xref: /linux/kernel/time/tick-sched.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 */
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta < tick_period)
64 		return;
65 
66 	/* Reevaluate with jiffies_lock held */
67 	write_seqlock(&jiffies_lock);
68 
69 	delta = ktime_sub(now, last_jiffies_update);
70 	if (delta >= tick_period) {
71 
72 		delta = ktime_sub(delta, tick_period);
73 		last_jiffies_update = ktime_add(last_jiffies_update,
74 						tick_period);
75 
76 		/* Slow path for long timeouts */
77 		if (unlikely(delta >= tick_period)) {
78 			s64 incr = ktime_to_ns(tick_period);
79 
80 			ticks = ktime_divns(delta, incr);
81 
82 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 							   incr * ticks);
84 		}
85 		do_timer(++ticks);
86 
87 		/* Keep the tick_next_period variable up to date */
88 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 	} else {
90 		write_sequnlock(&jiffies_lock);
91 		return;
92 	}
93 	write_sequnlock(&jiffies_lock);
94 	update_wall_time();
95 }
96 
97 /*
98  * Initialize and return retrieve the jiffies update.
99  */
100 static ktime_t tick_init_jiffy_update(void)
101 {
102 	ktime_t period;
103 
104 	write_seqlock(&jiffies_lock);
105 	/* Did we start the jiffies update yet ? */
106 	if (last_jiffies_update == 0)
107 		last_jiffies_update = tick_next_period;
108 	period = last_jiffies_update;
109 	write_sequnlock(&jiffies_lock);
110 	return period;
111 }
112 
113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
114 {
115 	int cpu = smp_processor_id();
116 
117 #ifdef CONFIG_NO_HZ_COMMON
118 	/*
119 	 * Check if the do_timer duty was dropped. We don't care about
120 	 * concurrency: This happens only when the CPU in charge went
121 	 * into a long sleep. If two CPUs happen to assign themselves to
122 	 * this duty, then the jiffies update is still serialized by
123 	 * jiffies_lock.
124 	 */
125 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
126 	    && !tick_nohz_full_cpu(cpu))
127 		tick_do_timer_cpu = cpu;
128 #endif
129 
130 	/* Check, if the jiffies need an update */
131 	if (tick_do_timer_cpu == cpu)
132 		tick_do_update_jiffies64(now);
133 
134 	if (ts->inidle)
135 		ts->got_idle_tick = 1;
136 }
137 
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139 {
140 #ifdef CONFIG_NO_HZ_COMMON
141 	/*
142 	 * When we are idle and the tick is stopped, we have to touch
143 	 * the watchdog as we might not schedule for a really long
144 	 * time. This happens on complete idle SMP systems while
145 	 * waiting on the login prompt. We also increment the "start of
146 	 * idle" jiffy stamp so the idle accounting adjustment we do
147 	 * when we go busy again does not account too much ticks.
148 	 */
149 	if (ts->tick_stopped) {
150 		touch_softlockup_watchdog_sched();
151 		if (is_idle_task(current))
152 			ts->idle_jiffies++;
153 		/*
154 		 * In case the current tick fired too early past its expected
155 		 * expiration, make sure we don't bypass the next clock reprogramming
156 		 * to the same deadline.
157 		 */
158 		ts->next_tick = 0;
159 	}
160 #endif
161 	update_process_times(user_mode(regs));
162 	profile_tick(CPU_PROFILING);
163 }
164 #endif
165 
166 #ifdef CONFIG_NO_HZ_FULL
167 cpumask_var_t tick_nohz_full_mask;
168 bool tick_nohz_full_running;
169 static atomic_t tick_dep_mask;
170 
171 static bool check_tick_dependency(atomic_t *dep)
172 {
173 	int val = atomic_read(dep);
174 
175 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
176 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
177 		return true;
178 	}
179 
180 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
181 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
182 		return true;
183 	}
184 
185 	if (val & TICK_DEP_MASK_SCHED) {
186 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
187 		return true;
188 	}
189 
190 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
191 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
192 		return true;
193 	}
194 
195 	return false;
196 }
197 
198 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
199 {
200 	lockdep_assert_irqs_disabled();
201 
202 	if (unlikely(!cpu_online(cpu)))
203 		return false;
204 
205 	if (check_tick_dependency(&tick_dep_mask))
206 		return false;
207 
208 	if (check_tick_dependency(&ts->tick_dep_mask))
209 		return false;
210 
211 	if (check_tick_dependency(&current->tick_dep_mask))
212 		return false;
213 
214 	if (check_tick_dependency(&current->signal->tick_dep_mask))
215 		return false;
216 
217 	return true;
218 }
219 
220 static void nohz_full_kick_func(struct irq_work *work)
221 {
222 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
223 }
224 
225 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
226 	.func = nohz_full_kick_func,
227 };
228 
229 /*
230  * Kick this CPU if it's full dynticks in order to force it to
231  * re-evaluate its dependency on the tick and restart it if necessary.
232  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
233  * is NMI safe.
234  */
235 static void tick_nohz_full_kick(void)
236 {
237 	if (!tick_nohz_full_cpu(smp_processor_id()))
238 		return;
239 
240 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
241 }
242 
243 /*
244  * Kick the CPU if it's full dynticks in order to force it to
245  * re-evaluate its dependency on the tick and restart it if necessary.
246  */
247 void tick_nohz_full_kick_cpu(int cpu)
248 {
249 	if (!tick_nohz_full_cpu(cpu))
250 		return;
251 
252 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
253 }
254 
255 /*
256  * Kick all full dynticks CPUs in order to force these to re-evaluate
257  * their dependency on the tick and restart it if necessary.
258  */
259 static void tick_nohz_full_kick_all(void)
260 {
261 	int cpu;
262 
263 	if (!tick_nohz_full_running)
264 		return;
265 
266 	preempt_disable();
267 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
268 		tick_nohz_full_kick_cpu(cpu);
269 	preempt_enable();
270 }
271 
272 static void tick_nohz_dep_set_all(atomic_t *dep,
273 				  enum tick_dep_bits bit)
274 {
275 	int prev;
276 
277 	prev = atomic_fetch_or(BIT(bit), dep);
278 	if (!prev)
279 		tick_nohz_full_kick_all();
280 }
281 
282 /*
283  * Set a global tick dependency. Used by perf events that rely on freq and
284  * by unstable clock.
285  */
286 void tick_nohz_dep_set(enum tick_dep_bits bit)
287 {
288 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
289 }
290 
291 void tick_nohz_dep_clear(enum tick_dep_bits bit)
292 {
293 	atomic_andnot(BIT(bit), &tick_dep_mask);
294 }
295 
296 /*
297  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
298  * manage events throttling.
299  */
300 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
301 {
302 	int prev;
303 	struct tick_sched *ts;
304 
305 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
306 
307 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
308 	if (!prev) {
309 		preempt_disable();
310 		/* Perf needs local kick that is NMI safe */
311 		if (cpu == smp_processor_id()) {
312 			tick_nohz_full_kick();
313 		} else {
314 			/* Remote irq work not NMI-safe */
315 			if (!WARN_ON_ONCE(in_nmi()))
316 				tick_nohz_full_kick_cpu(cpu);
317 		}
318 		preempt_enable();
319 	}
320 }
321 
322 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
323 {
324 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
325 
326 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
327 }
328 
329 /*
330  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
331  * per task timers.
332  */
333 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
334 {
335 	/*
336 	 * We could optimize this with just kicking the target running the task
337 	 * if that noise matters for nohz full users.
338 	 */
339 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
340 }
341 
342 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
343 {
344 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
345 }
346 
347 /*
348  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
349  * per process timers.
350  */
351 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
352 {
353 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
354 }
355 
356 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
357 {
358 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
359 }
360 
361 /*
362  * Re-evaluate the need for the tick as we switch the current task.
363  * It might need the tick due to per task/process properties:
364  * perf events, posix CPU timers, ...
365  */
366 void __tick_nohz_task_switch(void)
367 {
368 	unsigned long flags;
369 	struct tick_sched *ts;
370 
371 	local_irq_save(flags);
372 
373 	if (!tick_nohz_full_cpu(smp_processor_id()))
374 		goto out;
375 
376 	ts = this_cpu_ptr(&tick_cpu_sched);
377 
378 	if (ts->tick_stopped) {
379 		if (atomic_read(&current->tick_dep_mask) ||
380 		    atomic_read(&current->signal->tick_dep_mask))
381 			tick_nohz_full_kick();
382 	}
383 out:
384 	local_irq_restore(flags);
385 }
386 
387 /* Get the boot-time nohz CPU list from the kernel parameters. */
388 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
389 {
390 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
391 	cpumask_copy(tick_nohz_full_mask, cpumask);
392 	tick_nohz_full_running = true;
393 }
394 
395 static int tick_nohz_cpu_down(unsigned int cpu)
396 {
397 	/*
398 	 * The boot CPU handles housekeeping duty (unbound timers,
399 	 * workqueues, timekeeping, ...) on behalf of full dynticks
400 	 * CPUs. It must remain online when nohz full is enabled.
401 	 */
402 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
403 		return -EBUSY;
404 	return 0;
405 }
406 
407 void __init tick_nohz_init(void)
408 {
409 	int cpu, ret;
410 
411 	if (!tick_nohz_full_running)
412 		return;
413 
414 	/*
415 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
416 	 * locking contexts. But then we need irq work to raise its own
417 	 * interrupts to avoid circular dependency on the tick
418 	 */
419 	if (!arch_irq_work_has_interrupt()) {
420 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
421 		cpumask_clear(tick_nohz_full_mask);
422 		tick_nohz_full_running = false;
423 		return;
424 	}
425 
426 	cpu = smp_processor_id();
427 
428 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
429 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
430 			cpu);
431 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
432 	}
433 
434 	for_each_cpu(cpu, tick_nohz_full_mask)
435 		context_tracking_cpu_set(cpu);
436 
437 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
438 					"kernel/nohz:predown", NULL,
439 					tick_nohz_cpu_down);
440 	WARN_ON(ret < 0);
441 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
442 		cpumask_pr_args(tick_nohz_full_mask));
443 }
444 #endif
445 
446 /*
447  * NOHZ - aka dynamic tick functionality
448  */
449 #ifdef CONFIG_NO_HZ_COMMON
450 /*
451  * NO HZ enabled ?
452  */
453 bool tick_nohz_enabled __read_mostly  = true;
454 unsigned long tick_nohz_active  __read_mostly;
455 /*
456  * Enable / Disable tickless mode
457  */
458 static int __init setup_tick_nohz(char *str)
459 {
460 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
461 }
462 
463 __setup("nohz=", setup_tick_nohz);
464 
465 bool tick_nohz_tick_stopped(void)
466 {
467 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
468 
469 	return ts->tick_stopped;
470 }
471 
472 bool tick_nohz_tick_stopped_cpu(int cpu)
473 {
474 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
475 
476 	return ts->tick_stopped;
477 }
478 
479 /**
480  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
481  *
482  * Called from interrupt entry when the CPU was idle
483  *
484  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
485  * must be updated. Otherwise an interrupt handler could use a stale jiffy
486  * value. We do this unconditionally on any CPU, as we don't know whether the
487  * CPU, which has the update task assigned is in a long sleep.
488  */
489 static void tick_nohz_update_jiffies(ktime_t now)
490 {
491 	unsigned long flags;
492 
493 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
494 
495 	local_irq_save(flags);
496 	tick_do_update_jiffies64(now);
497 	local_irq_restore(flags);
498 
499 	touch_softlockup_watchdog_sched();
500 }
501 
502 /*
503  * Updates the per-CPU time idle statistics counters
504  */
505 static void
506 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
507 {
508 	ktime_t delta;
509 
510 	if (ts->idle_active) {
511 		delta = ktime_sub(now, ts->idle_entrytime);
512 		if (nr_iowait_cpu(cpu) > 0)
513 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
514 		else
515 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
516 		ts->idle_entrytime = now;
517 	}
518 
519 	if (last_update_time)
520 		*last_update_time = ktime_to_us(now);
521 
522 }
523 
524 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
525 {
526 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
527 	ts->idle_active = 0;
528 
529 	sched_clock_idle_wakeup_event();
530 }
531 
532 static void tick_nohz_start_idle(struct tick_sched *ts)
533 {
534 	ts->idle_entrytime = ktime_get();
535 	ts->idle_active = 1;
536 	sched_clock_idle_sleep_event();
537 }
538 
539 /**
540  * get_cpu_idle_time_us - get the total idle time of a CPU
541  * @cpu: CPU number to query
542  * @last_update_time: variable to store update time in. Do not update
543  * counters if NULL.
544  *
545  * Return the cumulative idle time (since boot) for a given
546  * CPU, in microseconds.
547  *
548  * This time is measured via accounting rather than sampling,
549  * and is as accurate as ktime_get() is.
550  *
551  * This function returns -1 if NOHZ is not enabled.
552  */
553 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
554 {
555 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
556 	ktime_t now, idle;
557 
558 	if (!tick_nohz_active)
559 		return -1;
560 
561 	now = ktime_get();
562 	if (last_update_time) {
563 		update_ts_time_stats(cpu, ts, now, last_update_time);
564 		idle = ts->idle_sleeptime;
565 	} else {
566 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
567 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
568 
569 			idle = ktime_add(ts->idle_sleeptime, delta);
570 		} else {
571 			idle = ts->idle_sleeptime;
572 		}
573 	}
574 
575 	return ktime_to_us(idle);
576 
577 }
578 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
579 
580 /**
581  * get_cpu_iowait_time_us - get the total iowait time of a CPU
582  * @cpu: CPU number to query
583  * @last_update_time: variable to store update time in. Do not update
584  * counters if NULL.
585  *
586  * Return the cumulative iowait time (since boot) for a given
587  * CPU, in microseconds.
588  *
589  * This time is measured via accounting rather than sampling,
590  * and is as accurate as ktime_get() is.
591  *
592  * This function returns -1 if NOHZ is not enabled.
593  */
594 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
595 {
596 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
597 	ktime_t now, iowait;
598 
599 	if (!tick_nohz_active)
600 		return -1;
601 
602 	now = ktime_get();
603 	if (last_update_time) {
604 		update_ts_time_stats(cpu, ts, now, last_update_time);
605 		iowait = ts->iowait_sleeptime;
606 	} else {
607 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
608 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
609 
610 			iowait = ktime_add(ts->iowait_sleeptime, delta);
611 		} else {
612 			iowait = ts->iowait_sleeptime;
613 		}
614 	}
615 
616 	return ktime_to_us(iowait);
617 }
618 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
619 
620 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
621 {
622 	hrtimer_cancel(&ts->sched_timer);
623 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
624 
625 	/* Forward the time to expire in the future */
626 	hrtimer_forward(&ts->sched_timer, now, tick_period);
627 
628 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
629 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
630 	else
631 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
632 
633 	/*
634 	 * Reset to make sure next tick stop doesn't get fooled by past
635 	 * cached clock deadline.
636 	 */
637 	ts->next_tick = 0;
638 }
639 
640 static inline bool local_timer_softirq_pending(void)
641 {
642 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
643 }
644 
645 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
646 {
647 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
648 	unsigned long seq, basejiff;
649 
650 	/* Read jiffies and the time when jiffies were updated last */
651 	do {
652 		seq = read_seqbegin(&jiffies_lock);
653 		basemono = last_jiffies_update;
654 		basejiff = jiffies;
655 	} while (read_seqretry(&jiffies_lock, seq));
656 	ts->last_jiffies = basejiff;
657 	ts->timer_expires_base = basemono;
658 
659 	/*
660 	 * Keep the periodic tick, when RCU, architecture or irq_work
661 	 * requests it.
662 	 * Aside of that check whether the local timer softirq is
663 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
664 	 * because there is an already expired timer, so it will request
665 	 * immeditate expiry, which rearms the hardware timer with a
666 	 * minimal delta which brings us back to this place
667 	 * immediately. Lather, rinse and repeat...
668 	 */
669 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
670 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
671 		next_tick = basemono + TICK_NSEC;
672 	} else {
673 		/*
674 		 * Get the next pending timer. If high resolution
675 		 * timers are enabled this only takes the timer wheel
676 		 * timers into account. If high resolution timers are
677 		 * disabled this also looks at the next expiring
678 		 * hrtimer.
679 		 */
680 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
681 		ts->next_timer = next_tmr;
682 		/* Take the next rcu event into account */
683 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
684 	}
685 
686 	/*
687 	 * If the tick is due in the next period, keep it ticking or
688 	 * force prod the timer.
689 	 */
690 	delta = next_tick - basemono;
691 	if (delta <= (u64)TICK_NSEC) {
692 		/*
693 		 * Tell the timer code that the base is not idle, i.e. undo
694 		 * the effect of get_next_timer_interrupt():
695 		 */
696 		timer_clear_idle();
697 		/*
698 		 * We've not stopped the tick yet, and there's a timer in the
699 		 * next period, so no point in stopping it either, bail.
700 		 */
701 		if (!ts->tick_stopped) {
702 			ts->timer_expires = 0;
703 			goto out;
704 		}
705 	}
706 
707 	/*
708 	 * If this CPU is the one which had the do_timer() duty last, we limit
709 	 * the sleep time to the timekeeping max_deferment value.
710 	 * Otherwise we can sleep as long as we want.
711 	 */
712 	delta = timekeeping_max_deferment();
713 	if (cpu != tick_do_timer_cpu &&
714 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
715 		delta = KTIME_MAX;
716 
717 	/* Calculate the next expiry time */
718 	if (delta < (KTIME_MAX - basemono))
719 		expires = basemono + delta;
720 	else
721 		expires = KTIME_MAX;
722 
723 	ts->timer_expires = min_t(u64, expires, next_tick);
724 
725 out:
726 	return ts->timer_expires;
727 }
728 
729 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
730 {
731 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
732 	u64 basemono = ts->timer_expires_base;
733 	u64 expires = ts->timer_expires;
734 	ktime_t tick = expires;
735 
736 	/* Make sure we won't be trying to stop it twice in a row. */
737 	ts->timer_expires_base = 0;
738 
739 	/*
740 	 * If this CPU is the one which updates jiffies, then give up
741 	 * the assignment and let it be taken by the CPU which runs
742 	 * the tick timer next, which might be this CPU as well. If we
743 	 * don't drop this here the jiffies might be stale and
744 	 * do_timer() never invoked. Keep track of the fact that it
745 	 * was the one which had the do_timer() duty last.
746 	 */
747 	if (cpu == tick_do_timer_cpu) {
748 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
749 		ts->do_timer_last = 1;
750 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
751 		ts->do_timer_last = 0;
752 	}
753 
754 	/* Skip reprogram of event if its not changed */
755 	if (ts->tick_stopped && (expires == ts->next_tick)) {
756 		/* Sanity check: make sure clockevent is actually programmed */
757 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
758 			return;
759 
760 		WARN_ON_ONCE(1);
761 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
762 			    basemono, ts->next_tick, dev->next_event,
763 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
764 	}
765 
766 	/*
767 	 * nohz_stop_sched_tick can be called several times before
768 	 * the nohz_restart_sched_tick is called. This happens when
769 	 * interrupts arrive which do not cause a reschedule. In the
770 	 * first call we save the current tick time, so we can restart
771 	 * the scheduler tick in nohz_restart_sched_tick.
772 	 */
773 	if (!ts->tick_stopped) {
774 		calc_load_nohz_start();
775 		cpu_load_update_nohz_start();
776 		quiet_vmstat();
777 
778 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
779 		ts->tick_stopped = 1;
780 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
781 	}
782 
783 	ts->next_tick = tick;
784 
785 	/*
786 	 * If the expiration time == KTIME_MAX, then we simply stop
787 	 * the tick timer.
788 	 */
789 	if (unlikely(expires == KTIME_MAX)) {
790 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
791 			hrtimer_cancel(&ts->sched_timer);
792 		return;
793 	}
794 
795 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
796 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
797 	} else {
798 		hrtimer_set_expires(&ts->sched_timer, tick);
799 		tick_program_event(tick, 1);
800 	}
801 }
802 
803 static void tick_nohz_retain_tick(struct tick_sched *ts)
804 {
805 	ts->timer_expires_base = 0;
806 }
807 
808 #ifdef CONFIG_NO_HZ_FULL
809 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
810 {
811 	if (tick_nohz_next_event(ts, cpu))
812 		tick_nohz_stop_tick(ts, cpu);
813 	else
814 		tick_nohz_retain_tick(ts);
815 }
816 #endif /* CONFIG_NO_HZ_FULL */
817 
818 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
819 {
820 	/* Update jiffies first */
821 	tick_do_update_jiffies64(now);
822 	cpu_load_update_nohz_stop();
823 
824 	/*
825 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
826 	 * the clock forward checks in the enqueue path:
827 	 */
828 	timer_clear_idle();
829 
830 	calc_load_nohz_stop();
831 	touch_softlockup_watchdog_sched();
832 	/*
833 	 * Cancel the scheduled timer and restore the tick
834 	 */
835 	ts->tick_stopped  = 0;
836 	ts->idle_exittime = now;
837 
838 	tick_nohz_restart(ts, now);
839 }
840 
841 static void tick_nohz_full_update_tick(struct tick_sched *ts)
842 {
843 #ifdef CONFIG_NO_HZ_FULL
844 	int cpu = smp_processor_id();
845 
846 	if (!tick_nohz_full_cpu(cpu))
847 		return;
848 
849 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
850 		return;
851 
852 	if (can_stop_full_tick(cpu, ts))
853 		tick_nohz_stop_sched_tick(ts, cpu);
854 	else if (ts->tick_stopped)
855 		tick_nohz_restart_sched_tick(ts, ktime_get());
856 #endif
857 }
858 
859 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
860 {
861 	/*
862 	 * If this CPU is offline and it is the one which updates
863 	 * jiffies, then give up the assignment and let it be taken by
864 	 * the CPU which runs the tick timer next. If we don't drop
865 	 * this here the jiffies might be stale and do_timer() never
866 	 * invoked.
867 	 */
868 	if (unlikely(!cpu_online(cpu))) {
869 		if (cpu == tick_do_timer_cpu)
870 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
871 		/*
872 		 * Make sure the CPU doesn't get fooled by obsolete tick
873 		 * deadline if it comes back online later.
874 		 */
875 		ts->next_tick = 0;
876 		return false;
877 	}
878 
879 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
880 		return false;
881 
882 	if (need_resched())
883 		return false;
884 
885 	if (unlikely(local_softirq_pending())) {
886 		static int ratelimit;
887 
888 		if (ratelimit < 10 &&
889 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
890 			pr_warn("NOHZ: local_softirq_pending %02x\n",
891 				(unsigned int) local_softirq_pending());
892 			ratelimit++;
893 		}
894 		return false;
895 	}
896 
897 	if (tick_nohz_full_enabled()) {
898 		/*
899 		 * Keep the tick alive to guarantee timekeeping progression
900 		 * if there are full dynticks CPUs around
901 		 */
902 		if (tick_do_timer_cpu == cpu)
903 			return false;
904 		/*
905 		 * Boot safety: make sure the timekeeping duty has been
906 		 * assigned before entering dyntick-idle mode,
907 		 */
908 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
909 			return false;
910 	}
911 
912 	return true;
913 }
914 
915 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
916 {
917 	ktime_t expires;
918 	int cpu = smp_processor_id();
919 
920 	/*
921 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
922 	 * tick timer expiration time is known already.
923 	 */
924 	if (ts->timer_expires_base)
925 		expires = ts->timer_expires;
926 	else if (can_stop_idle_tick(cpu, ts))
927 		expires = tick_nohz_next_event(ts, cpu);
928 	else
929 		return;
930 
931 	ts->idle_calls++;
932 
933 	if (expires > 0LL) {
934 		int was_stopped = ts->tick_stopped;
935 
936 		tick_nohz_stop_tick(ts, cpu);
937 
938 		ts->idle_sleeps++;
939 		ts->idle_expires = expires;
940 
941 		if (!was_stopped && ts->tick_stopped) {
942 			ts->idle_jiffies = ts->last_jiffies;
943 			nohz_balance_enter_idle(cpu);
944 		}
945 	} else {
946 		tick_nohz_retain_tick(ts);
947 	}
948 }
949 
950 /**
951  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
952  *
953  * When the next event is more than a tick into the future, stop the idle tick
954  */
955 void tick_nohz_idle_stop_tick(void)
956 {
957 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
958 }
959 
960 void tick_nohz_idle_retain_tick(void)
961 {
962 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
963 	/*
964 	 * Undo the effect of get_next_timer_interrupt() called from
965 	 * tick_nohz_next_event().
966 	 */
967 	timer_clear_idle();
968 }
969 
970 /**
971  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
972  *
973  * Called when we start the idle loop.
974  */
975 void tick_nohz_idle_enter(void)
976 {
977 	struct tick_sched *ts;
978 
979 	lockdep_assert_irqs_enabled();
980 
981 	local_irq_disable();
982 
983 	ts = this_cpu_ptr(&tick_cpu_sched);
984 
985 	WARN_ON_ONCE(ts->timer_expires_base);
986 
987 	ts->inidle = 1;
988 	tick_nohz_start_idle(ts);
989 
990 	local_irq_enable();
991 }
992 
993 /**
994  * tick_nohz_irq_exit - update next tick event from interrupt exit
995  *
996  * When an interrupt fires while we are idle and it doesn't cause
997  * a reschedule, it may still add, modify or delete a timer, enqueue
998  * an RCU callback, etc...
999  * So we need to re-calculate and reprogram the next tick event.
1000  */
1001 void tick_nohz_irq_exit(void)
1002 {
1003 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1004 
1005 	if (ts->inidle)
1006 		tick_nohz_start_idle(ts);
1007 	else
1008 		tick_nohz_full_update_tick(ts);
1009 }
1010 
1011 /**
1012  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1013  */
1014 bool tick_nohz_idle_got_tick(void)
1015 {
1016 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1017 
1018 	if (ts->got_idle_tick) {
1019 		ts->got_idle_tick = 0;
1020 		return true;
1021 	}
1022 	return false;
1023 }
1024 
1025 /**
1026  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1027  * @delta_next: duration until the next event if the tick cannot be stopped
1028  *
1029  * Called from power state control code with interrupts disabled
1030  */
1031 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1032 {
1033 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1034 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1035 	int cpu = smp_processor_id();
1036 	/*
1037 	 * The idle entry time is expected to be a sufficient approximation of
1038 	 * the current time at this point.
1039 	 */
1040 	ktime_t now = ts->idle_entrytime;
1041 	ktime_t next_event;
1042 
1043 	WARN_ON_ONCE(!ts->inidle);
1044 
1045 	*delta_next = ktime_sub(dev->next_event, now);
1046 
1047 	if (!can_stop_idle_tick(cpu, ts))
1048 		return *delta_next;
1049 
1050 	next_event = tick_nohz_next_event(ts, cpu);
1051 	if (!next_event)
1052 		return *delta_next;
1053 
1054 	/*
1055 	 * If the next highres timer to expire is earlier than next_event, the
1056 	 * idle governor needs to know that.
1057 	 */
1058 	next_event = min_t(u64, next_event,
1059 			   hrtimer_next_event_without(&ts->sched_timer));
1060 
1061 	return ktime_sub(next_event, now);
1062 }
1063 
1064 /**
1065  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1066  * for a particular CPU.
1067  *
1068  * Called from the schedutil frequency scaling governor in scheduler context.
1069  */
1070 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1071 {
1072 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1073 
1074 	return ts->idle_calls;
1075 }
1076 
1077 /**
1078  * tick_nohz_get_idle_calls - return the current idle calls counter value
1079  *
1080  * Called from the schedutil frequency scaling governor in scheduler context.
1081  */
1082 unsigned long tick_nohz_get_idle_calls(void)
1083 {
1084 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1085 
1086 	return ts->idle_calls;
1087 }
1088 
1089 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1090 {
1091 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1092 	unsigned long ticks;
1093 
1094 	if (vtime_accounting_cpu_enabled())
1095 		return;
1096 	/*
1097 	 * We stopped the tick in idle. Update process times would miss the
1098 	 * time we slept as update_process_times does only a 1 tick
1099 	 * accounting. Enforce that this is accounted to idle !
1100 	 */
1101 	ticks = jiffies - ts->idle_jiffies;
1102 	/*
1103 	 * We might be one off. Do not randomly account a huge number of ticks!
1104 	 */
1105 	if (ticks && ticks < LONG_MAX)
1106 		account_idle_ticks(ticks);
1107 #endif
1108 }
1109 
1110 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1111 {
1112 	tick_nohz_restart_sched_tick(ts, now);
1113 	tick_nohz_account_idle_ticks(ts);
1114 }
1115 
1116 void tick_nohz_idle_restart_tick(void)
1117 {
1118 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1119 
1120 	if (ts->tick_stopped)
1121 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1122 }
1123 
1124 /**
1125  * tick_nohz_idle_exit - restart the idle tick from the idle task
1126  *
1127  * Restart the idle tick when the CPU is woken up from idle
1128  * This also exit the RCU extended quiescent state. The CPU
1129  * can use RCU again after this function is called.
1130  */
1131 void tick_nohz_idle_exit(void)
1132 {
1133 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1134 	bool idle_active, tick_stopped;
1135 	ktime_t now;
1136 
1137 	local_irq_disable();
1138 
1139 	WARN_ON_ONCE(!ts->inidle);
1140 	WARN_ON_ONCE(ts->timer_expires_base);
1141 
1142 	ts->inidle = 0;
1143 	idle_active = ts->idle_active;
1144 	tick_stopped = ts->tick_stopped;
1145 
1146 	if (idle_active || tick_stopped)
1147 		now = ktime_get();
1148 
1149 	if (idle_active)
1150 		tick_nohz_stop_idle(ts, now);
1151 
1152 	if (tick_stopped)
1153 		__tick_nohz_idle_restart_tick(ts, now);
1154 
1155 	local_irq_enable();
1156 }
1157 
1158 /*
1159  * The nohz low res interrupt handler
1160  */
1161 static void tick_nohz_handler(struct clock_event_device *dev)
1162 {
1163 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1164 	struct pt_regs *regs = get_irq_regs();
1165 	ktime_t now = ktime_get();
1166 
1167 	dev->next_event = KTIME_MAX;
1168 
1169 	tick_sched_do_timer(ts, now);
1170 	tick_sched_handle(ts, regs);
1171 
1172 	/* No need to reprogram if we are running tickless  */
1173 	if (unlikely(ts->tick_stopped))
1174 		return;
1175 
1176 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1177 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1178 }
1179 
1180 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1181 {
1182 	if (!tick_nohz_enabled)
1183 		return;
1184 	ts->nohz_mode = mode;
1185 	/* One update is enough */
1186 	if (!test_and_set_bit(0, &tick_nohz_active))
1187 		timers_update_nohz();
1188 }
1189 
1190 /**
1191  * tick_nohz_switch_to_nohz - switch to nohz mode
1192  */
1193 static void tick_nohz_switch_to_nohz(void)
1194 {
1195 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1196 	ktime_t next;
1197 
1198 	if (!tick_nohz_enabled)
1199 		return;
1200 
1201 	if (tick_switch_to_oneshot(tick_nohz_handler))
1202 		return;
1203 
1204 	/*
1205 	 * Recycle the hrtimer in ts, so we can share the
1206 	 * hrtimer_forward with the highres code.
1207 	 */
1208 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1209 	/* Get the next period */
1210 	next = tick_init_jiffy_update();
1211 
1212 	hrtimer_set_expires(&ts->sched_timer, next);
1213 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1214 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1215 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1216 }
1217 
1218 static inline void tick_nohz_irq_enter(void)
1219 {
1220 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221 	ktime_t now;
1222 
1223 	if (!ts->idle_active && !ts->tick_stopped)
1224 		return;
1225 	now = ktime_get();
1226 	if (ts->idle_active)
1227 		tick_nohz_stop_idle(ts, now);
1228 	if (ts->tick_stopped)
1229 		tick_nohz_update_jiffies(now);
1230 }
1231 
1232 #else
1233 
1234 static inline void tick_nohz_switch_to_nohz(void) { }
1235 static inline void tick_nohz_irq_enter(void) { }
1236 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1237 
1238 #endif /* CONFIG_NO_HZ_COMMON */
1239 
1240 /*
1241  * Called from irq_enter to notify about the possible interruption of idle()
1242  */
1243 void tick_irq_enter(void)
1244 {
1245 	tick_check_oneshot_broadcast_this_cpu();
1246 	tick_nohz_irq_enter();
1247 }
1248 
1249 /*
1250  * High resolution timer specific code
1251  */
1252 #ifdef CONFIG_HIGH_RES_TIMERS
1253 /*
1254  * We rearm the timer until we get disabled by the idle code.
1255  * Called with interrupts disabled.
1256  */
1257 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1258 {
1259 	struct tick_sched *ts =
1260 		container_of(timer, struct tick_sched, sched_timer);
1261 	struct pt_regs *regs = get_irq_regs();
1262 	ktime_t now = ktime_get();
1263 
1264 	tick_sched_do_timer(ts, now);
1265 
1266 	/*
1267 	 * Do not call, when we are not in irq context and have
1268 	 * no valid regs pointer
1269 	 */
1270 	if (regs)
1271 		tick_sched_handle(ts, regs);
1272 	else
1273 		ts->next_tick = 0;
1274 
1275 	/* No need to reprogram if we are in idle or full dynticks mode */
1276 	if (unlikely(ts->tick_stopped))
1277 		return HRTIMER_NORESTART;
1278 
1279 	hrtimer_forward(timer, now, tick_period);
1280 
1281 	return HRTIMER_RESTART;
1282 }
1283 
1284 static int sched_skew_tick;
1285 
1286 static int __init skew_tick(char *str)
1287 {
1288 	get_option(&str, &sched_skew_tick);
1289 
1290 	return 0;
1291 }
1292 early_param("skew_tick", skew_tick);
1293 
1294 /**
1295  * tick_setup_sched_timer - setup the tick emulation timer
1296  */
1297 void tick_setup_sched_timer(void)
1298 {
1299 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1300 	ktime_t now = ktime_get();
1301 
1302 	/*
1303 	 * Emulate tick processing via per-CPU hrtimers:
1304 	 */
1305 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1306 	ts->sched_timer.function = tick_sched_timer;
1307 
1308 	/* Get the next period (per-CPU) */
1309 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1310 
1311 	/* Offset the tick to avert jiffies_lock contention. */
1312 	if (sched_skew_tick) {
1313 		u64 offset = ktime_to_ns(tick_period) >> 1;
1314 		do_div(offset, num_possible_cpus());
1315 		offset *= smp_processor_id();
1316 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1317 	}
1318 
1319 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1320 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1321 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1322 }
1323 #endif /* HIGH_RES_TIMERS */
1324 
1325 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1326 void tick_cancel_sched_timer(int cpu)
1327 {
1328 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1329 
1330 # ifdef CONFIG_HIGH_RES_TIMERS
1331 	if (ts->sched_timer.base)
1332 		hrtimer_cancel(&ts->sched_timer);
1333 # endif
1334 
1335 	memset(ts, 0, sizeof(*ts));
1336 }
1337 #endif
1338 
1339 /**
1340  * Async notification about clocksource changes
1341  */
1342 void tick_clock_notify(void)
1343 {
1344 	int cpu;
1345 
1346 	for_each_possible_cpu(cpu)
1347 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1348 }
1349 
1350 /*
1351  * Async notification about clock event changes
1352  */
1353 void tick_oneshot_notify(void)
1354 {
1355 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1356 
1357 	set_bit(0, &ts->check_clocks);
1358 }
1359 
1360 /**
1361  * Check, if a change happened, which makes oneshot possible.
1362  *
1363  * Called cyclic from the hrtimer softirq (driven by the timer
1364  * softirq) allow_nohz signals, that we can switch into low-res nohz
1365  * mode, because high resolution timers are disabled (either compile
1366  * or runtime). Called with interrupts disabled.
1367  */
1368 int tick_check_oneshot_change(int allow_nohz)
1369 {
1370 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1371 
1372 	if (!test_and_clear_bit(0, &ts->check_clocks))
1373 		return 0;
1374 
1375 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1376 		return 0;
1377 
1378 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1379 		return 0;
1380 
1381 	if (!allow_nohz)
1382 		return 1;
1383 
1384 	tick_nohz_switch_to_nohz();
1385 	return 0;
1386 }
1387