last_jiffies + rcu_delta_jiffies;
301 			delta_jiffies = rcu_delta_jiffies;
302 		}
303 	}
304 	/*
305 	 * Do not stop the tick, if we are only one off
306 	 * or if the cpu is required for rcu
307 	 */
308 	if (!ts->tick_stopped && delta_jiffies == 1)
309 		goto out;
310 
311 	/* Schedule the tick, if we are at least one jiffie off */
312 	if ((long)delta_jiffies >= 1) {
313 
314 		/*
315 		 * If this cpu is the one which updates jiffies, then
316 		 * give up the assignment and let it be taken by the
317 		 * cpu which runs the tick timer next, which might be
318 		 * this cpu as well. If we don't drop this here the
319 		 * jiffies might be stale and do_timer() never
320 		 * invoked. Keep track of the fact that it was the one
321 		 * which had the do_timer() duty last. If this cpu is
322 		 * the one which had the do_timer() duty last, we
323 		 * limit the sleep time to the timekeeping
324 		 * max_deferement value which we retrieved
325 		 * above. Otherwise we can sleep as long as we want.
326 		 */
327 		if (cpu == tick_do_timer_cpu) {
328 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
329 			ts->do_timer_last = 1;
330 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
331 			time_delta = KTIME_MAX;
332 			ts->do_timer_last = 0;
333 		} else if (!ts->do_timer_last) {
334 			time_delta = KTIME_MAX;
335 		}
336 
337 		/*
338 		 * calculate the expiry time for the next timer wheel
339 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
340 		 * that there is no timer pending or at least extremely
341 		 * far into the future (12 days for HZ=1000). In this
342 		 * case we set the expiry to the end of time.
343 		 */
344 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
345 			/*
346 			 * Calculate the time delta for the next timer event.
347 			 * If the time delta exceeds the maximum time delta
348 			 * permitted by the current clocksource then adjust
349 			 * the time delta accordingly to ensure the
350 			 * clocksource does not wrap.
351 			 */
352 			time_delta = min_t(u64, time_delta,
353 					   tick_period.tv64 * delta_jiffies);
354 		}
355 
356 		if (time_delta < KTIME_MAX)
357 			expires = ktime_add_ns(last_update, time_delta);
358 		else
359 			expires.tv64 = KTIME_MAX;
360 
361 		/* Skip reprogram of event if its not changed */
362 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
363 			goto out;
364 
365 		ret = expires;
366 
367 		/*
368 		 * nohz_stop_sched_tick can be called several times before
369 		 * the nohz_restart_sched_tick is called. This happens when
370 		 * interrupts arrive which do not cause a reschedule. In the
371 		 * first call we save the current tick time, so we can restart
372 		 * the scheduler tick in nohz_restart_sched_tick.
373 		 */
374 		if (!ts->tick_stopped) {
375 			nohz_balance_enter_idle(cpu);
376 			calc_load_enter_idle();
377 
378 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
379 			ts->tick_stopped = 1;
380 		}
381 
382 		/*
383 		 * If the expiration time == KTIME_MAX, then
384 		 * in this case we simply stop the tick timer.
385 		 */
386 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
387 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
388 				hrtimer_cancel(&ts->sched_timer);
389 			goto out;
390 		}
391 
392 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
393 			hrtimer_start(&ts->sched_timer, expires,
394 				      HRTIMER_MODE_ABS_PINNED);
395 			/* Check, if the timer was already in the past */
396 			if (hrtimer_active(&ts->sched_timer))
397 				goto out;
398 		} else if (!tick_program_event(expires, 0))
399 				goto out;
400 		/*
401 		 * We are past the event already. So we crossed a
402 		 * jiffie boundary. Update jiffies and raise the
403 		 * softirq.
404 		 */
405 		tick_do_update_jiffies64(ktime_get());
406 	}
407 	raise_softirq_irqoff(TIMER_SOFTIRQ);
408 out:
409 	ts->next_jiffies = next_jiffies;
410 	ts->last_jiffies = last_jiffies;
411 	ts->sleep_length = ktime_sub(dev->next_event, now);
412 
413 	return ret;
414 }
415 
416 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
417 {
418 	/*
419 	 * If this cpu is offline and it is the one which updates
420 	 * jiffies, then give up the assignment and let it be taken by
421 	 * the cpu which runs the tick timer next. If we don't drop
422 	 * this here the jiffies might be stale and do_timer() never
423 	 * invoked.
424 	 */
425 	if (unlikely(!cpu_online(cpu))) {
426 		if (cpu == tick_do_timer_cpu)
427 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
428 	}
429 
430 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
431 		return false;
432 
433 	if (need_resched())
434 		return false;
435 
436 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
437 		static int ratelimit;
438 
439 		if (ratelimit < 10 &&
440 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
441 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
442 			       (unsigned int) local_softirq_pending());
443 			ratelimit++;
444 		}
445 		return false;
446 	}
447 
448 	return true;
449 }
450 
451 static void __tick_nohz_idle_enter(struct tick_sched *ts)
452 {
453 	ktime_t now, expires;
454 	int cpu = smp_processor_id();
455 
456 	now = tick_nohz_start_idle(cpu, ts);
457 
458 	if (can_stop_idle_tick(cpu, ts)) {
459 		int was_stopped = ts->tick_stopped;
460 
461 		ts->idle_calls++;
462 
463 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
464 		if (expires.tv64 > 0LL) {
465 			ts->idle_sleeps++;
466 			ts->idle_expires = expires;
467 		}
468 
469 		if (!was_stopped && ts->tick_stopped)
470 			ts->idle_jiffies = ts->last_jiffies;
471 	}
472 }
473 
474 /**
475  * tick_nohz_idle_enter - stop the idle tick from the idle task
476  *
477  * When the next event is more than a tick into the future, stop the idle tick
478  * Called when we start the idle loop.
479  *
480  * The arch is responsible of calling:
481  *
482  * - rcu_idle_enter() after its last use of RCU before the CPU is put
483  *  to sleep.
484  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
485  */
486 void tick_nohz_idle_enter(void)
487 {
488 	struct tick_sched *ts;
489 
490 	WARN_ON_ONCE(irqs_disabled());
491 
492 	/*
493  	 * Update the idle state in the scheduler domain hierarchy
494  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
495  	 * State will be updated to busy during the first busy tick after
496  	 * exiting idle.
497  	 */
498 	set_cpu_sd_state_idle();
499 
500 	local_irq_disable();
501 
502 	ts = &__get_cpu_var(tick_cpu_sched);
503 	/*
504 	 * set ts->inidle unconditionally. even if the system did not
505 	 * switch to nohz mode the cpu frequency governers rely on the
506 	 * update of the idle time accounting in tick_nohz_start_idle().
507 	 */
508 	ts->inidle = 1;
509 	__tick_nohz_idle_enter(ts);
510 
511 	local_irq_enable();
512 }
513 
514 /**
515  * tick_nohz_irq_exit - update next tick event from interrupt exit
516  *
517  * When an interrupt fires while we are idle and it doesn't cause
518  * a reschedule, it may still add, modify or delete a timer, enqueue
519  * an RCU callback, etc...
520  * So we need to re-calculate and reprogram the next tick event.
521  */
522 void tick_nohz_irq_exit(void)
523 {
524 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
525 
526 	if (!ts->inidle)
527 		return;
528 
529 	/* Cancel the timer because CPU already waken up from the C-states*/
530 	menu_hrtimer_cancel();
531 	__tick_nohz_idle_enter(ts);
532 }
533 
534 /**
535  * tick_nohz_get_sleep_length - return the length of the current sleep
536  *
537  * Called from power state control code with interrupts disabled
538  */
539 ktime_t tick_nohz_get_sleep_length(void)
540 {
541 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
542 
543 	return ts->sleep_length;
544 }
545 
546 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
547 {
548 	hrtimer_cancel(&ts->sched_timer);
549 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
550 
551 	while (1) {
552 		/* Forward the time to expire in the future */
553 		hrtimer_forward(&ts->sched_timer, now, tick_period);
554 
555 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
556 			hrtimer_start_expires(&ts->sched_timer,
557 					      HRTIMER_MODE_ABS_PINNED);
558 			/* Check, if the timer was already in the past */
559 			if (hrtimer_active(&ts->sched_timer))
560 				break;
561 		} else {
562 			if (!tick_program_event(
563 				hrtimer_get_expires(&ts->sched_timer), 0))
564 				break;
565 		}
566 		/* Reread time and update jiffies */
567 		now = ktime_get();
568 		tick_do_update_jiffies64(now);
569 	}
570 }
571 
572 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
573 {
574 	/* Update jiffies first */
575 	tick_do_update_jiffies64(now);
576 	update_cpu_load_nohz();
577 
578 	calc_load_exit_idle();
579 	touch_softlockup_watchdog();
580 	/*
581 	 * Cancel the scheduled timer and restore the tick
582 	 */
583 	ts->tick_stopped  = 0;
584 	ts->idle_exittime = now;
585 
586 	tick_nohz_restart(ts, now);
587 }
588 
589 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
590 {
591 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
592 	unsigned long ticks;
593 	/*
594 	 * We stopped the tick in idle. Update process times would miss the
595 	 * time we slept as update_process_times does only a 1 tick
596 	 * accounting. Enforce that this is accounted to idle !
597 	 */
598 	ticks = jiffies - ts->idle_jiffies;
599 	/*
600 	 * We might be one off. Do not randomly account a huge number of ticks!
601 	 */
602 	if (ticks && ticks < LONG_MAX)
603 		account_idle_ticks(ticks);
604 #endif
605 }
606 
607 /**
608  * tick_nohz_idle_exit - restart the idle tick from the idle task
609  *
610  * Restart the idle tick when the CPU is woken up from idle
611  * This also exit the RCU extended quiescent state. The CPU
612  * can use RCU again after this function is called.
613  */
614 void tick_nohz_idle_exit(void)
615 {
616 	int cpu = smp_processor_id();
617 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
618 	ktime_t now;
619 
620 	local_irq_disable();
621 
622 	WARN_ON_ONCE(!ts->inidle);
623 
624 	ts->inidle = 0;
625 
626 	/* Cancel the timer because CPU already waken up from the C-states*/
627 	menu_hrtimer_cancel();
628 	if (ts->idle_active || ts->tick_stopped)
629 		now = ktime_get();
630 
631 	if (ts->idle_active)
632 		tick_nohz_stop_idle(cpu, now);
633 
634 	if (ts->tick_stopped) {
635 		tick_nohz_restart_sched_tick(ts, now);
636 		tick_nohz_account_idle_ticks(ts);
637 	}
638 
639 	local_irq_enable();
640 }
641 
642 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
643 {
644 	hrtimer_forward(&ts->sched_timer, now, tick_period);
645 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
646 }
647 
648 /*
649  * The nohz low res interrupt handler
650  */
651 static void tick_nohz_handler(struct clock_event_device *dev)
652 {
653 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
654 	struct pt_regs *regs = get_irq_regs();
655 	int cpu = smp_processor_id();
656 	ktime_t now = ktime_get();
657 
658 	dev->next_event.tv64 = KTIME_MAX;
659 
660 	/*
661 	 * Check if the do_timer duty was dropped. We don't care about
662 	 * concurrency: This happens only when the cpu in charge went
663 	 * into a long sleep. If two cpus happen to assign themself to
664 	 * this duty, then the jiffies update is still serialized by
665 	 * xtime_lock.
666 	 */
667 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
668 		tick_do_timer_cpu = cpu;
669 
670 	/* Check, if the jiffies need an update */
671 	if (tick_do_timer_cpu == cpu)
672 		tick_do_update_jiffies64(now);
673 
674 	/*
675 	 * When we are idle and the tick is stopped, we have to touch
676 	 * the watchdog as we might not schedule for a really long
677 	 * time. This happens on complete idle SMP systems while
678 	 * waiting on the login prompt. We also increment the "start
679 	 * of idle" jiffy stamp so the idle accounting adjustment we
680 	 * do when we go busy again does not account too much ticks.
681 	 */
682 	if (ts->tick_stopped) {
683 		touch_softlockup_watchdog();
684 		ts->idle_jiffies++;
685 	}
686 
687 	update_process_times(user_mode(regs));
688 	profile_tick(CPU_PROFILING);
689 
690 	while (tick_nohz_reprogram(ts, now)) {
691 		now = ktime_get();
692 		tick_do_update_jiffies64(now);
693 	}
694 }
695 
696 /**
697  * tick_nohz_switch_to_nohz - switch to nohz mode
698  */
699 static void tick_nohz_switch_to_nohz(void)
700 {
701 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
702 	ktime_t next;
703 
704 	if (!tick_nohz_enabled)
705 		return;
706 
707 	local_irq_disable();
708 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
709 		local_irq_enable();
710 		return;
711 	}
712 
713 	ts->nohz_mode = NOHZ_MODE_LOWRES;
714 
715 	/*
716 	 * Recycle the hrtimer in ts, so we can share the
717 	 * hrtimer_forward with the highres code.
718 	 */
719 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
720 	/* Get the next period */
721 	next = tick_init_jiffy_update();
722 
723 	for (;;) {
724 		hrtimer_set_expires(&ts->sched_timer, next);
725 		if (!tick_program_event(next, 0))
726 			break;
727 		next = ktime_add(next, tick_period);
728 	}
729 	local_irq_enable();
730 }
731 
732 /*
733  * When NOHZ is enabled and the tick is stopped, we need to kick the
734  * tick timer from irq_enter() so that the jiffies update is kept
735  * alive during long running softirqs. That's ugly as hell, but
736  * correctness is key even if we need to fix the offending softirq in
737  * the first place.
738  *
739  * Note, this is different to tick_nohz_restart. We just kick the
740  * timer and do not touch the other magic bits which need to be done
741  * when idle is left.
742  */
743 static void tick_nohz_kick_tick(int cpu, ktime_t now)
744 {
745 #if 0
746 	/* Switch back to 2.6.27 behaviour */
747 
748 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
749 	ktime_t delta;
750 
751 	/*
752 	 * Do not touch the tick device, when the next expiry is either
753 	 * already reached or less/equal than the tick period.
754 	 */
755 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
756 	if (delta.tv64 <= tick_period.tv64)
757 		return;
758 
759 	tick_nohz_restart(ts, now);
760 #endif
761 }
762 
763 static inline void tick_check_nohz(int cpu)
764 {
765 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
766 	ktime_t now;
767 
768 	if (!ts->idle_active && !ts->tick_stopped)
769 		return;
770 	now = ktime_get();
771 	if (ts->idle_active)
772 		tick_nohz_stop_idle(cpu, now);
773 	if (ts->tick_stopped) {
774 		tick_nohz_update_jiffies(now);
775 		tick_nohz_kick_tick(cpu, now);
776 	}
777 }
778 
779 #else
780 
781 static inline void tick_nohz_switch_to_nohz(void) { }
782 static inline void tick_check_nohz(int cpu) { }
783 
784 #endif /* NO_HZ */
785 
786 /*
787  * Called from irq_enter to notify about the possible interruption of idle()
788  */
789 void tick_check_idle(int cpu)
790 {
791 	tick_check_oneshot_broadcast(cpu);
792 	tick_check_nohz(cpu);
793 }
794 
795 /*
796  * High resolution timer specific code
797  */
798 #ifdef CONFIG_HIGH_RES_TIMERS
799 /*
800  * We rearm the timer until we get disabled by the idle code.
801  * Called with interrupts disabled and timer->base->cpu_base->lock held.
802  */
803 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
804 {
805 	struct tick_sched *ts =
806 		container_of(timer, struct tick_sched, sched_timer);
807 	struct pt_regs *regs = get_irq_regs();
808 	ktime_t now = ktime_get();
809 	int cpu = smp_processor_id();
810 
811 #ifdef CONFIG_NO_HZ
812 	/*
813 	 * Check if the do_timer duty was dropped. We don't care about
814 	 * concurrency: This happens only when the cpu in charge went
815 	 * into a long sleep. If two cpus happen to assign themself to
816 	 * this duty, then the jiffies update is still serialized by
817 	 * xtime_lock.
818 	 */
819 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
820 		tick_do_timer_cpu = cpu;
821 #endif
822 
823 	/* Check, if the jiffies need an update */
824 	if (tick_do_timer_cpu == cpu)
825 		tick_do_update_jiffies64(now);
826 
827 	/*
828 	 * Do not call, when we are not in irq context and have
829 	 * no valid regs pointer
830 	 */
831 	if (regs) {
832 		/*
833 		 * When we are idle and the tick is stopped, we have to touch
834 		 * the watchdog as we might not schedule for a really long
835 		 * time. This happens on complete idle SMP systems while
836 		 * waiting on the login prompt. We also increment the "start of
837 		 * idle" jiffy stamp so the idle accounting adjustment we do
838 		 * when we go busy again does not account too much ticks.
839 		 */
840 		if (ts->tick_stopped) {
841 			touch_softlockup_watchdog();
842 			if (is_idle_task(current))
843 				ts->idle_jiffies++;
844 		}
845 		update_process_times(user_mode(regs));
846 		profile_tick(CPU_PROFILING);
847 	}
848 
849 	hrtimer_forward(timer, now, tick_period);
850 
851 	return HRTIMER_RESTART;
852 }
853 
854 static int sched_skew_tick;
855 
856 static int __init skew_tick(char *str)
857 {
858 	get_option(&str, &sched_skew_tick);
859 
860 	return 0;
861 }
862 early_param("skew_tick", skew_tick);
863 
864 /**
865  * tick_setup_sched_timer - setup the tick emulation timer
866  */
867 void tick_setup_sched_timer(void)
868 {
869 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
870 	ktime_t now = ktime_get();
871 
872 	/*
873 	 * Emulate tick processing via per-CPU hrtimers:
874 	 */
875 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
876 	ts->sched_timer.function = tick_sched_timer;
877 
878 	/* Get the next period (per cpu) */
879 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
880 
881 	/* Offset the tick to avert xtime_lock contention. */
882 	if (sched_skew_tick) {
883 		u64 offset = ktime_to_ns(tick_period) >> 1;
884 		do_div(offset, num_possible_cpus());
885 		offset *= smp_processor_id();
886 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
887 	}
888 
889 	for (;;) {
890 		hrtimer_forward(&ts->sched_timer, now, tick_period);
891 		hrtimer_start_expires(&ts->sched_timer,
892 				      HRTIMER_MODE_ABS_PINNED);
893 		/* Check, if the timer was already in the past */
894 		if (hrtimer_active(&ts->sched_timer))
895 			break;
896 		now = ktime_get();
897 	}
898 
899 #ifdef CONFIG_NO_HZ
900 	if (tick_nohz_enabled)
901 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
902 #endif
903 }
904 #endif /* HIGH_RES_TIMERS */
905 
906 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
907 void tick_cancel_sched_timer(int cpu)
908 {
909 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
910 
911 # ifdef CONFIG_HIGH_RES_TIMERS
912 	if (ts->sched_timer.base)
913 		hrtimer_cancel(&ts->sched_timer);
914 # endif
915 
916 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
917 }
918 #endif
919 
920 /**
921  * Async notification about clocksource changes
922  */
923 void tick_clock_notify(void)
924 {
925 	int cpu;
926 
927 	for_each_possible_cpu(cpu)
928 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
929 }
930 
931 /*
932  * Async notification about clock event changes
933  */
934 void tick_oneshot_notify(void)
935 {
936 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
937 
938 	set_bit(0, &ts->check_clocks);
939 }
940 
941 /**
942  * Check, if a change happened, which makes oneshot possible.
943  *
944  * Called cyclic from the hrtimer softirq (driven by the timer
945  * softirq) allow_nohz signals, that we can switch into low-res nohz
946  * mode, because high resolution timers are disabled (either compile
947  * or runtime).
948  */
949 int tick_check_oneshot_change(int allow_nohz)
950 {
951 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
952 
953 	if (!test_and_clear_bit(0, &ts->check_clocks))
954 		return 0;
955 
956 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
957 		return 0;
958 
959 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
960 		return 0;
961 
962 	if (!allow_nohz)
963 		return 1;
964 
965 	tick_nohz_switch_to_nohz();
966 	return 0;
967 }
968