xref: /linux/kernel/time/tick-sched.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 
143 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 	ts->idle_waketime = now;
145 
146 	local_irq_save(flags);
147 	tick_do_update_jiffies64(now);
148 	local_irq_restore(flags);
149 
150 	touch_softlockup_watchdog();
151 }
152 
153 /*
154  * Updates the per cpu time idle statistics counters
155  */
156 static void
157 update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158 {
159 	ktime_t delta;
160 
161 	if (ts->idle_active) {
162 		delta = ktime_sub(now, ts->idle_entrytime);
163 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 		if (nr_iowait_cpu() > 0)
165 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
166 		ts->idle_entrytime = now;
167 	}
168 
169 	if (last_update_time)
170 		*last_update_time = ktime_to_us(now);
171 
172 }
173 
174 static void tick_nohz_stop_idle(int cpu, ktime_t now)
175 {
176 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177 
178 	update_ts_time_stats(ts, now, NULL);
179 	ts->idle_active = 0;
180 
181 	sched_clock_idle_wakeup_event(0);
182 }
183 
184 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
185 {
186 	ktime_t now;
187 
188 	now = ktime_get();
189 
190 	update_ts_time_stats(ts, now, NULL);
191 
192 	ts->idle_entrytime = now;
193 	ts->idle_active = 1;
194 	sched_clock_idle_sleep_event();
195 	return now;
196 }
197 
198 /**
199  * get_cpu_idle_time_us - get the total idle time of a cpu
200  * @cpu: CPU number to query
201  * @last_update_time: variable to store update time in
202  *
203  * Return the cummulative idle time (since boot) for a given
204  * CPU, in microseconds. The idle time returned includes
205  * the iowait time (unlike what "top" and co report).
206  *
207  * This time is measured via accounting rather than sampling,
208  * and is as accurate as ktime_get() is.
209  *
210  * This function returns -1 if NOHZ is not enabled.
211  */
212 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
213 {
214 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
215 
216 	if (!tick_nohz_enabled)
217 		return -1;
218 
219 	update_ts_time_stats(ts, ktime_get(), last_update_time);
220 
221 	return ktime_to_us(ts->idle_sleeptime);
222 }
223 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
224 
225 /*
226  * get_cpu_iowait_time_us - get the total iowait time of a cpu
227  * @cpu: CPU number to query
228  * @last_update_time: variable to store update time in
229  *
230  * Return the cummulative iowait time (since boot) for a given
231  * CPU, in microseconds.
232  *
233  * This time is measured via accounting rather than sampling,
234  * and is as accurate as ktime_get() is.
235  *
236  * This function returns -1 if NOHZ is not enabled.
237  */
238 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
239 {
240 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
241 
242 	if (!tick_nohz_enabled)
243 		return -1;
244 
245 	update_ts_time_stats(ts, ktime_get(), last_update_time);
246 
247 	return ktime_to_us(ts->iowait_sleeptime);
248 }
249 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
250 
251 /**
252  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
253  *
254  * When the next event is more than a tick into the future, stop the idle tick
255  * Called either from the idle loop or from irq_exit() when an idle period was
256  * just interrupted by an interrupt which did not cause a reschedule.
257  */
258 void tick_nohz_stop_sched_tick(int inidle)
259 {
260 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
261 	struct tick_sched *ts;
262 	ktime_t last_update, expires, now;
263 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
264 	u64 time_delta;
265 	int cpu;
266 
267 	local_irq_save(flags);
268 
269 	cpu = smp_processor_id();
270 	ts = &per_cpu(tick_cpu_sched, cpu);
271 
272 	/*
273 	 * Call to tick_nohz_start_idle stops the last_update_time from being
274 	 * updated. Thus, it must not be called in the event we are called from
275 	 * irq_exit() with the prior state different than idle.
276 	 */
277 	if (!inidle && !ts->inidle)
278 		goto end;
279 
280 	/*
281 	 * Set ts->inidle unconditionally. Even if the system did not
282 	 * switch to NOHZ mode the cpu frequency governers rely on the
283 	 * update of the idle time accounting in tick_nohz_start_idle().
284 	 */
285 	ts->inidle = 1;
286 
287 	now = tick_nohz_start_idle(ts);
288 
289 	/*
290 	 * If this cpu is offline and it is the one which updates
291 	 * jiffies, then give up the assignment and let it be taken by
292 	 * the cpu which runs the tick timer next. If we don't drop
293 	 * this here the jiffies might be stale and do_timer() never
294 	 * invoked.
295 	 */
296 	if (unlikely(!cpu_online(cpu))) {
297 		if (cpu == tick_do_timer_cpu)
298 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
299 	}
300 
301 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
302 		goto end;
303 
304 	if (need_resched())
305 		goto end;
306 
307 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308 		static int ratelimit;
309 
310 		if (ratelimit < 10) {
311 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
312 			       (unsigned int) local_softirq_pending());
313 			ratelimit++;
314 		}
315 		goto end;
316 	}
317 
318 	if (nohz_ratelimit(cpu))
319 		goto end;
320 
321 	ts->idle_calls++;
322 	/* Read jiffies and the time when jiffies were updated last */
323 	do {
324 		seq = read_seqbegin(&xtime_lock);
325 		last_update = last_jiffies_update;
326 		last_jiffies = jiffies;
327 		time_delta = timekeeping_max_deferment();
328 	} while (read_seqretry(&xtime_lock, seq));
329 
330 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
331 	    arch_needs_cpu(cpu)) {
332 		next_jiffies = last_jiffies + 1;
333 		delta_jiffies = 1;
334 	} else {
335 		/* Get the next timer wheel timer */
336 		next_jiffies = get_next_timer_interrupt(last_jiffies);
337 		delta_jiffies = next_jiffies - last_jiffies;
338 	}
339 	/*
340 	 * Do not stop the tick, if we are only one off
341 	 * or if the cpu is required for rcu
342 	 */
343 	if (!ts->tick_stopped && delta_jiffies == 1)
344 		goto out;
345 
346 	/* Schedule the tick, if we are at least one jiffie off */
347 	if ((long)delta_jiffies >= 1) {
348 
349 		/*
350 		 * If this cpu is the one which updates jiffies, then
351 		 * give up the assignment and let it be taken by the
352 		 * cpu which runs the tick timer next, which might be
353 		 * this cpu as well. If we don't drop this here the
354 		 * jiffies might be stale and do_timer() never
355 		 * invoked. Keep track of the fact that it was the one
356 		 * which had the do_timer() duty last. If this cpu is
357 		 * the one which had the do_timer() duty last, we
358 		 * limit the sleep time to the timekeeping
359 		 * max_deferement value which we retrieved
360 		 * above. Otherwise we can sleep as long as we want.
361 		 */
362 		if (cpu == tick_do_timer_cpu) {
363 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
364 			ts->do_timer_last = 1;
365 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
366 			time_delta = KTIME_MAX;
367 			ts->do_timer_last = 0;
368 		} else if (!ts->do_timer_last) {
369 			time_delta = KTIME_MAX;
370 		}
371 
372 		/*
373 		 * calculate the expiry time for the next timer wheel
374 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
375 		 * that there is no timer pending or at least extremely
376 		 * far into the future (12 days for HZ=1000). In this
377 		 * case we set the expiry to the end of time.
378 		 */
379 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
380 			/*
381 			 * Calculate the time delta for the next timer event.
382 			 * If the time delta exceeds the maximum time delta
383 			 * permitted by the current clocksource then adjust
384 			 * the time delta accordingly to ensure the
385 			 * clocksource does not wrap.
386 			 */
387 			time_delta = min_t(u64, time_delta,
388 					   tick_period.tv64 * delta_jiffies);
389 		}
390 
391 		if (time_delta < KTIME_MAX)
392 			expires = ktime_add_ns(last_update, time_delta);
393 		else
394 			expires.tv64 = KTIME_MAX;
395 
396 		if (delta_jiffies > 1)
397 			cpumask_set_cpu(cpu, nohz_cpu_mask);
398 
399 		/* Skip reprogram of event if its not changed */
400 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
401 			goto out;
402 
403 		/*
404 		 * nohz_stop_sched_tick can be called several times before
405 		 * the nohz_restart_sched_tick is called. This happens when
406 		 * interrupts arrive which do not cause a reschedule. In the
407 		 * first call we save the current tick time, so we can restart
408 		 * the scheduler tick in nohz_restart_sched_tick.
409 		 */
410 		if (!ts->tick_stopped) {
411 			if (select_nohz_load_balancer(1)) {
412 				/*
413 				 * sched tick not stopped!
414 				 */
415 				cpumask_clear_cpu(cpu, nohz_cpu_mask);
416 				goto out;
417 			}
418 
419 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
420 			ts->tick_stopped = 1;
421 			ts->idle_jiffies = last_jiffies;
422 			rcu_enter_nohz();
423 		}
424 
425 		ts->idle_sleeps++;
426 
427 		/* Mark expires */
428 		ts->idle_expires = expires;
429 
430 		/*
431 		 * If the expiration time == KTIME_MAX, then
432 		 * in this case we simply stop the tick timer.
433 		 */
434 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
435 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
436 				hrtimer_cancel(&ts->sched_timer);
437 			goto out;
438 		}
439 
440 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
441 			hrtimer_start(&ts->sched_timer, expires,
442 				      HRTIMER_MODE_ABS_PINNED);
443 			/* Check, if the timer was already in the past */
444 			if (hrtimer_active(&ts->sched_timer))
445 				goto out;
446 		} else if (!tick_program_event(expires, 0))
447 				goto out;
448 		/*
449 		 * We are past the event already. So we crossed a
450 		 * jiffie boundary. Update jiffies and raise the
451 		 * softirq.
452 		 */
453 		tick_do_update_jiffies64(ktime_get());
454 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
455 	}
456 	raise_softirq_irqoff(TIMER_SOFTIRQ);
457 out:
458 	ts->next_jiffies = next_jiffies;
459 	ts->last_jiffies = last_jiffies;
460 	ts->sleep_length = ktime_sub(dev->next_event, now);
461 end:
462 	local_irq_restore(flags);
463 }
464 
465 /**
466  * tick_nohz_get_sleep_length - return the length of the current sleep
467  *
468  * Called from power state control code with interrupts disabled
469  */
470 ktime_t tick_nohz_get_sleep_length(void)
471 {
472 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
473 
474 	return ts->sleep_length;
475 }
476 
477 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
478 {
479 	hrtimer_cancel(&ts->sched_timer);
480 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
481 
482 	while (1) {
483 		/* Forward the time to expire in the future */
484 		hrtimer_forward(&ts->sched_timer, now, tick_period);
485 
486 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
487 			hrtimer_start_expires(&ts->sched_timer,
488 					      HRTIMER_MODE_ABS_PINNED);
489 			/* Check, if the timer was already in the past */
490 			if (hrtimer_active(&ts->sched_timer))
491 				break;
492 		} else {
493 			if (!tick_program_event(
494 				hrtimer_get_expires(&ts->sched_timer), 0))
495 				break;
496 		}
497 		/* Update jiffies and reread time */
498 		tick_do_update_jiffies64(now);
499 		now = ktime_get();
500 	}
501 }
502 
503 /**
504  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
505  *
506  * Restart the idle tick when the CPU is woken up from idle
507  */
508 void tick_nohz_restart_sched_tick(void)
509 {
510 	int cpu = smp_processor_id();
511 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
512 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
513 	unsigned long ticks;
514 #endif
515 	ktime_t now;
516 
517 	local_irq_disable();
518 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
519 		now = ktime_get();
520 
521 	if (ts->idle_active)
522 		tick_nohz_stop_idle(cpu, now);
523 
524 	if (!ts->inidle || !ts->tick_stopped) {
525 		ts->inidle = 0;
526 		local_irq_enable();
527 		return;
528 	}
529 
530 	ts->inidle = 0;
531 
532 	rcu_exit_nohz();
533 
534 	/* Update jiffies first */
535 	select_nohz_load_balancer(0);
536 	tick_do_update_jiffies64(now);
537 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
538 
539 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
540 	/*
541 	 * We stopped the tick in idle. Update process times would miss the
542 	 * time we slept as update_process_times does only a 1 tick
543 	 * accounting. Enforce that this is accounted to idle !
544 	 */
545 	ticks = jiffies - ts->idle_jiffies;
546 	/*
547 	 * We might be one off. Do not randomly account a huge number of ticks!
548 	 */
549 	if (ticks && ticks < LONG_MAX)
550 		account_idle_ticks(ticks);
551 #endif
552 
553 	touch_softlockup_watchdog();
554 	/*
555 	 * Cancel the scheduled timer and restore the tick
556 	 */
557 	ts->tick_stopped  = 0;
558 	ts->idle_exittime = now;
559 
560 	tick_nohz_restart(ts, now);
561 
562 	local_irq_enable();
563 }
564 
565 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
566 {
567 	hrtimer_forward(&ts->sched_timer, now, tick_period);
568 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
569 }
570 
571 /*
572  * The nohz low res interrupt handler
573  */
574 static void tick_nohz_handler(struct clock_event_device *dev)
575 {
576 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
577 	struct pt_regs *regs = get_irq_regs();
578 	int cpu = smp_processor_id();
579 	ktime_t now = ktime_get();
580 
581 	dev->next_event.tv64 = KTIME_MAX;
582 
583 	/*
584 	 * Check if the do_timer duty was dropped. We don't care about
585 	 * concurrency: This happens only when the cpu in charge went
586 	 * into a long sleep. If two cpus happen to assign themself to
587 	 * this duty, then the jiffies update is still serialized by
588 	 * xtime_lock.
589 	 */
590 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
591 		tick_do_timer_cpu = cpu;
592 
593 	/* Check, if the jiffies need an update */
594 	if (tick_do_timer_cpu == cpu)
595 		tick_do_update_jiffies64(now);
596 
597 	/*
598 	 * When we are idle and the tick is stopped, we have to touch
599 	 * the watchdog as we might not schedule for a really long
600 	 * time. This happens on complete idle SMP systems while
601 	 * waiting on the login prompt. We also increment the "start
602 	 * of idle" jiffy stamp so the idle accounting adjustment we
603 	 * do when we go busy again does not account too much ticks.
604 	 */
605 	if (ts->tick_stopped) {
606 		touch_softlockup_watchdog();
607 		ts->idle_jiffies++;
608 	}
609 
610 	update_process_times(user_mode(regs));
611 	profile_tick(CPU_PROFILING);
612 
613 	while (tick_nohz_reprogram(ts, now)) {
614 		now = ktime_get();
615 		tick_do_update_jiffies64(now);
616 	}
617 }
618 
619 /**
620  * tick_nohz_switch_to_nohz - switch to nohz mode
621  */
622 static void tick_nohz_switch_to_nohz(void)
623 {
624 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
625 	ktime_t next;
626 
627 	if (!tick_nohz_enabled)
628 		return;
629 
630 	local_irq_disable();
631 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
632 		local_irq_enable();
633 		return;
634 	}
635 
636 	ts->nohz_mode = NOHZ_MODE_LOWRES;
637 
638 	/*
639 	 * Recycle the hrtimer in ts, so we can share the
640 	 * hrtimer_forward with the highres code.
641 	 */
642 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
643 	/* Get the next period */
644 	next = tick_init_jiffy_update();
645 
646 	for (;;) {
647 		hrtimer_set_expires(&ts->sched_timer, next);
648 		if (!tick_program_event(next, 0))
649 			break;
650 		next = ktime_add(next, tick_period);
651 	}
652 	local_irq_enable();
653 
654 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
655 	       smp_processor_id());
656 }
657 
658 /*
659  * When NOHZ is enabled and the tick is stopped, we need to kick the
660  * tick timer from irq_enter() so that the jiffies update is kept
661  * alive during long running softirqs. That's ugly as hell, but
662  * correctness is key even if we need to fix the offending softirq in
663  * the first place.
664  *
665  * Note, this is different to tick_nohz_restart. We just kick the
666  * timer and do not touch the other magic bits which need to be done
667  * when idle is left.
668  */
669 static void tick_nohz_kick_tick(int cpu, ktime_t now)
670 {
671 #if 0
672 	/* Switch back to 2.6.27 behaviour */
673 
674 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
675 	ktime_t delta;
676 
677 	/*
678 	 * Do not touch the tick device, when the next expiry is either
679 	 * already reached or less/equal than the tick period.
680 	 */
681 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
682 	if (delta.tv64 <= tick_period.tv64)
683 		return;
684 
685 	tick_nohz_restart(ts, now);
686 #endif
687 }
688 
689 static inline void tick_check_nohz(int cpu)
690 {
691 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
692 	ktime_t now;
693 
694 	if (!ts->idle_active && !ts->tick_stopped)
695 		return;
696 	now = ktime_get();
697 	if (ts->idle_active)
698 		tick_nohz_stop_idle(cpu, now);
699 	if (ts->tick_stopped) {
700 		tick_nohz_update_jiffies(now);
701 		tick_nohz_kick_tick(cpu, now);
702 	}
703 }
704 
705 #else
706 
707 static inline void tick_nohz_switch_to_nohz(void) { }
708 static inline void tick_check_nohz(int cpu) { }
709 
710 #endif /* NO_HZ */
711 
712 /*
713  * Called from irq_enter to notify about the possible interruption of idle()
714  */
715 void tick_check_idle(int cpu)
716 {
717 	tick_check_oneshot_broadcast(cpu);
718 	tick_check_nohz(cpu);
719 }
720 
721 /*
722  * High resolution timer specific code
723  */
724 #ifdef CONFIG_HIGH_RES_TIMERS
725 /*
726  * We rearm the timer until we get disabled by the idle code.
727  * Called with interrupts disabled and timer->base->cpu_base->lock held.
728  */
729 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
730 {
731 	struct tick_sched *ts =
732 		container_of(timer, struct tick_sched, sched_timer);
733 	struct pt_regs *regs = get_irq_regs();
734 	ktime_t now = ktime_get();
735 	int cpu = smp_processor_id();
736 
737 #ifdef CONFIG_NO_HZ
738 	/*
739 	 * Check if the do_timer duty was dropped. We don't care about
740 	 * concurrency: This happens only when the cpu in charge went
741 	 * into a long sleep. If two cpus happen to assign themself to
742 	 * this duty, then the jiffies update is still serialized by
743 	 * xtime_lock.
744 	 */
745 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
746 		tick_do_timer_cpu = cpu;
747 #endif
748 
749 	/* Check, if the jiffies need an update */
750 	if (tick_do_timer_cpu == cpu)
751 		tick_do_update_jiffies64(now);
752 
753 	/*
754 	 * Do not call, when we are not in irq context and have
755 	 * no valid regs pointer
756 	 */
757 	if (regs) {
758 		/*
759 		 * When we are idle and the tick is stopped, we have to touch
760 		 * the watchdog as we might not schedule for a really long
761 		 * time. This happens on complete idle SMP systems while
762 		 * waiting on the login prompt. We also increment the "start of
763 		 * idle" jiffy stamp so the idle accounting adjustment we do
764 		 * when we go busy again does not account too much ticks.
765 		 */
766 		if (ts->tick_stopped) {
767 			touch_softlockup_watchdog();
768 			ts->idle_jiffies++;
769 		}
770 		update_process_times(user_mode(regs));
771 		profile_tick(CPU_PROFILING);
772 	}
773 
774 	hrtimer_forward(timer, now, tick_period);
775 
776 	return HRTIMER_RESTART;
777 }
778 
779 /**
780  * tick_setup_sched_timer - setup the tick emulation timer
781  */
782 void tick_setup_sched_timer(void)
783 {
784 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
785 	ktime_t now = ktime_get();
786 	u64 offset;
787 
788 	/*
789 	 * Emulate tick processing via per-CPU hrtimers:
790 	 */
791 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
792 	ts->sched_timer.function = tick_sched_timer;
793 
794 	/* Get the next period (per cpu) */
795 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
796 	offset = ktime_to_ns(tick_period) >> 1;
797 	do_div(offset, num_possible_cpus());
798 	offset *= smp_processor_id();
799 	hrtimer_add_expires_ns(&ts->sched_timer, offset);
800 
801 	for (;;) {
802 		hrtimer_forward(&ts->sched_timer, now, tick_period);
803 		hrtimer_start_expires(&ts->sched_timer,
804 				      HRTIMER_MODE_ABS_PINNED);
805 		/* Check, if the timer was already in the past */
806 		if (hrtimer_active(&ts->sched_timer))
807 			break;
808 		now = ktime_get();
809 	}
810 
811 #ifdef CONFIG_NO_HZ
812 	if (tick_nohz_enabled)
813 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
814 #endif
815 }
816 #endif /* HIGH_RES_TIMERS */
817 
818 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
819 void tick_cancel_sched_timer(int cpu)
820 {
821 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
822 
823 # ifdef CONFIG_HIGH_RES_TIMERS
824 	if (ts->sched_timer.base)
825 		hrtimer_cancel(&ts->sched_timer);
826 # endif
827 
828 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
829 }
830 #endif
831 
832 /**
833  * Async notification about clocksource changes
834  */
835 void tick_clock_notify(void)
836 {
837 	int cpu;
838 
839 	for_each_possible_cpu(cpu)
840 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
841 }
842 
843 /*
844  * Async notification about clock event changes
845  */
846 void tick_oneshot_notify(void)
847 {
848 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
849 
850 	set_bit(0, &ts->check_clocks);
851 }
852 
853 /**
854  * Check, if a change happened, which makes oneshot possible.
855  *
856  * Called cyclic from the hrtimer softirq (driven by the timer
857  * softirq) allow_nohz signals, that we can switch into low-res nohz
858  * mode, because high resolution timers are disabled (either compile
859  * or runtime).
860  */
861 int tick_check_oneshot_change(int allow_nohz)
862 {
863 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
864 
865 	if (!test_and_clear_bit(0, &ts->check_clocks))
866 		return 0;
867 
868 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
869 		return 0;
870 
871 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
872 		return 0;
873 
874 	if (!allow_nohz)
875 		return 1;
876 
877 	tick_nohz_switch_to_nohz();
878 	return 0;
879 }
880