1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 #include <linux/module.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by xtime_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding xtime_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with xtime_lock held */ 60 write_seqlock(&xtime_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&xtime_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&xtime_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&xtime_lock); 99 return period; 100 } 101 102 /* 103 * NOHZ - aka dynamic tick functionality 104 */ 105 #ifdef CONFIG_NO_HZ 106 /* 107 * NO HZ enabled ? 108 */ 109 static int tick_nohz_enabled __read_mostly = 1; 110 111 /* 112 * Enable / Disable tickless mode 113 */ 114 static int __init setup_tick_nohz(char *str) 115 { 116 if (!strcmp(str, "off")) 117 tick_nohz_enabled = 0; 118 else if (!strcmp(str, "on")) 119 tick_nohz_enabled = 1; 120 else 121 return 0; 122 return 1; 123 } 124 125 __setup("nohz=", setup_tick_nohz); 126 127 /** 128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 129 * 130 * Called from interrupt entry when the CPU was idle 131 * 132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 133 * must be updated. Otherwise an interrupt handler could use a stale jiffy 134 * value. We do this unconditionally on any cpu, as we don't know whether the 135 * cpu, which has the update task assigned is in a long sleep. 136 */ 137 static void tick_nohz_update_jiffies(ktime_t now) 138 { 139 int cpu = smp_processor_id(); 140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 141 unsigned long flags; 142 143 cpumask_clear_cpu(cpu, nohz_cpu_mask); 144 ts->idle_waketime = now; 145 146 local_irq_save(flags); 147 tick_do_update_jiffies64(now); 148 local_irq_restore(flags); 149 150 touch_softlockup_watchdog(); 151 } 152 153 /* 154 * Updates the per cpu time idle statistics counters 155 */ 156 static void 157 update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time) 158 { 159 ktime_t delta; 160 161 if (ts->idle_active) { 162 delta = ktime_sub(now, ts->idle_entrytime); 163 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 164 if (nr_iowait_cpu() > 0) 165 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 166 ts->idle_entrytime = now; 167 } 168 169 if (last_update_time) 170 *last_update_time = ktime_to_us(now); 171 172 } 173 174 static void tick_nohz_stop_idle(int cpu, ktime_t now) 175 { 176 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 177 178 update_ts_time_stats(ts, now, NULL); 179 ts->idle_active = 0; 180 181 sched_clock_idle_wakeup_event(0); 182 } 183 184 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 185 { 186 ktime_t now; 187 188 now = ktime_get(); 189 190 update_ts_time_stats(ts, now, NULL); 191 192 ts->idle_entrytime = now; 193 ts->idle_active = 1; 194 sched_clock_idle_sleep_event(); 195 return now; 196 } 197 198 /** 199 * get_cpu_idle_time_us - get the total idle time of a cpu 200 * @cpu: CPU number to query 201 * @last_update_time: variable to store update time in 202 * 203 * Return the cummulative idle time (since boot) for a given 204 * CPU, in microseconds. The idle time returned includes 205 * the iowait time (unlike what "top" and co report). 206 * 207 * This time is measured via accounting rather than sampling, 208 * and is as accurate as ktime_get() is. 209 * 210 * This function returns -1 if NOHZ is not enabled. 211 */ 212 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 213 { 214 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 215 216 if (!tick_nohz_enabled) 217 return -1; 218 219 update_ts_time_stats(ts, ktime_get(), last_update_time); 220 221 return ktime_to_us(ts->idle_sleeptime); 222 } 223 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 224 225 /* 226 * get_cpu_iowait_time_us - get the total iowait time of a cpu 227 * @cpu: CPU number to query 228 * @last_update_time: variable to store update time in 229 * 230 * Return the cummulative iowait time (since boot) for a given 231 * CPU, in microseconds. 232 * 233 * This time is measured via accounting rather than sampling, 234 * and is as accurate as ktime_get() is. 235 * 236 * This function returns -1 if NOHZ is not enabled. 237 */ 238 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 239 { 240 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 241 242 if (!tick_nohz_enabled) 243 return -1; 244 245 update_ts_time_stats(ts, ktime_get(), last_update_time); 246 247 return ktime_to_us(ts->iowait_sleeptime); 248 } 249 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 250 251 /** 252 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 253 * 254 * When the next event is more than a tick into the future, stop the idle tick 255 * Called either from the idle loop or from irq_exit() when an idle period was 256 * just interrupted by an interrupt which did not cause a reschedule. 257 */ 258 void tick_nohz_stop_sched_tick(int inidle) 259 { 260 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 261 struct tick_sched *ts; 262 ktime_t last_update, expires, now; 263 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 264 u64 time_delta; 265 int cpu; 266 267 local_irq_save(flags); 268 269 cpu = smp_processor_id(); 270 ts = &per_cpu(tick_cpu_sched, cpu); 271 272 /* 273 * Call to tick_nohz_start_idle stops the last_update_time from being 274 * updated. Thus, it must not be called in the event we are called from 275 * irq_exit() with the prior state different than idle. 276 */ 277 if (!inidle && !ts->inidle) 278 goto end; 279 280 /* 281 * Set ts->inidle unconditionally. Even if the system did not 282 * switch to NOHZ mode the cpu frequency governers rely on the 283 * update of the idle time accounting in tick_nohz_start_idle(). 284 */ 285 ts->inidle = 1; 286 287 now = tick_nohz_start_idle(ts); 288 289 /* 290 * If this cpu is offline and it is the one which updates 291 * jiffies, then give up the assignment and let it be taken by 292 * the cpu which runs the tick timer next. If we don't drop 293 * this here the jiffies might be stale and do_timer() never 294 * invoked. 295 */ 296 if (unlikely(!cpu_online(cpu))) { 297 if (cpu == tick_do_timer_cpu) 298 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 299 } 300 301 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 302 goto end; 303 304 if (need_resched()) 305 goto end; 306 307 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 308 static int ratelimit; 309 310 if (ratelimit < 10) { 311 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 312 (unsigned int) local_softirq_pending()); 313 ratelimit++; 314 } 315 goto end; 316 } 317 318 if (nohz_ratelimit(cpu)) 319 goto end; 320 321 ts->idle_calls++; 322 /* Read jiffies and the time when jiffies were updated last */ 323 do { 324 seq = read_seqbegin(&xtime_lock); 325 last_update = last_jiffies_update; 326 last_jiffies = jiffies; 327 time_delta = timekeeping_max_deferment(); 328 } while (read_seqretry(&xtime_lock, seq)); 329 330 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || 331 arch_needs_cpu(cpu)) { 332 next_jiffies = last_jiffies + 1; 333 delta_jiffies = 1; 334 } else { 335 /* Get the next timer wheel timer */ 336 next_jiffies = get_next_timer_interrupt(last_jiffies); 337 delta_jiffies = next_jiffies - last_jiffies; 338 } 339 /* 340 * Do not stop the tick, if we are only one off 341 * or if the cpu is required for rcu 342 */ 343 if (!ts->tick_stopped && delta_jiffies == 1) 344 goto out; 345 346 /* Schedule the tick, if we are at least one jiffie off */ 347 if ((long)delta_jiffies >= 1) { 348 349 /* 350 * If this cpu is the one which updates jiffies, then 351 * give up the assignment and let it be taken by the 352 * cpu which runs the tick timer next, which might be 353 * this cpu as well. If we don't drop this here the 354 * jiffies might be stale and do_timer() never 355 * invoked. Keep track of the fact that it was the one 356 * which had the do_timer() duty last. If this cpu is 357 * the one which had the do_timer() duty last, we 358 * limit the sleep time to the timekeeping 359 * max_deferement value which we retrieved 360 * above. Otherwise we can sleep as long as we want. 361 */ 362 if (cpu == tick_do_timer_cpu) { 363 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 364 ts->do_timer_last = 1; 365 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 366 time_delta = KTIME_MAX; 367 ts->do_timer_last = 0; 368 } else if (!ts->do_timer_last) { 369 time_delta = KTIME_MAX; 370 } 371 372 /* 373 * calculate the expiry time for the next timer wheel 374 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 375 * that there is no timer pending or at least extremely 376 * far into the future (12 days for HZ=1000). In this 377 * case we set the expiry to the end of time. 378 */ 379 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 380 /* 381 * Calculate the time delta for the next timer event. 382 * If the time delta exceeds the maximum time delta 383 * permitted by the current clocksource then adjust 384 * the time delta accordingly to ensure the 385 * clocksource does not wrap. 386 */ 387 time_delta = min_t(u64, time_delta, 388 tick_period.tv64 * delta_jiffies); 389 } 390 391 if (time_delta < KTIME_MAX) 392 expires = ktime_add_ns(last_update, time_delta); 393 else 394 expires.tv64 = KTIME_MAX; 395 396 if (delta_jiffies > 1) 397 cpumask_set_cpu(cpu, nohz_cpu_mask); 398 399 /* Skip reprogram of event if its not changed */ 400 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 401 goto out; 402 403 /* 404 * nohz_stop_sched_tick can be called several times before 405 * the nohz_restart_sched_tick is called. This happens when 406 * interrupts arrive which do not cause a reschedule. In the 407 * first call we save the current tick time, so we can restart 408 * the scheduler tick in nohz_restart_sched_tick. 409 */ 410 if (!ts->tick_stopped) { 411 if (select_nohz_load_balancer(1)) { 412 /* 413 * sched tick not stopped! 414 */ 415 cpumask_clear_cpu(cpu, nohz_cpu_mask); 416 goto out; 417 } 418 419 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 420 ts->tick_stopped = 1; 421 ts->idle_jiffies = last_jiffies; 422 rcu_enter_nohz(); 423 } 424 425 ts->idle_sleeps++; 426 427 /* Mark expires */ 428 ts->idle_expires = expires; 429 430 /* 431 * If the expiration time == KTIME_MAX, then 432 * in this case we simply stop the tick timer. 433 */ 434 if (unlikely(expires.tv64 == KTIME_MAX)) { 435 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 436 hrtimer_cancel(&ts->sched_timer); 437 goto out; 438 } 439 440 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 441 hrtimer_start(&ts->sched_timer, expires, 442 HRTIMER_MODE_ABS_PINNED); 443 /* Check, if the timer was already in the past */ 444 if (hrtimer_active(&ts->sched_timer)) 445 goto out; 446 } else if (!tick_program_event(expires, 0)) 447 goto out; 448 /* 449 * We are past the event already. So we crossed a 450 * jiffie boundary. Update jiffies and raise the 451 * softirq. 452 */ 453 tick_do_update_jiffies64(ktime_get()); 454 cpumask_clear_cpu(cpu, nohz_cpu_mask); 455 } 456 raise_softirq_irqoff(TIMER_SOFTIRQ); 457 out: 458 ts->next_jiffies = next_jiffies; 459 ts->last_jiffies = last_jiffies; 460 ts->sleep_length = ktime_sub(dev->next_event, now); 461 end: 462 local_irq_restore(flags); 463 } 464 465 /** 466 * tick_nohz_get_sleep_length - return the length of the current sleep 467 * 468 * Called from power state control code with interrupts disabled 469 */ 470 ktime_t tick_nohz_get_sleep_length(void) 471 { 472 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 473 474 return ts->sleep_length; 475 } 476 477 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 478 { 479 hrtimer_cancel(&ts->sched_timer); 480 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 481 482 while (1) { 483 /* Forward the time to expire in the future */ 484 hrtimer_forward(&ts->sched_timer, now, tick_period); 485 486 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 487 hrtimer_start_expires(&ts->sched_timer, 488 HRTIMER_MODE_ABS_PINNED); 489 /* Check, if the timer was already in the past */ 490 if (hrtimer_active(&ts->sched_timer)) 491 break; 492 } else { 493 if (!tick_program_event( 494 hrtimer_get_expires(&ts->sched_timer), 0)) 495 break; 496 } 497 /* Update jiffies and reread time */ 498 tick_do_update_jiffies64(now); 499 now = ktime_get(); 500 } 501 } 502 503 /** 504 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 505 * 506 * Restart the idle tick when the CPU is woken up from idle 507 */ 508 void tick_nohz_restart_sched_tick(void) 509 { 510 int cpu = smp_processor_id(); 511 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 512 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 513 unsigned long ticks; 514 #endif 515 ktime_t now; 516 517 local_irq_disable(); 518 if (ts->idle_active || (ts->inidle && ts->tick_stopped)) 519 now = ktime_get(); 520 521 if (ts->idle_active) 522 tick_nohz_stop_idle(cpu, now); 523 524 if (!ts->inidle || !ts->tick_stopped) { 525 ts->inidle = 0; 526 local_irq_enable(); 527 return; 528 } 529 530 ts->inidle = 0; 531 532 rcu_exit_nohz(); 533 534 /* Update jiffies first */ 535 select_nohz_load_balancer(0); 536 tick_do_update_jiffies64(now); 537 cpumask_clear_cpu(cpu, nohz_cpu_mask); 538 539 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 540 /* 541 * We stopped the tick in idle. Update process times would miss the 542 * time we slept as update_process_times does only a 1 tick 543 * accounting. Enforce that this is accounted to idle ! 544 */ 545 ticks = jiffies - ts->idle_jiffies; 546 /* 547 * We might be one off. Do not randomly account a huge number of ticks! 548 */ 549 if (ticks && ticks < LONG_MAX) 550 account_idle_ticks(ticks); 551 #endif 552 553 touch_softlockup_watchdog(); 554 /* 555 * Cancel the scheduled timer and restore the tick 556 */ 557 ts->tick_stopped = 0; 558 ts->idle_exittime = now; 559 560 tick_nohz_restart(ts, now); 561 562 local_irq_enable(); 563 } 564 565 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 566 { 567 hrtimer_forward(&ts->sched_timer, now, tick_period); 568 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 569 } 570 571 /* 572 * The nohz low res interrupt handler 573 */ 574 static void tick_nohz_handler(struct clock_event_device *dev) 575 { 576 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 577 struct pt_regs *regs = get_irq_regs(); 578 int cpu = smp_processor_id(); 579 ktime_t now = ktime_get(); 580 581 dev->next_event.tv64 = KTIME_MAX; 582 583 /* 584 * Check if the do_timer duty was dropped. We don't care about 585 * concurrency: This happens only when the cpu in charge went 586 * into a long sleep. If two cpus happen to assign themself to 587 * this duty, then the jiffies update is still serialized by 588 * xtime_lock. 589 */ 590 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 591 tick_do_timer_cpu = cpu; 592 593 /* Check, if the jiffies need an update */ 594 if (tick_do_timer_cpu == cpu) 595 tick_do_update_jiffies64(now); 596 597 /* 598 * When we are idle and the tick is stopped, we have to touch 599 * the watchdog as we might not schedule for a really long 600 * time. This happens on complete idle SMP systems while 601 * waiting on the login prompt. We also increment the "start 602 * of idle" jiffy stamp so the idle accounting adjustment we 603 * do when we go busy again does not account too much ticks. 604 */ 605 if (ts->tick_stopped) { 606 touch_softlockup_watchdog(); 607 ts->idle_jiffies++; 608 } 609 610 update_process_times(user_mode(regs)); 611 profile_tick(CPU_PROFILING); 612 613 while (tick_nohz_reprogram(ts, now)) { 614 now = ktime_get(); 615 tick_do_update_jiffies64(now); 616 } 617 } 618 619 /** 620 * tick_nohz_switch_to_nohz - switch to nohz mode 621 */ 622 static void tick_nohz_switch_to_nohz(void) 623 { 624 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 625 ktime_t next; 626 627 if (!tick_nohz_enabled) 628 return; 629 630 local_irq_disable(); 631 if (tick_switch_to_oneshot(tick_nohz_handler)) { 632 local_irq_enable(); 633 return; 634 } 635 636 ts->nohz_mode = NOHZ_MODE_LOWRES; 637 638 /* 639 * Recycle the hrtimer in ts, so we can share the 640 * hrtimer_forward with the highres code. 641 */ 642 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 643 /* Get the next period */ 644 next = tick_init_jiffy_update(); 645 646 for (;;) { 647 hrtimer_set_expires(&ts->sched_timer, next); 648 if (!tick_program_event(next, 0)) 649 break; 650 next = ktime_add(next, tick_period); 651 } 652 local_irq_enable(); 653 654 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 655 smp_processor_id()); 656 } 657 658 /* 659 * When NOHZ is enabled and the tick is stopped, we need to kick the 660 * tick timer from irq_enter() so that the jiffies update is kept 661 * alive during long running softirqs. That's ugly as hell, but 662 * correctness is key even if we need to fix the offending softirq in 663 * the first place. 664 * 665 * Note, this is different to tick_nohz_restart. We just kick the 666 * timer and do not touch the other magic bits which need to be done 667 * when idle is left. 668 */ 669 static void tick_nohz_kick_tick(int cpu, ktime_t now) 670 { 671 #if 0 672 /* Switch back to 2.6.27 behaviour */ 673 674 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 675 ktime_t delta; 676 677 /* 678 * Do not touch the tick device, when the next expiry is either 679 * already reached or less/equal than the tick period. 680 */ 681 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 682 if (delta.tv64 <= tick_period.tv64) 683 return; 684 685 tick_nohz_restart(ts, now); 686 #endif 687 } 688 689 static inline void tick_check_nohz(int cpu) 690 { 691 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 692 ktime_t now; 693 694 if (!ts->idle_active && !ts->tick_stopped) 695 return; 696 now = ktime_get(); 697 if (ts->idle_active) 698 tick_nohz_stop_idle(cpu, now); 699 if (ts->tick_stopped) { 700 tick_nohz_update_jiffies(now); 701 tick_nohz_kick_tick(cpu, now); 702 } 703 } 704 705 #else 706 707 static inline void tick_nohz_switch_to_nohz(void) { } 708 static inline void tick_check_nohz(int cpu) { } 709 710 #endif /* NO_HZ */ 711 712 /* 713 * Called from irq_enter to notify about the possible interruption of idle() 714 */ 715 void tick_check_idle(int cpu) 716 { 717 tick_check_oneshot_broadcast(cpu); 718 tick_check_nohz(cpu); 719 } 720 721 /* 722 * High resolution timer specific code 723 */ 724 #ifdef CONFIG_HIGH_RES_TIMERS 725 /* 726 * We rearm the timer until we get disabled by the idle code. 727 * Called with interrupts disabled and timer->base->cpu_base->lock held. 728 */ 729 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 730 { 731 struct tick_sched *ts = 732 container_of(timer, struct tick_sched, sched_timer); 733 struct pt_regs *regs = get_irq_regs(); 734 ktime_t now = ktime_get(); 735 int cpu = smp_processor_id(); 736 737 #ifdef CONFIG_NO_HZ 738 /* 739 * Check if the do_timer duty was dropped. We don't care about 740 * concurrency: This happens only when the cpu in charge went 741 * into a long sleep. If two cpus happen to assign themself to 742 * this duty, then the jiffies update is still serialized by 743 * xtime_lock. 744 */ 745 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 746 tick_do_timer_cpu = cpu; 747 #endif 748 749 /* Check, if the jiffies need an update */ 750 if (tick_do_timer_cpu == cpu) 751 tick_do_update_jiffies64(now); 752 753 /* 754 * Do not call, when we are not in irq context and have 755 * no valid regs pointer 756 */ 757 if (regs) { 758 /* 759 * When we are idle and the tick is stopped, we have to touch 760 * the watchdog as we might not schedule for a really long 761 * time. This happens on complete idle SMP systems while 762 * waiting on the login prompt. We also increment the "start of 763 * idle" jiffy stamp so the idle accounting adjustment we do 764 * when we go busy again does not account too much ticks. 765 */ 766 if (ts->tick_stopped) { 767 touch_softlockup_watchdog(); 768 ts->idle_jiffies++; 769 } 770 update_process_times(user_mode(regs)); 771 profile_tick(CPU_PROFILING); 772 } 773 774 hrtimer_forward(timer, now, tick_period); 775 776 return HRTIMER_RESTART; 777 } 778 779 /** 780 * tick_setup_sched_timer - setup the tick emulation timer 781 */ 782 void tick_setup_sched_timer(void) 783 { 784 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 785 ktime_t now = ktime_get(); 786 u64 offset; 787 788 /* 789 * Emulate tick processing via per-CPU hrtimers: 790 */ 791 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 792 ts->sched_timer.function = tick_sched_timer; 793 794 /* Get the next period (per cpu) */ 795 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 796 offset = ktime_to_ns(tick_period) >> 1; 797 do_div(offset, num_possible_cpus()); 798 offset *= smp_processor_id(); 799 hrtimer_add_expires_ns(&ts->sched_timer, offset); 800 801 for (;;) { 802 hrtimer_forward(&ts->sched_timer, now, tick_period); 803 hrtimer_start_expires(&ts->sched_timer, 804 HRTIMER_MODE_ABS_PINNED); 805 /* Check, if the timer was already in the past */ 806 if (hrtimer_active(&ts->sched_timer)) 807 break; 808 now = ktime_get(); 809 } 810 811 #ifdef CONFIG_NO_HZ 812 if (tick_nohz_enabled) 813 ts->nohz_mode = NOHZ_MODE_HIGHRES; 814 #endif 815 } 816 #endif /* HIGH_RES_TIMERS */ 817 818 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 819 void tick_cancel_sched_timer(int cpu) 820 { 821 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 822 823 # ifdef CONFIG_HIGH_RES_TIMERS 824 if (ts->sched_timer.base) 825 hrtimer_cancel(&ts->sched_timer); 826 # endif 827 828 ts->nohz_mode = NOHZ_MODE_INACTIVE; 829 } 830 #endif 831 832 /** 833 * Async notification about clocksource changes 834 */ 835 void tick_clock_notify(void) 836 { 837 int cpu; 838 839 for_each_possible_cpu(cpu) 840 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 841 } 842 843 /* 844 * Async notification about clock event changes 845 */ 846 void tick_oneshot_notify(void) 847 { 848 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 849 850 set_bit(0, &ts->check_clocks); 851 } 852 853 /** 854 * Check, if a change happened, which makes oneshot possible. 855 * 856 * Called cyclic from the hrtimer softirq (driven by the timer 857 * softirq) allow_nohz signals, that we can switch into low-res nohz 858 * mode, because high resolution timers are disabled (either compile 859 * or runtime). 860 */ 861 int tick_check_oneshot_change(int allow_nohz) 862 { 863 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 864 865 if (!test_and_clear_bit(0, &ts->check_clocks)) 866 return 0; 867 868 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 869 return 0; 870 871 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 872 return 0; 873 874 if (!allow_nohz) 875 return 1; 876 877 tick_nohz_switch_to_nohz(); 878 return 0; 879 } 880