xref: /linux/kernel/time/tick-sched.c (revision a2cce7a9f1b8cc3d4edce106fb971529f1d4d9ce)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void nohz_full_kick_work_func(struct irq_work *work)
201 {
202 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
203 }
204 
205 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
206 	.func = nohz_full_kick_work_func,
207 };
208 
209 /*
210  * Kick this CPU if it's full dynticks in order to force it to
211  * re-evaluate its dependency on the tick and restart it if necessary.
212  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
213  * is NMI safe.
214  */
215 void tick_nohz_full_kick(void)
216 {
217 	if (!tick_nohz_full_cpu(smp_processor_id()))
218 		return;
219 
220 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
221 }
222 
223 /*
224  * Kick the CPU if it's full dynticks in order to force it to
225  * re-evaluate its dependency on the tick and restart it if necessary.
226  */
227 void tick_nohz_full_kick_cpu(int cpu)
228 {
229 	if (!tick_nohz_full_cpu(cpu))
230 		return;
231 
232 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
233 }
234 
235 static void nohz_full_kick_ipi(void *info)
236 {
237 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
238 }
239 
240 /*
241  * Kick all full dynticks CPUs in order to force these to re-evaluate
242  * their dependency on the tick and restart it if necessary.
243  */
244 void tick_nohz_full_kick_all(void)
245 {
246 	if (!tick_nohz_full_running)
247 		return;
248 
249 	preempt_disable();
250 	smp_call_function_many(tick_nohz_full_mask,
251 			       nohz_full_kick_ipi, NULL, false);
252 	tick_nohz_full_kick();
253 	preempt_enable();
254 }
255 
256 /*
257  * Re-evaluate the need for the tick as we switch the current task.
258  * It might need the tick due to per task/process properties:
259  * perf events, posix cpu timers, ...
260  */
261 void __tick_nohz_task_switch(void)
262 {
263 	unsigned long flags;
264 
265 	local_irq_save(flags);
266 
267 	if (!tick_nohz_full_cpu(smp_processor_id()))
268 		goto out;
269 
270 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
271 		tick_nohz_full_kick();
272 
273 out:
274 	local_irq_restore(flags);
275 }
276 
277 /* Parse the boot-time nohz CPU list from the kernel parameters. */
278 static int __init tick_nohz_full_setup(char *str)
279 {
280 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
281 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
282 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
283 		free_bootmem_cpumask_var(tick_nohz_full_mask);
284 		return 1;
285 	}
286 	tick_nohz_full_running = true;
287 
288 	return 1;
289 }
290 __setup("nohz_full=", tick_nohz_full_setup);
291 
292 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
293 				       unsigned long action,
294 				       void *hcpu)
295 {
296 	unsigned int cpu = (unsigned long)hcpu;
297 
298 	switch (action & ~CPU_TASKS_FROZEN) {
299 	case CPU_DOWN_PREPARE:
300 		/*
301 		 * The boot CPU handles housekeeping duty (unbound timers,
302 		 * workqueues, timekeeping, ...) on behalf of full dynticks
303 		 * CPUs. It must remain online when nohz full is enabled.
304 		 */
305 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
306 			return NOTIFY_BAD;
307 		break;
308 	}
309 	return NOTIFY_OK;
310 }
311 
312 static int tick_nohz_init_all(void)
313 {
314 	int err = -1;
315 
316 #ifdef CONFIG_NO_HZ_FULL_ALL
317 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
318 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
319 		return err;
320 	}
321 	err = 0;
322 	cpumask_setall(tick_nohz_full_mask);
323 	tick_nohz_full_running = true;
324 #endif
325 	return err;
326 }
327 
328 void __init tick_nohz_init(void)
329 {
330 	int cpu;
331 
332 	if (!tick_nohz_full_running) {
333 		if (tick_nohz_init_all() < 0)
334 			return;
335 	}
336 
337 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
338 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
339 		cpumask_clear(tick_nohz_full_mask);
340 		tick_nohz_full_running = false;
341 		return;
342 	}
343 
344 	/*
345 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
346 	 * locking contexts. But then we need irq work to raise its own
347 	 * interrupts to avoid circular dependency on the tick
348 	 */
349 	if (!arch_irq_work_has_interrupt()) {
350 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
351 			   "support irq work self-IPIs\n");
352 		cpumask_clear(tick_nohz_full_mask);
353 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
354 		tick_nohz_full_running = false;
355 		return;
356 	}
357 
358 	cpu = smp_processor_id();
359 
360 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
361 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
362 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
363 	}
364 
365 	cpumask_andnot(housekeeping_mask,
366 		       cpu_possible_mask, tick_nohz_full_mask);
367 
368 	for_each_cpu(cpu, tick_nohz_full_mask)
369 		context_tracking_cpu_set(cpu);
370 
371 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
372 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
373 		cpumask_pr_args(tick_nohz_full_mask));
374 
375 	/*
376 	 * We need at least one CPU to handle housekeeping work such
377 	 * as timekeeping, unbound timers, workqueues, ...
378 	 */
379 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
380 }
381 #endif
382 
383 /*
384  * NOHZ - aka dynamic tick functionality
385  */
386 #ifdef CONFIG_NO_HZ_COMMON
387 /*
388  * NO HZ enabled ?
389  */
390 static int tick_nohz_enabled __read_mostly  = 1;
391 unsigned long tick_nohz_active  __read_mostly;
392 /*
393  * Enable / Disable tickless mode
394  */
395 static int __init setup_tick_nohz(char *str)
396 {
397 	if (!strcmp(str, "off"))
398 		tick_nohz_enabled = 0;
399 	else if (!strcmp(str, "on"))
400 		tick_nohz_enabled = 1;
401 	else
402 		return 0;
403 	return 1;
404 }
405 
406 __setup("nohz=", setup_tick_nohz);
407 
408 int tick_nohz_tick_stopped(void)
409 {
410 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
411 }
412 
413 /**
414  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
415  *
416  * Called from interrupt entry when the CPU was idle
417  *
418  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
419  * must be updated. Otherwise an interrupt handler could use a stale jiffy
420  * value. We do this unconditionally on any cpu, as we don't know whether the
421  * cpu, which has the update task assigned is in a long sleep.
422  */
423 static void tick_nohz_update_jiffies(ktime_t now)
424 {
425 	unsigned long flags;
426 
427 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
428 
429 	local_irq_save(flags);
430 	tick_do_update_jiffies64(now);
431 	local_irq_restore(flags);
432 
433 	touch_softlockup_watchdog();
434 }
435 
436 /*
437  * Updates the per cpu time idle statistics counters
438  */
439 static void
440 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
441 {
442 	ktime_t delta;
443 
444 	if (ts->idle_active) {
445 		delta = ktime_sub(now, ts->idle_entrytime);
446 		if (nr_iowait_cpu(cpu) > 0)
447 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
448 		else
449 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
450 		ts->idle_entrytime = now;
451 	}
452 
453 	if (last_update_time)
454 		*last_update_time = ktime_to_us(now);
455 
456 }
457 
458 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
459 {
460 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
461 	ts->idle_active = 0;
462 
463 	sched_clock_idle_wakeup_event(0);
464 }
465 
466 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
467 {
468 	ktime_t now = ktime_get();
469 
470 	ts->idle_entrytime = now;
471 	ts->idle_active = 1;
472 	sched_clock_idle_sleep_event();
473 	return now;
474 }
475 
476 /**
477  * get_cpu_idle_time_us - get the total idle time of a cpu
478  * @cpu: CPU number to query
479  * @last_update_time: variable to store update time in. Do not update
480  * counters if NULL.
481  *
482  * Return the cummulative idle time (since boot) for a given
483  * CPU, in microseconds.
484  *
485  * This time is measured via accounting rather than sampling,
486  * and is as accurate as ktime_get() is.
487  *
488  * This function returns -1 if NOHZ is not enabled.
489  */
490 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
491 {
492 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
493 	ktime_t now, idle;
494 
495 	if (!tick_nohz_active)
496 		return -1;
497 
498 	now = ktime_get();
499 	if (last_update_time) {
500 		update_ts_time_stats(cpu, ts, now, last_update_time);
501 		idle = ts->idle_sleeptime;
502 	} else {
503 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
504 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
505 
506 			idle = ktime_add(ts->idle_sleeptime, delta);
507 		} else {
508 			idle = ts->idle_sleeptime;
509 		}
510 	}
511 
512 	return ktime_to_us(idle);
513 
514 }
515 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
516 
517 /**
518  * get_cpu_iowait_time_us - get the total iowait time of a cpu
519  * @cpu: CPU number to query
520  * @last_update_time: variable to store update time in. Do not update
521  * counters if NULL.
522  *
523  * Return the cummulative iowait time (since boot) for a given
524  * CPU, in microseconds.
525  *
526  * This time is measured via accounting rather than sampling,
527  * and is as accurate as ktime_get() is.
528  *
529  * This function returns -1 if NOHZ is not enabled.
530  */
531 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
532 {
533 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
534 	ktime_t now, iowait;
535 
536 	if (!tick_nohz_active)
537 		return -1;
538 
539 	now = ktime_get();
540 	if (last_update_time) {
541 		update_ts_time_stats(cpu, ts, now, last_update_time);
542 		iowait = ts->iowait_sleeptime;
543 	} else {
544 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
545 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
546 
547 			iowait = ktime_add(ts->iowait_sleeptime, delta);
548 		} else {
549 			iowait = ts->iowait_sleeptime;
550 		}
551 	}
552 
553 	return ktime_to_us(iowait);
554 }
555 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
556 
557 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
558 {
559 	hrtimer_cancel(&ts->sched_timer);
560 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
561 
562 	/* Forward the time to expire in the future */
563 	hrtimer_forward(&ts->sched_timer, now, tick_period);
564 
565 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
566 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
567 	else
568 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
569 }
570 
571 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
572 					 ktime_t now, int cpu)
573 {
574 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
575 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
576 	unsigned long seq, basejiff;
577 	ktime_t	tick;
578 
579 	/* Read jiffies and the time when jiffies were updated last */
580 	do {
581 		seq = read_seqbegin(&jiffies_lock);
582 		basemono = last_jiffies_update.tv64;
583 		basejiff = jiffies;
584 	} while (read_seqretry(&jiffies_lock, seq));
585 	ts->last_jiffies = basejiff;
586 
587 	if (rcu_needs_cpu(basemono, &next_rcu) ||
588 	    arch_needs_cpu() || irq_work_needs_cpu()) {
589 		next_tick = basemono + TICK_NSEC;
590 	} else {
591 		/*
592 		 * Get the next pending timer. If high resolution
593 		 * timers are enabled this only takes the timer wheel
594 		 * timers into account. If high resolution timers are
595 		 * disabled this also looks at the next expiring
596 		 * hrtimer.
597 		 */
598 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
599 		ts->next_timer = next_tmr;
600 		/* Take the next rcu event into account */
601 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
602 	}
603 
604 	/*
605 	 * If the tick is due in the next period, keep it ticking or
606 	 * restart it proper.
607 	 */
608 	delta = next_tick - basemono;
609 	if (delta <= (u64)TICK_NSEC) {
610 		tick.tv64 = 0;
611 		if (!ts->tick_stopped)
612 			goto out;
613 		if (delta == 0) {
614 			/* Tick is stopped, but required now. Enforce it */
615 			tick_nohz_restart(ts, now);
616 			goto out;
617 		}
618 	}
619 
620 	/*
621 	 * If this cpu is the one which updates jiffies, then give up
622 	 * the assignment and let it be taken by the cpu which runs
623 	 * the tick timer next, which might be this cpu as well. If we
624 	 * don't drop this here the jiffies might be stale and
625 	 * do_timer() never invoked. Keep track of the fact that it
626 	 * was the one which had the do_timer() duty last. If this cpu
627 	 * is the one which had the do_timer() duty last, we limit the
628 	 * sleep time to the timekeeping max_deferement value.
629 	 * Otherwise we can sleep as long as we want.
630 	 */
631 	delta = timekeeping_max_deferment();
632 	if (cpu == tick_do_timer_cpu) {
633 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
634 		ts->do_timer_last = 1;
635 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
636 		delta = KTIME_MAX;
637 		ts->do_timer_last = 0;
638 	} else if (!ts->do_timer_last) {
639 		delta = KTIME_MAX;
640 	}
641 
642 #ifdef CONFIG_NO_HZ_FULL
643 	/* Limit the tick delta to the maximum scheduler deferment */
644 	if (!ts->inidle)
645 		delta = min(delta, scheduler_tick_max_deferment());
646 #endif
647 
648 	/* Calculate the next expiry time */
649 	if (delta < (KTIME_MAX - basemono))
650 		expires = basemono + delta;
651 	else
652 		expires = KTIME_MAX;
653 
654 	expires = min_t(u64, expires, next_tick);
655 	tick.tv64 = expires;
656 
657 	/* Skip reprogram of event if its not changed */
658 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
659 		goto out;
660 
661 	/*
662 	 * nohz_stop_sched_tick can be called several times before
663 	 * the nohz_restart_sched_tick is called. This happens when
664 	 * interrupts arrive which do not cause a reschedule. In the
665 	 * first call we save the current tick time, so we can restart
666 	 * the scheduler tick in nohz_restart_sched_tick.
667 	 */
668 	if (!ts->tick_stopped) {
669 		nohz_balance_enter_idle(cpu);
670 		calc_load_enter_idle();
671 
672 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
673 		ts->tick_stopped = 1;
674 		trace_tick_stop(1, " ");
675 	}
676 
677 	/*
678 	 * If the expiration time == KTIME_MAX, then we simply stop
679 	 * the tick timer.
680 	 */
681 	if (unlikely(expires == KTIME_MAX)) {
682 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
683 			hrtimer_cancel(&ts->sched_timer);
684 		goto out;
685 	}
686 
687 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
688 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
689 	else
690 		tick_program_event(tick, 1);
691 out:
692 	/* Update the estimated sleep length */
693 	ts->sleep_length = ktime_sub(dev->next_event, now);
694 	return tick;
695 }
696 
697 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
698 {
699 	/* Update jiffies first */
700 	tick_do_update_jiffies64(now);
701 	update_cpu_load_nohz();
702 
703 	calc_load_exit_idle();
704 	touch_softlockup_watchdog();
705 	/*
706 	 * Cancel the scheduled timer and restore the tick
707 	 */
708 	ts->tick_stopped  = 0;
709 	ts->idle_exittime = now;
710 
711 	tick_nohz_restart(ts, now);
712 }
713 
714 static void tick_nohz_full_update_tick(struct tick_sched *ts)
715 {
716 #ifdef CONFIG_NO_HZ_FULL
717 	int cpu = smp_processor_id();
718 
719 	if (!tick_nohz_full_cpu(cpu))
720 		return;
721 
722 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
723 		return;
724 
725 	if (can_stop_full_tick())
726 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
727 	else if (ts->tick_stopped)
728 		tick_nohz_restart_sched_tick(ts, ktime_get());
729 #endif
730 }
731 
732 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
733 {
734 	/*
735 	 * If this cpu is offline and it is the one which updates
736 	 * jiffies, then give up the assignment and let it be taken by
737 	 * the cpu which runs the tick timer next. If we don't drop
738 	 * this here the jiffies might be stale and do_timer() never
739 	 * invoked.
740 	 */
741 	if (unlikely(!cpu_online(cpu))) {
742 		if (cpu == tick_do_timer_cpu)
743 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
744 		return false;
745 	}
746 
747 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
748 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
749 		return false;
750 	}
751 
752 	if (need_resched())
753 		return false;
754 
755 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
756 		static int ratelimit;
757 
758 		if (ratelimit < 10 &&
759 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
760 			pr_warn("NOHZ: local_softirq_pending %02x\n",
761 				(unsigned int) local_softirq_pending());
762 			ratelimit++;
763 		}
764 		return false;
765 	}
766 
767 	if (tick_nohz_full_enabled()) {
768 		/*
769 		 * Keep the tick alive to guarantee timekeeping progression
770 		 * if there are full dynticks CPUs around
771 		 */
772 		if (tick_do_timer_cpu == cpu)
773 			return false;
774 		/*
775 		 * Boot safety: make sure the timekeeping duty has been
776 		 * assigned before entering dyntick-idle mode,
777 		 */
778 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
779 			return false;
780 	}
781 
782 	return true;
783 }
784 
785 static void __tick_nohz_idle_enter(struct tick_sched *ts)
786 {
787 	ktime_t now, expires;
788 	int cpu = smp_processor_id();
789 
790 	now = tick_nohz_start_idle(ts);
791 
792 	if (can_stop_idle_tick(cpu, ts)) {
793 		int was_stopped = ts->tick_stopped;
794 
795 		ts->idle_calls++;
796 
797 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
798 		if (expires.tv64 > 0LL) {
799 			ts->idle_sleeps++;
800 			ts->idle_expires = expires;
801 		}
802 
803 		if (!was_stopped && ts->tick_stopped)
804 			ts->idle_jiffies = ts->last_jiffies;
805 	}
806 }
807 
808 /**
809  * tick_nohz_idle_enter - stop the idle tick from the idle task
810  *
811  * When the next event is more than a tick into the future, stop the idle tick
812  * Called when we start the idle loop.
813  *
814  * The arch is responsible of calling:
815  *
816  * - rcu_idle_enter() after its last use of RCU before the CPU is put
817  *  to sleep.
818  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
819  */
820 void tick_nohz_idle_enter(void)
821 {
822 	struct tick_sched *ts;
823 
824 	WARN_ON_ONCE(irqs_disabled());
825 
826 	/*
827  	 * Update the idle state in the scheduler domain hierarchy
828  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
829  	 * State will be updated to busy during the first busy tick after
830  	 * exiting idle.
831  	 */
832 	set_cpu_sd_state_idle();
833 
834 	local_irq_disable();
835 
836 	ts = this_cpu_ptr(&tick_cpu_sched);
837 	ts->inidle = 1;
838 	__tick_nohz_idle_enter(ts);
839 
840 	local_irq_enable();
841 }
842 
843 /**
844  * tick_nohz_irq_exit - update next tick event from interrupt exit
845  *
846  * When an interrupt fires while we are idle and it doesn't cause
847  * a reschedule, it may still add, modify or delete a timer, enqueue
848  * an RCU callback, etc...
849  * So we need to re-calculate and reprogram the next tick event.
850  */
851 void tick_nohz_irq_exit(void)
852 {
853 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
854 
855 	if (ts->inidle)
856 		__tick_nohz_idle_enter(ts);
857 	else
858 		tick_nohz_full_update_tick(ts);
859 }
860 
861 /**
862  * tick_nohz_get_sleep_length - return the length of the current sleep
863  *
864  * Called from power state control code with interrupts disabled
865  */
866 ktime_t tick_nohz_get_sleep_length(void)
867 {
868 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
869 
870 	return ts->sleep_length;
871 }
872 
873 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
874 {
875 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
876 	unsigned long ticks;
877 
878 	if (vtime_accounting_enabled())
879 		return;
880 	/*
881 	 * We stopped the tick in idle. Update process times would miss the
882 	 * time we slept as update_process_times does only a 1 tick
883 	 * accounting. Enforce that this is accounted to idle !
884 	 */
885 	ticks = jiffies - ts->idle_jiffies;
886 	/*
887 	 * We might be one off. Do not randomly account a huge number of ticks!
888 	 */
889 	if (ticks && ticks < LONG_MAX)
890 		account_idle_ticks(ticks);
891 #endif
892 }
893 
894 /**
895  * tick_nohz_idle_exit - restart the idle tick from the idle task
896  *
897  * Restart the idle tick when the CPU is woken up from idle
898  * This also exit the RCU extended quiescent state. The CPU
899  * can use RCU again after this function is called.
900  */
901 void tick_nohz_idle_exit(void)
902 {
903 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
904 	ktime_t now;
905 
906 	local_irq_disable();
907 
908 	WARN_ON_ONCE(!ts->inidle);
909 
910 	ts->inidle = 0;
911 
912 	if (ts->idle_active || ts->tick_stopped)
913 		now = ktime_get();
914 
915 	if (ts->idle_active)
916 		tick_nohz_stop_idle(ts, now);
917 
918 	if (ts->tick_stopped) {
919 		tick_nohz_restart_sched_tick(ts, now);
920 		tick_nohz_account_idle_ticks(ts);
921 	}
922 
923 	local_irq_enable();
924 }
925 
926 /*
927  * The nohz low res interrupt handler
928  */
929 static void tick_nohz_handler(struct clock_event_device *dev)
930 {
931 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
932 	struct pt_regs *regs = get_irq_regs();
933 	ktime_t now = ktime_get();
934 
935 	dev->next_event.tv64 = KTIME_MAX;
936 
937 	tick_sched_do_timer(now);
938 	tick_sched_handle(ts, regs);
939 
940 	/* No need to reprogram if we are running tickless  */
941 	if (unlikely(ts->tick_stopped))
942 		return;
943 
944 	hrtimer_forward(&ts->sched_timer, now, tick_period);
945 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
946 }
947 
948 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
949 {
950 	if (!tick_nohz_enabled)
951 		return;
952 	ts->nohz_mode = mode;
953 	/* One update is enough */
954 	if (!test_and_set_bit(0, &tick_nohz_active))
955 		timers_update_migration(true);
956 }
957 
958 /**
959  * tick_nohz_switch_to_nohz - switch to nohz mode
960  */
961 static void tick_nohz_switch_to_nohz(void)
962 {
963 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
964 	ktime_t next;
965 
966 	if (!tick_nohz_enabled)
967 		return;
968 
969 	if (tick_switch_to_oneshot(tick_nohz_handler))
970 		return;
971 
972 	/*
973 	 * Recycle the hrtimer in ts, so we can share the
974 	 * hrtimer_forward with the highres code.
975 	 */
976 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
977 	/* Get the next period */
978 	next = tick_init_jiffy_update();
979 
980 	hrtimer_forward_now(&ts->sched_timer, tick_period);
981 	hrtimer_set_expires(&ts->sched_timer, next);
982 	tick_program_event(next, 1);
983 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
984 }
985 
986 /*
987  * When NOHZ is enabled and the tick is stopped, we need to kick the
988  * tick timer from irq_enter() so that the jiffies update is kept
989  * alive during long running softirqs. That's ugly as hell, but
990  * correctness is key even if we need to fix the offending softirq in
991  * the first place.
992  *
993  * Note, this is different to tick_nohz_restart. We just kick the
994  * timer and do not touch the other magic bits which need to be done
995  * when idle is left.
996  */
997 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
998 {
999 #if 0
1000 	/* Switch back to 2.6.27 behaviour */
1001 	ktime_t delta;
1002 
1003 	/*
1004 	 * Do not touch the tick device, when the next expiry is either
1005 	 * already reached or less/equal than the tick period.
1006 	 */
1007 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1008 	if (delta.tv64 <= tick_period.tv64)
1009 		return;
1010 
1011 	tick_nohz_restart(ts, now);
1012 #endif
1013 }
1014 
1015 static inline void tick_nohz_irq_enter(void)
1016 {
1017 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1018 	ktime_t now;
1019 
1020 	if (!ts->idle_active && !ts->tick_stopped)
1021 		return;
1022 	now = ktime_get();
1023 	if (ts->idle_active)
1024 		tick_nohz_stop_idle(ts, now);
1025 	if (ts->tick_stopped) {
1026 		tick_nohz_update_jiffies(now);
1027 		tick_nohz_kick_tick(ts, now);
1028 	}
1029 }
1030 
1031 #else
1032 
1033 static inline void tick_nohz_switch_to_nohz(void) { }
1034 static inline void tick_nohz_irq_enter(void) { }
1035 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1036 
1037 #endif /* CONFIG_NO_HZ_COMMON */
1038 
1039 /*
1040  * Called from irq_enter to notify about the possible interruption of idle()
1041  */
1042 void tick_irq_enter(void)
1043 {
1044 	tick_check_oneshot_broadcast_this_cpu();
1045 	tick_nohz_irq_enter();
1046 }
1047 
1048 /*
1049  * High resolution timer specific code
1050  */
1051 #ifdef CONFIG_HIGH_RES_TIMERS
1052 /*
1053  * We rearm the timer until we get disabled by the idle code.
1054  * Called with interrupts disabled.
1055  */
1056 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1057 {
1058 	struct tick_sched *ts =
1059 		container_of(timer, struct tick_sched, sched_timer);
1060 	struct pt_regs *regs = get_irq_regs();
1061 	ktime_t now = ktime_get();
1062 
1063 	tick_sched_do_timer(now);
1064 
1065 	/*
1066 	 * Do not call, when we are not in irq context and have
1067 	 * no valid regs pointer
1068 	 */
1069 	if (regs)
1070 		tick_sched_handle(ts, regs);
1071 
1072 	/* No need to reprogram if we are in idle or full dynticks mode */
1073 	if (unlikely(ts->tick_stopped))
1074 		return HRTIMER_NORESTART;
1075 
1076 	hrtimer_forward(timer, now, tick_period);
1077 
1078 	return HRTIMER_RESTART;
1079 }
1080 
1081 static int sched_skew_tick;
1082 
1083 static int __init skew_tick(char *str)
1084 {
1085 	get_option(&str, &sched_skew_tick);
1086 
1087 	return 0;
1088 }
1089 early_param("skew_tick", skew_tick);
1090 
1091 /**
1092  * tick_setup_sched_timer - setup the tick emulation timer
1093  */
1094 void tick_setup_sched_timer(void)
1095 {
1096 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1097 	ktime_t now = ktime_get();
1098 
1099 	/*
1100 	 * Emulate tick processing via per-CPU hrtimers:
1101 	 */
1102 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1103 	ts->sched_timer.function = tick_sched_timer;
1104 
1105 	/* Get the next period (per cpu) */
1106 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1107 
1108 	/* Offset the tick to avert jiffies_lock contention. */
1109 	if (sched_skew_tick) {
1110 		u64 offset = ktime_to_ns(tick_period) >> 1;
1111 		do_div(offset, num_possible_cpus());
1112 		offset *= smp_processor_id();
1113 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1114 	}
1115 
1116 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1117 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1118 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1119 }
1120 #endif /* HIGH_RES_TIMERS */
1121 
1122 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1123 void tick_cancel_sched_timer(int cpu)
1124 {
1125 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1126 
1127 # ifdef CONFIG_HIGH_RES_TIMERS
1128 	if (ts->sched_timer.base)
1129 		hrtimer_cancel(&ts->sched_timer);
1130 # endif
1131 
1132 	memset(ts, 0, sizeof(*ts));
1133 }
1134 #endif
1135 
1136 /**
1137  * Async notification about clocksource changes
1138  */
1139 void tick_clock_notify(void)
1140 {
1141 	int cpu;
1142 
1143 	for_each_possible_cpu(cpu)
1144 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1145 }
1146 
1147 /*
1148  * Async notification about clock event changes
1149  */
1150 void tick_oneshot_notify(void)
1151 {
1152 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1153 
1154 	set_bit(0, &ts->check_clocks);
1155 }
1156 
1157 /**
1158  * Check, if a change happened, which makes oneshot possible.
1159  *
1160  * Called cyclic from the hrtimer softirq (driven by the timer
1161  * softirq) allow_nohz signals, that we can switch into low-res nohz
1162  * mode, because high resolution timers are disabled (either compile
1163  * or runtime). Called with interrupts disabled.
1164  */
1165 int tick_check_oneshot_change(int allow_nohz)
1166 {
1167 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1168 
1169 	if (!test_and_clear_bit(0, &ts->check_clocks))
1170 		return 0;
1171 
1172 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1173 		return 0;
1174 
1175 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1176 		return 0;
1177 
1178 	if (!allow_nohz)
1179 		return 1;
1180 
1181 	tick_nohz_switch_to_nohz();
1182 	return 0;
1183 }
1184