1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/compiler.h> 12 #include <linux/cpu.h> 13 #include <linux/err.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/percpu.h> 18 #include <linux/nmi.h> 19 #include <linux/profile.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/clock.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/nohz.h> 24 #include <linux/sched/loadavg.h> 25 #include <linux/module.h> 26 #include <linux/irq_work.h> 27 #include <linux/posix-timers.h> 28 #include <linux/context_tracking.h> 29 #include <linux/mm.h> 30 31 #include <asm/irq_regs.h> 32 33 #include "tick-internal.h" 34 35 #include <trace/events/timer.h> 36 37 /* 38 * Per-CPU nohz control structure 39 */ 40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 41 42 struct tick_sched *tick_get_tick_sched(int cpu) 43 { 44 return &per_cpu(tick_cpu_sched, cpu); 45 } 46 47 /* 48 * The time when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64-bit can do a quick check without holding the jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32-bit cannot do that because the store of 'tick_next_period' 68 * consists of two 32-bit stores, and the first store could be 69 * moved by the CPU to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on 'jiffies_lock' and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Re-evaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 118 jiffies_64 += ticks; 119 120 /* Keep the tick_next_period variable up to date */ 121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 122 123 if (IS_ENABLED(CONFIG_64BIT)) { 124 /* 125 * Pairs with smp_load_acquire() in the lockless quick 126 * check above, and ensures that the update to 'jiffies_64' is 127 * not reordered vs. the store to 'tick_next_period', neither 128 * by the compiler nor by the CPU. 129 */ 130 smp_store_release(&tick_next_period, nextp); 131 } else { 132 /* 133 * A plain store is good enough on 32-bit, as the quick check 134 * above is protected by the sequence count. 135 */ 136 tick_next_period = nextp; 137 } 138 139 /* 140 * Release the sequence count. calc_global_load() below is not 141 * protected by it, but 'jiffies_lock' needs to be held to prevent 142 * concurrent invocations. 143 */ 144 write_seqcount_end(&jiffies_seq); 145 146 calc_global_load(); 147 148 raw_spin_unlock(&jiffies_lock); 149 update_wall_time(); 150 } 151 152 /* 153 * Initialize and return retrieve the jiffies update. 154 */ 155 static ktime_t tick_init_jiffy_update(void) 156 { 157 ktime_t period; 158 159 raw_spin_lock(&jiffies_lock); 160 write_seqcount_begin(&jiffies_seq); 161 162 /* Have we started the jiffies update yet ? */ 163 if (last_jiffies_update == 0) { 164 u32 rem; 165 166 /* 167 * Ensure that the tick is aligned to a multiple of 168 * TICK_NSEC. 169 */ 170 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 171 if (rem) 172 tick_next_period += TICK_NSEC - rem; 173 174 last_jiffies_update = tick_next_period; 175 } 176 period = last_jiffies_update; 177 178 write_seqcount_end(&jiffies_seq); 179 raw_spin_unlock(&jiffies_lock); 180 181 return period; 182 } 183 184 static inline int tick_sched_flag_test(struct tick_sched *ts, 185 unsigned long flag) 186 { 187 return !!(ts->flags & flag); 188 } 189 190 static inline void tick_sched_flag_set(struct tick_sched *ts, 191 unsigned long flag) 192 { 193 lockdep_assert_irqs_disabled(); 194 ts->flags |= flag; 195 } 196 197 static inline void tick_sched_flag_clear(struct tick_sched *ts, 198 unsigned long flag) 199 { 200 lockdep_assert_irqs_disabled(); 201 ts->flags &= ~flag; 202 } 203 204 #define MAX_STALLED_JIFFIES 5 205 206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 207 { 208 int tick_cpu, cpu = smp_processor_id(); 209 210 /* 211 * Check if the do_timer duty was dropped. We don't care about 212 * concurrency: This happens only when the CPU in charge went 213 * into a long sleep. If two CPUs happen to assign themselves to 214 * this duty, then the jiffies update is still serialized by 215 * 'jiffies_lock'. 216 * 217 * If nohz_full is enabled, this should not happen because the 218 * 'tick_do_timer_cpu' CPU never relinquishes. 219 */ 220 tick_cpu = READ_ONCE(tick_do_timer_cpu); 221 222 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) { 223 #ifdef CONFIG_NO_HZ_FULL 224 WARN_ON_ONCE(tick_nohz_full_running); 225 #endif 226 WRITE_ONCE(tick_do_timer_cpu, cpu); 227 tick_cpu = cpu; 228 } 229 230 /* Check if jiffies need an update */ 231 if (tick_cpu == cpu) 232 tick_do_update_jiffies64(now); 233 234 /* 235 * If the jiffies update stalled for too long (timekeeper in stop_machine() 236 * or VMEXIT'ed for several msecs), force an update. 237 */ 238 if (ts->last_tick_jiffies != jiffies) { 239 ts->stalled_jiffies = 0; 240 ts->last_tick_jiffies = READ_ONCE(jiffies); 241 } else { 242 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 243 tick_do_update_jiffies64(now); 244 ts->stalled_jiffies = 0; 245 ts->last_tick_jiffies = READ_ONCE(jiffies); 246 } 247 } 248 249 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 250 ts->got_idle_tick = 1; 251 } 252 253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 254 { 255 /* 256 * When we are idle and the tick is stopped, we have to touch 257 * the watchdog as we might not schedule for a really long 258 * time. This happens on completely idle SMP systems while 259 * waiting on the login prompt. We also increment the "start of 260 * idle" jiffy stamp so the idle accounting adjustment we do 261 * when we go busy again does not account too many ticks. 262 */ 263 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 264 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 265 touch_softlockup_watchdog_sched(); 266 if (is_idle_task(current)) 267 ts->idle_jiffies++; 268 /* 269 * In case the current tick fired too early past its expected 270 * expiration, make sure we don't bypass the next clock reprogramming 271 * to the same deadline. 272 */ 273 ts->next_tick = 0; 274 } 275 276 update_process_times(user_mode(regs)); 277 profile_tick(CPU_PROFILING); 278 } 279 280 /* 281 * We rearm the timer until we get disabled by the idle code. 282 * Called with interrupts disabled. 283 */ 284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) 285 { 286 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); 287 struct pt_regs *regs = get_irq_regs(); 288 ktime_t now = ktime_get(); 289 290 tick_sched_do_timer(ts, now); 291 292 /* 293 * Do not call when we are not in IRQ context and have 294 * no valid 'regs' pointer 295 */ 296 if (regs) 297 tick_sched_handle(ts, regs); 298 else 299 ts->next_tick = 0; 300 301 /* 302 * In dynticks mode, tick reprogram is deferred: 303 * - to the idle task if in dynticks-idle 304 * - to IRQ exit if in full-dynticks. 305 */ 306 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) 307 return HRTIMER_NORESTART; 308 309 hrtimer_forward(timer, now, TICK_NSEC); 310 311 return HRTIMER_RESTART; 312 } 313 314 static void tick_sched_timer_cancel(struct tick_sched *ts) 315 { 316 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 317 hrtimer_cancel(&ts->sched_timer); 318 else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 319 tick_program_event(KTIME_MAX, 1); 320 } 321 322 #ifdef CONFIG_NO_HZ_FULL 323 cpumask_var_t tick_nohz_full_mask; 324 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 325 bool tick_nohz_full_running; 326 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 327 static atomic_t tick_dep_mask; 328 329 static bool check_tick_dependency(atomic_t *dep) 330 { 331 int val = atomic_read(dep); 332 333 if (val & TICK_DEP_MASK_POSIX_TIMER) { 334 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 335 return true; 336 } 337 338 if (val & TICK_DEP_MASK_PERF_EVENTS) { 339 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 340 return true; 341 } 342 343 if (val & TICK_DEP_MASK_SCHED) { 344 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 345 return true; 346 } 347 348 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 349 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 350 return true; 351 } 352 353 if (val & TICK_DEP_MASK_RCU) { 354 trace_tick_stop(0, TICK_DEP_MASK_RCU); 355 return true; 356 } 357 358 if (val & TICK_DEP_MASK_RCU_EXP) { 359 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 360 return true; 361 } 362 363 return false; 364 } 365 366 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 367 { 368 lockdep_assert_irqs_disabled(); 369 370 if (unlikely(!cpu_online(cpu))) 371 return false; 372 373 if (check_tick_dependency(&tick_dep_mask)) 374 return false; 375 376 if (check_tick_dependency(&ts->tick_dep_mask)) 377 return false; 378 379 if (check_tick_dependency(¤t->tick_dep_mask)) 380 return false; 381 382 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 383 return false; 384 385 return true; 386 } 387 388 static void nohz_full_kick_func(struct irq_work *work) 389 { 390 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 391 } 392 393 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 394 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 395 396 /* 397 * Kick this CPU if it's full dynticks in order to force it to 398 * re-evaluate its dependency on the tick and restart it if necessary. 399 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 400 * is NMI safe. 401 */ 402 static void tick_nohz_full_kick(void) 403 { 404 if (!tick_nohz_full_cpu(smp_processor_id())) 405 return; 406 407 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 408 } 409 410 /* 411 * Kick the CPU if it's full dynticks in order to force it to 412 * re-evaluate its dependency on the tick and restart it if necessary. 413 */ 414 void tick_nohz_full_kick_cpu(int cpu) 415 { 416 if (!tick_nohz_full_cpu(cpu)) 417 return; 418 419 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 420 } 421 422 static void tick_nohz_kick_task(struct task_struct *tsk) 423 { 424 int cpu; 425 426 /* 427 * If the task is not running, run_posix_cpu_timers() 428 * has nothing to elapse, and an IPI can then be optimized out. 429 * 430 * activate_task() STORE p->tick_dep_mask 431 * STORE p->on_rq 432 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 433 * LOCK rq->lock LOAD p->on_rq 434 * smp_mb__after_spin_lock() 435 * tick_nohz_task_switch() 436 * LOAD p->tick_dep_mask 437 */ 438 if (!sched_task_on_rq(tsk)) 439 return; 440 441 /* 442 * If the task concurrently migrates to another CPU, 443 * we guarantee it sees the new tick dependency upon 444 * schedule. 445 * 446 * set_task_cpu(p, cpu); 447 * STORE p->cpu = @cpu 448 * __schedule() (switch to task 'p') 449 * LOCK rq->lock 450 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 451 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 452 * LOAD p->tick_dep_mask LOAD p->cpu 453 */ 454 cpu = task_cpu(tsk); 455 456 preempt_disable(); 457 if (cpu_online(cpu)) 458 tick_nohz_full_kick_cpu(cpu); 459 preempt_enable(); 460 } 461 462 /* 463 * Kick all full dynticks CPUs in order to force these to re-evaluate 464 * their dependency on the tick and restart it if necessary. 465 */ 466 static void tick_nohz_full_kick_all(void) 467 { 468 int cpu; 469 470 if (!tick_nohz_full_running) 471 return; 472 473 preempt_disable(); 474 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 475 tick_nohz_full_kick_cpu(cpu); 476 preempt_enable(); 477 } 478 479 static void tick_nohz_dep_set_all(atomic_t *dep, 480 enum tick_dep_bits bit) 481 { 482 int prev; 483 484 prev = atomic_fetch_or(BIT(bit), dep); 485 if (!prev) 486 tick_nohz_full_kick_all(); 487 } 488 489 /* 490 * Set a global tick dependency. Used by perf events that rely on freq and 491 * unstable clocks. 492 */ 493 void tick_nohz_dep_set(enum tick_dep_bits bit) 494 { 495 tick_nohz_dep_set_all(&tick_dep_mask, bit); 496 } 497 498 void tick_nohz_dep_clear(enum tick_dep_bits bit) 499 { 500 atomic_andnot(BIT(bit), &tick_dep_mask); 501 } 502 503 /* 504 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 505 * manage event-throttling. 506 */ 507 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 508 { 509 int prev; 510 struct tick_sched *ts; 511 512 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 513 514 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 515 if (!prev) { 516 preempt_disable(); 517 /* Perf needs local kick that is NMI safe */ 518 if (cpu == smp_processor_id()) { 519 tick_nohz_full_kick(); 520 } else { 521 /* Remote IRQ work not NMI-safe */ 522 if (!WARN_ON_ONCE(in_nmi())) 523 tick_nohz_full_kick_cpu(cpu); 524 } 525 preempt_enable(); 526 } 527 } 528 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 529 530 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 531 { 532 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 533 534 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 535 } 536 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 537 538 /* 539 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 540 * in order to elapse per task timers. 541 */ 542 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 543 { 544 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 545 tick_nohz_kick_task(tsk); 546 } 547 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 548 549 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 550 { 551 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 552 } 553 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 554 555 /* 556 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 557 * per process timers. 558 */ 559 void tick_nohz_dep_set_signal(struct task_struct *tsk, 560 enum tick_dep_bits bit) 561 { 562 int prev; 563 struct signal_struct *sig = tsk->signal; 564 565 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 566 if (!prev) { 567 struct task_struct *t; 568 569 lockdep_assert_held(&tsk->sighand->siglock); 570 __for_each_thread(sig, t) 571 tick_nohz_kick_task(t); 572 } 573 } 574 575 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 576 { 577 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 578 } 579 580 /* 581 * Re-evaluate the need for the tick as we switch the current task. 582 * It might need the tick due to per task/process properties: 583 * perf events, posix CPU timers, ... 584 */ 585 void __tick_nohz_task_switch(void) 586 { 587 struct tick_sched *ts; 588 589 if (!tick_nohz_full_cpu(smp_processor_id())) 590 return; 591 592 ts = this_cpu_ptr(&tick_cpu_sched); 593 594 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 595 if (atomic_read(¤t->tick_dep_mask) || 596 atomic_read(¤t->signal->tick_dep_mask)) 597 tick_nohz_full_kick(); 598 } 599 } 600 601 /* Get the boot-time nohz CPU list from the kernel parameters. */ 602 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 603 { 604 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 605 cpumask_copy(tick_nohz_full_mask, cpumask); 606 tick_nohz_full_running = true; 607 } 608 609 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 610 { 611 /* 612 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 613 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 614 * CPUs. It must remain online when nohz full is enabled. 615 */ 616 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu) 617 return false; 618 return true; 619 } 620 621 static int tick_nohz_cpu_down(unsigned int cpu) 622 { 623 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 624 } 625 626 void __init tick_nohz_init(void) 627 { 628 int cpu, ret; 629 630 if (!tick_nohz_full_running) 631 return; 632 633 /* 634 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 635 * locking contexts. But then we need IRQ work to raise its own 636 * interrupts to avoid circular dependency on the tick. 637 */ 638 if (!arch_irq_work_has_interrupt()) { 639 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 640 cpumask_clear(tick_nohz_full_mask); 641 tick_nohz_full_running = false; 642 return; 643 } 644 645 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 646 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 647 cpu = smp_processor_id(); 648 649 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 650 pr_warn("NO_HZ: Clearing %d from nohz_full range " 651 "for timekeeping\n", cpu); 652 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 653 } 654 } 655 656 for_each_cpu(cpu, tick_nohz_full_mask) 657 ct_cpu_track_user(cpu); 658 659 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 660 "kernel/nohz:predown", NULL, 661 tick_nohz_cpu_down); 662 WARN_ON(ret < 0); 663 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 664 cpumask_pr_args(tick_nohz_full_mask)); 665 } 666 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 667 668 /* 669 * NOHZ - aka dynamic tick functionality 670 */ 671 #ifdef CONFIG_NO_HZ_COMMON 672 /* 673 * NO HZ enabled ? 674 */ 675 bool tick_nohz_enabled __read_mostly = true; 676 unsigned long tick_nohz_active __read_mostly; 677 /* 678 * Enable / Disable tickless mode 679 */ 680 static int __init setup_tick_nohz(char *str) 681 { 682 return (kstrtobool(str, &tick_nohz_enabled) == 0); 683 } 684 685 __setup("nohz=", setup_tick_nohz); 686 687 bool tick_nohz_tick_stopped(void) 688 { 689 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 690 691 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 692 } 693 694 bool tick_nohz_tick_stopped_cpu(int cpu) 695 { 696 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 697 698 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 699 } 700 701 /** 702 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 703 * @now: current ktime_t 704 * 705 * Called from interrupt entry when the CPU was idle 706 * 707 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 708 * must be updated. Otherwise an interrupt handler could use a stale jiffy 709 * value. We do this unconditionally on any CPU, as we don't know whether the 710 * CPU, which has the update task assigned, is in a long sleep. 711 */ 712 static void tick_nohz_update_jiffies(ktime_t now) 713 { 714 unsigned long flags; 715 716 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 717 718 local_irq_save(flags); 719 tick_do_update_jiffies64(now); 720 local_irq_restore(flags); 721 722 touch_softlockup_watchdog_sched(); 723 } 724 725 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 726 { 727 ktime_t delta; 728 729 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) 730 return; 731 732 delta = ktime_sub(now, ts->idle_entrytime); 733 734 write_seqcount_begin(&ts->idle_sleeptime_seq); 735 if (nr_iowait_cpu(smp_processor_id()) > 0) 736 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 737 else 738 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 739 740 ts->idle_entrytime = now; 741 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); 742 write_seqcount_end(&ts->idle_sleeptime_seq); 743 744 sched_clock_idle_wakeup_event(); 745 } 746 747 static void tick_nohz_start_idle(struct tick_sched *ts) 748 { 749 write_seqcount_begin(&ts->idle_sleeptime_seq); 750 ts->idle_entrytime = ktime_get(); 751 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); 752 write_seqcount_end(&ts->idle_sleeptime_seq); 753 754 sched_clock_idle_sleep_event(); 755 } 756 757 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 758 bool compute_delta, u64 *last_update_time) 759 { 760 ktime_t now, idle; 761 unsigned int seq; 762 763 if (!tick_nohz_active) 764 return -1; 765 766 now = ktime_get(); 767 if (last_update_time) 768 *last_update_time = ktime_to_us(now); 769 770 do { 771 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 772 773 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { 774 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 775 776 idle = ktime_add(*sleeptime, delta); 777 } else { 778 idle = *sleeptime; 779 } 780 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 781 782 return ktime_to_us(idle); 783 784 } 785 786 /** 787 * get_cpu_idle_time_us - get the total idle time of a CPU 788 * @cpu: CPU number to query 789 * @last_update_time: variable to store update time in. Do not update 790 * counters if NULL. 791 * 792 * Return the cumulative idle time (since boot) for a given 793 * CPU, in microseconds. Note that this is partially broken due to 794 * the counter of iowait tasks that can be remotely updated without 795 * any synchronization. Therefore it is possible to observe backward 796 * values within two consecutive reads. 797 * 798 * This time is measured via accounting rather than sampling, 799 * and is as accurate as ktime_get() is. 800 * 801 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu 802 */ 803 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 804 { 805 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 806 807 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 808 !nr_iowait_cpu(cpu), last_update_time); 809 } 810 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 811 812 /** 813 * get_cpu_iowait_time_us - get the total iowait time of a CPU 814 * @cpu: CPU number to query 815 * @last_update_time: variable to store update time in. Do not update 816 * counters if NULL. 817 * 818 * Return the cumulative iowait time (since boot) for a given 819 * CPU, in microseconds. Note this is partially broken due to 820 * the counter of iowait tasks that can be remotely updated without 821 * any synchronization. Therefore it is possible to observe backward 822 * values within two consecutive reads. 823 * 824 * This time is measured via accounting rather than sampling, 825 * and is as accurate as ktime_get() is. 826 * 827 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu 828 */ 829 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 830 { 831 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 832 833 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 834 nr_iowait_cpu(cpu), last_update_time); 835 } 836 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 837 838 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 839 { 840 hrtimer_cancel(&ts->sched_timer); 841 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 842 843 /* Forward the time to expire in the future */ 844 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 845 846 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 847 hrtimer_start_expires(&ts->sched_timer, 848 HRTIMER_MODE_ABS_PINNED_HARD); 849 } else { 850 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 851 } 852 853 /* 854 * Reset to make sure the next tick stop doesn't get fooled by past 855 * cached clock deadline. 856 */ 857 ts->next_tick = 0; 858 } 859 860 static inline bool local_timer_softirq_pending(void) 861 { 862 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 863 } 864 865 /* 866 * Read jiffies and the time when jiffies were updated last 867 */ 868 u64 get_jiffies_update(unsigned long *basej) 869 { 870 unsigned long basejiff; 871 unsigned int seq; 872 u64 basemono; 873 874 do { 875 seq = read_seqcount_begin(&jiffies_seq); 876 basemono = last_jiffies_update; 877 basejiff = jiffies; 878 } while (read_seqcount_retry(&jiffies_seq, seq)); 879 *basej = basejiff; 880 return basemono; 881 } 882 883 /** 884 * tick_nohz_next_event() - return the clock monotonic based next event 885 * @ts: pointer to tick_sched struct 886 * @cpu: CPU number 887 * 888 * Return: 889 * *%0 - When the next event is a maximum of TICK_NSEC in the future 890 * and the tick is not stopped yet 891 * *%next_event - Next event based on clock monotonic 892 */ 893 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 894 { 895 u64 basemono, next_tick, delta, expires; 896 unsigned long basejiff; 897 int tick_cpu; 898 899 basemono = get_jiffies_update(&basejiff); 900 ts->last_jiffies = basejiff; 901 ts->timer_expires_base = basemono; 902 903 /* 904 * Keep the periodic tick, when RCU, architecture or irq_work 905 * requests it. 906 * Aside of that, check whether the local timer softirq is 907 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 908 * because there is an already expired timer, so it will request 909 * immediate expiry, which rearms the hardware timer with a 910 * minimal delta, which brings us back to this place 911 * immediately. Lather, rinse and repeat... 912 */ 913 if (rcu_needs_cpu() || arch_needs_cpu() || 914 irq_work_needs_cpu() || local_timer_softirq_pending()) { 915 next_tick = basemono + TICK_NSEC; 916 } else { 917 /* 918 * Get the next pending timer. If high resolution 919 * timers are enabled this only takes the timer wheel 920 * timers into account. If high resolution timers are 921 * disabled this also looks at the next expiring 922 * hrtimer. 923 */ 924 next_tick = get_next_timer_interrupt(basejiff, basemono); 925 ts->next_timer = next_tick; 926 } 927 928 /* Make sure next_tick is never before basemono! */ 929 if (WARN_ON_ONCE(basemono > next_tick)) 930 next_tick = basemono; 931 932 /* 933 * If the tick is due in the next period, keep it ticking or 934 * force prod the timer. 935 */ 936 delta = next_tick - basemono; 937 if (delta <= (u64)TICK_NSEC) { 938 /* 939 * We've not stopped the tick yet, and there's a timer in the 940 * next period, so no point in stopping it either, bail. 941 */ 942 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 943 ts->timer_expires = 0; 944 goto out; 945 } 946 } 947 948 /* 949 * If this CPU is the one which had the do_timer() duty last, we limit 950 * the sleep time to the timekeeping 'max_deferment' value. 951 * Otherwise we can sleep as long as we want. 952 */ 953 delta = timekeeping_max_deferment(); 954 tick_cpu = READ_ONCE(tick_do_timer_cpu); 955 if (tick_cpu != cpu && 956 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) 957 delta = KTIME_MAX; 958 959 /* Calculate the next expiry time */ 960 if (delta < (KTIME_MAX - basemono)) 961 expires = basemono + delta; 962 else 963 expires = KTIME_MAX; 964 965 ts->timer_expires = min_t(u64, expires, next_tick); 966 967 out: 968 return ts->timer_expires; 969 } 970 971 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 972 { 973 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 974 unsigned long basejiff = ts->last_jiffies; 975 u64 basemono = ts->timer_expires_base; 976 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 977 int tick_cpu; 978 u64 expires; 979 980 /* Make sure we won't be trying to stop it twice in a row. */ 981 ts->timer_expires_base = 0; 982 983 /* 984 * Now the tick should be stopped definitely - so the timer base needs 985 * to be marked idle as well to not miss a newly queued timer. 986 */ 987 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); 988 if (expires > ts->timer_expires) { 989 /* 990 * This path could only happen when the first timer was removed 991 * between calculating the possible sleep length and now (when 992 * high resolution mode is not active, timer could also be a 993 * hrtimer). 994 * 995 * We have to stick to the original calculated expiry value to 996 * not stop the tick for too long with a shallow C-state (which 997 * was programmed by cpuidle because of an early next expiration 998 * value). 999 */ 1000 expires = ts->timer_expires; 1001 } 1002 1003 /* If the timer base is not idle, retain the not yet stopped tick. */ 1004 if (!timer_idle) 1005 return; 1006 1007 /* 1008 * If this CPU is the one which updates jiffies, then give up 1009 * the assignment and let it be taken by the CPU which runs 1010 * the tick timer next, which might be this CPU as well. If we 1011 * don't drop this here, the jiffies might be stale and 1012 * do_timer() never gets invoked. Keep track of the fact that it 1013 * was the one which had the do_timer() duty last. 1014 */ 1015 tick_cpu = READ_ONCE(tick_do_timer_cpu); 1016 if (tick_cpu == cpu) { 1017 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE); 1018 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); 1019 } else if (tick_cpu != TICK_DO_TIMER_NONE) { 1020 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); 1021 } 1022 1023 /* Skip reprogram of event if it's not changed */ 1024 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { 1025 /* Sanity check: make sure clockevent is actually programmed */ 1026 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 1027 return; 1028 1029 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu " 1030 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, 1031 dev->next_event, hrtimer_active(&ts->sched_timer), 1032 hrtimer_get_expires(&ts->sched_timer)); 1033 } 1034 1035 /* 1036 * tick_nohz_stop_tick() can be called several times before 1037 * tick_nohz_restart_sched_tick() is called. This happens when 1038 * interrupts arrive which do not cause a reschedule. In the first 1039 * call we save the current tick time, so we can restart the 1040 * scheduler tick in tick_nohz_restart_sched_tick(). 1041 */ 1042 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1043 calc_load_nohz_start(); 1044 quiet_vmstat(); 1045 1046 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 1047 tick_sched_flag_set(ts, TS_FLAG_STOPPED); 1048 trace_tick_stop(1, TICK_DEP_MASK_NONE); 1049 } 1050 1051 ts->next_tick = expires; 1052 1053 /* 1054 * If the expiration time == KTIME_MAX, then we simply stop 1055 * the tick timer. 1056 */ 1057 if (unlikely(expires == KTIME_MAX)) { 1058 tick_sched_timer_cancel(ts); 1059 return; 1060 } 1061 1062 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 1063 hrtimer_start(&ts->sched_timer, expires, 1064 HRTIMER_MODE_ABS_PINNED_HARD); 1065 } else { 1066 hrtimer_set_expires(&ts->sched_timer, expires); 1067 tick_program_event(expires, 1); 1068 } 1069 } 1070 1071 static void tick_nohz_retain_tick(struct tick_sched *ts) 1072 { 1073 ts->timer_expires_base = 0; 1074 } 1075 1076 #ifdef CONFIG_NO_HZ_FULL 1077 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) 1078 { 1079 if (tick_nohz_next_event(ts, cpu)) 1080 tick_nohz_stop_tick(ts, cpu); 1081 else 1082 tick_nohz_retain_tick(ts); 1083 } 1084 #endif /* CONFIG_NO_HZ_FULL */ 1085 1086 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 1087 { 1088 /* Update jiffies first */ 1089 tick_do_update_jiffies64(now); 1090 1091 /* 1092 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 1093 * the clock forward checks in the enqueue path: 1094 */ 1095 timer_clear_idle(); 1096 1097 calc_load_nohz_stop(); 1098 touch_softlockup_watchdog_sched(); 1099 1100 /* Cancel the scheduled timer and restore the tick: */ 1101 tick_sched_flag_clear(ts, TS_FLAG_STOPPED); 1102 tick_nohz_restart(ts, now); 1103 } 1104 1105 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 1106 ktime_t now) 1107 { 1108 #ifdef CONFIG_NO_HZ_FULL 1109 int cpu = smp_processor_id(); 1110 1111 if (can_stop_full_tick(cpu, ts)) 1112 tick_nohz_full_stop_tick(ts, cpu); 1113 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1114 tick_nohz_restart_sched_tick(ts, now); 1115 #endif 1116 } 1117 1118 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1119 { 1120 if (!tick_nohz_full_cpu(smp_processor_id())) 1121 return; 1122 1123 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1124 return; 1125 1126 __tick_nohz_full_update_tick(ts, ktime_get()); 1127 } 1128 1129 /* 1130 * A pending softirq outside an IRQ (or softirq disabled section) context 1131 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1132 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1133 * 1134 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1135 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1136 * triggering the code below, since wakep_softirqd() is ignored. 1137 * 1138 */ 1139 static bool report_idle_softirq(void) 1140 { 1141 static int ratelimit; 1142 unsigned int pending = local_softirq_pending(); 1143 1144 if (likely(!pending)) 1145 return false; 1146 1147 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1148 if (!cpu_active(smp_processor_id())) { 1149 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1150 if (!pending) 1151 return false; 1152 } 1153 1154 if (ratelimit >= 10) 1155 return false; 1156 1157 /* On RT, softirq handling may be waiting on some lock */ 1158 if (local_bh_blocked()) 1159 return false; 1160 1161 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1162 pending); 1163 ratelimit++; 1164 1165 return true; 1166 } 1167 1168 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1169 { 1170 WARN_ON_ONCE(cpu_is_offline(cpu)); 1171 1172 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) 1173 return false; 1174 1175 if (need_resched()) 1176 return false; 1177 1178 if (unlikely(report_idle_softirq())) 1179 return false; 1180 1181 if (tick_nohz_full_enabled()) { 1182 int tick_cpu = READ_ONCE(tick_do_timer_cpu); 1183 1184 /* 1185 * Keep the tick alive to guarantee timekeeping progression 1186 * if there are full dynticks CPUs around 1187 */ 1188 if (tick_cpu == cpu) 1189 return false; 1190 1191 /* Should not happen for nohz-full */ 1192 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE)) 1193 return false; 1194 } 1195 1196 return true; 1197 } 1198 1199 /** 1200 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1201 * 1202 * When the next event is more than a tick into the future, stop the idle tick 1203 */ 1204 void tick_nohz_idle_stop_tick(void) 1205 { 1206 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1207 int cpu = smp_processor_id(); 1208 ktime_t expires; 1209 1210 /* 1211 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1212 * tick timer expiration time is known already. 1213 */ 1214 if (ts->timer_expires_base) 1215 expires = ts->timer_expires; 1216 else if (can_stop_idle_tick(cpu, ts)) 1217 expires = tick_nohz_next_event(ts, cpu); 1218 else 1219 return; 1220 1221 ts->idle_calls++; 1222 1223 if (expires > 0LL) { 1224 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1225 1226 tick_nohz_stop_tick(ts, cpu); 1227 1228 ts->idle_sleeps++; 1229 ts->idle_expires = expires; 1230 1231 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1232 ts->idle_jiffies = ts->last_jiffies; 1233 nohz_balance_enter_idle(cpu); 1234 } 1235 } else { 1236 tick_nohz_retain_tick(ts); 1237 } 1238 } 1239 1240 void tick_nohz_idle_retain_tick(void) 1241 { 1242 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1243 } 1244 1245 /** 1246 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1247 * 1248 * Called when we start the idle loop. 1249 */ 1250 void tick_nohz_idle_enter(void) 1251 { 1252 struct tick_sched *ts; 1253 1254 lockdep_assert_irqs_enabled(); 1255 1256 local_irq_disable(); 1257 1258 ts = this_cpu_ptr(&tick_cpu_sched); 1259 1260 WARN_ON_ONCE(ts->timer_expires_base); 1261 1262 tick_sched_flag_set(ts, TS_FLAG_INIDLE); 1263 tick_nohz_start_idle(ts); 1264 1265 local_irq_enable(); 1266 } 1267 1268 /** 1269 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1270 * 1271 * A timer may have been added/modified/deleted either by the current IRQ, 1272 * or by another place using this IRQ as a notification. This IRQ may have 1273 * also updated the RCU callback list. These events may require a 1274 * re-evaluation of the next tick. Depending on the context: 1275 * 1276 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1277 * time accounting. The next tick will be re-evaluated on the next idle 1278 * loop iteration. 1279 * 1280 * 2) If the CPU is nohz_full: 1281 * 1282 * 2.1) If there is any tick dependency, restart the tick if stopped. 1283 * 1284 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1285 * stop/update it accordingly. 1286 */ 1287 void tick_nohz_irq_exit(void) 1288 { 1289 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1290 1291 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 1292 tick_nohz_start_idle(ts); 1293 else 1294 tick_nohz_full_update_tick(ts); 1295 } 1296 1297 /** 1298 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1299 * 1300 * Return: %true if the tick handler has run, otherwise %false 1301 */ 1302 bool tick_nohz_idle_got_tick(void) 1303 { 1304 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1305 1306 if (ts->got_idle_tick) { 1307 ts->got_idle_tick = 0; 1308 return true; 1309 } 1310 return false; 1311 } 1312 1313 /** 1314 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1315 * or the tick, whichever expires first. Note that, if the tick has been 1316 * stopped, it returns the next hrtimer. 1317 * 1318 * Called from power state control code with interrupts disabled 1319 * 1320 * Return: the next expiration time 1321 */ 1322 ktime_t tick_nohz_get_next_hrtimer(void) 1323 { 1324 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1325 } 1326 1327 /** 1328 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1329 * @delta_next: duration until the next event if the tick cannot be stopped 1330 * 1331 * Called from power state control code with interrupts disabled. 1332 * 1333 * The return value of this function and/or the value returned by it through the 1334 * @delta_next pointer can be negative which must be taken into account by its 1335 * callers. 1336 * 1337 * Return: the expected length of the current sleep 1338 */ 1339 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1340 { 1341 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1342 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1343 int cpu = smp_processor_id(); 1344 /* 1345 * The idle entry time is expected to be a sufficient approximation of 1346 * the current time at this point. 1347 */ 1348 ktime_t now = ts->idle_entrytime; 1349 ktime_t next_event; 1350 1351 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1352 1353 *delta_next = ktime_sub(dev->next_event, now); 1354 1355 if (!can_stop_idle_tick(cpu, ts)) 1356 return *delta_next; 1357 1358 next_event = tick_nohz_next_event(ts, cpu); 1359 if (!next_event) 1360 return *delta_next; 1361 1362 /* 1363 * If the next highres timer to expire is earlier than 'next_event', the 1364 * idle governor needs to know that. 1365 */ 1366 next_event = min_t(u64, next_event, 1367 hrtimer_next_event_without(&ts->sched_timer)); 1368 1369 return ktime_sub(next_event, now); 1370 } 1371 1372 /** 1373 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1374 * for a particular CPU. 1375 * @cpu: target CPU number 1376 * 1377 * Called from the schedutil frequency scaling governor in scheduler context. 1378 * 1379 * Return: the current idle calls counter value for @cpu 1380 */ 1381 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1382 { 1383 struct tick_sched *ts = tick_get_tick_sched(cpu); 1384 1385 return ts->idle_calls; 1386 } 1387 1388 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1389 ktime_t now) 1390 { 1391 unsigned long ticks; 1392 1393 ts->idle_exittime = now; 1394 1395 if (vtime_accounting_enabled_this_cpu()) 1396 return; 1397 /* 1398 * We stopped the tick in idle. update_process_times() would miss the 1399 * time we slept, as it does only a 1 tick accounting. 1400 * Enforce that this is accounted to idle ! 1401 */ 1402 ticks = jiffies - ts->idle_jiffies; 1403 /* 1404 * We might be one off. Do not randomly account a huge number of ticks! 1405 */ 1406 if (ticks && ticks < LONG_MAX) 1407 account_idle_ticks(ticks); 1408 } 1409 1410 void tick_nohz_idle_restart_tick(void) 1411 { 1412 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1413 1414 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1415 ktime_t now = ktime_get(); 1416 tick_nohz_restart_sched_tick(ts, now); 1417 tick_nohz_account_idle_time(ts, now); 1418 } 1419 } 1420 1421 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1422 { 1423 if (tick_nohz_full_cpu(smp_processor_id())) 1424 __tick_nohz_full_update_tick(ts, now); 1425 else 1426 tick_nohz_restart_sched_tick(ts, now); 1427 1428 tick_nohz_account_idle_time(ts, now); 1429 } 1430 1431 /** 1432 * tick_nohz_idle_exit - Update the tick upon idle task exit 1433 * 1434 * When the idle task exits, update the tick depending on the 1435 * following situations: 1436 * 1437 * 1) If the CPU is not in nohz_full mode (most cases), then 1438 * restart the tick. 1439 * 1440 * 2) If the CPU is in nohz_full mode (corner case): 1441 * 2.1) If the tick can be kept stopped (no tick dependencies) 1442 * then re-evaluate the next tick and try to keep it stopped 1443 * as long as possible. 1444 * 2.2) If the tick has dependencies, restart the tick. 1445 * 1446 */ 1447 void tick_nohz_idle_exit(void) 1448 { 1449 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1450 bool idle_active, tick_stopped; 1451 ktime_t now; 1452 1453 local_irq_disable(); 1454 1455 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1456 WARN_ON_ONCE(ts->timer_expires_base); 1457 1458 tick_sched_flag_clear(ts, TS_FLAG_INIDLE); 1459 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); 1460 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1461 1462 if (idle_active || tick_stopped) 1463 now = ktime_get(); 1464 1465 if (idle_active) 1466 tick_nohz_stop_idle(ts, now); 1467 1468 if (tick_stopped) 1469 tick_nohz_idle_update_tick(ts, now); 1470 1471 local_irq_enable(); 1472 } 1473 1474 /* 1475 * In low-resolution mode, the tick handler must be implemented directly 1476 * at the clockevent level. hrtimer can't be used instead, because its 1477 * infrastructure actually relies on the tick itself as a backend in 1478 * low-resolution mode (see hrtimer_run_queues()). 1479 */ 1480 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1481 { 1482 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1483 1484 dev->next_event = KTIME_MAX; 1485 1486 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) 1487 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1488 } 1489 1490 static inline void tick_nohz_activate(struct tick_sched *ts) 1491 { 1492 if (!tick_nohz_enabled) 1493 return; 1494 tick_sched_flag_set(ts, TS_FLAG_NOHZ); 1495 /* One update is enough */ 1496 if (!test_and_set_bit(0, &tick_nohz_active)) 1497 timers_update_nohz(); 1498 } 1499 1500 /** 1501 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1502 */ 1503 static void tick_nohz_switch_to_nohz(void) 1504 { 1505 if (!tick_nohz_enabled) 1506 return; 1507 1508 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1509 return; 1510 1511 /* 1512 * Recycle the hrtimer in 'ts', so we can share the 1513 * highres code. 1514 */ 1515 tick_setup_sched_timer(false); 1516 } 1517 1518 static inline void tick_nohz_irq_enter(void) 1519 { 1520 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1521 ktime_t now; 1522 1523 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) 1524 return; 1525 now = ktime_get(); 1526 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) 1527 tick_nohz_stop_idle(ts, now); 1528 /* 1529 * If all CPUs are idle we may need to update a stale jiffies value. 1530 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1531 * alive but it might be busy looping with interrupts disabled in some 1532 * rare case (typically stop machine). So we must make sure we have a 1533 * last resort. 1534 */ 1535 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1536 tick_nohz_update_jiffies(now); 1537 } 1538 1539 #else 1540 1541 static inline void tick_nohz_switch_to_nohz(void) { } 1542 static inline void tick_nohz_irq_enter(void) { } 1543 static inline void tick_nohz_activate(struct tick_sched *ts) { } 1544 1545 #endif /* CONFIG_NO_HZ_COMMON */ 1546 1547 /* 1548 * Called from irq_enter() to notify about the possible interruption of idle() 1549 */ 1550 void tick_irq_enter(void) 1551 { 1552 tick_check_oneshot_broadcast_this_cpu(); 1553 tick_nohz_irq_enter(); 1554 } 1555 1556 static int sched_skew_tick; 1557 1558 static int __init skew_tick(char *str) 1559 { 1560 get_option(&str, &sched_skew_tick); 1561 1562 return 0; 1563 } 1564 early_param("skew_tick", skew_tick); 1565 1566 /** 1567 * tick_setup_sched_timer - setup the tick emulation timer 1568 * @hrtimer: whether to use the hrtimer or not 1569 */ 1570 void tick_setup_sched_timer(bool hrtimer) 1571 { 1572 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1573 1574 /* Emulate tick processing via per-CPU hrtimers: */ 1575 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1576 1577 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) { 1578 tick_sched_flag_set(ts, TS_FLAG_HIGHRES); 1579 ts->sched_timer.function = tick_nohz_handler; 1580 } 1581 1582 /* Get the next period (per-CPU) */ 1583 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1584 1585 /* Offset the tick to avert 'jiffies_lock' contention. */ 1586 if (sched_skew_tick) { 1587 u64 offset = TICK_NSEC >> 1; 1588 do_div(offset, num_possible_cpus()); 1589 offset *= smp_processor_id(); 1590 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1591 } 1592 1593 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1594 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1595 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1596 else 1597 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1598 tick_nohz_activate(ts); 1599 } 1600 1601 /* 1602 * Shut down the tick and make sure the CPU won't try to retake the timekeeping 1603 * duty before disabling IRQs in idle for the last time. 1604 */ 1605 void tick_sched_timer_dying(int cpu) 1606 { 1607 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 1608 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1609 struct clock_event_device *dev = td->evtdev; 1610 ktime_t idle_sleeptime, iowait_sleeptime; 1611 unsigned long idle_calls, idle_sleeps; 1612 1613 /* This must happen before hrtimers are migrated! */ 1614 tick_sched_timer_cancel(ts); 1615 1616 /* 1617 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED, 1618 * make sure not to call low-res tick handler. 1619 */ 1620 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1621 dev->event_handler = clockevents_handle_noop; 1622 1623 idle_sleeptime = ts->idle_sleeptime; 1624 iowait_sleeptime = ts->iowait_sleeptime; 1625 idle_calls = ts->idle_calls; 1626 idle_sleeps = ts->idle_sleeps; 1627 memset(ts, 0, sizeof(*ts)); 1628 ts->idle_sleeptime = idle_sleeptime; 1629 ts->iowait_sleeptime = iowait_sleeptime; 1630 ts->idle_calls = idle_calls; 1631 ts->idle_sleeps = idle_sleeps; 1632 } 1633 1634 /* 1635 * Async notification about clocksource changes 1636 */ 1637 void tick_clock_notify(void) 1638 { 1639 int cpu; 1640 1641 for_each_possible_cpu(cpu) 1642 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1643 } 1644 1645 /* 1646 * Async notification about clock event changes 1647 */ 1648 void tick_oneshot_notify(void) 1649 { 1650 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1651 1652 set_bit(0, &ts->check_clocks); 1653 } 1654 1655 /* 1656 * Check if a change happened, which makes oneshot possible. 1657 * 1658 * Called cyclically from the hrtimer softirq (driven by the timer 1659 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1660 * mode, because high resolution timers are disabled (either compile 1661 * or runtime). Called with interrupts disabled. 1662 */ 1663 int tick_check_oneshot_change(int allow_nohz) 1664 { 1665 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1666 1667 if (!test_and_clear_bit(0, &ts->check_clocks)) 1668 return 0; 1669 1670 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1671 return 0; 1672 1673 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1674 return 0; 1675 1676 if (!allow_nohz) 1677 return 1; 1678 1679 tick_nohz_switch_to_nohz(); 1680 return 0; 1681 } 1682