1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 #include <linux/module.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by xtime_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding xtime_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with xtime_lock held */ 60 write_seqlock(&xtime_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&xtime_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&xtime_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&xtime_lock); 99 return period; 100 } 101 102 /* 103 * NOHZ - aka dynamic tick functionality 104 */ 105 #ifdef CONFIG_NO_HZ 106 /* 107 * NO HZ enabled ? 108 */ 109 static int tick_nohz_enabled __read_mostly = 1; 110 111 /* 112 * Enable / Disable tickless mode 113 */ 114 static int __init setup_tick_nohz(char *str) 115 { 116 if (!strcmp(str, "off")) 117 tick_nohz_enabled = 0; 118 else if (!strcmp(str, "on")) 119 tick_nohz_enabled = 1; 120 else 121 return 0; 122 return 1; 123 } 124 125 __setup("nohz=", setup_tick_nohz); 126 127 /** 128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 129 * 130 * Called from interrupt entry when the CPU was idle 131 * 132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 133 * must be updated. Otherwise an interrupt handler could use a stale jiffy 134 * value. We do this unconditionally on any cpu, as we don't know whether the 135 * cpu, which has the update task assigned is in a long sleep. 136 */ 137 void tick_nohz_update_jiffies(void) 138 { 139 int cpu = smp_processor_id(); 140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 141 unsigned long flags; 142 ktime_t now; 143 144 if (!ts->tick_stopped) 145 return; 146 147 cpu_clear(cpu, nohz_cpu_mask); 148 now = ktime_get(); 149 ts->idle_waketime = now; 150 151 local_irq_save(flags); 152 tick_do_update_jiffies64(now); 153 local_irq_restore(flags); 154 155 touch_softlockup_watchdog(); 156 } 157 158 void tick_nohz_stop_idle(int cpu) 159 { 160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 161 162 if (ts->idle_active) { 163 ktime_t now, delta; 164 now = ktime_get(); 165 delta = ktime_sub(now, ts->idle_entrytime); 166 ts->idle_lastupdate = now; 167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 168 ts->idle_active = 0; 169 170 sched_clock_idle_wakeup_event(0); 171 } 172 } 173 174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 175 { 176 ktime_t now, delta; 177 178 now = ktime_get(); 179 if (ts->idle_active) { 180 delta = ktime_sub(now, ts->idle_entrytime); 181 ts->idle_lastupdate = now; 182 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 183 } 184 ts->idle_entrytime = now; 185 ts->idle_active = 1; 186 sched_clock_idle_sleep_event(); 187 return now; 188 } 189 190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 191 { 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 193 194 if (!tick_nohz_enabled) 195 return -1; 196 197 if (ts->idle_active) 198 *last_update_time = ktime_to_us(ts->idle_lastupdate); 199 else 200 *last_update_time = ktime_to_us(ktime_get()); 201 202 return ktime_to_us(ts->idle_sleeptime); 203 } 204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 205 206 /** 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 208 * 209 * When the next event is more than a tick into the future, stop the idle tick 210 * Called either from the idle loop or from irq_exit() when an idle period was 211 * just interrupted by an interrupt which did not cause a reschedule. 212 */ 213 void tick_nohz_stop_sched_tick(int inidle) 214 { 215 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 216 struct tick_sched *ts; 217 ktime_t last_update, expires, now; 218 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 219 int cpu; 220 221 local_irq_save(flags); 222 223 cpu = smp_processor_id(); 224 ts = &per_cpu(tick_cpu_sched, cpu); 225 now = tick_nohz_start_idle(ts); 226 227 /* 228 * If this cpu is offline and it is the one which updates 229 * jiffies, then give up the assignment and let it be taken by 230 * the cpu which runs the tick timer next. If we don't drop 231 * this here the jiffies might be stale and do_timer() never 232 * invoked. 233 */ 234 if (unlikely(!cpu_online(cpu))) { 235 if (cpu == tick_do_timer_cpu) 236 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 237 } 238 239 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 240 goto end; 241 242 if (!inidle && !ts->inidle) 243 goto end; 244 245 ts->inidle = 1; 246 247 if (need_resched()) 248 goto end; 249 250 if (unlikely(local_softirq_pending())) { 251 static int ratelimit; 252 253 if (ratelimit < 10) { 254 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 255 local_softirq_pending()); 256 ratelimit++; 257 } 258 goto end; 259 } 260 261 ts->idle_calls++; 262 /* Read jiffies and the time when jiffies were updated last */ 263 do { 264 seq = read_seqbegin(&xtime_lock); 265 last_update = last_jiffies_update; 266 last_jiffies = jiffies; 267 } while (read_seqretry(&xtime_lock, seq)); 268 269 /* Get the next timer wheel timer */ 270 next_jiffies = get_next_timer_interrupt(last_jiffies); 271 delta_jiffies = next_jiffies - last_jiffies; 272 273 if (rcu_needs_cpu(cpu)) 274 delta_jiffies = 1; 275 /* 276 * Do not stop the tick, if we are only one off 277 * or if the cpu is required for rcu 278 */ 279 if (!ts->tick_stopped && delta_jiffies == 1) 280 goto out; 281 282 /* Schedule the tick, if we are at least one jiffie off */ 283 if ((long)delta_jiffies >= 1) { 284 285 if (delta_jiffies > 1) 286 cpu_set(cpu, nohz_cpu_mask); 287 /* 288 * nohz_stop_sched_tick can be called several times before 289 * the nohz_restart_sched_tick is called. This happens when 290 * interrupts arrive which do not cause a reschedule. In the 291 * first call we save the current tick time, so we can restart 292 * the scheduler tick in nohz_restart_sched_tick. 293 */ 294 if (!ts->tick_stopped) { 295 if (select_nohz_load_balancer(1)) { 296 /* 297 * sched tick not stopped! 298 */ 299 cpu_clear(cpu, nohz_cpu_mask); 300 goto out; 301 } 302 303 ts->idle_tick = ts->sched_timer.expires; 304 ts->tick_stopped = 1; 305 ts->idle_jiffies = last_jiffies; 306 rcu_enter_nohz(); 307 } 308 309 /* 310 * If this cpu is the one which updates jiffies, then 311 * give up the assignment and let it be taken by the 312 * cpu which runs the tick timer next, which might be 313 * this cpu as well. If we don't drop this here the 314 * jiffies might be stale and do_timer() never 315 * invoked. 316 */ 317 if (cpu == tick_do_timer_cpu) 318 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 319 320 ts->idle_sleeps++; 321 322 /* 323 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 324 * there is no timer pending or at least extremly far 325 * into the future (12 days for HZ=1000). In this case 326 * we simply stop the tick timer: 327 */ 328 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 329 ts->idle_expires.tv64 = KTIME_MAX; 330 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 331 hrtimer_cancel(&ts->sched_timer); 332 goto out; 333 } 334 335 /* 336 * calculate the expiry time for the next timer wheel 337 * timer 338 */ 339 expires = ktime_add_ns(last_update, tick_period.tv64 * 340 delta_jiffies); 341 ts->idle_expires = expires; 342 343 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 344 hrtimer_start(&ts->sched_timer, expires, 345 HRTIMER_MODE_ABS); 346 /* Check, if the timer was already in the past */ 347 if (hrtimer_active(&ts->sched_timer)) 348 goto out; 349 } else if (!tick_program_event(expires, 0)) 350 goto out; 351 /* 352 * We are past the event already. So we crossed a 353 * jiffie boundary. Update jiffies and raise the 354 * softirq. 355 */ 356 tick_do_update_jiffies64(ktime_get()); 357 cpu_clear(cpu, nohz_cpu_mask); 358 } 359 raise_softirq_irqoff(TIMER_SOFTIRQ); 360 out: 361 ts->next_jiffies = next_jiffies; 362 ts->last_jiffies = last_jiffies; 363 ts->sleep_length = ktime_sub(dev->next_event, now); 364 end: 365 local_irq_restore(flags); 366 } 367 368 /** 369 * tick_nohz_get_sleep_length - return the length of the current sleep 370 * 371 * Called from power state control code with interrupts disabled 372 */ 373 ktime_t tick_nohz_get_sleep_length(void) 374 { 375 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 376 377 return ts->sleep_length; 378 } 379 380 /** 381 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 382 * 383 * Restart the idle tick when the CPU is woken up from idle 384 */ 385 void tick_nohz_restart_sched_tick(void) 386 { 387 int cpu = smp_processor_id(); 388 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 389 unsigned long ticks; 390 ktime_t now; 391 392 local_irq_disable(); 393 tick_nohz_stop_idle(cpu); 394 395 if (!ts->inidle || !ts->tick_stopped) { 396 ts->inidle = 0; 397 local_irq_enable(); 398 return; 399 } 400 401 ts->inidle = 0; 402 403 rcu_exit_nohz(); 404 405 /* Update jiffies first */ 406 select_nohz_load_balancer(0); 407 now = ktime_get(); 408 tick_do_update_jiffies64(now); 409 cpu_clear(cpu, nohz_cpu_mask); 410 411 /* 412 * We stopped the tick in idle. Update process times would miss the 413 * time we slept as update_process_times does only a 1 tick 414 * accounting. Enforce that this is accounted to idle ! 415 */ 416 ticks = jiffies - ts->idle_jiffies; 417 /* 418 * We might be one off. Do not randomly account a huge number of ticks! 419 */ 420 if (ticks && ticks < LONG_MAX) { 421 add_preempt_count(HARDIRQ_OFFSET); 422 account_system_time(current, HARDIRQ_OFFSET, 423 jiffies_to_cputime(ticks)); 424 sub_preempt_count(HARDIRQ_OFFSET); 425 } 426 427 touch_softlockup_watchdog(); 428 /* 429 * Cancel the scheduled timer and restore the tick 430 */ 431 ts->tick_stopped = 0; 432 ts->idle_exittime = now; 433 hrtimer_cancel(&ts->sched_timer); 434 ts->sched_timer.expires = ts->idle_tick; 435 436 while (1) { 437 /* Forward the time to expire in the future */ 438 hrtimer_forward(&ts->sched_timer, now, tick_period); 439 440 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 441 hrtimer_start(&ts->sched_timer, 442 ts->sched_timer.expires, 443 HRTIMER_MODE_ABS); 444 /* Check, if the timer was already in the past */ 445 if (hrtimer_active(&ts->sched_timer)) 446 break; 447 } else { 448 if (!tick_program_event(ts->sched_timer.expires, 0)) 449 break; 450 } 451 /* Update jiffies and reread time */ 452 tick_do_update_jiffies64(now); 453 now = ktime_get(); 454 } 455 local_irq_enable(); 456 } 457 458 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 459 { 460 hrtimer_forward(&ts->sched_timer, now, tick_period); 461 return tick_program_event(ts->sched_timer.expires, 0); 462 } 463 464 /* 465 * The nohz low res interrupt handler 466 */ 467 static void tick_nohz_handler(struct clock_event_device *dev) 468 { 469 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 470 struct pt_regs *regs = get_irq_regs(); 471 int cpu = smp_processor_id(); 472 ktime_t now = ktime_get(); 473 474 dev->next_event.tv64 = KTIME_MAX; 475 476 /* 477 * Check if the do_timer duty was dropped. We don't care about 478 * concurrency: This happens only when the cpu in charge went 479 * into a long sleep. If two cpus happen to assign themself to 480 * this duty, then the jiffies update is still serialized by 481 * xtime_lock. 482 */ 483 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 484 tick_do_timer_cpu = cpu; 485 486 /* Check, if the jiffies need an update */ 487 if (tick_do_timer_cpu == cpu) 488 tick_do_update_jiffies64(now); 489 490 /* 491 * When we are idle and the tick is stopped, we have to touch 492 * the watchdog as we might not schedule for a really long 493 * time. This happens on complete idle SMP systems while 494 * waiting on the login prompt. We also increment the "start 495 * of idle" jiffy stamp so the idle accounting adjustment we 496 * do when we go busy again does not account too much ticks. 497 */ 498 if (ts->tick_stopped) { 499 touch_softlockup_watchdog(); 500 ts->idle_jiffies++; 501 } 502 503 update_process_times(user_mode(regs)); 504 profile_tick(CPU_PROFILING); 505 506 /* Do not restart, when we are in the idle loop */ 507 if (ts->tick_stopped) 508 return; 509 510 while (tick_nohz_reprogram(ts, now)) { 511 now = ktime_get(); 512 tick_do_update_jiffies64(now); 513 } 514 } 515 516 /** 517 * tick_nohz_switch_to_nohz - switch to nohz mode 518 */ 519 static void tick_nohz_switch_to_nohz(void) 520 { 521 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 522 ktime_t next; 523 524 if (!tick_nohz_enabled) 525 return; 526 527 local_irq_disable(); 528 if (tick_switch_to_oneshot(tick_nohz_handler)) { 529 local_irq_enable(); 530 return; 531 } 532 533 ts->nohz_mode = NOHZ_MODE_LOWRES; 534 535 /* 536 * Recycle the hrtimer in ts, so we can share the 537 * hrtimer_forward with the highres code. 538 */ 539 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 540 /* Get the next period */ 541 next = tick_init_jiffy_update(); 542 543 for (;;) { 544 ts->sched_timer.expires = next; 545 if (!tick_program_event(next, 0)) 546 break; 547 next = ktime_add(next, tick_period); 548 } 549 local_irq_enable(); 550 551 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 552 smp_processor_id()); 553 } 554 555 #else 556 557 static inline void tick_nohz_switch_to_nohz(void) { } 558 559 #endif /* NO_HZ */ 560 561 /* 562 * High resolution timer specific code 563 */ 564 #ifdef CONFIG_HIGH_RES_TIMERS 565 /* 566 * We rearm the timer until we get disabled by the idle code. 567 * Called with interrupts disabled and timer->base->cpu_base->lock held. 568 */ 569 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 570 { 571 struct tick_sched *ts = 572 container_of(timer, struct tick_sched, sched_timer); 573 struct pt_regs *regs = get_irq_regs(); 574 ktime_t now = ktime_get(); 575 int cpu = smp_processor_id(); 576 577 #ifdef CONFIG_NO_HZ 578 /* 579 * Check if the do_timer duty was dropped. We don't care about 580 * concurrency: This happens only when the cpu in charge went 581 * into a long sleep. If two cpus happen to assign themself to 582 * this duty, then the jiffies update is still serialized by 583 * xtime_lock. 584 */ 585 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 586 tick_do_timer_cpu = cpu; 587 #endif 588 589 /* Check, if the jiffies need an update */ 590 if (tick_do_timer_cpu == cpu) 591 tick_do_update_jiffies64(now); 592 593 /* 594 * Do not call, when we are not in irq context and have 595 * no valid regs pointer 596 */ 597 if (regs) { 598 /* 599 * When we are idle and the tick is stopped, we have to touch 600 * the watchdog as we might not schedule for a really long 601 * time. This happens on complete idle SMP systems while 602 * waiting on the login prompt. We also increment the "start of 603 * idle" jiffy stamp so the idle accounting adjustment we do 604 * when we go busy again does not account too much ticks. 605 */ 606 if (ts->tick_stopped) { 607 touch_softlockup_watchdog(); 608 ts->idle_jiffies++; 609 } 610 update_process_times(user_mode(regs)); 611 profile_tick(CPU_PROFILING); 612 } 613 614 /* Do not restart, when we are in the idle loop */ 615 if (ts->tick_stopped) 616 return HRTIMER_NORESTART; 617 618 hrtimer_forward(timer, now, tick_period); 619 620 return HRTIMER_RESTART; 621 } 622 623 /** 624 * tick_setup_sched_timer - setup the tick emulation timer 625 */ 626 void tick_setup_sched_timer(void) 627 { 628 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 629 ktime_t now = ktime_get(); 630 u64 offset; 631 632 /* 633 * Emulate tick processing via per-CPU hrtimers: 634 */ 635 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 636 ts->sched_timer.function = tick_sched_timer; 637 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; 638 639 /* Get the next period (per cpu) */ 640 ts->sched_timer.expires = tick_init_jiffy_update(); 641 offset = ktime_to_ns(tick_period) >> 1; 642 do_div(offset, num_possible_cpus()); 643 offset *= smp_processor_id(); 644 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); 645 646 for (;;) { 647 hrtimer_forward(&ts->sched_timer, now, tick_period); 648 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, 649 HRTIMER_MODE_ABS); 650 /* Check, if the timer was already in the past */ 651 if (hrtimer_active(&ts->sched_timer)) 652 break; 653 now = ktime_get(); 654 } 655 656 #ifdef CONFIG_NO_HZ 657 if (tick_nohz_enabled) 658 ts->nohz_mode = NOHZ_MODE_HIGHRES; 659 #endif 660 } 661 #endif /* HIGH_RES_TIMERS */ 662 663 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 664 void tick_cancel_sched_timer(int cpu) 665 { 666 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 667 668 # ifdef CONFIG_HIGH_RES_TIMERS 669 if (ts->sched_timer.base) 670 hrtimer_cancel(&ts->sched_timer); 671 # endif 672 673 ts->nohz_mode = NOHZ_MODE_INACTIVE; 674 } 675 #endif 676 677 /** 678 * Async notification about clocksource changes 679 */ 680 void tick_clock_notify(void) 681 { 682 int cpu; 683 684 for_each_possible_cpu(cpu) 685 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 686 } 687 688 /* 689 * Async notification about clock event changes 690 */ 691 void tick_oneshot_notify(void) 692 { 693 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 694 695 set_bit(0, &ts->check_clocks); 696 } 697 698 /** 699 * Check, if a change happened, which makes oneshot possible. 700 * 701 * Called cyclic from the hrtimer softirq (driven by the timer 702 * softirq) allow_nohz signals, that we can switch into low-res nohz 703 * mode, because high resolution timers are disabled (either compile 704 * or runtime). 705 */ 706 int tick_check_oneshot_change(int allow_nohz) 707 { 708 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 709 710 if (!test_and_clear_bit(0, &ts->check_clocks)) 711 return 0; 712 713 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 714 return 0; 715 716 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 717 return 0; 718 719 if (!allow_nohz) 720 return 1; 721 722 tick_nohz_switch_to_nohz(); 723 return 0; 724 } 725