xref: /linux/kernel/time/tick-sched.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31 
32 #include <asm/irq_regs.h>
33 
34 #include "tick-internal.h"
35 
36 #include <trace/events/timer.h>
37 
38 /*
39  * Per-CPU nohz control structure
40  */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50  * The time, when the last jiffy update happened. Protected by jiffies_lock.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 0;
60 	ktime_t delta;
61 
62 	/*
63 	 * Do a quick check without holding jiffies_lock:
64 	 */
65 	delta = ktime_sub(now, last_jiffies_update);
66 	if (delta < tick_period)
67 		return;
68 
69 	/* Reevaluate with jiffies_lock held */
70 	write_seqlock(&jiffies_lock);
71 
72 	delta = ktime_sub(now, last_jiffies_update);
73 	if (delta >= tick_period) {
74 
75 		delta = ktime_sub(delta, tick_period);
76 		last_jiffies_update = ktime_add(last_jiffies_update,
77 						tick_period);
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 							   incr * ticks);
87 		}
88 		do_timer(++ticks);
89 
90 		/* Keep the tick_next_period variable up to date */
91 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 	} else {
93 		write_sequnlock(&jiffies_lock);
94 		return;
95 	}
96 	write_sequnlock(&jiffies_lock);
97 	update_wall_time();
98 }
99 
100 /*
101  * Initialize and return retrieve the jiffies update.
102  */
103 static ktime_t tick_init_jiffy_update(void)
104 {
105 	ktime_t period;
106 
107 	write_seqlock(&jiffies_lock);
108 	/* Did we start the jiffies update yet ? */
109 	if (last_jiffies_update == 0)
110 		last_jiffies_update = tick_next_period;
111 	period = last_jiffies_update;
112 	write_sequnlock(&jiffies_lock);
113 	return period;
114 }
115 
116 
117 static void tick_sched_do_timer(ktime_t now)
118 {
119 	int cpu = smp_processor_id();
120 
121 #ifdef CONFIG_NO_HZ_COMMON
122 	/*
123 	 * Check if the do_timer duty was dropped. We don't care about
124 	 * concurrency: This happens only when the CPU in charge went
125 	 * into a long sleep. If two CPUs happen to assign themselves to
126 	 * this duty, then the jiffies update is still serialized by
127 	 * jiffies_lock.
128 	 */
129 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
130 	    && !tick_nohz_full_cpu(cpu))
131 		tick_do_timer_cpu = cpu;
132 #endif
133 
134 	/* Check, if the jiffies need an update */
135 	if (tick_do_timer_cpu == cpu)
136 		tick_do_update_jiffies64(now);
137 }
138 
139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140 {
141 #ifdef CONFIG_NO_HZ_COMMON
142 	/*
143 	 * When we are idle and the tick is stopped, we have to touch
144 	 * the watchdog as we might not schedule for a really long
145 	 * time. This happens on complete idle SMP systems while
146 	 * waiting on the login prompt. We also increment the "start of
147 	 * idle" jiffy stamp so the idle accounting adjustment we do
148 	 * when we go busy again does not account too much ticks.
149 	 */
150 	if (ts->tick_stopped) {
151 		touch_softlockup_watchdog_sched();
152 		if (is_idle_task(current))
153 			ts->idle_jiffies++;
154 		/*
155 		 * In case the current tick fired too early past its expected
156 		 * expiration, make sure we don't bypass the next clock reprogramming
157 		 * to the same deadline.
158 		 */
159 		ts->next_tick = 0;
160 	}
161 #endif
162 	update_process_times(user_mode(regs));
163 	profile_tick(CPU_PROFILING);
164 }
165 #endif
166 
167 #ifdef CONFIG_NO_HZ_FULL
168 cpumask_var_t tick_nohz_full_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171 
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 	int val = atomic_read(dep);
175 
176 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_SCHED) {
187 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 		return true;
194 	}
195 
196 	return false;
197 }
198 
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 	lockdep_assert_irqs_disabled();
202 
203 	if (unlikely(!cpu_online(cpu)))
204 		return false;
205 
206 	if (check_tick_dependency(&tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&ts->tick_dep_mask))
210 		return false;
211 
212 	if (check_tick_dependency(&current->tick_dep_mask))
213 		return false;
214 
215 	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 		return false;
217 
218 	return true;
219 }
220 
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225 
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 	.func = nohz_full_kick_func,
228 };
229 
230 /*
231  * Kick this CPU if it's full dynticks in order to force it to
232  * re-evaluate its dependency on the tick and restart it if necessary.
233  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234  * is NMI safe.
235  */
236 static void tick_nohz_full_kick(void)
237 {
238 	if (!tick_nohz_full_cpu(smp_processor_id()))
239 		return;
240 
241 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243 
244 /*
245  * Kick the CPU if it's full dynticks in order to force it to
246  * re-evaluate its dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 	if (!tick_nohz_full_cpu(cpu))
251 		return;
252 
253 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255 
256 /*
257  * Kick all full dynticks CPUs in order to force these to re-evaluate
258  * their dependency on the tick and restart it if necessary.
259  */
260 static void tick_nohz_full_kick_all(void)
261 {
262 	int cpu;
263 
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 		tick_nohz_full_kick_cpu(cpu);
270 	preempt_enable();
271 }
272 
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 				  enum tick_dep_bits bit)
275 {
276 	int prev;
277 
278 	prev = atomic_fetch_or(BIT(bit), dep);
279 	if (!prev)
280 		tick_nohz_full_kick_all();
281 }
282 
283 /*
284  * Set a global tick dependency. Used by perf events that rely on freq and
285  * by unstable clock.
286  */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291 
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 	atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296 
297 /*
298  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299  * manage events throttling.
300  */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 	int prev;
304 	struct tick_sched *ts;
305 
306 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307 
308 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 	if (!prev) {
310 		preempt_disable();
311 		/* Perf needs local kick that is NMI safe */
312 		if (cpu == smp_processor_id()) {
313 			tick_nohz_full_kick();
314 		} else {
315 			/* Remote irq work not NMI-safe */
316 			if (!WARN_ON_ONCE(in_nmi()))
317 				tick_nohz_full_kick_cpu(cpu);
318 		}
319 		preempt_enable();
320 	}
321 }
322 
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326 
327 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329 
330 /*
331  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332  * per task timers.
333  */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 	/*
337 	 * We could optimize this with just kicking the target running the task
338 	 * if that noise matters for nohz full users.
339 	 */
340 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342 
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350  * per process timers.
351  */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356 
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361 
362 /*
363  * Re-evaluate the need for the tick as we switch the current task.
364  * It might need the tick due to per task/process properties:
365  * perf events, posix CPU timers, ...
366  */
367 void __tick_nohz_task_switch(void)
368 {
369 	unsigned long flags;
370 	struct tick_sched *ts;
371 
372 	local_irq_save(flags);
373 
374 	if (!tick_nohz_full_cpu(smp_processor_id()))
375 		goto out;
376 
377 	ts = this_cpu_ptr(&tick_cpu_sched);
378 
379 	if (ts->tick_stopped) {
380 		if (atomic_read(&current->tick_dep_mask) ||
381 		    atomic_read(&current->signal->tick_dep_mask))
382 			tick_nohz_full_kick();
383 	}
384 out:
385 	local_irq_restore(flags);
386 }
387 
388 /* Get the boot-time nohz CPU list from the kernel parameters. */
389 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
390 {
391 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 	cpumask_copy(tick_nohz_full_mask, cpumask);
393 	tick_nohz_full_running = true;
394 }
395 
396 static int tick_nohz_cpu_down(unsigned int cpu)
397 {
398 	/*
399 	 * The boot CPU handles housekeeping duty (unbound timers,
400 	 * workqueues, timekeeping, ...) on behalf of full dynticks
401 	 * CPUs. It must remain online when nohz full is enabled.
402 	 */
403 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 		return -EBUSY;
405 	return 0;
406 }
407 
408 void __init tick_nohz_init(void)
409 {
410 	int cpu, ret;
411 
412 	if (!tick_nohz_full_running)
413 		return;
414 
415 	/*
416 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
417 	 * locking contexts. But then we need irq work to raise its own
418 	 * interrupts to avoid circular dependency on the tick
419 	 */
420 	if (!arch_irq_work_has_interrupt()) {
421 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
422 		cpumask_clear(tick_nohz_full_mask);
423 		tick_nohz_full_running = false;
424 		return;
425 	}
426 
427 	cpu = smp_processor_id();
428 
429 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
430 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
431 			cpu);
432 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
433 	}
434 
435 	for_each_cpu(cpu, tick_nohz_full_mask)
436 		context_tracking_cpu_set(cpu);
437 
438 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
439 					"kernel/nohz:predown", NULL,
440 					tick_nohz_cpu_down);
441 	WARN_ON(ret < 0);
442 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
443 		cpumask_pr_args(tick_nohz_full_mask));
444 }
445 #endif
446 
447 /*
448  * NOHZ - aka dynamic tick functionality
449  */
450 #ifdef CONFIG_NO_HZ_COMMON
451 /*
452  * NO HZ enabled ?
453  */
454 bool tick_nohz_enabled __read_mostly  = true;
455 unsigned long tick_nohz_active  __read_mostly;
456 /*
457  * Enable / Disable tickless mode
458  */
459 static int __init setup_tick_nohz(char *str)
460 {
461 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
462 }
463 
464 __setup("nohz=", setup_tick_nohz);
465 
466 bool tick_nohz_tick_stopped(void)
467 {
468 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
469 }
470 
471 bool tick_nohz_tick_stopped_cpu(int cpu)
472 {
473 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
474 
475 	return ts->tick_stopped;
476 }
477 
478 /**
479  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
480  *
481  * Called from interrupt entry when the CPU was idle
482  *
483  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
484  * must be updated. Otherwise an interrupt handler could use a stale jiffy
485  * value. We do this unconditionally on any CPU, as we don't know whether the
486  * CPU, which has the update task assigned is in a long sleep.
487  */
488 static void tick_nohz_update_jiffies(ktime_t now)
489 {
490 	unsigned long flags;
491 
492 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
493 
494 	local_irq_save(flags);
495 	tick_do_update_jiffies64(now);
496 	local_irq_restore(flags);
497 
498 	touch_softlockup_watchdog_sched();
499 }
500 
501 /*
502  * Updates the per-CPU time idle statistics counters
503  */
504 static void
505 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
506 {
507 	ktime_t delta;
508 
509 	if (ts->idle_active) {
510 		delta = ktime_sub(now, ts->idle_entrytime);
511 		if (nr_iowait_cpu(cpu) > 0)
512 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
513 		else
514 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
515 		ts->idle_entrytime = now;
516 	}
517 
518 	if (last_update_time)
519 		*last_update_time = ktime_to_us(now);
520 
521 }
522 
523 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
524 {
525 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
526 	ts->idle_active = 0;
527 
528 	sched_clock_idle_wakeup_event();
529 }
530 
531 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
532 {
533 	ktime_t now = ktime_get();
534 
535 	ts->idle_entrytime = now;
536 	ts->idle_active = 1;
537 	sched_clock_idle_sleep_event();
538 	return now;
539 }
540 
541 /**
542  * get_cpu_idle_time_us - get the total idle time of a CPU
543  * @cpu: CPU number to query
544  * @last_update_time: variable to store update time in. Do not update
545  * counters if NULL.
546  *
547  * Return the cumulative idle time (since boot) for a given
548  * CPU, in microseconds.
549  *
550  * This time is measured via accounting rather than sampling,
551  * and is as accurate as ktime_get() is.
552  *
553  * This function returns -1 if NOHZ is not enabled.
554  */
555 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
556 {
557 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
558 	ktime_t now, idle;
559 
560 	if (!tick_nohz_active)
561 		return -1;
562 
563 	now = ktime_get();
564 	if (last_update_time) {
565 		update_ts_time_stats(cpu, ts, now, last_update_time);
566 		idle = ts->idle_sleeptime;
567 	} else {
568 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
569 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
570 
571 			idle = ktime_add(ts->idle_sleeptime, delta);
572 		} else {
573 			idle = ts->idle_sleeptime;
574 		}
575 	}
576 
577 	return ktime_to_us(idle);
578 
579 }
580 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
581 
582 /**
583  * get_cpu_iowait_time_us - get the total iowait time of a CPU
584  * @cpu: CPU number to query
585  * @last_update_time: variable to store update time in. Do not update
586  * counters if NULL.
587  *
588  * Return the cumulative iowait time (since boot) for a given
589  * CPU, in microseconds.
590  *
591  * This time is measured via accounting rather than sampling,
592  * and is as accurate as ktime_get() is.
593  *
594  * This function returns -1 if NOHZ is not enabled.
595  */
596 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
597 {
598 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
599 	ktime_t now, iowait;
600 
601 	if (!tick_nohz_active)
602 		return -1;
603 
604 	now = ktime_get();
605 	if (last_update_time) {
606 		update_ts_time_stats(cpu, ts, now, last_update_time);
607 		iowait = ts->iowait_sleeptime;
608 	} else {
609 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
610 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
611 
612 			iowait = ktime_add(ts->iowait_sleeptime, delta);
613 		} else {
614 			iowait = ts->iowait_sleeptime;
615 		}
616 	}
617 
618 	return ktime_to_us(iowait);
619 }
620 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
621 
622 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
623 {
624 	hrtimer_cancel(&ts->sched_timer);
625 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
626 
627 	/* Forward the time to expire in the future */
628 	hrtimer_forward(&ts->sched_timer, now, tick_period);
629 
630 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
631 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
632 	else
633 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
634 
635 	/*
636 	 * Reset to make sure next tick stop doesn't get fooled by past
637 	 * cached clock deadline.
638 	 */
639 	ts->next_tick = 0;
640 }
641 
642 static inline bool local_timer_softirq_pending(void)
643 {
644 	return local_softirq_pending() & TIMER_SOFTIRQ;
645 }
646 
647 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
648 					 ktime_t now, int cpu)
649 {
650 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
651 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
652 	unsigned long seq, basejiff;
653 	ktime_t	tick;
654 
655 	/* Read jiffies and the time when jiffies were updated last */
656 	do {
657 		seq = read_seqbegin(&jiffies_lock);
658 		basemono = last_jiffies_update;
659 		basejiff = jiffies;
660 	} while (read_seqretry(&jiffies_lock, seq));
661 	ts->last_jiffies = basejiff;
662 
663 	/*
664 	 * Keep the periodic tick, when RCU, architecture or irq_work
665 	 * requests it.
666 	 * Aside of that check whether the local timer softirq is
667 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
668 	 * because there is an already expired timer, so it will request
669 	 * immeditate expiry, which rearms the hardware timer with a
670 	 * minimal delta which brings us back to this place
671 	 * immediately. Lather, rinse and repeat...
672 	 */
673 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
674 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
675 		next_tick = basemono + TICK_NSEC;
676 	} else {
677 		/*
678 		 * Get the next pending timer. If high resolution
679 		 * timers are enabled this only takes the timer wheel
680 		 * timers into account. If high resolution timers are
681 		 * disabled this also looks at the next expiring
682 		 * hrtimer.
683 		 */
684 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
685 		ts->next_timer = next_tmr;
686 		/* Take the next rcu event into account */
687 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
688 	}
689 
690 	/*
691 	 * If the tick is due in the next period, keep it ticking or
692 	 * force prod the timer.
693 	 */
694 	delta = next_tick - basemono;
695 	if (delta <= (u64)TICK_NSEC) {
696 		/*
697 		 * Tell the timer code that the base is not idle, i.e. undo
698 		 * the effect of get_next_timer_interrupt():
699 		 */
700 		timer_clear_idle();
701 		/*
702 		 * We've not stopped the tick yet, and there's a timer in the
703 		 * next period, so no point in stopping it either, bail.
704 		 */
705 		if (!ts->tick_stopped) {
706 			tick = 0;
707 			goto out;
708 		}
709 	}
710 
711 	/*
712 	 * If this CPU is the one which updates jiffies, then give up
713 	 * the assignment and let it be taken by the CPU which runs
714 	 * the tick timer next, which might be this CPU as well. If we
715 	 * don't drop this here the jiffies might be stale and
716 	 * do_timer() never invoked. Keep track of the fact that it
717 	 * was the one which had the do_timer() duty last. If this CPU
718 	 * is the one which had the do_timer() duty last, we limit the
719 	 * sleep time to the timekeeping max_deferment value.
720 	 * Otherwise we can sleep as long as we want.
721 	 */
722 	delta = timekeeping_max_deferment();
723 	if (cpu == tick_do_timer_cpu) {
724 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
725 		ts->do_timer_last = 1;
726 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
727 		delta = KTIME_MAX;
728 		ts->do_timer_last = 0;
729 	} else if (!ts->do_timer_last) {
730 		delta = KTIME_MAX;
731 	}
732 
733 	/* Calculate the next expiry time */
734 	if (delta < (KTIME_MAX - basemono))
735 		expires = basemono + delta;
736 	else
737 		expires = KTIME_MAX;
738 
739 	expires = min_t(u64, expires, next_tick);
740 	tick = expires;
741 
742 	/* Skip reprogram of event if its not changed */
743 	if (ts->tick_stopped && (expires == ts->next_tick)) {
744 		/* Sanity check: make sure clockevent is actually programmed */
745 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
746 			goto out;
747 
748 		WARN_ON_ONCE(1);
749 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
750 			    basemono, ts->next_tick, dev->next_event,
751 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
752 	}
753 
754 	/*
755 	 * nohz_stop_sched_tick can be called several times before
756 	 * the nohz_restart_sched_tick is called. This happens when
757 	 * interrupts arrive which do not cause a reschedule. In the
758 	 * first call we save the current tick time, so we can restart
759 	 * the scheduler tick in nohz_restart_sched_tick.
760 	 */
761 	if (!ts->tick_stopped) {
762 		calc_load_nohz_start();
763 		cpu_load_update_nohz_start();
764 		quiet_vmstat();
765 
766 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
767 		ts->tick_stopped = 1;
768 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
769 	}
770 
771 	ts->next_tick = tick;
772 
773 	/*
774 	 * If the expiration time == KTIME_MAX, then we simply stop
775 	 * the tick timer.
776 	 */
777 	if (unlikely(expires == KTIME_MAX)) {
778 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
779 			hrtimer_cancel(&ts->sched_timer);
780 		goto out;
781 	}
782 
783 	hrtimer_set_expires(&ts->sched_timer, tick);
784 
785 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
786 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
787 	else
788 		tick_program_event(tick, 1);
789 out:
790 	/*
791 	 * Update the estimated sleep length until the next timer
792 	 * (not only the tick).
793 	 */
794 	ts->sleep_length = ktime_sub(dev->next_event, now);
795 	return tick;
796 }
797 
798 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
799 {
800 	/* Update jiffies first */
801 	tick_do_update_jiffies64(now);
802 	cpu_load_update_nohz_stop();
803 
804 	/*
805 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
806 	 * the clock forward checks in the enqueue path:
807 	 */
808 	timer_clear_idle();
809 
810 	calc_load_nohz_stop();
811 	touch_softlockup_watchdog_sched();
812 	/*
813 	 * Cancel the scheduled timer and restore the tick
814 	 */
815 	ts->tick_stopped  = 0;
816 	ts->idle_exittime = now;
817 
818 	tick_nohz_restart(ts, now);
819 }
820 
821 static void tick_nohz_full_update_tick(struct tick_sched *ts)
822 {
823 #ifdef CONFIG_NO_HZ_FULL
824 	int cpu = smp_processor_id();
825 
826 	if (!tick_nohz_full_cpu(cpu))
827 		return;
828 
829 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
830 		return;
831 
832 	if (can_stop_full_tick(cpu, ts))
833 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
834 	else if (ts->tick_stopped)
835 		tick_nohz_restart_sched_tick(ts, ktime_get());
836 #endif
837 }
838 
839 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
840 {
841 	/*
842 	 * If this CPU is offline and it is the one which updates
843 	 * jiffies, then give up the assignment and let it be taken by
844 	 * the CPU which runs the tick timer next. If we don't drop
845 	 * this here the jiffies might be stale and do_timer() never
846 	 * invoked.
847 	 */
848 	if (unlikely(!cpu_online(cpu))) {
849 		if (cpu == tick_do_timer_cpu)
850 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
851 		/*
852 		 * Make sure the CPU doesn't get fooled by obsolete tick
853 		 * deadline if it comes back online later.
854 		 */
855 		ts->next_tick = 0;
856 		return false;
857 	}
858 
859 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
860 		ts->sleep_length = NSEC_PER_SEC / HZ;
861 		return false;
862 	}
863 
864 	if (need_resched())
865 		return false;
866 
867 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
868 		static int ratelimit;
869 
870 		if (ratelimit < 10 &&
871 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
872 			pr_warn("NOHZ: local_softirq_pending %02x\n",
873 				(unsigned int) local_softirq_pending());
874 			ratelimit++;
875 		}
876 		return false;
877 	}
878 
879 	if (tick_nohz_full_enabled()) {
880 		/*
881 		 * Keep the tick alive to guarantee timekeeping progression
882 		 * if there are full dynticks CPUs around
883 		 */
884 		if (tick_do_timer_cpu == cpu)
885 			return false;
886 		/*
887 		 * Boot safety: make sure the timekeeping duty has been
888 		 * assigned before entering dyntick-idle mode,
889 		 */
890 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
891 			return false;
892 	}
893 
894 	return true;
895 }
896 
897 static void __tick_nohz_idle_enter(struct tick_sched *ts)
898 {
899 	ktime_t now, expires;
900 	int cpu = smp_processor_id();
901 
902 	now = tick_nohz_start_idle(ts);
903 
904 	if (can_stop_idle_tick(cpu, ts)) {
905 		int was_stopped = ts->tick_stopped;
906 
907 		ts->idle_calls++;
908 
909 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
910 		if (expires > 0LL) {
911 			ts->idle_sleeps++;
912 			ts->idle_expires = expires;
913 		}
914 
915 		if (!was_stopped && ts->tick_stopped) {
916 			ts->idle_jiffies = ts->last_jiffies;
917 			nohz_balance_enter_idle(cpu);
918 		}
919 	}
920 }
921 
922 /**
923  * tick_nohz_idle_enter - stop the idle tick from the idle task
924  *
925  * When the next event is more than a tick into the future, stop the idle tick
926  * Called when we start the idle loop.
927  *
928  * The arch is responsible of calling:
929  *
930  * - rcu_idle_enter() after its last use of RCU before the CPU is put
931  *  to sleep.
932  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
933  */
934 void tick_nohz_idle_enter(void)
935 {
936 	struct tick_sched *ts;
937 
938 	lockdep_assert_irqs_enabled();
939 
940 	local_irq_disable();
941 
942 	ts = this_cpu_ptr(&tick_cpu_sched);
943 	ts->inidle = 1;
944 	__tick_nohz_idle_enter(ts);
945 
946 	local_irq_enable();
947 }
948 
949 /**
950  * tick_nohz_irq_exit - update next tick event from interrupt exit
951  *
952  * When an interrupt fires while we are idle and it doesn't cause
953  * a reschedule, it may still add, modify or delete a timer, enqueue
954  * an RCU callback, etc...
955  * So we need to re-calculate and reprogram the next tick event.
956  */
957 void tick_nohz_irq_exit(void)
958 {
959 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
960 
961 	if (ts->inidle)
962 		__tick_nohz_idle_enter(ts);
963 	else
964 		tick_nohz_full_update_tick(ts);
965 }
966 
967 /**
968  * tick_nohz_get_sleep_length - return the length of the current sleep
969  *
970  * Called from power state control code with interrupts disabled
971  */
972 ktime_t tick_nohz_get_sleep_length(void)
973 {
974 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
975 
976 	return ts->sleep_length;
977 }
978 
979 /**
980  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
981  * for a particular CPU.
982  *
983  * Called from the schedutil frequency scaling governor in scheduler context.
984  */
985 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
986 {
987 	struct tick_sched *ts = tick_get_tick_sched(cpu);
988 
989 	return ts->idle_calls;
990 }
991 
992 /**
993  * tick_nohz_get_idle_calls - return the current idle calls counter value
994  *
995  * Called from the schedutil frequency scaling governor in scheduler context.
996  */
997 unsigned long tick_nohz_get_idle_calls(void)
998 {
999 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1000 
1001 	return ts->idle_calls;
1002 }
1003 
1004 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1005 {
1006 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1007 	unsigned long ticks;
1008 
1009 	if (vtime_accounting_cpu_enabled())
1010 		return;
1011 	/*
1012 	 * We stopped the tick in idle. Update process times would miss the
1013 	 * time we slept as update_process_times does only a 1 tick
1014 	 * accounting. Enforce that this is accounted to idle !
1015 	 */
1016 	ticks = jiffies - ts->idle_jiffies;
1017 	/*
1018 	 * We might be one off. Do not randomly account a huge number of ticks!
1019 	 */
1020 	if (ticks && ticks < LONG_MAX)
1021 		account_idle_ticks(ticks);
1022 #endif
1023 }
1024 
1025 /**
1026  * tick_nohz_idle_exit - restart the idle tick from the idle task
1027  *
1028  * Restart the idle tick when the CPU is woken up from idle
1029  * This also exit the RCU extended quiescent state. The CPU
1030  * can use RCU again after this function is called.
1031  */
1032 void tick_nohz_idle_exit(void)
1033 {
1034 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1035 	ktime_t now;
1036 
1037 	local_irq_disable();
1038 
1039 	WARN_ON_ONCE(!ts->inidle);
1040 
1041 	ts->inidle = 0;
1042 
1043 	if (ts->idle_active || ts->tick_stopped)
1044 		now = ktime_get();
1045 
1046 	if (ts->idle_active)
1047 		tick_nohz_stop_idle(ts, now);
1048 
1049 	if (ts->tick_stopped) {
1050 		tick_nohz_restart_sched_tick(ts, now);
1051 		tick_nohz_account_idle_ticks(ts);
1052 	}
1053 
1054 	local_irq_enable();
1055 }
1056 
1057 /*
1058  * The nohz low res interrupt handler
1059  */
1060 static void tick_nohz_handler(struct clock_event_device *dev)
1061 {
1062 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063 	struct pt_regs *regs = get_irq_regs();
1064 	ktime_t now = ktime_get();
1065 
1066 	dev->next_event = KTIME_MAX;
1067 
1068 	tick_sched_do_timer(now);
1069 	tick_sched_handle(ts, regs);
1070 
1071 	/* No need to reprogram if we are running tickless  */
1072 	if (unlikely(ts->tick_stopped))
1073 		return;
1074 
1075 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1076 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1077 }
1078 
1079 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1080 {
1081 	if (!tick_nohz_enabled)
1082 		return;
1083 	ts->nohz_mode = mode;
1084 	/* One update is enough */
1085 	if (!test_and_set_bit(0, &tick_nohz_active))
1086 		timers_update_nohz();
1087 }
1088 
1089 /**
1090  * tick_nohz_switch_to_nohz - switch to nohz mode
1091  */
1092 static void tick_nohz_switch_to_nohz(void)
1093 {
1094 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1095 	ktime_t next;
1096 
1097 	if (!tick_nohz_enabled)
1098 		return;
1099 
1100 	if (tick_switch_to_oneshot(tick_nohz_handler))
1101 		return;
1102 
1103 	/*
1104 	 * Recycle the hrtimer in ts, so we can share the
1105 	 * hrtimer_forward with the highres code.
1106 	 */
1107 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1108 	/* Get the next period */
1109 	next = tick_init_jiffy_update();
1110 
1111 	hrtimer_set_expires(&ts->sched_timer, next);
1112 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1113 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1114 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1115 }
1116 
1117 static inline void tick_nohz_irq_enter(void)
1118 {
1119 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1120 	ktime_t now;
1121 
1122 	if (!ts->idle_active && !ts->tick_stopped)
1123 		return;
1124 	now = ktime_get();
1125 	if (ts->idle_active)
1126 		tick_nohz_stop_idle(ts, now);
1127 	if (ts->tick_stopped)
1128 		tick_nohz_update_jiffies(now);
1129 }
1130 
1131 #else
1132 
1133 static inline void tick_nohz_switch_to_nohz(void) { }
1134 static inline void tick_nohz_irq_enter(void) { }
1135 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1136 
1137 #endif /* CONFIG_NO_HZ_COMMON */
1138 
1139 /*
1140  * Called from irq_enter to notify about the possible interruption of idle()
1141  */
1142 void tick_irq_enter(void)
1143 {
1144 	tick_check_oneshot_broadcast_this_cpu();
1145 	tick_nohz_irq_enter();
1146 }
1147 
1148 /*
1149  * High resolution timer specific code
1150  */
1151 #ifdef CONFIG_HIGH_RES_TIMERS
1152 /*
1153  * We rearm the timer until we get disabled by the idle code.
1154  * Called with interrupts disabled.
1155  */
1156 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1157 {
1158 	struct tick_sched *ts =
1159 		container_of(timer, struct tick_sched, sched_timer);
1160 	struct pt_regs *regs = get_irq_regs();
1161 	ktime_t now = ktime_get();
1162 
1163 	tick_sched_do_timer(now);
1164 
1165 	/*
1166 	 * Do not call, when we are not in irq context and have
1167 	 * no valid regs pointer
1168 	 */
1169 	if (regs)
1170 		tick_sched_handle(ts, regs);
1171 	else
1172 		ts->next_tick = 0;
1173 
1174 	/* No need to reprogram if we are in idle or full dynticks mode */
1175 	if (unlikely(ts->tick_stopped))
1176 		return HRTIMER_NORESTART;
1177 
1178 	hrtimer_forward(timer, now, tick_period);
1179 
1180 	return HRTIMER_RESTART;
1181 }
1182 
1183 static int sched_skew_tick;
1184 
1185 static int __init skew_tick(char *str)
1186 {
1187 	get_option(&str, &sched_skew_tick);
1188 
1189 	return 0;
1190 }
1191 early_param("skew_tick", skew_tick);
1192 
1193 /**
1194  * tick_setup_sched_timer - setup the tick emulation timer
1195  */
1196 void tick_setup_sched_timer(void)
1197 {
1198 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1199 	ktime_t now = ktime_get();
1200 
1201 	/*
1202 	 * Emulate tick processing via per-CPU hrtimers:
1203 	 */
1204 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1205 	ts->sched_timer.function = tick_sched_timer;
1206 
1207 	/* Get the next period (per-CPU) */
1208 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1209 
1210 	/* Offset the tick to avert jiffies_lock contention. */
1211 	if (sched_skew_tick) {
1212 		u64 offset = ktime_to_ns(tick_period) >> 1;
1213 		do_div(offset, num_possible_cpus());
1214 		offset *= smp_processor_id();
1215 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1216 	}
1217 
1218 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1219 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1220 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1221 }
1222 #endif /* HIGH_RES_TIMERS */
1223 
1224 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1225 void tick_cancel_sched_timer(int cpu)
1226 {
1227 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1228 
1229 # ifdef CONFIG_HIGH_RES_TIMERS
1230 	if (ts->sched_timer.base)
1231 		hrtimer_cancel(&ts->sched_timer);
1232 # endif
1233 
1234 	memset(ts, 0, sizeof(*ts));
1235 }
1236 #endif
1237 
1238 /**
1239  * Async notification about clocksource changes
1240  */
1241 void tick_clock_notify(void)
1242 {
1243 	int cpu;
1244 
1245 	for_each_possible_cpu(cpu)
1246 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1247 }
1248 
1249 /*
1250  * Async notification about clock event changes
1251  */
1252 void tick_oneshot_notify(void)
1253 {
1254 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1255 
1256 	set_bit(0, &ts->check_clocks);
1257 }
1258 
1259 /**
1260  * Check, if a change happened, which makes oneshot possible.
1261  *
1262  * Called cyclic from the hrtimer softirq (driven by the timer
1263  * softirq) allow_nohz signals, that we can switch into low-res nohz
1264  * mode, because high resolution timers are disabled (either compile
1265  * or runtime). Called with interrupts disabled.
1266  */
1267 int tick_check_oneshot_change(int allow_nohz)
1268 {
1269 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1270 
1271 	if (!test_and_clear_bit(0, &ts->check_clocks))
1272 		return 0;
1273 
1274 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1275 		return 0;
1276 
1277 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1278 		return 0;
1279 
1280 	if (!allow_nohz)
1281 		return 1;
1282 
1283 	tick_nohz_switch_to_nohz();
1284 	return 0;
1285 }
1286