1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 #include <linux/module.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by xtime_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding xtime_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with xtime_lock held */ 60 write_seqlock(&xtime_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&xtime_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&xtime_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&xtime_lock); 99 return period; 100 } 101 102 /* 103 * NOHZ - aka dynamic tick functionality 104 */ 105 #ifdef CONFIG_NO_HZ 106 /* 107 * NO HZ enabled ? 108 */ 109 static int tick_nohz_enabled __read_mostly = 1; 110 111 /* 112 * Enable / Disable tickless mode 113 */ 114 static int __init setup_tick_nohz(char *str) 115 { 116 if (!strcmp(str, "off")) 117 tick_nohz_enabled = 0; 118 else if (!strcmp(str, "on")) 119 tick_nohz_enabled = 1; 120 else 121 return 0; 122 return 1; 123 } 124 125 __setup("nohz=", setup_tick_nohz); 126 127 /** 128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 129 * 130 * Called from interrupt entry when the CPU was idle 131 * 132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 133 * must be updated. Otherwise an interrupt handler could use a stale jiffy 134 * value. We do this unconditionally on any cpu, as we don't know whether the 135 * cpu, which has the update task assigned is in a long sleep. 136 */ 137 void tick_nohz_update_jiffies(void) 138 { 139 int cpu = smp_processor_id(); 140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 141 unsigned long flags; 142 ktime_t now; 143 144 if (!ts->tick_stopped) 145 return; 146 147 cpu_clear(cpu, nohz_cpu_mask); 148 now = ktime_get(); 149 ts->idle_waketime = now; 150 151 local_irq_save(flags); 152 tick_do_update_jiffies64(now); 153 local_irq_restore(flags); 154 155 touch_softlockup_watchdog(); 156 } 157 158 static void tick_nohz_stop_idle(int cpu) 159 { 160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 161 162 if (ts->idle_active) { 163 ktime_t now, delta; 164 now = ktime_get(); 165 delta = ktime_sub(now, ts->idle_entrytime); 166 ts->idle_lastupdate = now; 167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 168 ts->idle_active = 0; 169 170 sched_clock_idle_wakeup_event(0); 171 } 172 } 173 174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 175 { 176 ktime_t now, delta; 177 178 now = ktime_get(); 179 if (ts->idle_active) { 180 delta = ktime_sub(now, ts->idle_entrytime); 181 ts->idle_lastupdate = now; 182 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 183 } 184 ts->idle_entrytime = now; 185 ts->idle_active = 1; 186 sched_clock_idle_sleep_event(); 187 return now; 188 } 189 190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 191 { 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 193 194 if (!tick_nohz_enabled) 195 return -1; 196 197 if (ts->idle_active) 198 *last_update_time = ktime_to_us(ts->idle_lastupdate); 199 else 200 *last_update_time = ktime_to_us(ktime_get()); 201 202 return ktime_to_us(ts->idle_sleeptime); 203 } 204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 205 206 /** 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 208 * 209 * When the next event is more than a tick into the future, stop the idle tick 210 * Called either from the idle loop or from irq_exit() when an idle period was 211 * just interrupted by an interrupt which did not cause a reschedule. 212 */ 213 void tick_nohz_stop_sched_tick(int inidle) 214 { 215 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 216 struct tick_sched *ts; 217 ktime_t last_update, expires, now; 218 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 219 int cpu; 220 221 local_irq_save(flags); 222 223 cpu = smp_processor_id(); 224 ts = &per_cpu(tick_cpu_sched, cpu); 225 now = tick_nohz_start_idle(ts); 226 227 /* 228 * If this cpu is offline and it is the one which updates 229 * jiffies, then give up the assignment and let it be taken by 230 * the cpu which runs the tick timer next. If we don't drop 231 * this here the jiffies might be stale and do_timer() never 232 * invoked. 233 */ 234 if (unlikely(!cpu_online(cpu))) { 235 if (cpu == tick_do_timer_cpu) 236 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 237 } 238 239 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 240 goto end; 241 242 if (!inidle && !ts->inidle) 243 goto end; 244 245 ts->inidle = 1; 246 247 if (need_resched()) 248 goto end; 249 250 if (unlikely(local_softirq_pending())) { 251 static int ratelimit; 252 253 if (ratelimit < 10) { 254 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 255 local_softirq_pending()); 256 ratelimit++; 257 } 258 goto end; 259 } 260 261 ts->idle_calls++; 262 /* Read jiffies and the time when jiffies were updated last */ 263 do { 264 seq = read_seqbegin(&xtime_lock); 265 last_update = last_jiffies_update; 266 last_jiffies = jiffies; 267 } while (read_seqretry(&xtime_lock, seq)); 268 269 /* Get the next timer wheel timer */ 270 next_jiffies = get_next_timer_interrupt(last_jiffies); 271 delta_jiffies = next_jiffies - last_jiffies; 272 273 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu)) 274 delta_jiffies = 1; 275 /* 276 * Do not stop the tick, if we are only one off 277 * or if the cpu is required for rcu 278 */ 279 if (!ts->tick_stopped && delta_jiffies == 1) 280 goto out; 281 282 /* Schedule the tick, if we are at least one jiffie off */ 283 if ((long)delta_jiffies >= 1) { 284 285 if (delta_jiffies > 1) 286 cpu_set(cpu, nohz_cpu_mask); 287 /* 288 * nohz_stop_sched_tick can be called several times before 289 * the nohz_restart_sched_tick is called. This happens when 290 * interrupts arrive which do not cause a reschedule. In the 291 * first call we save the current tick time, so we can restart 292 * the scheduler tick in nohz_restart_sched_tick. 293 */ 294 if (!ts->tick_stopped) { 295 if (select_nohz_load_balancer(1)) { 296 /* 297 * sched tick not stopped! 298 */ 299 cpu_clear(cpu, nohz_cpu_mask); 300 goto out; 301 } 302 303 ts->idle_tick = ts->sched_timer.expires; 304 ts->tick_stopped = 1; 305 ts->idle_jiffies = last_jiffies; 306 rcu_enter_nohz(); 307 } 308 309 /* 310 * If this cpu is the one which updates jiffies, then 311 * give up the assignment and let it be taken by the 312 * cpu which runs the tick timer next, which might be 313 * this cpu as well. If we don't drop this here the 314 * jiffies might be stale and do_timer() never 315 * invoked. 316 */ 317 if (cpu == tick_do_timer_cpu) 318 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 319 320 ts->idle_sleeps++; 321 322 /* 323 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 324 * there is no timer pending or at least extremly far 325 * into the future (12 days for HZ=1000). In this case 326 * we simply stop the tick timer: 327 */ 328 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 329 ts->idle_expires.tv64 = KTIME_MAX; 330 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 331 hrtimer_cancel(&ts->sched_timer); 332 goto out; 333 } 334 335 /* 336 * calculate the expiry time for the next timer wheel 337 * timer 338 */ 339 expires = ktime_add_ns(last_update, tick_period.tv64 * 340 delta_jiffies); 341 ts->idle_expires = expires; 342 343 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 344 hrtimer_start(&ts->sched_timer, expires, 345 HRTIMER_MODE_ABS); 346 /* Check, if the timer was already in the past */ 347 if (hrtimer_active(&ts->sched_timer)) 348 goto out; 349 } else if (!tick_program_event(expires, 0)) 350 goto out; 351 /* 352 * We are past the event already. So we crossed a 353 * jiffie boundary. Update jiffies and raise the 354 * softirq. 355 */ 356 tick_do_update_jiffies64(ktime_get()); 357 cpu_clear(cpu, nohz_cpu_mask); 358 } 359 raise_softirq_irqoff(TIMER_SOFTIRQ); 360 out: 361 ts->next_jiffies = next_jiffies; 362 ts->last_jiffies = last_jiffies; 363 ts->sleep_length = ktime_sub(dev->next_event, now); 364 end: 365 local_irq_restore(flags); 366 } 367 368 /** 369 * tick_nohz_get_sleep_length - return the length of the current sleep 370 * 371 * Called from power state control code with interrupts disabled 372 */ 373 ktime_t tick_nohz_get_sleep_length(void) 374 { 375 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 376 377 return ts->sleep_length; 378 } 379 380 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 381 { 382 hrtimer_cancel(&ts->sched_timer); 383 ts->sched_timer.expires = ts->idle_tick; 384 385 while (1) { 386 /* Forward the time to expire in the future */ 387 hrtimer_forward(&ts->sched_timer, now, tick_period); 388 389 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 390 hrtimer_start(&ts->sched_timer, 391 ts->sched_timer.expires, 392 HRTIMER_MODE_ABS); 393 /* Check, if the timer was already in the past */ 394 if (hrtimer_active(&ts->sched_timer)) 395 break; 396 } else { 397 if (!tick_program_event(ts->sched_timer.expires, 0)) 398 break; 399 } 400 /* Update jiffies and reread time */ 401 tick_do_update_jiffies64(now); 402 now = ktime_get(); 403 } 404 } 405 406 /** 407 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 408 * 409 * Restart the idle tick when the CPU is woken up from idle 410 */ 411 void tick_nohz_restart_sched_tick(void) 412 { 413 int cpu = smp_processor_id(); 414 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 415 unsigned long ticks; 416 ktime_t now; 417 418 local_irq_disable(); 419 tick_nohz_stop_idle(cpu); 420 421 if (!ts->inidle || !ts->tick_stopped) { 422 ts->inidle = 0; 423 local_irq_enable(); 424 return; 425 } 426 427 ts->inidle = 0; 428 429 rcu_exit_nohz(); 430 431 /* Update jiffies first */ 432 select_nohz_load_balancer(0); 433 now = ktime_get(); 434 tick_do_update_jiffies64(now); 435 cpu_clear(cpu, nohz_cpu_mask); 436 437 /* 438 * We stopped the tick in idle. Update process times would miss the 439 * time we slept as update_process_times does only a 1 tick 440 * accounting. Enforce that this is accounted to idle ! 441 */ 442 ticks = jiffies - ts->idle_jiffies; 443 /* 444 * We might be one off. Do not randomly account a huge number of ticks! 445 */ 446 if (ticks && ticks < LONG_MAX) { 447 add_preempt_count(HARDIRQ_OFFSET); 448 account_system_time(current, HARDIRQ_OFFSET, 449 jiffies_to_cputime(ticks)); 450 sub_preempt_count(HARDIRQ_OFFSET); 451 } 452 453 touch_softlockup_watchdog(); 454 /* 455 * Cancel the scheduled timer and restore the tick 456 */ 457 ts->tick_stopped = 0; 458 ts->idle_exittime = now; 459 tick_nohz_restart(ts, now); 460 local_irq_enable(); 461 } 462 463 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 464 { 465 hrtimer_forward(&ts->sched_timer, now, tick_period); 466 return tick_program_event(ts->sched_timer.expires, 0); 467 } 468 469 /* 470 * The nohz low res interrupt handler 471 */ 472 static void tick_nohz_handler(struct clock_event_device *dev) 473 { 474 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 475 struct pt_regs *regs = get_irq_regs(); 476 int cpu = smp_processor_id(); 477 ktime_t now = ktime_get(); 478 479 dev->next_event.tv64 = KTIME_MAX; 480 481 /* 482 * Check if the do_timer duty was dropped. We don't care about 483 * concurrency: This happens only when the cpu in charge went 484 * into a long sleep. If two cpus happen to assign themself to 485 * this duty, then the jiffies update is still serialized by 486 * xtime_lock. 487 */ 488 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 489 tick_do_timer_cpu = cpu; 490 491 /* Check, if the jiffies need an update */ 492 if (tick_do_timer_cpu == cpu) 493 tick_do_update_jiffies64(now); 494 495 /* 496 * When we are idle and the tick is stopped, we have to touch 497 * the watchdog as we might not schedule for a really long 498 * time. This happens on complete idle SMP systems while 499 * waiting on the login prompt. We also increment the "start 500 * of idle" jiffy stamp so the idle accounting adjustment we 501 * do when we go busy again does not account too much ticks. 502 */ 503 if (ts->tick_stopped) { 504 touch_softlockup_watchdog(); 505 ts->idle_jiffies++; 506 } 507 508 update_process_times(user_mode(regs)); 509 profile_tick(CPU_PROFILING); 510 511 while (tick_nohz_reprogram(ts, now)) { 512 now = ktime_get(); 513 tick_do_update_jiffies64(now); 514 } 515 } 516 517 /** 518 * tick_nohz_switch_to_nohz - switch to nohz mode 519 */ 520 static void tick_nohz_switch_to_nohz(void) 521 { 522 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 523 ktime_t next; 524 525 if (!tick_nohz_enabled) 526 return; 527 528 local_irq_disable(); 529 if (tick_switch_to_oneshot(tick_nohz_handler)) { 530 local_irq_enable(); 531 return; 532 } 533 534 ts->nohz_mode = NOHZ_MODE_LOWRES; 535 536 /* 537 * Recycle the hrtimer in ts, so we can share the 538 * hrtimer_forward with the highres code. 539 */ 540 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 541 /* Get the next period */ 542 next = tick_init_jiffy_update(); 543 544 for (;;) { 545 ts->sched_timer.expires = next; 546 if (!tick_program_event(next, 0)) 547 break; 548 next = ktime_add(next, tick_period); 549 } 550 local_irq_enable(); 551 552 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 553 smp_processor_id()); 554 } 555 556 /* 557 * When NOHZ is enabled and the tick is stopped, we need to kick the 558 * tick timer from irq_enter() so that the jiffies update is kept 559 * alive during long running softirqs. That's ugly as hell, but 560 * correctness is key even if we need to fix the offending softirq in 561 * the first place. 562 * 563 * Note, this is different to tick_nohz_restart. We just kick the 564 * timer and do not touch the other magic bits which need to be done 565 * when idle is left. 566 */ 567 static void tick_nohz_kick_tick(int cpu) 568 { 569 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 570 571 if (!ts->tick_stopped) 572 return; 573 574 tick_nohz_restart(ts, ktime_get()); 575 } 576 577 #else 578 579 static inline void tick_nohz_switch_to_nohz(void) { } 580 581 #endif /* NO_HZ */ 582 583 /* 584 * Called from irq_enter to notify about the possible interruption of idle() 585 */ 586 void tick_check_idle(int cpu) 587 { 588 tick_check_oneshot_broadcast(cpu); 589 #ifdef CONFIG_NO_HZ 590 tick_nohz_stop_idle(cpu); 591 tick_nohz_update_jiffies(); 592 tick_nohz_kick_tick(cpu); 593 #endif 594 } 595 596 /* 597 * High resolution timer specific code 598 */ 599 #ifdef CONFIG_HIGH_RES_TIMERS 600 /* 601 * We rearm the timer until we get disabled by the idle code. 602 * Called with interrupts disabled and timer->base->cpu_base->lock held. 603 */ 604 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 605 { 606 struct tick_sched *ts = 607 container_of(timer, struct tick_sched, sched_timer); 608 struct pt_regs *regs = get_irq_regs(); 609 ktime_t now = ktime_get(); 610 int cpu = smp_processor_id(); 611 612 #ifdef CONFIG_NO_HZ 613 /* 614 * Check if the do_timer duty was dropped. We don't care about 615 * concurrency: This happens only when the cpu in charge went 616 * into a long sleep. If two cpus happen to assign themself to 617 * this duty, then the jiffies update is still serialized by 618 * xtime_lock. 619 */ 620 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 621 tick_do_timer_cpu = cpu; 622 #endif 623 624 /* Check, if the jiffies need an update */ 625 if (tick_do_timer_cpu == cpu) 626 tick_do_update_jiffies64(now); 627 628 /* 629 * Do not call, when we are not in irq context and have 630 * no valid regs pointer 631 */ 632 if (regs) { 633 /* 634 * When we are idle and the tick is stopped, we have to touch 635 * the watchdog as we might not schedule for a really long 636 * time. This happens on complete idle SMP systems while 637 * waiting on the login prompt. We also increment the "start of 638 * idle" jiffy stamp so the idle accounting adjustment we do 639 * when we go busy again does not account too much ticks. 640 */ 641 if (ts->tick_stopped) { 642 touch_softlockup_watchdog(); 643 ts->idle_jiffies++; 644 } 645 update_process_times(user_mode(regs)); 646 profile_tick(CPU_PROFILING); 647 } 648 649 hrtimer_forward(timer, now, tick_period); 650 651 return HRTIMER_RESTART; 652 } 653 654 /** 655 * tick_setup_sched_timer - setup the tick emulation timer 656 */ 657 void tick_setup_sched_timer(void) 658 { 659 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 660 ktime_t now = ktime_get(); 661 u64 offset; 662 663 /* 664 * Emulate tick processing via per-CPU hrtimers: 665 */ 666 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 667 ts->sched_timer.function = tick_sched_timer; 668 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; 669 670 /* Get the next period (per cpu) */ 671 ts->sched_timer.expires = tick_init_jiffy_update(); 672 offset = ktime_to_ns(tick_period) >> 1; 673 do_div(offset, num_possible_cpus()); 674 offset *= smp_processor_id(); 675 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); 676 677 for (;;) { 678 hrtimer_forward(&ts->sched_timer, now, tick_period); 679 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, 680 HRTIMER_MODE_ABS); 681 /* Check, if the timer was already in the past */ 682 if (hrtimer_active(&ts->sched_timer)) 683 break; 684 now = ktime_get(); 685 } 686 687 #ifdef CONFIG_NO_HZ 688 if (tick_nohz_enabled) 689 ts->nohz_mode = NOHZ_MODE_HIGHRES; 690 #endif 691 } 692 #endif /* HIGH_RES_TIMERS */ 693 694 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 695 void tick_cancel_sched_timer(int cpu) 696 { 697 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 698 699 # ifdef CONFIG_HIGH_RES_TIMERS 700 if (ts->sched_timer.base) 701 hrtimer_cancel(&ts->sched_timer); 702 # endif 703 704 ts->nohz_mode = NOHZ_MODE_INACTIVE; 705 } 706 #endif 707 708 /** 709 * Async notification about clocksource changes 710 */ 711 void tick_clock_notify(void) 712 { 713 int cpu; 714 715 for_each_possible_cpu(cpu) 716 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 717 } 718 719 /* 720 * Async notification about clock event changes 721 */ 722 void tick_oneshot_notify(void) 723 { 724 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 725 726 set_bit(0, &ts->check_clocks); 727 } 728 729 /** 730 * Check, if a change happened, which makes oneshot possible. 731 * 732 * Called cyclic from the hrtimer softirq (driven by the timer 733 * softirq) allow_nohz signals, that we can switch into low-res nohz 734 * mode, because high resolution timers are disabled (either compile 735 * or runtime). 736 */ 737 int tick_check_oneshot_change(int allow_nohz) 738 { 739 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 740 741 if (!test_and_clear_bit(0, &ts->check_clocks)) 742 return 0; 743 744 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 745 return 0; 746 747 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 748 return 0; 749 750 if (!allow_nohz) 751 return 1; 752 753 tick_nohz_switch_to_nohz(); 754 return 0; 755 } 756