xref: /linux/kernel/time/tick-sched.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 void tick_nohz_update_jiffies(void)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 	ktime_t now;
143 
144 	if (!ts->tick_stopped)
145 		return;
146 
147 	cpu_clear(cpu, nohz_cpu_mask);
148 	now = ktime_get();
149 	ts->idle_waketime = now;
150 
151 	local_irq_save(flags);
152 	tick_do_update_jiffies64(now);
153 	local_irq_restore(flags);
154 
155 	touch_softlockup_watchdog();
156 }
157 
158 void tick_nohz_stop_idle(int cpu)
159 {
160 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
161 
162 	if (ts->idle_active) {
163 		ktime_t now, delta;
164 		now = ktime_get();
165 		delta = ktime_sub(now, ts->idle_entrytime);
166 		ts->idle_lastupdate = now;
167 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
168 		ts->idle_active = 0;
169 
170 		sched_clock_idle_wakeup_event(0);
171 	}
172 }
173 
174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
175 {
176 	ktime_t now, delta;
177 
178 	now = ktime_get();
179 	if (ts->idle_active) {
180 		delta = ktime_sub(now, ts->idle_entrytime);
181 		ts->idle_lastupdate = now;
182 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
183 	}
184 	ts->idle_entrytime = now;
185 	ts->idle_active = 1;
186 	sched_clock_idle_sleep_event();
187 	return now;
188 }
189 
190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
191 {
192 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
193 
194 	if (!tick_nohz_enabled)
195 		return -1;
196 
197 	if (ts->idle_active)
198 		*last_update_time = ktime_to_us(ts->idle_lastupdate);
199 	else
200 		*last_update_time = ktime_to_us(ktime_get());
201 
202 	return ktime_to_us(ts->idle_sleeptime);
203 }
204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
205 
206 /**
207  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
208  *
209  * When the next event is more than a tick into the future, stop the idle tick
210  * Called either from the idle loop or from irq_exit() when an idle period was
211  * just interrupted by an interrupt which did not cause a reschedule.
212  */
213 void tick_nohz_stop_sched_tick(int inidle)
214 {
215 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
216 	struct tick_sched *ts;
217 	ktime_t last_update, expires, now;
218 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
219 	int cpu;
220 
221 	local_irq_save(flags);
222 
223 	cpu = smp_processor_id();
224 	ts = &per_cpu(tick_cpu_sched, cpu);
225 	now = tick_nohz_start_idle(ts);
226 
227 	/*
228 	 * If this cpu is offline and it is the one which updates
229 	 * jiffies, then give up the assignment and let it be taken by
230 	 * the cpu which runs the tick timer next. If we don't drop
231 	 * this here the jiffies might be stale and do_timer() never
232 	 * invoked.
233 	 */
234 	if (unlikely(!cpu_online(cpu))) {
235 		if (cpu == tick_do_timer_cpu)
236 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
237 	}
238 
239 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
240 		goto end;
241 
242 	if (!inidle && !ts->inidle)
243 		goto end;
244 
245 	ts->inidle = 1;
246 
247 	if (need_resched())
248 		goto end;
249 
250 	if (unlikely(local_softirq_pending())) {
251 		static int ratelimit;
252 
253 		if (ratelimit < 10) {
254 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
255 			       local_softirq_pending());
256 			ratelimit++;
257 		}
258 		goto end;
259 	}
260 
261 	ts->idle_calls++;
262 	/* Read jiffies and the time when jiffies were updated last */
263 	do {
264 		seq = read_seqbegin(&xtime_lock);
265 		last_update = last_jiffies_update;
266 		last_jiffies = jiffies;
267 	} while (read_seqretry(&xtime_lock, seq));
268 
269 	/* Get the next timer wheel timer */
270 	next_jiffies = get_next_timer_interrupt(last_jiffies);
271 	delta_jiffies = next_jiffies - last_jiffies;
272 
273 	if (rcu_needs_cpu(cpu))
274 		delta_jiffies = 1;
275 	/*
276 	 * Do not stop the tick, if we are only one off
277 	 * or if the cpu is required for rcu
278 	 */
279 	if (!ts->tick_stopped && delta_jiffies == 1)
280 		goto out;
281 
282 	/* Schedule the tick, if we are at least one jiffie off */
283 	if ((long)delta_jiffies >= 1) {
284 
285 		if (delta_jiffies > 1)
286 			cpu_set(cpu, nohz_cpu_mask);
287 		/*
288 		 * nohz_stop_sched_tick can be called several times before
289 		 * the nohz_restart_sched_tick is called. This happens when
290 		 * interrupts arrive which do not cause a reschedule. In the
291 		 * first call we save the current tick time, so we can restart
292 		 * the scheduler tick in nohz_restart_sched_tick.
293 		 */
294 		if (!ts->tick_stopped) {
295 			if (select_nohz_load_balancer(1)) {
296 				/*
297 				 * sched tick not stopped!
298 				 */
299 				cpu_clear(cpu, nohz_cpu_mask);
300 				goto out;
301 			}
302 
303 			ts->idle_tick = ts->sched_timer.expires;
304 			ts->tick_stopped = 1;
305 			ts->idle_jiffies = last_jiffies;
306 			rcu_enter_nohz();
307 		}
308 
309 		/*
310 		 * If this cpu is the one which updates jiffies, then
311 		 * give up the assignment and let it be taken by the
312 		 * cpu which runs the tick timer next, which might be
313 		 * this cpu as well. If we don't drop this here the
314 		 * jiffies might be stale and do_timer() never
315 		 * invoked.
316 		 */
317 		if (cpu == tick_do_timer_cpu)
318 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
319 
320 		ts->idle_sleeps++;
321 
322 		/*
323 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
324 		 * there is no timer pending or at least extremly far
325 		 * into the future (12 days for HZ=1000). In this case
326 		 * we simply stop the tick timer:
327 		 */
328 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
329 			ts->idle_expires.tv64 = KTIME_MAX;
330 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
331 				hrtimer_cancel(&ts->sched_timer);
332 			goto out;
333 		}
334 
335 		/*
336 		 * calculate the expiry time for the next timer wheel
337 		 * timer
338 		 */
339 		expires = ktime_add_ns(last_update, tick_period.tv64 *
340 				       delta_jiffies);
341 		ts->idle_expires = expires;
342 
343 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
344 			hrtimer_start(&ts->sched_timer, expires,
345 				      HRTIMER_MODE_ABS);
346 			/* Check, if the timer was already in the past */
347 			if (hrtimer_active(&ts->sched_timer))
348 				goto out;
349 		} else if (!tick_program_event(expires, 0))
350 				goto out;
351 		/*
352 		 * We are past the event already. So we crossed a
353 		 * jiffie boundary. Update jiffies and raise the
354 		 * softirq.
355 		 */
356 		tick_do_update_jiffies64(ktime_get());
357 		cpu_clear(cpu, nohz_cpu_mask);
358 	}
359 	raise_softirq_irqoff(TIMER_SOFTIRQ);
360 out:
361 	ts->next_jiffies = next_jiffies;
362 	ts->last_jiffies = last_jiffies;
363 	ts->sleep_length = ktime_sub(dev->next_event, now);
364 end:
365 	local_irq_restore(flags);
366 }
367 
368 /**
369  * tick_nohz_get_sleep_length - return the length of the current sleep
370  *
371  * Called from power state control code with interrupts disabled
372  */
373 ktime_t tick_nohz_get_sleep_length(void)
374 {
375 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
376 
377 	return ts->sleep_length;
378 }
379 
380 /**
381  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
382  *
383  * Restart the idle tick when the CPU is woken up from idle
384  */
385 void tick_nohz_restart_sched_tick(void)
386 {
387 	int cpu = smp_processor_id();
388 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
389 	unsigned long ticks;
390 	ktime_t now;
391 
392 	local_irq_disable();
393 	tick_nohz_stop_idle(cpu);
394 
395 	if (!ts->inidle || !ts->tick_stopped) {
396 		ts->inidle = 0;
397 		local_irq_enable();
398 		return;
399 	}
400 
401 	ts->inidle = 0;
402 
403 	rcu_exit_nohz();
404 
405 	/* Update jiffies first */
406 	select_nohz_load_balancer(0);
407 	now = ktime_get();
408 	tick_do_update_jiffies64(now);
409 	cpu_clear(cpu, nohz_cpu_mask);
410 
411 	/*
412 	 * We stopped the tick in idle. Update process times would miss the
413 	 * time we slept as update_process_times does only a 1 tick
414 	 * accounting. Enforce that this is accounted to idle !
415 	 */
416 	ticks = jiffies - ts->idle_jiffies;
417 	/*
418 	 * We might be one off. Do not randomly account a huge number of ticks!
419 	 */
420 	if (ticks && ticks < LONG_MAX) {
421 		add_preempt_count(HARDIRQ_OFFSET);
422 		account_system_time(current, HARDIRQ_OFFSET,
423 				    jiffies_to_cputime(ticks));
424 		sub_preempt_count(HARDIRQ_OFFSET);
425 	}
426 
427 	touch_softlockup_watchdog();
428 	/*
429 	 * Cancel the scheduled timer and restore the tick
430 	 */
431 	ts->tick_stopped  = 0;
432 	ts->idle_exittime = now;
433 	hrtimer_cancel(&ts->sched_timer);
434 	ts->sched_timer.expires = ts->idle_tick;
435 
436 	while (1) {
437 		/* Forward the time to expire in the future */
438 		hrtimer_forward(&ts->sched_timer, now, tick_period);
439 
440 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
441 			hrtimer_start(&ts->sched_timer,
442 				      ts->sched_timer.expires,
443 				      HRTIMER_MODE_ABS);
444 			/* Check, if the timer was already in the past */
445 			if (hrtimer_active(&ts->sched_timer))
446 				break;
447 		} else {
448 			if (!tick_program_event(ts->sched_timer.expires, 0))
449 				break;
450 		}
451 		/* Update jiffies and reread time */
452 		tick_do_update_jiffies64(now);
453 		now = ktime_get();
454 	}
455 	local_irq_enable();
456 }
457 
458 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
459 {
460 	hrtimer_forward(&ts->sched_timer, now, tick_period);
461 	return tick_program_event(ts->sched_timer.expires, 0);
462 }
463 
464 /*
465  * The nohz low res interrupt handler
466  */
467 static void tick_nohz_handler(struct clock_event_device *dev)
468 {
469 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
470 	struct pt_regs *regs = get_irq_regs();
471 	int cpu = smp_processor_id();
472 	ktime_t now = ktime_get();
473 
474 	dev->next_event.tv64 = KTIME_MAX;
475 
476 	/*
477 	 * Check if the do_timer duty was dropped. We don't care about
478 	 * concurrency: This happens only when the cpu in charge went
479 	 * into a long sleep. If two cpus happen to assign themself to
480 	 * this duty, then the jiffies update is still serialized by
481 	 * xtime_lock.
482 	 */
483 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
484 		tick_do_timer_cpu = cpu;
485 
486 	/* Check, if the jiffies need an update */
487 	if (tick_do_timer_cpu == cpu)
488 		tick_do_update_jiffies64(now);
489 
490 	/*
491 	 * When we are idle and the tick is stopped, we have to touch
492 	 * the watchdog as we might not schedule for a really long
493 	 * time. This happens on complete idle SMP systems while
494 	 * waiting on the login prompt. We also increment the "start
495 	 * of idle" jiffy stamp so the idle accounting adjustment we
496 	 * do when we go busy again does not account too much ticks.
497 	 */
498 	if (ts->tick_stopped) {
499 		touch_softlockup_watchdog();
500 		ts->idle_jiffies++;
501 	}
502 
503 	update_process_times(user_mode(regs));
504 	profile_tick(CPU_PROFILING);
505 
506 	/* Do not restart, when we are in the idle loop */
507 	if (ts->tick_stopped)
508 		return;
509 
510 	while (tick_nohz_reprogram(ts, now)) {
511 		now = ktime_get();
512 		tick_do_update_jiffies64(now);
513 	}
514 }
515 
516 /**
517  * tick_nohz_switch_to_nohz - switch to nohz mode
518  */
519 static void tick_nohz_switch_to_nohz(void)
520 {
521 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
522 	ktime_t next;
523 
524 	if (!tick_nohz_enabled)
525 		return;
526 
527 	local_irq_disable();
528 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
529 		local_irq_enable();
530 		return;
531 	}
532 
533 	ts->nohz_mode = NOHZ_MODE_LOWRES;
534 
535 	/*
536 	 * Recycle the hrtimer in ts, so we can share the
537 	 * hrtimer_forward with the highres code.
538 	 */
539 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
540 	/* Get the next period */
541 	next = tick_init_jiffy_update();
542 
543 	for (;;) {
544 		ts->sched_timer.expires = next;
545 		if (!tick_program_event(next, 0))
546 			break;
547 		next = ktime_add(next, tick_period);
548 	}
549 	local_irq_enable();
550 
551 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
552 	       smp_processor_id());
553 }
554 
555 #else
556 
557 static inline void tick_nohz_switch_to_nohz(void) { }
558 
559 #endif /* NO_HZ */
560 
561 /*
562  * High resolution timer specific code
563  */
564 #ifdef CONFIG_HIGH_RES_TIMERS
565 /*
566  * We rearm the timer until we get disabled by the idle code.
567  * Called with interrupts disabled and timer->base->cpu_base->lock held.
568  */
569 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
570 {
571 	struct tick_sched *ts =
572 		container_of(timer, struct tick_sched, sched_timer);
573 	struct pt_regs *regs = get_irq_regs();
574 	ktime_t now = ktime_get();
575 	int cpu = smp_processor_id();
576 
577 #ifdef CONFIG_NO_HZ
578 	/*
579 	 * Check if the do_timer duty was dropped. We don't care about
580 	 * concurrency: This happens only when the cpu in charge went
581 	 * into a long sleep. If two cpus happen to assign themself to
582 	 * this duty, then the jiffies update is still serialized by
583 	 * xtime_lock.
584 	 */
585 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
586 		tick_do_timer_cpu = cpu;
587 #endif
588 
589 	/* Check, if the jiffies need an update */
590 	if (tick_do_timer_cpu == cpu)
591 		tick_do_update_jiffies64(now);
592 
593 	/*
594 	 * Do not call, when we are not in irq context and have
595 	 * no valid regs pointer
596 	 */
597 	if (regs) {
598 		/*
599 		 * When we are idle and the tick is stopped, we have to touch
600 		 * the watchdog as we might not schedule for a really long
601 		 * time. This happens on complete idle SMP systems while
602 		 * waiting on the login prompt. We also increment the "start of
603 		 * idle" jiffy stamp so the idle accounting adjustment we do
604 		 * when we go busy again does not account too much ticks.
605 		 */
606 		if (ts->tick_stopped) {
607 			touch_softlockup_watchdog();
608 			ts->idle_jiffies++;
609 		}
610 		update_process_times(user_mode(regs));
611 		profile_tick(CPU_PROFILING);
612 	}
613 
614 	/* Do not restart, when we are in the idle loop */
615 	if (ts->tick_stopped)
616 		return HRTIMER_NORESTART;
617 
618 	hrtimer_forward(timer, now, tick_period);
619 
620 	return HRTIMER_RESTART;
621 }
622 
623 /**
624  * tick_setup_sched_timer - setup the tick emulation timer
625  */
626 void tick_setup_sched_timer(void)
627 {
628 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
629 	ktime_t now = ktime_get();
630 	u64 offset;
631 
632 	/*
633 	 * Emulate tick processing via per-CPU hrtimers:
634 	 */
635 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
636 	ts->sched_timer.function = tick_sched_timer;
637 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
638 
639 	/* Get the next period (per cpu) */
640 	ts->sched_timer.expires = tick_init_jiffy_update();
641 	offset = ktime_to_ns(tick_period) >> 1;
642 	do_div(offset, num_possible_cpus());
643 	offset *= smp_processor_id();
644 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
645 
646 	for (;;) {
647 		hrtimer_forward(&ts->sched_timer, now, tick_period);
648 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
649 			      HRTIMER_MODE_ABS);
650 		/* Check, if the timer was already in the past */
651 		if (hrtimer_active(&ts->sched_timer))
652 			break;
653 		now = ktime_get();
654 	}
655 
656 #ifdef CONFIG_NO_HZ
657 	if (tick_nohz_enabled)
658 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
659 #endif
660 }
661 #endif /* HIGH_RES_TIMERS */
662 
663 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
664 void tick_cancel_sched_timer(int cpu)
665 {
666 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
667 
668 # ifdef CONFIG_HIGH_RES_TIMERS
669 	if (ts->sched_timer.base)
670 		hrtimer_cancel(&ts->sched_timer);
671 # endif
672 
673 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
674 }
675 #endif
676 
677 /**
678  * Async notification about clocksource changes
679  */
680 void tick_clock_notify(void)
681 {
682 	int cpu;
683 
684 	for_each_possible_cpu(cpu)
685 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
686 }
687 
688 /*
689  * Async notification about clock event changes
690  */
691 void tick_oneshot_notify(void)
692 {
693 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
694 
695 	set_bit(0, &ts->check_clocks);
696 }
697 
698 /**
699  * Check, if a change happened, which makes oneshot possible.
700  *
701  * Called cyclic from the hrtimer softirq (driven by the timer
702  * softirq) allow_nohz signals, that we can switch into low-res nohz
703  * mode, because high resolution timers are disabled (either compile
704  * or runtime).
705  */
706 int tick_check_oneshot_change(int allow_nohz)
707 {
708 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
709 
710 	if (!test_and_clear_bit(0, &ts->check_clocks))
711 		return 0;
712 
713 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
714 		return 0;
715 
716 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
717 		return 0;
718 
719 	if (!allow_nohz)
720 		return 1;
721 
722 	tick_nohz_switch_to_nohz();
723 	return 0;
724 }
725