1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 #include <linux/mm.h> 31 32 #include <asm/irq_regs.h> 33 34 #include "tick-internal.h" 35 36 #include <trace/events/timer.h> 37 38 /* 39 * Per-CPU nohz control structure 40 */ 41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 49 /* 50 * The time, when the last jiffy update happened. Protected by jiffies_lock. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 0; 60 ktime_t delta; 61 62 /* 63 * Do a quick check without holding jiffies_lock: 64 */ 65 delta = ktime_sub(now, last_jiffies_update); 66 if (delta < tick_period) 67 return; 68 69 /* Reevaluate with jiffies_lock held */ 70 write_seqlock(&jiffies_lock); 71 72 delta = ktime_sub(now, last_jiffies_update); 73 if (delta >= tick_period) { 74 75 delta = ktime_sub(delta, tick_period); 76 last_jiffies_update = ktime_add(last_jiffies_update, 77 tick_period); 78 79 /* Slow path for long timeouts */ 80 if (unlikely(delta >= tick_period)) { 81 s64 incr = ktime_to_ns(tick_period); 82 83 ticks = ktime_divns(delta, incr); 84 85 last_jiffies_update = ktime_add_ns(last_jiffies_update, 86 incr * ticks); 87 } 88 do_timer(++ticks); 89 90 /* Keep the tick_next_period variable up to date */ 91 tick_next_period = ktime_add(last_jiffies_update, tick_period); 92 } else { 93 write_sequnlock(&jiffies_lock); 94 return; 95 } 96 write_sequnlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 /* 101 * Initialize and return retrieve the jiffies update. 102 */ 103 static ktime_t tick_init_jiffy_update(void) 104 { 105 ktime_t period; 106 107 write_seqlock(&jiffies_lock); 108 /* Did we start the jiffies update yet ? */ 109 if (last_jiffies_update == 0) 110 last_jiffies_update = tick_next_period; 111 period = last_jiffies_update; 112 write_sequnlock(&jiffies_lock); 113 return period; 114 } 115 116 117 static void tick_sched_do_timer(ktime_t now) 118 { 119 int cpu = smp_processor_id(); 120 121 #ifdef CONFIG_NO_HZ_COMMON 122 /* 123 * Check if the do_timer duty was dropped. We don't care about 124 * concurrency: This happens only when the CPU in charge went 125 * into a long sleep. If two CPUs happen to assign themselves to 126 * this duty, then the jiffies update is still serialized by 127 * jiffies_lock. 128 */ 129 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 130 && !tick_nohz_full_cpu(cpu)) 131 tick_do_timer_cpu = cpu; 132 #endif 133 134 /* Check, if the jiffies need an update */ 135 if (tick_do_timer_cpu == cpu) 136 tick_do_update_jiffies64(now); 137 } 138 139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 140 { 141 #ifdef CONFIG_NO_HZ_COMMON 142 /* 143 * When we are idle and the tick is stopped, we have to touch 144 * the watchdog as we might not schedule for a really long 145 * time. This happens on complete idle SMP systems while 146 * waiting on the login prompt. We also increment the "start of 147 * idle" jiffy stamp so the idle accounting adjustment we do 148 * when we go busy again does not account too much ticks. 149 */ 150 if (ts->tick_stopped) { 151 touch_softlockup_watchdog_sched(); 152 if (is_idle_task(current)) 153 ts->idle_jiffies++; 154 /* 155 * In case the current tick fired too early past its expected 156 * expiration, make sure we don't bypass the next clock reprogramming 157 * to the same deadline. 158 */ 159 ts->next_tick = 0; 160 } 161 #endif 162 update_process_times(user_mode(regs)); 163 profile_tick(CPU_PROFILING); 164 } 165 #endif 166 167 #ifdef CONFIG_NO_HZ_FULL 168 cpumask_var_t tick_nohz_full_mask; 169 bool tick_nohz_full_running; 170 static atomic_t tick_dep_mask; 171 172 static bool check_tick_dependency(atomic_t *dep) 173 { 174 int val = atomic_read(dep); 175 176 if (val & TICK_DEP_MASK_POSIX_TIMER) { 177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_PERF_EVENTS) { 182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_SCHED) { 187 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 193 return true; 194 } 195 196 return false; 197 } 198 199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 200 { 201 lockdep_assert_irqs_disabled(); 202 203 if (unlikely(!cpu_online(cpu))) 204 return false; 205 206 if (check_tick_dependency(&tick_dep_mask)) 207 return false; 208 209 if (check_tick_dependency(&ts->tick_dep_mask)) 210 return false; 211 212 if (check_tick_dependency(¤t->tick_dep_mask)) 213 return false; 214 215 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 216 return false; 217 218 return true; 219 } 220 221 static void nohz_full_kick_func(struct irq_work *work) 222 { 223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 224 } 225 226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 227 .func = nohz_full_kick_func, 228 }; 229 230 /* 231 * Kick this CPU if it's full dynticks in order to force it to 232 * re-evaluate its dependency on the tick and restart it if necessary. 233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 234 * is NMI safe. 235 */ 236 static void tick_nohz_full_kick(void) 237 { 238 if (!tick_nohz_full_cpu(smp_processor_id())) 239 return; 240 241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 242 } 243 244 /* 245 * Kick the CPU if it's full dynticks in order to force it to 246 * re-evaluate its dependency on the tick and restart it if necessary. 247 */ 248 void tick_nohz_full_kick_cpu(int cpu) 249 { 250 if (!tick_nohz_full_cpu(cpu)) 251 return; 252 253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 254 } 255 256 /* 257 * Kick all full dynticks CPUs in order to force these to re-evaluate 258 * their dependency on the tick and restart it if necessary. 259 */ 260 static void tick_nohz_full_kick_all(void) 261 { 262 int cpu; 263 264 if (!tick_nohz_full_running) 265 return; 266 267 preempt_disable(); 268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 269 tick_nohz_full_kick_cpu(cpu); 270 preempt_enable(); 271 } 272 273 static void tick_nohz_dep_set_all(atomic_t *dep, 274 enum tick_dep_bits bit) 275 { 276 int prev; 277 278 prev = atomic_fetch_or(BIT(bit), dep); 279 if (!prev) 280 tick_nohz_full_kick_all(); 281 } 282 283 /* 284 * Set a global tick dependency. Used by perf events that rely on freq and 285 * by unstable clock. 286 */ 287 void tick_nohz_dep_set(enum tick_dep_bits bit) 288 { 289 tick_nohz_dep_set_all(&tick_dep_mask, bit); 290 } 291 292 void tick_nohz_dep_clear(enum tick_dep_bits bit) 293 { 294 atomic_andnot(BIT(bit), &tick_dep_mask); 295 } 296 297 /* 298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 299 * manage events throttling. 300 */ 301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 302 { 303 int prev; 304 struct tick_sched *ts; 305 306 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 307 308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 309 if (!prev) { 310 preempt_disable(); 311 /* Perf needs local kick that is NMI safe */ 312 if (cpu == smp_processor_id()) { 313 tick_nohz_full_kick(); 314 } else { 315 /* Remote irq work not NMI-safe */ 316 if (!WARN_ON_ONCE(in_nmi())) 317 tick_nohz_full_kick_cpu(cpu); 318 } 319 preempt_enable(); 320 } 321 } 322 323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 324 { 325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 326 327 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 328 } 329 330 /* 331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 332 * per task timers. 333 */ 334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 335 { 336 /* 337 * We could optimize this with just kicking the target running the task 338 * if that noise matters for nohz full users. 339 */ 340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 341 } 342 343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 344 { 345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 346 } 347 348 /* 349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 350 * per process timers. 351 */ 352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 353 { 354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 355 } 356 357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 358 { 359 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 360 } 361 362 /* 363 * Re-evaluate the need for the tick as we switch the current task. 364 * It might need the tick due to per task/process properties: 365 * perf events, posix CPU timers, ... 366 */ 367 void __tick_nohz_task_switch(void) 368 { 369 unsigned long flags; 370 struct tick_sched *ts; 371 372 local_irq_save(flags); 373 374 if (!tick_nohz_full_cpu(smp_processor_id())) 375 goto out; 376 377 ts = this_cpu_ptr(&tick_cpu_sched); 378 379 if (ts->tick_stopped) { 380 if (atomic_read(¤t->tick_dep_mask) || 381 atomic_read(¤t->signal->tick_dep_mask)) 382 tick_nohz_full_kick(); 383 } 384 out: 385 local_irq_restore(flags); 386 } 387 388 /* Get the boot-time nohz CPU list from the kernel parameters. */ 389 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 390 { 391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 392 cpumask_copy(tick_nohz_full_mask, cpumask); 393 tick_nohz_full_running = true; 394 } 395 396 static int tick_nohz_cpu_down(unsigned int cpu) 397 { 398 /* 399 * The boot CPU handles housekeeping duty (unbound timers, 400 * workqueues, timekeeping, ...) on behalf of full dynticks 401 * CPUs. It must remain online when nohz full is enabled. 402 */ 403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 404 return -EBUSY; 405 return 0; 406 } 407 408 void __init tick_nohz_init(void) 409 { 410 int cpu, ret; 411 412 if (!tick_nohz_full_running) 413 return; 414 415 /* 416 * Full dynticks uses irq work to drive the tick rescheduling on safe 417 * locking contexts. But then we need irq work to raise its own 418 * interrupts to avoid circular dependency on the tick 419 */ 420 if (!arch_irq_work_has_interrupt()) { 421 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 422 cpumask_clear(tick_nohz_full_mask); 423 tick_nohz_full_running = false; 424 return; 425 } 426 427 cpu = smp_processor_id(); 428 429 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 430 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 431 cpu); 432 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 433 } 434 435 for_each_cpu(cpu, tick_nohz_full_mask) 436 context_tracking_cpu_set(cpu); 437 438 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 439 "kernel/nohz:predown", NULL, 440 tick_nohz_cpu_down); 441 WARN_ON(ret < 0); 442 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 443 cpumask_pr_args(tick_nohz_full_mask)); 444 } 445 #endif 446 447 /* 448 * NOHZ - aka dynamic tick functionality 449 */ 450 #ifdef CONFIG_NO_HZ_COMMON 451 /* 452 * NO HZ enabled ? 453 */ 454 bool tick_nohz_enabled __read_mostly = true; 455 unsigned long tick_nohz_active __read_mostly; 456 /* 457 * Enable / Disable tickless mode 458 */ 459 static int __init setup_tick_nohz(char *str) 460 { 461 return (kstrtobool(str, &tick_nohz_enabled) == 0); 462 } 463 464 __setup("nohz=", setup_tick_nohz); 465 466 bool tick_nohz_tick_stopped(void) 467 { 468 return __this_cpu_read(tick_cpu_sched.tick_stopped); 469 } 470 471 bool tick_nohz_tick_stopped_cpu(int cpu) 472 { 473 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 474 475 return ts->tick_stopped; 476 } 477 478 /** 479 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 480 * 481 * Called from interrupt entry when the CPU was idle 482 * 483 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 484 * must be updated. Otherwise an interrupt handler could use a stale jiffy 485 * value. We do this unconditionally on any CPU, as we don't know whether the 486 * CPU, which has the update task assigned is in a long sleep. 487 */ 488 static void tick_nohz_update_jiffies(ktime_t now) 489 { 490 unsigned long flags; 491 492 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 493 494 local_irq_save(flags); 495 tick_do_update_jiffies64(now); 496 local_irq_restore(flags); 497 498 touch_softlockup_watchdog_sched(); 499 } 500 501 /* 502 * Updates the per-CPU time idle statistics counters 503 */ 504 static void 505 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 506 { 507 ktime_t delta; 508 509 if (ts->idle_active) { 510 delta = ktime_sub(now, ts->idle_entrytime); 511 if (nr_iowait_cpu(cpu) > 0) 512 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 513 else 514 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 515 ts->idle_entrytime = now; 516 } 517 518 if (last_update_time) 519 *last_update_time = ktime_to_us(now); 520 521 } 522 523 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 524 { 525 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 526 ts->idle_active = 0; 527 528 sched_clock_idle_wakeup_event(); 529 } 530 531 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 532 { 533 ktime_t now = ktime_get(); 534 535 ts->idle_entrytime = now; 536 ts->idle_active = 1; 537 sched_clock_idle_sleep_event(); 538 return now; 539 } 540 541 /** 542 * get_cpu_idle_time_us - get the total idle time of a CPU 543 * @cpu: CPU number to query 544 * @last_update_time: variable to store update time in. Do not update 545 * counters if NULL. 546 * 547 * Return the cumulative idle time (since boot) for a given 548 * CPU, in microseconds. 549 * 550 * This time is measured via accounting rather than sampling, 551 * and is as accurate as ktime_get() is. 552 * 553 * This function returns -1 if NOHZ is not enabled. 554 */ 555 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 556 { 557 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 558 ktime_t now, idle; 559 560 if (!tick_nohz_active) 561 return -1; 562 563 now = ktime_get(); 564 if (last_update_time) { 565 update_ts_time_stats(cpu, ts, now, last_update_time); 566 idle = ts->idle_sleeptime; 567 } else { 568 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 569 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 570 571 idle = ktime_add(ts->idle_sleeptime, delta); 572 } else { 573 idle = ts->idle_sleeptime; 574 } 575 } 576 577 return ktime_to_us(idle); 578 579 } 580 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 581 582 /** 583 * get_cpu_iowait_time_us - get the total iowait time of a CPU 584 * @cpu: CPU number to query 585 * @last_update_time: variable to store update time in. Do not update 586 * counters if NULL. 587 * 588 * Return the cumulative iowait time (since boot) for a given 589 * CPU, in microseconds. 590 * 591 * This time is measured via accounting rather than sampling, 592 * and is as accurate as ktime_get() is. 593 * 594 * This function returns -1 if NOHZ is not enabled. 595 */ 596 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 597 { 598 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 599 ktime_t now, iowait; 600 601 if (!tick_nohz_active) 602 return -1; 603 604 now = ktime_get(); 605 if (last_update_time) { 606 update_ts_time_stats(cpu, ts, now, last_update_time); 607 iowait = ts->iowait_sleeptime; 608 } else { 609 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 610 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 611 612 iowait = ktime_add(ts->iowait_sleeptime, delta); 613 } else { 614 iowait = ts->iowait_sleeptime; 615 } 616 } 617 618 return ktime_to_us(iowait); 619 } 620 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 621 622 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 623 { 624 hrtimer_cancel(&ts->sched_timer); 625 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 626 627 /* Forward the time to expire in the future */ 628 hrtimer_forward(&ts->sched_timer, now, tick_period); 629 630 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 631 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 632 else 633 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 634 635 /* 636 * Reset to make sure next tick stop doesn't get fooled by past 637 * cached clock deadline. 638 */ 639 ts->next_tick = 0; 640 } 641 642 static inline bool local_timer_softirq_pending(void) 643 { 644 return local_softirq_pending() & TIMER_SOFTIRQ; 645 } 646 647 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 648 ktime_t now, int cpu) 649 { 650 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 651 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 652 unsigned long seq, basejiff; 653 ktime_t tick; 654 655 /* Read jiffies and the time when jiffies were updated last */ 656 do { 657 seq = read_seqbegin(&jiffies_lock); 658 basemono = last_jiffies_update; 659 basejiff = jiffies; 660 } while (read_seqretry(&jiffies_lock, seq)); 661 ts->last_jiffies = basejiff; 662 663 /* 664 * Keep the periodic tick, when RCU, architecture or irq_work 665 * requests it. 666 * Aside of that check whether the local timer softirq is 667 * pending. If so its a bad idea to call get_next_timer_interrupt() 668 * because there is an already expired timer, so it will request 669 * immeditate expiry, which rearms the hardware timer with a 670 * minimal delta which brings us back to this place 671 * immediately. Lather, rinse and repeat... 672 */ 673 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 674 irq_work_needs_cpu() || local_timer_softirq_pending()) { 675 next_tick = basemono + TICK_NSEC; 676 } else { 677 /* 678 * Get the next pending timer. If high resolution 679 * timers are enabled this only takes the timer wheel 680 * timers into account. If high resolution timers are 681 * disabled this also looks at the next expiring 682 * hrtimer. 683 */ 684 next_tmr = get_next_timer_interrupt(basejiff, basemono); 685 ts->next_timer = next_tmr; 686 /* Take the next rcu event into account */ 687 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 688 } 689 690 /* 691 * If the tick is due in the next period, keep it ticking or 692 * force prod the timer. 693 */ 694 delta = next_tick - basemono; 695 if (delta <= (u64)TICK_NSEC) { 696 /* 697 * Tell the timer code that the base is not idle, i.e. undo 698 * the effect of get_next_timer_interrupt(): 699 */ 700 timer_clear_idle(); 701 /* 702 * We've not stopped the tick yet, and there's a timer in the 703 * next period, so no point in stopping it either, bail. 704 */ 705 if (!ts->tick_stopped) { 706 tick = 0; 707 goto out; 708 } 709 } 710 711 /* 712 * If this CPU is the one which updates jiffies, then give up 713 * the assignment and let it be taken by the CPU which runs 714 * the tick timer next, which might be this CPU as well. If we 715 * don't drop this here the jiffies might be stale and 716 * do_timer() never invoked. Keep track of the fact that it 717 * was the one which had the do_timer() duty last. If this CPU 718 * is the one which had the do_timer() duty last, we limit the 719 * sleep time to the timekeeping max_deferment value. 720 * Otherwise we can sleep as long as we want. 721 */ 722 delta = timekeeping_max_deferment(); 723 if (cpu == tick_do_timer_cpu) { 724 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 725 ts->do_timer_last = 1; 726 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 727 delta = KTIME_MAX; 728 ts->do_timer_last = 0; 729 } else if (!ts->do_timer_last) { 730 delta = KTIME_MAX; 731 } 732 733 /* Calculate the next expiry time */ 734 if (delta < (KTIME_MAX - basemono)) 735 expires = basemono + delta; 736 else 737 expires = KTIME_MAX; 738 739 expires = min_t(u64, expires, next_tick); 740 tick = expires; 741 742 /* Skip reprogram of event if its not changed */ 743 if (ts->tick_stopped && (expires == ts->next_tick)) { 744 /* Sanity check: make sure clockevent is actually programmed */ 745 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 746 goto out; 747 748 WARN_ON_ONCE(1); 749 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 750 basemono, ts->next_tick, dev->next_event, 751 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 752 } 753 754 /* 755 * nohz_stop_sched_tick can be called several times before 756 * the nohz_restart_sched_tick is called. This happens when 757 * interrupts arrive which do not cause a reschedule. In the 758 * first call we save the current tick time, so we can restart 759 * the scheduler tick in nohz_restart_sched_tick. 760 */ 761 if (!ts->tick_stopped) { 762 calc_load_nohz_start(); 763 cpu_load_update_nohz_start(); 764 quiet_vmstat(); 765 766 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 767 ts->tick_stopped = 1; 768 trace_tick_stop(1, TICK_DEP_MASK_NONE); 769 } 770 771 ts->next_tick = tick; 772 773 /* 774 * If the expiration time == KTIME_MAX, then we simply stop 775 * the tick timer. 776 */ 777 if (unlikely(expires == KTIME_MAX)) { 778 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 779 hrtimer_cancel(&ts->sched_timer); 780 goto out; 781 } 782 783 hrtimer_set_expires(&ts->sched_timer, tick); 784 785 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 786 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 787 else 788 tick_program_event(tick, 1); 789 out: 790 /* 791 * Update the estimated sleep length until the next timer 792 * (not only the tick). 793 */ 794 ts->sleep_length = ktime_sub(dev->next_event, now); 795 return tick; 796 } 797 798 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 799 { 800 /* Update jiffies first */ 801 tick_do_update_jiffies64(now); 802 cpu_load_update_nohz_stop(); 803 804 /* 805 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 806 * the clock forward checks in the enqueue path: 807 */ 808 timer_clear_idle(); 809 810 calc_load_nohz_stop(); 811 touch_softlockup_watchdog_sched(); 812 /* 813 * Cancel the scheduled timer and restore the tick 814 */ 815 ts->tick_stopped = 0; 816 ts->idle_exittime = now; 817 818 tick_nohz_restart(ts, now); 819 } 820 821 static void tick_nohz_full_update_tick(struct tick_sched *ts) 822 { 823 #ifdef CONFIG_NO_HZ_FULL 824 int cpu = smp_processor_id(); 825 826 if (!tick_nohz_full_cpu(cpu)) 827 return; 828 829 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 830 return; 831 832 if (can_stop_full_tick(cpu, ts)) 833 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 834 else if (ts->tick_stopped) 835 tick_nohz_restart_sched_tick(ts, ktime_get()); 836 #endif 837 } 838 839 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 840 { 841 /* 842 * If this CPU is offline and it is the one which updates 843 * jiffies, then give up the assignment and let it be taken by 844 * the CPU which runs the tick timer next. If we don't drop 845 * this here the jiffies might be stale and do_timer() never 846 * invoked. 847 */ 848 if (unlikely(!cpu_online(cpu))) { 849 if (cpu == tick_do_timer_cpu) 850 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 851 /* 852 * Make sure the CPU doesn't get fooled by obsolete tick 853 * deadline if it comes back online later. 854 */ 855 ts->next_tick = 0; 856 return false; 857 } 858 859 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 860 ts->sleep_length = NSEC_PER_SEC / HZ; 861 return false; 862 } 863 864 if (need_resched()) 865 return false; 866 867 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 868 static int ratelimit; 869 870 if (ratelimit < 10 && 871 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 872 pr_warn("NOHZ: local_softirq_pending %02x\n", 873 (unsigned int) local_softirq_pending()); 874 ratelimit++; 875 } 876 return false; 877 } 878 879 if (tick_nohz_full_enabled()) { 880 /* 881 * Keep the tick alive to guarantee timekeeping progression 882 * if there are full dynticks CPUs around 883 */ 884 if (tick_do_timer_cpu == cpu) 885 return false; 886 /* 887 * Boot safety: make sure the timekeeping duty has been 888 * assigned before entering dyntick-idle mode, 889 */ 890 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 891 return false; 892 } 893 894 return true; 895 } 896 897 static void __tick_nohz_idle_enter(struct tick_sched *ts) 898 { 899 ktime_t now, expires; 900 int cpu = smp_processor_id(); 901 902 now = tick_nohz_start_idle(ts); 903 904 if (can_stop_idle_tick(cpu, ts)) { 905 int was_stopped = ts->tick_stopped; 906 907 ts->idle_calls++; 908 909 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 910 if (expires > 0LL) { 911 ts->idle_sleeps++; 912 ts->idle_expires = expires; 913 } 914 915 if (!was_stopped && ts->tick_stopped) { 916 ts->idle_jiffies = ts->last_jiffies; 917 nohz_balance_enter_idle(cpu); 918 } 919 } 920 } 921 922 /** 923 * tick_nohz_idle_enter - stop the idle tick from the idle task 924 * 925 * When the next event is more than a tick into the future, stop the idle tick 926 * Called when we start the idle loop. 927 * 928 * The arch is responsible of calling: 929 * 930 * - rcu_idle_enter() after its last use of RCU before the CPU is put 931 * to sleep. 932 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 933 */ 934 void tick_nohz_idle_enter(void) 935 { 936 struct tick_sched *ts; 937 938 lockdep_assert_irqs_enabled(); 939 940 local_irq_disable(); 941 942 ts = this_cpu_ptr(&tick_cpu_sched); 943 ts->inidle = 1; 944 __tick_nohz_idle_enter(ts); 945 946 local_irq_enable(); 947 } 948 949 /** 950 * tick_nohz_irq_exit - update next tick event from interrupt exit 951 * 952 * When an interrupt fires while we are idle and it doesn't cause 953 * a reschedule, it may still add, modify or delete a timer, enqueue 954 * an RCU callback, etc... 955 * So we need to re-calculate and reprogram the next tick event. 956 */ 957 void tick_nohz_irq_exit(void) 958 { 959 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 960 961 if (ts->inidle) 962 __tick_nohz_idle_enter(ts); 963 else 964 tick_nohz_full_update_tick(ts); 965 } 966 967 /** 968 * tick_nohz_get_sleep_length - return the length of the current sleep 969 * 970 * Called from power state control code with interrupts disabled 971 */ 972 ktime_t tick_nohz_get_sleep_length(void) 973 { 974 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 975 976 return ts->sleep_length; 977 } 978 979 /** 980 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 981 * for a particular CPU. 982 * 983 * Called from the schedutil frequency scaling governor in scheduler context. 984 */ 985 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 986 { 987 struct tick_sched *ts = tick_get_tick_sched(cpu); 988 989 return ts->idle_calls; 990 } 991 992 /** 993 * tick_nohz_get_idle_calls - return the current idle calls counter value 994 * 995 * Called from the schedutil frequency scaling governor in scheduler context. 996 */ 997 unsigned long tick_nohz_get_idle_calls(void) 998 { 999 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1000 1001 return ts->idle_calls; 1002 } 1003 1004 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1005 { 1006 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1007 unsigned long ticks; 1008 1009 if (vtime_accounting_cpu_enabled()) 1010 return; 1011 /* 1012 * We stopped the tick in idle. Update process times would miss the 1013 * time we slept as update_process_times does only a 1 tick 1014 * accounting. Enforce that this is accounted to idle ! 1015 */ 1016 ticks = jiffies - ts->idle_jiffies; 1017 /* 1018 * We might be one off. Do not randomly account a huge number of ticks! 1019 */ 1020 if (ticks && ticks < LONG_MAX) 1021 account_idle_ticks(ticks); 1022 #endif 1023 } 1024 1025 /** 1026 * tick_nohz_idle_exit - restart the idle tick from the idle task 1027 * 1028 * Restart the idle tick when the CPU is woken up from idle 1029 * This also exit the RCU extended quiescent state. The CPU 1030 * can use RCU again after this function is called. 1031 */ 1032 void tick_nohz_idle_exit(void) 1033 { 1034 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1035 ktime_t now; 1036 1037 local_irq_disable(); 1038 1039 WARN_ON_ONCE(!ts->inidle); 1040 1041 ts->inidle = 0; 1042 1043 if (ts->idle_active || ts->tick_stopped) 1044 now = ktime_get(); 1045 1046 if (ts->idle_active) 1047 tick_nohz_stop_idle(ts, now); 1048 1049 if (ts->tick_stopped) { 1050 tick_nohz_restart_sched_tick(ts, now); 1051 tick_nohz_account_idle_ticks(ts); 1052 } 1053 1054 local_irq_enable(); 1055 } 1056 1057 /* 1058 * The nohz low res interrupt handler 1059 */ 1060 static void tick_nohz_handler(struct clock_event_device *dev) 1061 { 1062 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1063 struct pt_regs *regs = get_irq_regs(); 1064 ktime_t now = ktime_get(); 1065 1066 dev->next_event = KTIME_MAX; 1067 1068 tick_sched_do_timer(now); 1069 tick_sched_handle(ts, regs); 1070 1071 /* No need to reprogram if we are running tickless */ 1072 if (unlikely(ts->tick_stopped)) 1073 return; 1074 1075 hrtimer_forward(&ts->sched_timer, now, tick_period); 1076 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1077 } 1078 1079 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1080 { 1081 if (!tick_nohz_enabled) 1082 return; 1083 ts->nohz_mode = mode; 1084 /* One update is enough */ 1085 if (!test_and_set_bit(0, &tick_nohz_active)) 1086 timers_update_nohz(); 1087 } 1088 1089 /** 1090 * tick_nohz_switch_to_nohz - switch to nohz mode 1091 */ 1092 static void tick_nohz_switch_to_nohz(void) 1093 { 1094 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1095 ktime_t next; 1096 1097 if (!tick_nohz_enabled) 1098 return; 1099 1100 if (tick_switch_to_oneshot(tick_nohz_handler)) 1101 return; 1102 1103 /* 1104 * Recycle the hrtimer in ts, so we can share the 1105 * hrtimer_forward with the highres code. 1106 */ 1107 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1108 /* Get the next period */ 1109 next = tick_init_jiffy_update(); 1110 1111 hrtimer_set_expires(&ts->sched_timer, next); 1112 hrtimer_forward_now(&ts->sched_timer, tick_period); 1113 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1114 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1115 } 1116 1117 static inline void tick_nohz_irq_enter(void) 1118 { 1119 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1120 ktime_t now; 1121 1122 if (!ts->idle_active && !ts->tick_stopped) 1123 return; 1124 now = ktime_get(); 1125 if (ts->idle_active) 1126 tick_nohz_stop_idle(ts, now); 1127 if (ts->tick_stopped) 1128 tick_nohz_update_jiffies(now); 1129 } 1130 1131 #else 1132 1133 static inline void tick_nohz_switch_to_nohz(void) { } 1134 static inline void tick_nohz_irq_enter(void) { } 1135 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1136 1137 #endif /* CONFIG_NO_HZ_COMMON */ 1138 1139 /* 1140 * Called from irq_enter to notify about the possible interruption of idle() 1141 */ 1142 void tick_irq_enter(void) 1143 { 1144 tick_check_oneshot_broadcast_this_cpu(); 1145 tick_nohz_irq_enter(); 1146 } 1147 1148 /* 1149 * High resolution timer specific code 1150 */ 1151 #ifdef CONFIG_HIGH_RES_TIMERS 1152 /* 1153 * We rearm the timer until we get disabled by the idle code. 1154 * Called with interrupts disabled. 1155 */ 1156 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1157 { 1158 struct tick_sched *ts = 1159 container_of(timer, struct tick_sched, sched_timer); 1160 struct pt_regs *regs = get_irq_regs(); 1161 ktime_t now = ktime_get(); 1162 1163 tick_sched_do_timer(now); 1164 1165 /* 1166 * Do not call, when we are not in irq context and have 1167 * no valid regs pointer 1168 */ 1169 if (regs) 1170 tick_sched_handle(ts, regs); 1171 else 1172 ts->next_tick = 0; 1173 1174 /* No need to reprogram if we are in idle or full dynticks mode */ 1175 if (unlikely(ts->tick_stopped)) 1176 return HRTIMER_NORESTART; 1177 1178 hrtimer_forward(timer, now, tick_period); 1179 1180 return HRTIMER_RESTART; 1181 } 1182 1183 static int sched_skew_tick; 1184 1185 static int __init skew_tick(char *str) 1186 { 1187 get_option(&str, &sched_skew_tick); 1188 1189 return 0; 1190 } 1191 early_param("skew_tick", skew_tick); 1192 1193 /** 1194 * tick_setup_sched_timer - setup the tick emulation timer 1195 */ 1196 void tick_setup_sched_timer(void) 1197 { 1198 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1199 ktime_t now = ktime_get(); 1200 1201 /* 1202 * Emulate tick processing via per-CPU hrtimers: 1203 */ 1204 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1205 ts->sched_timer.function = tick_sched_timer; 1206 1207 /* Get the next period (per-CPU) */ 1208 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1209 1210 /* Offset the tick to avert jiffies_lock contention. */ 1211 if (sched_skew_tick) { 1212 u64 offset = ktime_to_ns(tick_period) >> 1; 1213 do_div(offset, num_possible_cpus()); 1214 offset *= smp_processor_id(); 1215 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1216 } 1217 1218 hrtimer_forward(&ts->sched_timer, now, tick_period); 1219 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1220 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1221 } 1222 #endif /* HIGH_RES_TIMERS */ 1223 1224 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1225 void tick_cancel_sched_timer(int cpu) 1226 { 1227 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1228 1229 # ifdef CONFIG_HIGH_RES_TIMERS 1230 if (ts->sched_timer.base) 1231 hrtimer_cancel(&ts->sched_timer); 1232 # endif 1233 1234 memset(ts, 0, sizeof(*ts)); 1235 } 1236 #endif 1237 1238 /** 1239 * Async notification about clocksource changes 1240 */ 1241 void tick_clock_notify(void) 1242 { 1243 int cpu; 1244 1245 for_each_possible_cpu(cpu) 1246 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1247 } 1248 1249 /* 1250 * Async notification about clock event changes 1251 */ 1252 void tick_oneshot_notify(void) 1253 { 1254 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1255 1256 set_bit(0, &ts->check_clocks); 1257 } 1258 1259 /** 1260 * Check, if a change happened, which makes oneshot possible. 1261 * 1262 * Called cyclic from the hrtimer softirq (driven by the timer 1263 * softirq) allow_nohz signals, that we can switch into low-res nohz 1264 * mode, because high resolution timers are disabled (either compile 1265 * or runtime). Called with interrupts disabled. 1266 */ 1267 int tick_check_oneshot_change(int allow_nohz) 1268 { 1269 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1270 1271 if (!test_and_clear_bit(0, &ts->check_clocks)) 1272 return 0; 1273 1274 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1275 return 0; 1276 1277 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1278 return 0; 1279 1280 if (!allow_nohz) 1281 return 1; 1282 1283 tick_nohz_switch_to_nohz(); 1284 return 0; 1285 } 1286