xref: /linux/kernel/time/tick-sched.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	cpu_clear(cpu, nohz_cpu_mask);
137 	now = ktime_get();
138 
139 	local_irq_save(flags);
140 	tick_do_update_jiffies64(now);
141 	local_irq_restore(flags);
142 }
143 
144 /**
145  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
146  *
147  * When the next event is more than a tick into the future, stop the idle tick
148  * Called either from the idle loop or from irq_exit() when an idle period was
149  * just interrupted by an interrupt which did not cause a reschedule.
150  */
151 void tick_nohz_stop_sched_tick(void)
152 {
153 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
154 	struct tick_sched *ts;
155 	ktime_t last_update, expires, now, delta;
156 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
157 	int cpu;
158 
159 	local_irq_save(flags);
160 
161 	cpu = smp_processor_id();
162 	ts = &per_cpu(tick_cpu_sched, cpu);
163 
164 	/*
165 	 * If this cpu is offline and it is the one which updates
166 	 * jiffies, then give up the assignment and let it be taken by
167 	 * the cpu which runs the tick timer next. If we don't drop
168 	 * this here the jiffies might be stale and do_timer() never
169 	 * invoked.
170 	 */
171 	if (unlikely(!cpu_online(cpu))) {
172 		if (cpu == tick_do_timer_cpu)
173 			tick_do_timer_cpu = -1;
174 	}
175 
176 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
177 		goto end;
178 
179 	if (need_resched())
180 		goto end;
181 
182 	cpu = smp_processor_id();
183 	if (unlikely(local_softirq_pending())) {
184 		static int ratelimit;
185 
186 		if (ratelimit < 10) {
187 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
188 			       local_softirq_pending());
189 			ratelimit++;
190 		}
191 	}
192 
193 	now = ktime_get();
194 	/*
195 	 * When called from irq_exit we need to account the idle sleep time
196 	 * correctly.
197 	 */
198 	if (ts->tick_stopped) {
199 		delta = ktime_sub(now, ts->idle_entrytime);
200 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
201 	}
202 
203 	ts->idle_entrytime = now;
204 	ts->idle_calls++;
205 
206 	/* Read jiffies and the time when jiffies were updated last */
207 	do {
208 		seq = read_seqbegin(&xtime_lock);
209 		last_update = last_jiffies_update;
210 		last_jiffies = jiffies;
211 	} while (read_seqretry(&xtime_lock, seq));
212 
213 	/* Get the next timer wheel timer */
214 	next_jiffies = get_next_timer_interrupt(last_jiffies);
215 	delta_jiffies = next_jiffies - last_jiffies;
216 
217 	if (rcu_needs_cpu(cpu))
218 		delta_jiffies = 1;
219 	/*
220 	 * Do not stop the tick, if we are only one off
221 	 * or if the cpu is required for rcu
222 	 */
223 	if (!ts->tick_stopped && delta_jiffies == 1)
224 		goto out;
225 
226 	/* Schedule the tick, if we are at least one jiffie off */
227 	if ((long)delta_jiffies >= 1) {
228 
229 		if (delta_jiffies > 1)
230 			cpu_set(cpu, nohz_cpu_mask);
231 		/*
232 		 * nohz_stop_sched_tick can be called several times before
233 		 * the nohz_restart_sched_tick is called. This happens when
234 		 * interrupts arrive which do not cause a reschedule. In the
235 		 * first call we save the current tick time, so we can restart
236 		 * the scheduler tick in nohz_restart_sched_tick.
237 		 */
238 		if (!ts->tick_stopped) {
239 			if (select_nohz_load_balancer(1)) {
240 				/*
241 				 * sched tick not stopped!
242 				 */
243 				cpu_clear(cpu, nohz_cpu_mask);
244 				goto out;
245 			}
246 
247 			ts->idle_tick = ts->sched_timer.expires;
248 			ts->tick_stopped = 1;
249 			ts->idle_jiffies = last_jiffies;
250 		}
251 
252 		/*
253 		 * If this cpu is the one which updates jiffies, then
254 		 * give up the assignment and let it be taken by the
255 		 * cpu which runs the tick timer next, which might be
256 		 * this cpu as well. If we don't drop this here the
257 		 * jiffies might be stale and do_timer() never
258 		 * invoked.
259 		 */
260 		if (cpu == tick_do_timer_cpu)
261 			tick_do_timer_cpu = -1;
262 
263 		ts->idle_sleeps++;
264 
265 		/*
266 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
267 		 * there is no timer pending or at least extremly far
268 		 * into the future (12 days for HZ=1000). In this case
269 		 * we simply stop the tick timer:
270 		 */
271 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
272 			ts->idle_expires.tv64 = KTIME_MAX;
273 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
274 				hrtimer_cancel(&ts->sched_timer);
275 			goto out;
276 		}
277 
278 		/*
279 		 * calculate the expiry time for the next timer wheel
280 		 * timer
281 		 */
282 		expires = ktime_add_ns(last_update, tick_period.tv64 *
283 				       delta_jiffies);
284 		ts->idle_expires = expires;
285 
286 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
287 			hrtimer_start(&ts->sched_timer, expires,
288 				      HRTIMER_MODE_ABS);
289 			/* Check, if the timer was already in the past */
290 			if (hrtimer_active(&ts->sched_timer))
291 				goto out;
292 		} else if(!tick_program_event(expires, 0))
293 				goto out;
294 		/*
295 		 * We are past the event already. So we crossed a
296 		 * jiffie boundary. Update jiffies and raise the
297 		 * softirq.
298 		 */
299 		tick_do_update_jiffies64(ktime_get());
300 		cpu_clear(cpu, nohz_cpu_mask);
301 	}
302 	raise_softirq_irqoff(TIMER_SOFTIRQ);
303 out:
304 	ts->next_jiffies = next_jiffies;
305 	ts->last_jiffies = last_jiffies;
306 	ts->sleep_length = ktime_sub(dev->next_event, now);
307 end:
308 	local_irq_restore(flags);
309 }
310 
311 /**
312  * tick_nohz_get_sleep_length - return the length of the current sleep
313  *
314  * Called from power state control code with interrupts disabled
315  */
316 ktime_t tick_nohz_get_sleep_length(void)
317 {
318 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
319 
320 	return ts->sleep_length;
321 }
322 
323 /**
324  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
325  *
326  * Restart the idle tick when the CPU is woken up from idle
327  */
328 void tick_nohz_restart_sched_tick(void)
329 {
330 	int cpu = smp_processor_id();
331 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
332 	unsigned long ticks;
333 	ktime_t now, delta;
334 
335 	if (!ts->tick_stopped)
336 		return;
337 
338 	/* Update jiffies first */
339 	now = ktime_get();
340 
341 	local_irq_disable();
342 	select_nohz_load_balancer(0);
343 	tick_do_update_jiffies64(now);
344 	cpu_clear(cpu, nohz_cpu_mask);
345 
346 	/* Account the idle time */
347 	delta = ktime_sub(now, ts->idle_entrytime);
348 	ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
349 
350 	/*
351 	 * We stopped the tick in idle. Update process times would miss the
352 	 * time we slept as update_process_times does only a 1 tick
353 	 * accounting. Enforce that this is accounted to idle !
354 	 */
355 	ticks = jiffies - ts->idle_jiffies;
356 	/*
357 	 * We might be one off. Do not randomly account a huge number of ticks!
358 	 */
359 	if (ticks && ticks < LONG_MAX) {
360 		add_preempt_count(HARDIRQ_OFFSET);
361 		account_system_time(current, HARDIRQ_OFFSET,
362 				    jiffies_to_cputime(ticks));
363 		sub_preempt_count(HARDIRQ_OFFSET);
364 	}
365 
366 	/*
367 	 * Cancel the scheduled timer and restore the tick
368 	 */
369 	ts->tick_stopped  = 0;
370 	hrtimer_cancel(&ts->sched_timer);
371 	ts->sched_timer.expires = ts->idle_tick;
372 
373 	while (1) {
374 		/* Forward the time to expire in the future */
375 		hrtimer_forward(&ts->sched_timer, now, tick_period);
376 
377 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
378 			hrtimer_start(&ts->sched_timer,
379 				      ts->sched_timer.expires,
380 				      HRTIMER_MODE_ABS);
381 			/* Check, if the timer was already in the past */
382 			if (hrtimer_active(&ts->sched_timer))
383 				break;
384 		} else {
385 			if (!tick_program_event(ts->sched_timer.expires, 0))
386 				break;
387 		}
388 		/* Update jiffies and reread time */
389 		tick_do_update_jiffies64(now);
390 		now = ktime_get();
391 	}
392 	local_irq_enable();
393 }
394 
395 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
396 {
397 	hrtimer_forward(&ts->sched_timer, now, tick_period);
398 	return tick_program_event(ts->sched_timer.expires, 0);
399 }
400 
401 /*
402  * The nohz low res interrupt handler
403  */
404 static void tick_nohz_handler(struct clock_event_device *dev)
405 {
406 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
407 	struct pt_regs *regs = get_irq_regs();
408 	int cpu = smp_processor_id();
409 	ktime_t now = ktime_get();
410 
411 	dev->next_event.tv64 = KTIME_MAX;
412 
413 	/*
414 	 * Check if the do_timer duty was dropped. We don't care about
415 	 * concurrency: This happens only when the cpu in charge went
416 	 * into a long sleep. If two cpus happen to assign themself to
417 	 * this duty, then the jiffies update is still serialized by
418 	 * xtime_lock.
419 	 */
420 	if (unlikely(tick_do_timer_cpu == -1))
421 		tick_do_timer_cpu = cpu;
422 
423 	/* Check, if the jiffies need an update */
424 	if (tick_do_timer_cpu == cpu)
425 		tick_do_update_jiffies64(now);
426 
427 	/*
428 	 * When we are idle and the tick is stopped, we have to touch
429 	 * the watchdog as we might not schedule for a really long
430 	 * time. This happens on complete idle SMP systems while
431 	 * waiting on the login prompt. We also increment the "start
432 	 * of idle" jiffy stamp so the idle accounting adjustment we
433 	 * do when we go busy again does not account too much ticks.
434 	 */
435 	if (ts->tick_stopped) {
436 		touch_softlockup_watchdog();
437 		ts->idle_jiffies++;
438 	}
439 
440 	update_process_times(user_mode(regs));
441 	profile_tick(CPU_PROFILING);
442 
443 	/* Do not restart, when we are in the idle loop */
444 	if (ts->tick_stopped)
445 		return;
446 
447 	while (tick_nohz_reprogram(ts, now)) {
448 		now = ktime_get();
449 		tick_do_update_jiffies64(now);
450 	}
451 }
452 
453 /**
454  * tick_nohz_switch_to_nohz - switch to nohz mode
455  */
456 static void tick_nohz_switch_to_nohz(void)
457 {
458 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
459 	ktime_t next;
460 
461 	if (!tick_nohz_enabled)
462 		return;
463 
464 	local_irq_disable();
465 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
466 		local_irq_enable();
467 		return;
468 	}
469 
470 	ts->nohz_mode = NOHZ_MODE_LOWRES;
471 
472 	/*
473 	 * Recycle the hrtimer in ts, so we can share the
474 	 * hrtimer_forward with the highres code.
475 	 */
476 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
477 	/* Get the next period */
478 	next = tick_init_jiffy_update();
479 
480 	for (;;) {
481 		ts->sched_timer.expires = next;
482 		if (!tick_program_event(next, 0))
483 			break;
484 		next = ktime_add(next, tick_period);
485 	}
486 	local_irq_enable();
487 
488 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
489 	       smp_processor_id());
490 }
491 
492 #else
493 
494 static inline void tick_nohz_switch_to_nohz(void) { }
495 
496 #endif /* NO_HZ */
497 
498 /*
499  * High resolution timer specific code
500  */
501 #ifdef CONFIG_HIGH_RES_TIMERS
502 /*
503  * We rearm the timer until we get disabled by the idle code
504  * Called with interrupts disabled and timer->base->cpu_base->lock held.
505  */
506 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
507 {
508 	struct tick_sched *ts =
509 		container_of(timer, struct tick_sched, sched_timer);
510 	struct hrtimer_cpu_base *base = timer->base->cpu_base;
511 	struct pt_regs *regs = get_irq_regs();
512 	ktime_t now = ktime_get();
513 	int cpu = smp_processor_id();
514 
515 #ifdef CONFIG_NO_HZ
516 	/*
517 	 * Check if the do_timer duty was dropped. We don't care about
518 	 * concurrency: This happens only when the cpu in charge went
519 	 * into a long sleep. If two cpus happen to assign themself to
520 	 * this duty, then the jiffies update is still serialized by
521 	 * xtime_lock.
522 	 */
523 	if (unlikely(tick_do_timer_cpu == -1))
524 		tick_do_timer_cpu = cpu;
525 #endif
526 
527 	/* Check, if the jiffies need an update */
528 	if (tick_do_timer_cpu == cpu)
529 		tick_do_update_jiffies64(now);
530 
531 	/*
532 	 * Do not call, when we are not in irq context and have
533 	 * no valid regs pointer
534 	 */
535 	if (regs) {
536 		/*
537 		 * When we are idle and the tick is stopped, we have to touch
538 		 * the watchdog as we might not schedule for a really long
539 		 * time. This happens on complete idle SMP systems while
540 		 * waiting on the login prompt. We also increment the "start of
541 		 * idle" jiffy stamp so the idle accounting adjustment we do
542 		 * when we go busy again does not account too much ticks.
543 		 */
544 		if (ts->tick_stopped) {
545 			touch_softlockup_watchdog();
546 			ts->idle_jiffies++;
547 		}
548 		/*
549 		 * update_process_times() might take tasklist_lock, hence
550 		 * drop the base lock. sched-tick hrtimers are per-CPU and
551 		 * never accessible by userspace APIs, so this is safe to do.
552 		 */
553 		spin_unlock(&base->lock);
554 		update_process_times(user_mode(regs));
555 		profile_tick(CPU_PROFILING);
556 		spin_lock(&base->lock);
557 	}
558 
559 	/* Do not restart, when we are in the idle loop */
560 	if (ts->tick_stopped)
561 		return HRTIMER_NORESTART;
562 
563 	hrtimer_forward(timer, now, tick_period);
564 
565 	return HRTIMER_RESTART;
566 }
567 
568 /**
569  * tick_setup_sched_timer - setup the tick emulation timer
570  */
571 void tick_setup_sched_timer(void)
572 {
573 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
574 	ktime_t now = ktime_get();
575 	u64 offset;
576 
577 	/*
578 	 * Emulate tick processing via per-CPU hrtimers:
579 	 */
580 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
581 	ts->sched_timer.function = tick_sched_timer;
582 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
583 
584 	/* Get the next period (per cpu) */
585 	ts->sched_timer.expires = tick_init_jiffy_update();
586 	offset = ktime_to_ns(tick_period) >> 1;
587 	do_div(offset, num_possible_cpus());
588 	offset *= smp_processor_id();
589 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
590 
591 	for (;;) {
592 		hrtimer_forward(&ts->sched_timer, now, tick_period);
593 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
594 			      HRTIMER_MODE_ABS);
595 		/* Check, if the timer was already in the past */
596 		if (hrtimer_active(&ts->sched_timer))
597 			break;
598 		now = ktime_get();
599 	}
600 
601 #ifdef CONFIG_NO_HZ
602 	if (tick_nohz_enabled)
603 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
604 #endif
605 }
606 
607 void tick_cancel_sched_timer(int cpu)
608 {
609 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 
611 	if (ts->sched_timer.base)
612 		hrtimer_cancel(&ts->sched_timer);
613 	ts->tick_stopped = 0;
614 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
615 }
616 #endif /* HIGH_RES_TIMERS */
617 
618 /**
619  * Async notification about clocksource changes
620  */
621 void tick_clock_notify(void)
622 {
623 	int cpu;
624 
625 	for_each_possible_cpu(cpu)
626 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
627 }
628 
629 /*
630  * Async notification about clock event changes
631  */
632 void tick_oneshot_notify(void)
633 {
634 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
635 
636 	set_bit(0, &ts->check_clocks);
637 }
638 
639 /**
640  * Check, if a change happened, which makes oneshot possible.
641  *
642  * Called cyclic from the hrtimer softirq (driven by the timer
643  * softirq) allow_nohz signals, that we can switch into low-res nohz
644  * mode, because high resolution timers are disabled (either compile
645  * or runtime).
646  */
647 int tick_check_oneshot_change(int allow_nohz)
648 {
649 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
650 
651 	if (!test_and_clear_bit(0, &ts->check_clocks))
652 		return 0;
653 
654 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
655 		return 0;
656 
657 	if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
658 		return 0;
659 
660 	if (!allow_nohz)
661 		return 1;
662 
663 	tick_nohz_switch_to_nohz();
664 	return 0;
665 }
666