1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 static int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 ts->idle_waketime = now; 143 144 local_irq_save(flags); 145 tick_do_update_jiffies64(now); 146 local_irq_restore(flags); 147 148 touch_softlockup_watchdog(); 149 } 150 151 /* 152 * Updates the per cpu time idle statistics counters 153 */ 154 static void 155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 156 { 157 ktime_t delta; 158 159 if (ts->idle_active) { 160 delta = ktime_sub(now, ts->idle_entrytime); 161 if (nr_iowait_cpu(cpu) > 0) 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 163 else 164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now; 186 187 now = ktime_get(); 188 189 update_ts_time_stats(cpu, ts, now, NULL); 190 191 ts->idle_entrytime = now; 192 ts->idle_active = 1; 193 sched_clock_idle_sleep_event(); 194 return now; 195 } 196 197 /** 198 * get_cpu_idle_time_us - get the total idle time of a cpu 199 * @cpu: CPU number to query 200 * @last_update_time: variable to store update time in. Do not update 201 * counters if NULL. 202 * 203 * Return the cummulative idle time (since boot) for a given 204 * CPU, in microseconds. 205 * 206 * This time is measured via accounting rather than sampling, 207 * and is as accurate as ktime_get() is. 208 * 209 * This function returns -1 if NOHZ is not enabled. 210 */ 211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 212 { 213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 214 ktime_t now, idle; 215 216 if (!tick_nohz_enabled) 217 return -1; 218 219 now = ktime_get(); 220 if (last_update_time) { 221 update_ts_time_stats(cpu, ts, now, last_update_time); 222 idle = ts->idle_sleeptime; 223 } else { 224 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 225 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 226 227 idle = ktime_add(ts->idle_sleeptime, delta); 228 } else { 229 idle = ts->idle_sleeptime; 230 } 231 } 232 233 return ktime_to_us(idle); 234 235 } 236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 237 238 /** 239 * get_cpu_iowait_time_us - get the total iowait time of a cpu 240 * @cpu: CPU number to query 241 * @last_update_time: variable to store update time in. Do not update 242 * counters if NULL. 243 * 244 * Return the cummulative iowait time (since boot) for a given 245 * CPU, in microseconds. 246 * 247 * This time is measured via accounting rather than sampling, 248 * and is as accurate as ktime_get() is. 249 * 250 * This function returns -1 if NOHZ is not enabled. 251 */ 252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 253 { 254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 255 ktime_t now, iowait; 256 257 if (!tick_nohz_enabled) 258 return -1; 259 260 now = ktime_get(); 261 if (last_update_time) { 262 update_ts_time_stats(cpu, ts, now, last_update_time); 263 iowait = ts->iowait_sleeptime; 264 } else { 265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 266 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 267 268 iowait = ktime_add(ts->iowait_sleeptime, delta); 269 } else { 270 iowait = ts->iowait_sleeptime; 271 } 272 } 273 274 return ktime_to_us(iowait); 275 } 276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 277 278 static void tick_nohz_stop_sched_tick(struct tick_sched *ts) 279 { 280 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 281 ktime_t last_update, expires, now; 282 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 283 u64 time_delta; 284 int cpu; 285 286 cpu = smp_processor_id(); 287 ts = &per_cpu(tick_cpu_sched, cpu); 288 289 now = tick_nohz_start_idle(cpu, ts); 290 291 /* 292 * If this cpu is offline and it is the one which updates 293 * jiffies, then give up the assignment and let it be taken by 294 * the cpu which runs the tick timer next. If we don't drop 295 * this here the jiffies might be stale and do_timer() never 296 * invoked. 297 */ 298 if (unlikely(!cpu_online(cpu))) { 299 if (cpu == tick_do_timer_cpu) 300 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 301 } 302 303 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 304 return; 305 306 if (need_resched()) 307 return; 308 309 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 310 static int ratelimit; 311 312 if (ratelimit < 10) { 313 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 314 (unsigned int) local_softirq_pending()); 315 ratelimit++; 316 } 317 return; 318 } 319 320 ts->idle_calls++; 321 /* Read jiffies and the time when jiffies were updated last */ 322 do { 323 seq = read_seqbegin(&xtime_lock); 324 last_update = last_jiffies_update; 325 last_jiffies = jiffies; 326 time_delta = timekeeping_max_deferment(); 327 } while (read_seqretry(&xtime_lock, seq)); 328 329 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || 330 arch_needs_cpu(cpu)) { 331 next_jiffies = last_jiffies + 1; 332 delta_jiffies = 1; 333 } else { 334 /* Get the next timer wheel timer */ 335 next_jiffies = get_next_timer_interrupt(last_jiffies); 336 delta_jiffies = next_jiffies - last_jiffies; 337 } 338 /* 339 * Do not stop the tick, if we are only one off 340 * or if the cpu is required for rcu 341 */ 342 if (!ts->tick_stopped && delta_jiffies == 1) 343 goto out; 344 345 /* Schedule the tick, if we are at least one jiffie off */ 346 if ((long)delta_jiffies >= 1) { 347 348 /* 349 * If this cpu is the one which updates jiffies, then 350 * give up the assignment and let it be taken by the 351 * cpu which runs the tick timer next, which might be 352 * this cpu as well. If we don't drop this here the 353 * jiffies might be stale and do_timer() never 354 * invoked. Keep track of the fact that it was the one 355 * which had the do_timer() duty last. If this cpu is 356 * the one which had the do_timer() duty last, we 357 * limit the sleep time to the timekeeping 358 * max_deferement value which we retrieved 359 * above. Otherwise we can sleep as long as we want. 360 */ 361 if (cpu == tick_do_timer_cpu) { 362 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 363 ts->do_timer_last = 1; 364 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 365 time_delta = KTIME_MAX; 366 ts->do_timer_last = 0; 367 } else if (!ts->do_timer_last) { 368 time_delta = KTIME_MAX; 369 } 370 371 /* 372 * calculate the expiry time for the next timer wheel 373 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 374 * that there is no timer pending or at least extremely 375 * far into the future (12 days for HZ=1000). In this 376 * case we set the expiry to the end of time. 377 */ 378 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 379 /* 380 * Calculate the time delta for the next timer event. 381 * If the time delta exceeds the maximum time delta 382 * permitted by the current clocksource then adjust 383 * the time delta accordingly to ensure the 384 * clocksource does not wrap. 385 */ 386 time_delta = min_t(u64, time_delta, 387 tick_period.tv64 * delta_jiffies); 388 } 389 390 if (time_delta < KTIME_MAX) 391 expires = ktime_add_ns(last_update, time_delta); 392 else 393 expires.tv64 = KTIME_MAX; 394 395 /* Skip reprogram of event if its not changed */ 396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 397 goto out; 398 399 /* 400 * nohz_stop_sched_tick can be called several times before 401 * the nohz_restart_sched_tick is called. This happens when 402 * interrupts arrive which do not cause a reschedule. In the 403 * first call we save the current tick time, so we can restart 404 * the scheduler tick in nohz_restart_sched_tick. 405 */ 406 if (!ts->tick_stopped) { 407 select_nohz_load_balancer(1); 408 409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 410 ts->tick_stopped = 1; 411 ts->idle_jiffies = last_jiffies; 412 } 413 414 ts->idle_sleeps++; 415 416 /* Mark expires */ 417 ts->idle_expires = expires; 418 419 /* 420 * If the expiration time == KTIME_MAX, then 421 * in this case we simply stop the tick timer. 422 */ 423 if (unlikely(expires.tv64 == KTIME_MAX)) { 424 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 425 hrtimer_cancel(&ts->sched_timer); 426 goto out; 427 } 428 429 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 430 hrtimer_start(&ts->sched_timer, expires, 431 HRTIMER_MODE_ABS_PINNED); 432 /* Check, if the timer was already in the past */ 433 if (hrtimer_active(&ts->sched_timer)) 434 goto out; 435 } else if (!tick_program_event(expires, 0)) 436 goto out; 437 /* 438 * We are past the event already. So we crossed a 439 * jiffie boundary. Update jiffies and raise the 440 * softirq. 441 */ 442 tick_do_update_jiffies64(ktime_get()); 443 } 444 raise_softirq_irqoff(TIMER_SOFTIRQ); 445 out: 446 ts->next_jiffies = next_jiffies; 447 ts->last_jiffies = last_jiffies; 448 ts->sleep_length = ktime_sub(dev->next_event, now); 449 } 450 451 /** 452 * tick_nohz_idle_enter - stop the idle tick from the idle task 453 * 454 * When the next event is more than a tick into the future, stop the idle tick 455 * Called when we start the idle loop. 456 * 457 * The arch is responsible of calling: 458 * 459 * - rcu_idle_enter() after its last use of RCU before the CPU is put 460 * to sleep. 461 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 462 */ 463 void tick_nohz_idle_enter(void) 464 { 465 struct tick_sched *ts; 466 467 WARN_ON_ONCE(irqs_disabled()); 468 469 /* 470 * Update the idle state in the scheduler domain hierarchy 471 * when tick_nohz_stop_sched_tick() is called from the idle loop. 472 * State will be updated to busy during the first busy tick after 473 * exiting idle. 474 */ 475 set_cpu_sd_state_idle(); 476 477 local_irq_disable(); 478 479 ts = &__get_cpu_var(tick_cpu_sched); 480 /* 481 * set ts->inidle unconditionally. even if the system did not 482 * switch to nohz mode the cpu frequency governers rely on the 483 * update of the idle time accounting in tick_nohz_start_idle(). 484 */ 485 ts->inidle = 1; 486 tick_nohz_stop_sched_tick(ts); 487 488 local_irq_enable(); 489 } 490 491 /** 492 * tick_nohz_irq_exit - update next tick event from interrupt exit 493 * 494 * When an interrupt fires while we are idle and it doesn't cause 495 * a reschedule, it may still add, modify or delete a timer, enqueue 496 * an RCU callback, etc... 497 * So we need to re-calculate and reprogram the next tick event. 498 */ 499 void tick_nohz_irq_exit(void) 500 { 501 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 502 503 if (!ts->inidle) 504 return; 505 506 tick_nohz_stop_sched_tick(ts); 507 } 508 509 /** 510 * tick_nohz_get_sleep_length - return the length of the current sleep 511 * 512 * Called from power state control code with interrupts disabled 513 */ 514 ktime_t tick_nohz_get_sleep_length(void) 515 { 516 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 517 518 return ts->sleep_length; 519 } 520 521 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 522 { 523 hrtimer_cancel(&ts->sched_timer); 524 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 525 526 while (1) { 527 /* Forward the time to expire in the future */ 528 hrtimer_forward(&ts->sched_timer, now, tick_period); 529 530 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 531 hrtimer_start_expires(&ts->sched_timer, 532 HRTIMER_MODE_ABS_PINNED); 533 /* Check, if the timer was already in the past */ 534 if (hrtimer_active(&ts->sched_timer)) 535 break; 536 } else { 537 if (!tick_program_event( 538 hrtimer_get_expires(&ts->sched_timer), 0)) 539 break; 540 } 541 /* Update jiffies and reread time */ 542 tick_do_update_jiffies64(now); 543 now = ktime_get(); 544 } 545 } 546 547 /** 548 * tick_nohz_idle_exit - restart the idle tick from the idle task 549 * 550 * Restart the idle tick when the CPU is woken up from idle 551 * This also exit the RCU extended quiescent state. The CPU 552 * can use RCU again after this function is called. 553 */ 554 void tick_nohz_idle_exit(void) 555 { 556 int cpu = smp_processor_id(); 557 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 559 unsigned long ticks; 560 #endif 561 ktime_t now; 562 563 local_irq_disable(); 564 565 if (ts->idle_active || (ts->inidle && ts->tick_stopped)) 566 now = ktime_get(); 567 568 if (ts->idle_active) 569 tick_nohz_stop_idle(cpu, now); 570 571 if (!ts->inidle || !ts->tick_stopped) { 572 ts->inidle = 0; 573 local_irq_enable(); 574 return; 575 } 576 577 ts->inidle = 0; 578 579 /* Update jiffies first */ 580 select_nohz_load_balancer(0); 581 tick_do_update_jiffies64(now); 582 583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 584 /* 585 * We stopped the tick in idle. Update process times would miss the 586 * time we slept as update_process_times does only a 1 tick 587 * accounting. Enforce that this is accounted to idle ! 588 */ 589 ticks = jiffies - ts->idle_jiffies; 590 /* 591 * We might be one off. Do not randomly account a huge number of ticks! 592 */ 593 if (ticks && ticks < LONG_MAX) 594 account_idle_ticks(ticks); 595 #endif 596 597 touch_softlockup_watchdog(); 598 /* 599 * Cancel the scheduled timer and restore the tick 600 */ 601 ts->tick_stopped = 0; 602 ts->idle_exittime = now; 603 604 tick_nohz_restart(ts, now); 605 606 local_irq_enable(); 607 } 608 609 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 610 { 611 hrtimer_forward(&ts->sched_timer, now, tick_period); 612 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 613 } 614 615 /* 616 * The nohz low res interrupt handler 617 */ 618 static void tick_nohz_handler(struct clock_event_device *dev) 619 { 620 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 621 struct pt_regs *regs = get_irq_regs(); 622 int cpu = smp_processor_id(); 623 ktime_t now = ktime_get(); 624 625 dev->next_event.tv64 = KTIME_MAX; 626 627 /* 628 * Check if the do_timer duty was dropped. We don't care about 629 * concurrency: This happens only when the cpu in charge went 630 * into a long sleep. If two cpus happen to assign themself to 631 * this duty, then the jiffies update is still serialized by 632 * xtime_lock. 633 */ 634 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 635 tick_do_timer_cpu = cpu; 636 637 /* Check, if the jiffies need an update */ 638 if (tick_do_timer_cpu == cpu) 639 tick_do_update_jiffies64(now); 640 641 /* 642 * When we are idle and the tick is stopped, we have to touch 643 * the watchdog as we might not schedule for a really long 644 * time. This happens on complete idle SMP systems while 645 * waiting on the login prompt. We also increment the "start 646 * of idle" jiffy stamp so the idle accounting adjustment we 647 * do when we go busy again does not account too much ticks. 648 */ 649 if (ts->tick_stopped) { 650 touch_softlockup_watchdog(); 651 ts->idle_jiffies++; 652 } 653 654 update_process_times(user_mode(regs)); 655 profile_tick(CPU_PROFILING); 656 657 while (tick_nohz_reprogram(ts, now)) { 658 now = ktime_get(); 659 tick_do_update_jiffies64(now); 660 } 661 } 662 663 /** 664 * tick_nohz_switch_to_nohz - switch to nohz mode 665 */ 666 static void tick_nohz_switch_to_nohz(void) 667 { 668 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 669 ktime_t next; 670 671 if (!tick_nohz_enabled) 672 return; 673 674 local_irq_disable(); 675 if (tick_switch_to_oneshot(tick_nohz_handler)) { 676 local_irq_enable(); 677 return; 678 } 679 680 ts->nohz_mode = NOHZ_MODE_LOWRES; 681 682 /* 683 * Recycle the hrtimer in ts, so we can share the 684 * hrtimer_forward with the highres code. 685 */ 686 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 687 /* Get the next period */ 688 next = tick_init_jiffy_update(); 689 690 for (;;) { 691 hrtimer_set_expires(&ts->sched_timer, next); 692 if (!tick_program_event(next, 0)) 693 break; 694 next = ktime_add(next, tick_period); 695 } 696 local_irq_enable(); 697 } 698 699 /* 700 * When NOHZ is enabled and the tick is stopped, we need to kick the 701 * tick timer from irq_enter() so that the jiffies update is kept 702 * alive during long running softirqs. That's ugly as hell, but 703 * correctness is key even if we need to fix the offending softirq in 704 * the first place. 705 * 706 * Note, this is different to tick_nohz_restart. We just kick the 707 * timer and do not touch the other magic bits which need to be done 708 * when idle is left. 709 */ 710 static void tick_nohz_kick_tick(int cpu, ktime_t now) 711 { 712 #if 0 713 /* Switch back to 2.6.27 behaviour */ 714 715 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 716 ktime_t delta; 717 718 /* 719 * Do not touch the tick device, when the next expiry is either 720 * already reached or less/equal than the tick period. 721 */ 722 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 723 if (delta.tv64 <= tick_period.tv64) 724 return; 725 726 tick_nohz_restart(ts, now); 727 #endif 728 } 729 730 static inline void tick_check_nohz(int cpu) 731 { 732 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 733 ktime_t now; 734 735 if (!ts->idle_active && !ts->tick_stopped) 736 return; 737 now = ktime_get(); 738 if (ts->idle_active) 739 tick_nohz_stop_idle(cpu, now); 740 if (ts->tick_stopped) { 741 tick_nohz_update_jiffies(now); 742 tick_nohz_kick_tick(cpu, now); 743 } 744 } 745 746 #else 747 748 static inline void tick_nohz_switch_to_nohz(void) { } 749 static inline void tick_check_nohz(int cpu) { } 750 751 #endif /* NO_HZ */ 752 753 /* 754 * Called from irq_enter to notify about the possible interruption of idle() 755 */ 756 void tick_check_idle(int cpu) 757 { 758 tick_check_oneshot_broadcast(cpu); 759 tick_check_nohz(cpu); 760 } 761 762 /* 763 * High resolution timer specific code 764 */ 765 #ifdef CONFIG_HIGH_RES_TIMERS 766 /* 767 * We rearm the timer until we get disabled by the idle code. 768 * Called with interrupts disabled and timer->base->cpu_base->lock held. 769 */ 770 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 771 { 772 struct tick_sched *ts = 773 container_of(timer, struct tick_sched, sched_timer); 774 struct pt_regs *regs = get_irq_regs(); 775 ktime_t now = ktime_get(); 776 int cpu = smp_processor_id(); 777 778 #ifdef CONFIG_NO_HZ 779 /* 780 * Check if the do_timer duty was dropped. We don't care about 781 * concurrency: This happens only when the cpu in charge went 782 * into a long sleep. If two cpus happen to assign themself to 783 * this duty, then the jiffies update is still serialized by 784 * xtime_lock. 785 */ 786 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 787 tick_do_timer_cpu = cpu; 788 #endif 789 790 /* Check, if the jiffies need an update */ 791 if (tick_do_timer_cpu == cpu) 792 tick_do_update_jiffies64(now); 793 794 /* 795 * Do not call, when we are not in irq context and have 796 * no valid regs pointer 797 */ 798 if (regs) { 799 /* 800 * When we are idle and the tick is stopped, we have to touch 801 * the watchdog as we might not schedule for a really long 802 * time. This happens on complete idle SMP systems while 803 * waiting on the login prompt. We also increment the "start of 804 * idle" jiffy stamp so the idle accounting adjustment we do 805 * when we go busy again does not account too much ticks. 806 */ 807 if (ts->tick_stopped) { 808 touch_softlockup_watchdog(); 809 ts->idle_jiffies++; 810 } 811 update_process_times(user_mode(regs)); 812 profile_tick(CPU_PROFILING); 813 } 814 815 hrtimer_forward(timer, now, tick_period); 816 817 return HRTIMER_RESTART; 818 } 819 820 /** 821 * tick_setup_sched_timer - setup the tick emulation timer 822 */ 823 void tick_setup_sched_timer(void) 824 { 825 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 826 ktime_t now = ktime_get(); 827 828 /* 829 * Emulate tick processing via per-CPU hrtimers: 830 */ 831 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 832 ts->sched_timer.function = tick_sched_timer; 833 834 /* Get the next period (per cpu) */ 835 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 836 837 for (;;) { 838 hrtimer_forward(&ts->sched_timer, now, tick_period); 839 hrtimer_start_expires(&ts->sched_timer, 840 HRTIMER_MODE_ABS_PINNED); 841 /* Check, if the timer was already in the past */ 842 if (hrtimer_active(&ts->sched_timer)) 843 break; 844 now = ktime_get(); 845 } 846 847 #ifdef CONFIG_NO_HZ 848 if (tick_nohz_enabled) 849 ts->nohz_mode = NOHZ_MODE_HIGHRES; 850 #endif 851 } 852 #endif /* HIGH_RES_TIMERS */ 853 854 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 855 void tick_cancel_sched_timer(int cpu) 856 { 857 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 858 859 # ifdef CONFIG_HIGH_RES_TIMERS 860 if (ts->sched_timer.base) 861 hrtimer_cancel(&ts->sched_timer); 862 # endif 863 864 ts->nohz_mode = NOHZ_MODE_INACTIVE; 865 } 866 #endif 867 868 /** 869 * Async notification about clocksource changes 870 */ 871 void tick_clock_notify(void) 872 { 873 int cpu; 874 875 for_each_possible_cpu(cpu) 876 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 877 } 878 879 /* 880 * Async notification about clock event changes 881 */ 882 void tick_oneshot_notify(void) 883 { 884 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 885 886 set_bit(0, &ts->check_clocks); 887 } 888 889 /** 890 * Check, if a change happened, which makes oneshot possible. 891 * 892 * Called cyclic from the hrtimer softirq (driven by the timer 893 * softirq) allow_nohz signals, that we can switch into low-res nohz 894 * mode, because high resolution timers are disabled (either compile 895 * or runtime). 896 */ 897 int tick_check_oneshot_change(int allow_nohz) 898 { 899 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 900 901 if (!test_and_clear_bit(0, &ts->check_clocks)) 902 return 0; 903 904 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 905 return 0; 906 907 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 908 return 0; 909 910 if (!allow_nohz) 911 return 1; 912 913 tick_nohz_switch_to_nohz(); 914 return 0; 915 } 916