1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* Reevalute with xtime_lock held */ 52 write_seqlock(&xtime_lock); 53 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 >= tick_period.tv64) { 56 57 delta = ktime_sub(delta, tick_period); 58 last_jiffies_update = ktime_add(last_jiffies_update, 59 tick_period); 60 61 /* Slow path for long timeouts */ 62 if (unlikely(delta.tv64 >= tick_period.tv64)) { 63 s64 incr = ktime_to_ns(tick_period); 64 65 ticks = ktime_divns(delta, incr); 66 67 last_jiffies_update = ktime_add_ns(last_jiffies_update, 68 incr * ticks); 69 } 70 do_timer(++ticks); 71 } 72 write_sequnlock(&xtime_lock); 73 } 74 75 /* 76 * Initialize and return retrieve the jiffies update. 77 */ 78 static ktime_t tick_init_jiffy_update(void) 79 { 80 ktime_t period; 81 82 write_seqlock(&xtime_lock); 83 /* Did we start the jiffies update yet ? */ 84 if (last_jiffies_update.tv64 == 0) 85 last_jiffies_update = tick_next_period; 86 period = last_jiffies_update; 87 write_sequnlock(&xtime_lock); 88 return period; 89 } 90 91 /* 92 * NOHZ - aka dynamic tick functionality 93 */ 94 #ifdef CONFIG_NO_HZ 95 /* 96 * NO HZ enabled ? 97 */ 98 static int tick_nohz_enabled __read_mostly = 1; 99 100 /* 101 * Enable / Disable tickless mode 102 */ 103 static int __init setup_tick_nohz(char *str) 104 { 105 if (!strcmp(str, "off")) 106 tick_nohz_enabled = 0; 107 else if (!strcmp(str, "on")) 108 tick_nohz_enabled = 1; 109 else 110 return 0; 111 return 1; 112 } 113 114 __setup("nohz=", setup_tick_nohz); 115 116 /** 117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 118 * 119 * Called from interrupt entry when the CPU was idle 120 * 121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 122 * must be updated. Otherwise an interrupt handler could use a stale jiffy 123 * value. We do this unconditionally on any cpu, as we don't know whether the 124 * cpu, which has the update task assigned is in a long sleep. 125 */ 126 void tick_nohz_update_jiffies(void) 127 { 128 int cpu = smp_processor_id(); 129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 130 unsigned long flags; 131 ktime_t now; 132 133 if (!ts->tick_stopped) 134 return; 135 136 cpu_clear(cpu, nohz_cpu_mask); 137 now = ktime_get(); 138 139 local_irq_save(flags); 140 tick_do_update_jiffies64(now); 141 local_irq_restore(flags); 142 } 143 144 /** 145 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 146 * 147 * When the next event is more than a tick into the future, stop the idle tick 148 * Called either from the idle loop or from irq_exit() when an idle period was 149 * just interrupted by an interrupt which did not cause a reschedule. 150 */ 151 void tick_nohz_stop_sched_tick(void) 152 { 153 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 154 struct tick_sched *ts; 155 ktime_t last_update, expires, now, delta; 156 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 157 int cpu; 158 159 local_irq_save(flags); 160 161 cpu = smp_processor_id(); 162 ts = &per_cpu(tick_cpu_sched, cpu); 163 164 /* 165 * If this cpu is offline and it is the one which updates 166 * jiffies, then give up the assignment and let it be taken by 167 * the cpu which runs the tick timer next. If we don't drop 168 * this here the jiffies might be stale and do_timer() never 169 * invoked. 170 */ 171 if (unlikely(!cpu_online(cpu))) { 172 if (cpu == tick_do_timer_cpu) 173 tick_do_timer_cpu = -1; 174 } 175 176 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 177 goto end; 178 179 if (need_resched()) 180 goto end; 181 182 cpu = smp_processor_id(); 183 if (unlikely(local_softirq_pending())) { 184 static int ratelimit; 185 186 if (ratelimit < 10) { 187 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 188 local_softirq_pending()); 189 ratelimit++; 190 } 191 } 192 193 now = ktime_get(); 194 /* 195 * When called from irq_exit we need to account the idle sleep time 196 * correctly. 197 */ 198 if (ts->tick_stopped) { 199 delta = ktime_sub(now, ts->idle_entrytime); 200 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 201 } 202 203 ts->idle_entrytime = now; 204 ts->idle_calls++; 205 206 /* Read jiffies and the time when jiffies were updated last */ 207 do { 208 seq = read_seqbegin(&xtime_lock); 209 last_update = last_jiffies_update; 210 last_jiffies = jiffies; 211 } while (read_seqretry(&xtime_lock, seq)); 212 213 /* Get the next timer wheel timer */ 214 next_jiffies = get_next_timer_interrupt(last_jiffies); 215 delta_jiffies = next_jiffies - last_jiffies; 216 217 if (rcu_needs_cpu(cpu)) 218 delta_jiffies = 1; 219 /* 220 * Do not stop the tick, if we are only one off 221 * or if the cpu is required for rcu 222 */ 223 if (!ts->tick_stopped && delta_jiffies == 1) 224 goto out; 225 226 /* Schedule the tick, if we are at least one jiffie off */ 227 if ((long)delta_jiffies >= 1) { 228 229 if (delta_jiffies > 1) 230 cpu_set(cpu, nohz_cpu_mask); 231 /* 232 * nohz_stop_sched_tick can be called several times before 233 * the nohz_restart_sched_tick is called. This happens when 234 * interrupts arrive which do not cause a reschedule. In the 235 * first call we save the current tick time, so we can restart 236 * the scheduler tick in nohz_restart_sched_tick. 237 */ 238 if (!ts->tick_stopped) { 239 if (select_nohz_load_balancer(1)) { 240 /* 241 * sched tick not stopped! 242 */ 243 cpu_clear(cpu, nohz_cpu_mask); 244 goto out; 245 } 246 247 ts->idle_tick = ts->sched_timer.expires; 248 ts->tick_stopped = 1; 249 ts->idle_jiffies = last_jiffies; 250 } 251 252 /* 253 * If this cpu is the one which updates jiffies, then 254 * give up the assignment and let it be taken by the 255 * cpu which runs the tick timer next, which might be 256 * this cpu as well. If we don't drop this here the 257 * jiffies might be stale and do_timer() never 258 * invoked. 259 */ 260 if (cpu == tick_do_timer_cpu) 261 tick_do_timer_cpu = -1; 262 263 ts->idle_sleeps++; 264 265 /* 266 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 267 * there is no timer pending or at least extremly far 268 * into the future (12 days for HZ=1000). In this case 269 * we simply stop the tick timer: 270 */ 271 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 272 ts->idle_expires.tv64 = KTIME_MAX; 273 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 274 hrtimer_cancel(&ts->sched_timer); 275 goto out; 276 } 277 278 /* 279 * calculate the expiry time for the next timer wheel 280 * timer 281 */ 282 expires = ktime_add_ns(last_update, tick_period.tv64 * 283 delta_jiffies); 284 ts->idle_expires = expires; 285 286 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 287 hrtimer_start(&ts->sched_timer, expires, 288 HRTIMER_MODE_ABS); 289 /* Check, if the timer was already in the past */ 290 if (hrtimer_active(&ts->sched_timer)) 291 goto out; 292 } else if(!tick_program_event(expires, 0)) 293 goto out; 294 /* 295 * We are past the event already. So we crossed a 296 * jiffie boundary. Update jiffies and raise the 297 * softirq. 298 */ 299 tick_do_update_jiffies64(ktime_get()); 300 cpu_clear(cpu, nohz_cpu_mask); 301 } 302 raise_softirq_irqoff(TIMER_SOFTIRQ); 303 out: 304 ts->next_jiffies = next_jiffies; 305 ts->last_jiffies = last_jiffies; 306 ts->sleep_length = ktime_sub(dev->next_event, now); 307 end: 308 local_irq_restore(flags); 309 } 310 311 /** 312 * tick_nohz_get_sleep_length - return the length of the current sleep 313 * 314 * Called from power state control code with interrupts disabled 315 */ 316 ktime_t tick_nohz_get_sleep_length(void) 317 { 318 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 319 320 return ts->sleep_length; 321 } 322 323 /** 324 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 325 * 326 * Restart the idle tick when the CPU is woken up from idle 327 */ 328 void tick_nohz_restart_sched_tick(void) 329 { 330 int cpu = smp_processor_id(); 331 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 332 unsigned long ticks; 333 ktime_t now, delta; 334 335 if (!ts->tick_stopped) 336 return; 337 338 /* Update jiffies first */ 339 now = ktime_get(); 340 341 local_irq_disable(); 342 select_nohz_load_balancer(0); 343 tick_do_update_jiffies64(now); 344 cpu_clear(cpu, nohz_cpu_mask); 345 346 /* Account the idle time */ 347 delta = ktime_sub(now, ts->idle_entrytime); 348 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 349 350 /* 351 * We stopped the tick in idle. Update process times would miss the 352 * time we slept as update_process_times does only a 1 tick 353 * accounting. Enforce that this is accounted to idle ! 354 */ 355 ticks = jiffies - ts->idle_jiffies; 356 /* 357 * We might be one off. Do not randomly account a huge number of ticks! 358 */ 359 if (ticks && ticks < LONG_MAX) { 360 add_preempt_count(HARDIRQ_OFFSET); 361 account_system_time(current, HARDIRQ_OFFSET, 362 jiffies_to_cputime(ticks)); 363 sub_preempt_count(HARDIRQ_OFFSET); 364 } 365 366 /* 367 * Cancel the scheduled timer and restore the tick 368 */ 369 ts->tick_stopped = 0; 370 hrtimer_cancel(&ts->sched_timer); 371 ts->sched_timer.expires = ts->idle_tick; 372 373 while (1) { 374 /* Forward the time to expire in the future */ 375 hrtimer_forward(&ts->sched_timer, now, tick_period); 376 377 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 378 hrtimer_start(&ts->sched_timer, 379 ts->sched_timer.expires, 380 HRTIMER_MODE_ABS); 381 /* Check, if the timer was already in the past */ 382 if (hrtimer_active(&ts->sched_timer)) 383 break; 384 } else { 385 if (!tick_program_event(ts->sched_timer.expires, 0)) 386 break; 387 } 388 /* Update jiffies and reread time */ 389 tick_do_update_jiffies64(now); 390 now = ktime_get(); 391 } 392 local_irq_enable(); 393 } 394 395 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 396 { 397 hrtimer_forward(&ts->sched_timer, now, tick_period); 398 return tick_program_event(ts->sched_timer.expires, 0); 399 } 400 401 /* 402 * The nohz low res interrupt handler 403 */ 404 static void tick_nohz_handler(struct clock_event_device *dev) 405 { 406 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 407 struct pt_regs *regs = get_irq_regs(); 408 int cpu = smp_processor_id(); 409 ktime_t now = ktime_get(); 410 411 dev->next_event.tv64 = KTIME_MAX; 412 413 /* 414 * Check if the do_timer duty was dropped. We don't care about 415 * concurrency: This happens only when the cpu in charge went 416 * into a long sleep. If two cpus happen to assign themself to 417 * this duty, then the jiffies update is still serialized by 418 * xtime_lock. 419 */ 420 if (unlikely(tick_do_timer_cpu == -1)) 421 tick_do_timer_cpu = cpu; 422 423 /* Check, if the jiffies need an update */ 424 if (tick_do_timer_cpu == cpu) 425 tick_do_update_jiffies64(now); 426 427 /* 428 * When we are idle and the tick is stopped, we have to touch 429 * the watchdog as we might not schedule for a really long 430 * time. This happens on complete idle SMP systems while 431 * waiting on the login prompt. We also increment the "start 432 * of idle" jiffy stamp so the idle accounting adjustment we 433 * do when we go busy again does not account too much ticks. 434 */ 435 if (ts->tick_stopped) { 436 touch_softlockup_watchdog(); 437 ts->idle_jiffies++; 438 } 439 440 update_process_times(user_mode(regs)); 441 profile_tick(CPU_PROFILING); 442 443 /* Do not restart, when we are in the idle loop */ 444 if (ts->tick_stopped) 445 return; 446 447 while (tick_nohz_reprogram(ts, now)) { 448 now = ktime_get(); 449 tick_do_update_jiffies64(now); 450 } 451 } 452 453 /** 454 * tick_nohz_switch_to_nohz - switch to nohz mode 455 */ 456 static void tick_nohz_switch_to_nohz(void) 457 { 458 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 459 ktime_t next; 460 461 if (!tick_nohz_enabled) 462 return; 463 464 local_irq_disable(); 465 if (tick_switch_to_oneshot(tick_nohz_handler)) { 466 local_irq_enable(); 467 return; 468 } 469 470 ts->nohz_mode = NOHZ_MODE_LOWRES; 471 472 /* 473 * Recycle the hrtimer in ts, so we can share the 474 * hrtimer_forward with the highres code. 475 */ 476 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 477 /* Get the next period */ 478 next = tick_init_jiffy_update(); 479 480 for (;;) { 481 ts->sched_timer.expires = next; 482 if (!tick_program_event(next, 0)) 483 break; 484 next = ktime_add(next, tick_period); 485 } 486 local_irq_enable(); 487 488 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 489 smp_processor_id()); 490 } 491 492 #else 493 494 static inline void tick_nohz_switch_to_nohz(void) { } 495 496 #endif /* NO_HZ */ 497 498 /* 499 * High resolution timer specific code 500 */ 501 #ifdef CONFIG_HIGH_RES_TIMERS 502 /* 503 * We rearm the timer until we get disabled by the idle code 504 * Called with interrupts disabled and timer->base->cpu_base->lock held. 505 */ 506 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 507 { 508 struct tick_sched *ts = 509 container_of(timer, struct tick_sched, sched_timer); 510 struct hrtimer_cpu_base *base = timer->base->cpu_base; 511 struct pt_regs *regs = get_irq_regs(); 512 ktime_t now = ktime_get(); 513 int cpu = smp_processor_id(); 514 515 #ifdef CONFIG_NO_HZ 516 /* 517 * Check if the do_timer duty was dropped. We don't care about 518 * concurrency: This happens only when the cpu in charge went 519 * into a long sleep. If two cpus happen to assign themself to 520 * this duty, then the jiffies update is still serialized by 521 * xtime_lock. 522 */ 523 if (unlikely(tick_do_timer_cpu == -1)) 524 tick_do_timer_cpu = cpu; 525 #endif 526 527 /* Check, if the jiffies need an update */ 528 if (tick_do_timer_cpu == cpu) 529 tick_do_update_jiffies64(now); 530 531 /* 532 * Do not call, when we are not in irq context and have 533 * no valid regs pointer 534 */ 535 if (regs) { 536 /* 537 * When we are idle and the tick is stopped, we have to touch 538 * the watchdog as we might not schedule for a really long 539 * time. This happens on complete idle SMP systems while 540 * waiting on the login prompt. We also increment the "start of 541 * idle" jiffy stamp so the idle accounting adjustment we do 542 * when we go busy again does not account too much ticks. 543 */ 544 if (ts->tick_stopped) { 545 touch_softlockup_watchdog(); 546 ts->idle_jiffies++; 547 } 548 /* 549 * update_process_times() might take tasklist_lock, hence 550 * drop the base lock. sched-tick hrtimers are per-CPU and 551 * never accessible by userspace APIs, so this is safe to do. 552 */ 553 spin_unlock(&base->lock); 554 update_process_times(user_mode(regs)); 555 profile_tick(CPU_PROFILING); 556 spin_lock(&base->lock); 557 } 558 559 /* Do not restart, when we are in the idle loop */ 560 if (ts->tick_stopped) 561 return HRTIMER_NORESTART; 562 563 hrtimer_forward(timer, now, tick_period); 564 565 return HRTIMER_RESTART; 566 } 567 568 /** 569 * tick_setup_sched_timer - setup the tick emulation timer 570 */ 571 void tick_setup_sched_timer(void) 572 { 573 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 574 ktime_t now = ktime_get(); 575 u64 offset; 576 577 /* 578 * Emulate tick processing via per-CPU hrtimers: 579 */ 580 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 581 ts->sched_timer.function = tick_sched_timer; 582 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 583 584 /* Get the next period (per cpu) */ 585 ts->sched_timer.expires = tick_init_jiffy_update(); 586 offset = ktime_to_ns(tick_period) >> 1; 587 do_div(offset, num_possible_cpus()); 588 offset *= smp_processor_id(); 589 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); 590 591 for (;;) { 592 hrtimer_forward(&ts->sched_timer, now, tick_period); 593 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, 594 HRTIMER_MODE_ABS); 595 /* Check, if the timer was already in the past */ 596 if (hrtimer_active(&ts->sched_timer)) 597 break; 598 now = ktime_get(); 599 } 600 601 #ifdef CONFIG_NO_HZ 602 if (tick_nohz_enabled) 603 ts->nohz_mode = NOHZ_MODE_HIGHRES; 604 #endif 605 } 606 607 void tick_cancel_sched_timer(int cpu) 608 { 609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 610 611 if (ts->sched_timer.base) 612 hrtimer_cancel(&ts->sched_timer); 613 ts->tick_stopped = 0; 614 ts->nohz_mode = NOHZ_MODE_INACTIVE; 615 } 616 #endif /* HIGH_RES_TIMERS */ 617 618 /** 619 * Async notification about clocksource changes 620 */ 621 void tick_clock_notify(void) 622 { 623 int cpu; 624 625 for_each_possible_cpu(cpu) 626 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 627 } 628 629 /* 630 * Async notification about clock event changes 631 */ 632 void tick_oneshot_notify(void) 633 { 634 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 635 636 set_bit(0, &ts->check_clocks); 637 } 638 639 /** 640 * Check, if a change happened, which makes oneshot possible. 641 * 642 * Called cyclic from the hrtimer softirq (driven by the timer 643 * softirq) allow_nohz signals, that we can switch into low-res nohz 644 * mode, because high resolution timers are disabled (either compile 645 * or runtime). 646 */ 647 int tick_check_oneshot_change(int allow_nohz) 648 { 649 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 650 651 if (!test_and_clear_bit(0, &ts->check_clocks)) 652 return 0; 653 654 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 655 return 0; 656 657 if (!timekeeping_is_continuous() || !tick_is_oneshot_available()) 658 return 0; 659 660 if (!allow_nohz) 661 return 1; 662 663 tick_nohz_switch_to_nohz(); 664 return 0; 665 } 666