1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 */ 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta < tick_period) 64 return; 65 66 /* Reevaluate with jiffies_lock held */ 67 write_seqlock(&jiffies_lock); 68 69 delta = ktime_sub(now, last_jiffies_update); 70 if (delta >= tick_period) { 71 72 delta = ktime_sub(delta, tick_period); 73 last_jiffies_update = ktime_add(last_jiffies_update, 74 tick_period); 75 76 /* Slow path for long timeouts */ 77 if (unlikely(delta >= tick_period)) { 78 s64 incr = ktime_to_ns(tick_period); 79 80 ticks = ktime_divns(delta, incr); 81 82 last_jiffies_update = ktime_add_ns(last_jiffies_update, 83 incr * ticks); 84 } 85 do_timer(++ticks); 86 87 /* Keep the tick_next_period variable up to date */ 88 tick_next_period = ktime_add(last_jiffies_update, tick_period); 89 } else { 90 write_sequnlock(&jiffies_lock); 91 return; 92 } 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 /* 98 * Initialize and return retrieve the jiffies update. 99 */ 100 static ktime_t tick_init_jiffy_update(void) 101 { 102 ktime_t period; 103 104 write_seqlock(&jiffies_lock); 105 /* Did we start the jiffies update yet ? */ 106 if (last_jiffies_update == 0) 107 last_jiffies_update = tick_next_period; 108 period = last_jiffies_update; 109 write_sequnlock(&jiffies_lock); 110 return period; 111 } 112 113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 114 { 115 int cpu = smp_processor_id(); 116 117 #ifdef CONFIG_NO_HZ_COMMON 118 /* 119 * Check if the do_timer duty was dropped. We don't care about 120 * concurrency: This happens only when the CPU in charge went 121 * into a long sleep. If two CPUs happen to assign themselves to 122 * this duty, then the jiffies update is still serialized by 123 * jiffies_lock. 124 * 125 * If nohz_full is enabled, this should not happen because the 126 * tick_do_timer_cpu never relinquishes. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 129 #ifdef CONFIG_NO_HZ_FULL 130 WARN_ON(tick_nohz_full_running); 131 #endif 132 tick_do_timer_cpu = cpu; 133 } 134 #endif 135 136 /* Check, if the jiffies need an update */ 137 if (tick_do_timer_cpu == cpu) 138 tick_do_update_jiffies64(now); 139 140 if (ts->inidle) 141 ts->got_idle_tick = 1; 142 } 143 144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 145 { 146 #ifdef CONFIG_NO_HZ_COMMON 147 /* 148 * When we are idle and the tick is stopped, we have to touch 149 * the watchdog as we might not schedule for a really long 150 * time. This happens on complete idle SMP systems while 151 * waiting on the login prompt. We also increment the "start of 152 * idle" jiffy stamp so the idle accounting adjustment we do 153 * when we go busy again does not account too much ticks. 154 */ 155 if (ts->tick_stopped) { 156 touch_softlockup_watchdog_sched(); 157 if (is_idle_task(current)) 158 ts->idle_jiffies++; 159 /* 160 * In case the current tick fired too early past its expected 161 * expiration, make sure we don't bypass the next clock reprogramming 162 * to the same deadline. 163 */ 164 ts->next_tick = 0; 165 } 166 #endif 167 update_process_times(user_mode(regs)); 168 profile_tick(CPU_PROFILING); 169 } 170 #endif 171 172 #ifdef CONFIG_NO_HZ_FULL 173 cpumask_var_t tick_nohz_full_mask; 174 bool tick_nohz_full_running; 175 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 176 static atomic_t tick_dep_mask; 177 178 static bool check_tick_dependency(atomic_t *dep) 179 { 180 int val = atomic_read(dep); 181 182 if (val & TICK_DEP_MASK_POSIX_TIMER) { 183 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 184 return true; 185 } 186 187 if (val & TICK_DEP_MASK_PERF_EVENTS) { 188 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 189 return true; 190 } 191 192 if (val & TICK_DEP_MASK_SCHED) { 193 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 194 return true; 195 } 196 197 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 198 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 199 return true; 200 } 201 202 if (val & TICK_DEP_MASK_RCU) { 203 trace_tick_stop(0, TICK_DEP_MASK_RCU); 204 return true; 205 } 206 207 return false; 208 } 209 210 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 211 { 212 lockdep_assert_irqs_disabled(); 213 214 if (unlikely(!cpu_online(cpu))) 215 return false; 216 217 if (check_tick_dependency(&tick_dep_mask)) 218 return false; 219 220 if (check_tick_dependency(&ts->tick_dep_mask)) 221 return false; 222 223 if (check_tick_dependency(¤t->tick_dep_mask)) 224 return false; 225 226 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 227 return false; 228 229 return true; 230 } 231 232 static void nohz_full_kick_func(struct irq_work *work) 233 { 234 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 235 } 236 237 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 238 .func = nohz_full_kick_func, 239 }; 240 241 /* 242 * Kick this CPU if it's full dynticks in order to force it to 243 * re-evaluate its dependency on the tick and restart it if necessary. 244 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 245 * is NMI safe. 246 */ 247 static void tick_nohz_full_kick(void) 248 { 249 if (!tick_nohz_full_cpu(smp_processor_id())) 250 return; 251 252 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 253 } 254 255 /* 256 * Kick the CPU if it's full dynticks in order to force it to 257 * re-evaluate its dependency on the tick and restart it if necessary. 258 */ 259 void tick_nohz_full_kick_cpu(int cpu) 260 { 261 if (!tick_nohz_full_cpu(cpu)) 262 return; 263 264 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 265 } 266 267 /* 268 * Kick all full dynticks CPUs in order to force these to re-evaluate 269 * their dependency on the tick and restart it if necessary. 270 */ 271 static void tick_nohz_full_kick_all(void) 272 { 273 int cpu; 274 275 if (!tick_nohz_full_running) 276 return; 277 278 preempt_disable(); 279 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 280 tick_nohz_full_kick_cpu(cpu); 281 preempt_enable(); 282 } 283 284 static void tick_nohz_dep_set_all(atomic_t *dep, 285 enum tick_dep_bits bit) 286 { 287 int prev; 288 289 prev = atomic_fetch_or(BIT(bit), dep); 290 if (!prev) 291 tick_nohz_full_kick_all(); 292 } 293 294 /* 295 * Set a global tick dependency. Used by perf events that rely on freq and 296 * by unstable clock. 297 */ 298 void tick_nohz_dep_set(enum tick_dep_bits bit) 299 { 300 tick_nohz_dep_set_all(&tick_dep_mask, bit); 301 } 302 303 void tick_nohz_dep_clear(enum tick_dep_bits bit) 304 { 305 atomic_andnot(BIT(bit), &tick_dep_mask); 306 } 307 308 /* 309 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 310 * manage events throttling. 311 */ 312 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 313 { 314 int prev; 315 struct tick_sched *ts; 316 317 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 318 319 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 320 if (!prev) { 321 preempt_disable(); 322 /* Perf needs local kick that is NMI safe */ 323 if (cpu == smp_processor_id()) { 324 tick_nohz_full_kick(); 325 } else { 326 /* Remote irq work not NMI-safe */ 327 if (!WARN_ON_ONCE(in_nmi())) 328 tick_nohz_full_kick_cpu(cpu); 329 } 330 preempt_enable(); 331 } 332 } 333 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 334 335 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 336 { 337 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 338 339 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 340 } 341 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 342 343 /* 344 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 345 * per task timers. 346 */ 347 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 348 { 349 /* 350 * We could optimize this with just kicking the target running the task 351 * if that noise matters for nohz full users. 352 */ 353 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 354 } 355 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 356 357 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 358 { 359 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 360 } 361 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 362 363 /* 364 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 365 * per process timers. 366 */ 367 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 368 { 369 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 370 } 371 372 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 373 { 374 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 375 } 376 377 /* 378 * Re-evaluate the need for the tick as we switch the current task. 379 * It might need the tick due to per task/process properties: 380 * perf events, posix CPU timers, ... 381 */ 382 void __tick_nohz_task_switch(void) 383 { 384 unsigned long flags; 385 struct tick_sched *ts; 386 387 local_irq_save(flags); 388 389 if (!tick_nohz_full_cpu(smp_processor_id())) 390 goto out; 391 392 ts = this_cpu_ptr(&tick_cpu_sched); 393 394 if (ts->tick_stopped) { 395 if (atomic_read(¤t->tick_dep_mask) || 396 atomic_read(¤t->signal->tick_dep_mask)) 397 tick_nohz_full_kick(); 398 } 399 out: 400 local_irq_restore(flags); 401 } 402 403 /* Get the boot-time nohz CPU list from the kernel parameters. */ 404 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 405 { 406 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 407 cpumask_copy(tick_nohz_full_mask, cpumask); 408 tick_nohz_full_running = true; 409 } 410 EXPORT_SYMBOL_GPL(tick_nohz_full_setup); 411 412 static int tick_nohz_cpu_down(unsigned int cpu) 413 { 414 /* 415 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 416 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 417 * CPUs. It must remain online when nohz full is enabled. 418 */ 419 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 420 return -EBUSY; 421 return 0; 422 } 423 424 void __init tick_nohz_init(void) 425 { 426 int cpu, ret; 427 428 if (!tick_nohz_full_running) 429 return; 430 431 /* 432 * Full dynticks uses irq work to drive the tick rescheduling on safe 433 * locking contexts. But then we need irq work to raise its own 434 * interrupts to avoid circular dependency on the tick 435 */ 436 if (!arch_irq_work_has_interrupt()) { 437 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 438 cpumask_clear(tick_nohz_full_mask); 439 tick_nohz_full_running = false; 440 return; 441 } 442 443 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 444 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 445 cpu = smp_processor_id(); 446 447 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 448 pr_warn("NO_HZ: Clearing %d from nohz_full range " 449 "for timekeeping\n", cpu); 450 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 451 } 452 } 453 454 for_each_cpu(cpu, tick_nohz_full_mask) 455 context_tracking_cpu_set(cpu); 456 457 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 458 "kernel/nohz:predown", NULL, 459 tick_nohz_cpu_down); 460 WARN_ON(ret < 0); 461 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 462 cpumask_pr_args(tick_nohz_full_mask)); 463 } 464 #endif 465 466 /* 467 * NOHZ - aka dynamic tick functionality 468 */ 469 #ifdef CONFIG_NO_HZ_COMMON 470 /* 471 * NO HZ enabled ? 472 */ 473 bool tick_nohz_enabled __read_mostly = true; 474 unsigned long tick_nohz_active __read_mostly; 475 /* 476 * Enable / Disable tickless mode 477 */ 478 static int __init setup_tick_nohz(char *str) 479 { 480 return (kstrtobool(str, &tick_nohz_enabled) == 0); 481 } 482 483 __setup("nohz=", setup_tick_nohz); 484 485 bool tick_nohz_tick_stopped(void) 486 { 487 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 488 489 return ts->tick_stopped; 490 } 491 492 bool tick_nohz_tick_stopped_cpu(int cpu) 493 { 494 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 495 496 return ts->tick_stopped; 497 } 498 499 /** 500 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 501 * 502 * Called from interrupt entry when the CPU was idle 503 * 504 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 505 * must be updated. Otherwise an interrupt handler could use a stale jiffy 506 * value. We do this unconditionally on any CPU, as we don't know whether the 507 * CPU, which has the update task assigned is in a long sleep. 508 */ 509 static void tick_nohz_update_jiffies(ktime_t now) 510 { 511 unsigned long flags; 512 513 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 514 515 local_irq_save(flags); 516 tick_do_update_jiffies64(now); 517 local_irq_restore(flags); 518 519 touch_softlockup_watchdog_sched(); 520 } 521 522 /* 523 * Updates the per-CPU time idle statistics counters 524 */ 525 static void 526 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 527 { 528 ktime_t delta; 529 530 if (ts->idle_active) { 531 delta = ktime_sub(now, ts->idle_entrytime); 532 if (nr_iowait_cpu(cpu) > 0) 533 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 534 else 535 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 536 ts->idle_entrytime = now; 537 } 538 539 if (last_update_time) 540 *last_update_time = ktime_to_us(now); 541 542 } 543 544 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 545 { 546 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 547 ts->idle_active = 0; 548 549 sched_clock_idle_wakeup_event(); 550 } 551 552 static void tick_nohz_start_idle(struct tick_sched *ts) 553 { 554 ts->idle_entrytime = ktime_get(); 555 ts->idle_active = 1; 556 sched_clock_idle_sleep_event(); 557 } 558 559 /** 560 * get_cpu_idle_time_us - get the total idle time of a CPU 561 * @cpu: CPU number to query 562 * @last_update_time: variable to store update time in. Do not update 563 * counters if NULL. 564 * 565 * Return the cumulative idle time (since boot) for a given 566 * CPU, in microseconds. 567 * 568 * This time is measured via accounting rather than sampling, 569 * and is as accurate as ktime_get() is. 570 * 571 * This function returns -1 if NOHZ is not enabled. 572 */ 573 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 574 { 575 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 576 ktime_t now, idle; 577 578 if (!tick_nohz_active) 579 return -1; 580 581 now = ktime_get(); 582 if (last_update_time) { 583 update_ts_time_stats(cpu, ts, now, last_update_time); 584 idle = ts->idle_sleeptime; 585 } else { 586 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 587 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 588 589 idle = ktime_add(ts->idle_sleeptime, delta); 590 } else { 591 idle = ts->idle_sleeptime; 592 } 593 } 594 595 return ktime_to_us(idle); 596 597 } 598 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 599 600 /** 601 * get_cpu_iowait_time_us - get the total iowait time of a CPU 602 * @cpu: CPU number to query 603 * @last_update_time: variable to store update time in. Do not update 604 * counters if NULL. 605 * 606 * Return the cumulative iowait time (since boot) for a given 607 * CPU, in microseconds. 608 * 609 * This time is measured via accounting rather than sampling, 610 * and is as accurate as ktime_get() is. 611 * 612 * This function returns -1 if NOHZ is not enabled. 613 */ 614 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 615 { 616 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 617 ktime_t now, iowait; 618 619 if (!tick_nohz_active) 620 return -1; 621 622 now = ktime_get(); 623 if (last_update_time) { 624 update_ts_time_stats(cpu, ts, now, last_update_time); 625 iowait = ts->iowait_sleeptime; 626 } else { 627 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 628 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 629 630 iowait = ktime_add(ts->iowait_sleeptime, delta); 631 } else { 632 iowait = ts->iowait_sleeptime; 633 } 634 } 635 636 return ktime_to_us(iowait); 637 } 638 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 639 640 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 641 { 642 hrtimer_cancel(&ts->sched_timer); 643 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 644 645 /* Forward the time to expire in the future */ 646 hrtimer_forward(&ts->sched_timer, now, tick_period); 647 648 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 649 hrtimer_start_expires(&ts->sched_timer, 650 HRTIMER_MODE_ABS_PINNED_HARD); 651 } else { 652 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 653 } 654 655 /* 656 * Reset to make sure next tick stop doesn't get fooled by past 657 * cached clock deadline. 658 */ 659 ts->next_tick = 0; 660 } 661 662 static inline bool local_timer_softirq_pending(void) 663 { 664 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 665 } 666 667 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 668 { 669 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 670 unsigned long basejiff; 671 unsigned int seq; 672 673 /* Read jiffies and the time when jiffies were updated last */ 674 do { 675 seq = read_seqbegin(&jiffies_lock); 676 basemono = last_jiffies_update; 677 basejiff = jiffies; 678 } while (read_seqretry(&jiffies_lock, seq)); 679 ts->last_jiffies = basejiff; 680 ts->timer_expires_base = basemono; 681 682 /* 683 * Keep the periodic tick, when RCU, architecture or irq_work 684 * requests it. 685 * Aside of that check whether the local timer softirq is 686 * pending. If so its a bad idea to call get_next_timer_interrupt() 687 * because there is an already expired timer, so it will request 688 * immeditate expiry, which rearms the hardware timer with a 689 * minimal delta which brings us back to this place 690 * immediately. Lather, rinse and repeat... 691 */ 692 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 693 irq_work_needs_cpu() || local_timer_softirq_pending()) { 694 next_tick = basemono + TICK_NSEC; 695 } else { 696 /* 697 * Get the next pending timer. If high resolution 698 * timers are enabled this only takes the timer wheel 699 * timers into account. If high resolution timers are 700 * disabled this also looks at the next expiring 701 * hrtimer. 702 */ 703 next_tmr = get_next_timer_interrupt(basejiff, basemono); 704 ts->next_timer = next_tmr; 705 /* Take the next rcu event into account */ 706 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 707 } 708 709 /* 710 * If the tick is due in the next period, keep it ticking or 711 * force prod the timer. 712 */ 713 delta = next_tick - basemono; 714 if (delta <= (u64)TICK_NSEC) { 715 /* 716 * Tell the timer code that the base is not idle, i.e. undo 717 * the effect of get_next_timer_interrupt(): 718 */ 719 timer_clear_idle(); 720 /* 721 * We've not stopped the tick yet, and there's a timer in the 722 * next period, so no point in stopping it either, bail. 723 */ 724 if (!ts->tick_stopped) { 725 ts->timer_expires = 0; 726 goto out; 727 } 728 } 729 730 /* 731 * If this CPU is the one which had the do_timer() duty last, we limit 732 * the sleep time to the timekeeping max_deferment value. 733 * Otherwise we can sleep as long as we want. 734 */ 735 delta = timekeeping_max_deferment(); 736 if (cpu != tick_do_timer_cpu && 737 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 738 delta = KTIME_MAX; 739 740 /* Calculate the next expiry time */ 741 if (delta < (KTIME_MAX - basemono)) 742 expires = basemono + delta; 743 else 744 expires = KTIME_MAX; 745 746 ts->timer_expires = min_t(u64, expires, next_tick); 747 748 out: 749 return ts->timer_expires; 750 } 751 752 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 753 { 754 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 755 u64 basemono = ts->timer_expires_base; 756 u64 expires = ts->timer_expires; 757 ktime_t tick = expires; 758 759 /* Make sure we won't be trying to stop it twice in a row. */ 760 ts->timer_expires_base = 0; 761 762 /* 763 * If this CPU is the one which updates jiffies, then give up 764 * the assignment and let it be taken by the CPU which runs 765 * the tick timer next, which might be this CPU as well. If we 766 * don't drop this here the jiffies might be stale and 767 * do_timer() never invoked. Keep track of the fact that it 768 * was the one which had the do_timer() duty last. 769 */ 770 if (cpu == tick_do_timer_cpu) { 771 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 772 ts->do_timer_last = 1; 773 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 774 ts->do_timer_last = 0; 775 } 776 777 /* Skip reprogram of event if its not changed */ 778 if (ts->tick_stopped && (expires == ts->next_tick)) { 779 /* Sanity check: make sure clockevent is actually programmed */ 780 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 781 return; 782 783 WARN_ON_ONCE(1); 784 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 785 basemono, ts->next_tick, dev->next_event, 786 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 787 } 788 789 /* 790 * nohz_stop_sched_tick can be called several times before 791 * the nohz_restart_sched_tick is called. This happens when 792 * interrupts arrive which do not cause a reschedule. In the 793 * first call we save the current tick time, so we can restart 794 * the scheduler tick in nohz_restart_sched_tick. 795 */ 796 if (!ts->tick_stopped) { 797 calc_load_nohz_start(); 798 quiet_vmstat(); 799 800 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 801 ts->tick_stopped = 1; 802 trace_tick_stop(1, TICK_DEP_MASK_NONE); 803 } 804 805 ts->next_tick = tick; 806 807 /* 808 * If the expiration time == KTIME_MAX, then we simply stop 809 * the tick timer. 810 */ 811 if (unlikely(expires == KTIME_MAX)) { 812 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 813 hrtimer_cancel(&ts->sched_timer); 814 return; 815 } 816 817 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 818 hrtimer_start(&ts->sched_timer, tick, 819 HRTIMER_MODE_ABS_PINNED_HARD); 820 } else { 821 hrtimer_set_expires(&ts->sched_timer, tick); 822 tick_program_event(tick, 1); 823 } 824 } 825 826 static void tick_nohz_retain_tick(struct tick_sched *ts) 827 { 828 ts->timer_expires_base = 0; 829 } 830 831 #ifdef CONFIG_NO_HZ_FULL 832 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 833 { 834 if (tick_nohz_next_event(ts, cpu)) 835 tick_nohz_stop_tick(ts, cpu); 836 else 837 tick_nohz_retain_tick(ts); 838 } 839 #endif /* CONFIG_NO_HZ_FULL */ 840 841 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 842 { 843 /* Update jiffies first */ 844 tick_do_update_jiffies64(now); 845 846 /* 847 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 848 * the clock forward checks in the enqueue path: 849 */ 850 timer_clear_idle(); 851 852 calc_load_nohz_stop(); 853 touch_softlockup_watchdog_sched(); 854 /* 855 * Cancel the scheduled timer and restore the tick 856 */ 857 ts->tick_stopped = 0; 858 ts->idle_exittime = now; 859 860 tick_nohz_restart(ts, now); 861 } 862 863 static void tick_nohz_full_update_tick(struct tick_sched *ts) 864 { 865 #ifdef CONFIG_NO_HZ_FULL 866 int cpu = smp_processor_id(); 867 868 if (!tick_nohz_full_cpu(cpu)) 869 return; 870 871 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 872 return; 873 874 if (can_stop_full_tick(cpu, ts)) 875 tick_nohz_stop_sched_tick(ts, cpu); 876 else if (ts->tick_stopped) 877 tick_nohz_restart_sched_tick(ts, ktime_get()); 878 #endif 879 } 880 881 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 882 { 883 /* 884 * If this CPU is offline and it is the one which updates 885 * jiffies, then give up the assignment and let it be taken by 886 * the CPU which runs the tick timer next. If we don't drop 887 * this here the jiffies might be stale and do_timer() never 888 * invoked. 889 */ 890 if (unlikely(!cpu_online(cpu))) { 891 if (cpu == tick_do_timer_cpu) 892 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 893 /* 894 * Make sure the CPU doesn't get fooled by obsolete tick 895 * deadline if it comes back online later. 896 */ 897 ts->next_tick = 0; 898 return false; 899 } 900 901 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 902 return false; 903 904 if (need_resched()) 905 return false; 906 907 if (unlikely(local_softirq_pending())) { 908 static int ratelimit; 909 910 if (ratelimit < 10 && 911 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 912 pr_warn("NOHZ: local_softirq_pending %02x\n", 913 (unsigned int) local_softirq_pending()); 914 ratelimit++; 915 } 916 return false; 917 } 918 919 if (tick_nohz_full_enabled()) { 920 /* 921 * Keep the tick alive to guarantee timekeeping progression 922 * if there are full dynticks CPUs around 923 */ 924 if (tick_do_timer_cpu == cpu) 925 return false; 926 /* 927 * Boot safety: make sure the timekeeping duty has been 928 * assigned before entering dyntick-idle mode, 929 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 930 */ 931 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 932 return false; 933 934 /* Should not happen for nohz-full */ 935 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 936 return false; 937 } 938 939 return true; 940 } 941 942 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 943 { 944 ktime_t expires; 945 int cpu = smp_processor_id(); 946 947 /* 948 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 949 * tick timer expiration time is known already. 950 */ 951 if (ts->timer_expires_base) 952 expires = ts->timer_expires; 953 else if (can_stop_idle_tick(cpu, ts)) 954 expires = tick_nohz_next_event(ts, cpu); 955 else 956 return; 957 958 ts->idle_calls++; 959 960 if (expires > 0LL) { 961 int was_stopped = ts->tick_stopped; 962 963 tick_nohz_stop_tick(ts, cpu); 964 965 ts->idle_sleeps++; 966 ts->idle_expires = expires; 967 968 if (!was_stopped && ts->tick_stopped) { 969 ts->idle_jiffies = ts->last_jiffies; 970 nohz_balance_enter_idle(cpu); 971 } 972 } else { 973 tick_nohz_retain_tick(ts); 974 } 975 } 976 977 /** 978 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 979 * 980 * When the next event is more than a tick into the future, stop the idle tick 981 */ 982 void tick_nohz_idle_stop_tick(void) 983 { 984 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 985 } 986 987 void tick_nohz_idle_retain_tick(void) 988 { 989 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 990 /* 991 * Undo the effect of get_next_timer_interrupt() called from 992 * tick_nohz_next_event(). 993 */ 994 timer_clear_idle(); 995 } 996 997 /** 998 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 999 * 1000 * Called when we start the idle loop. 1001 */ 1002 void tick_nohz_idle_enter(void) 1003 { 1004 struct tick_sched *ts; 1005 1006 lockdep_assert_irqs_enabled(); 1007 1008 local_irq_disable(); 1009 1010 ts = this_cpu_ptr(&tick_cpu_sched); 1011 1012 WARN_ON_ONCE(ts->timer_expires_base); 1013 1014 ts->inidle = 1; 1015 tick_nohz_start_idle(ts); 1016 1017 local_irq_enable(); 1018 } 1019 1020 /** 1021 * tick_nohz_irq_exit - update next tick event from interrupt exit 1022 * 1023 * When an interrupt fires while we are idle and it doesn't cause 1024 * a reschedule, it may still add, modify or delete a timer, enqueue 1025 * an RCU callback, etc... 1026 * So we need to re-calculate and reprogram the next tick event. 1027 */ 1028 void tick_nohz_irq_exit(void) 1029 { 1030 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1031 1032 if (ts->inidle) 1033 tick_nohz_start_idle(ts); 1034 else 1035 tick_nohz_full_update_tick(ts); 1036 } 1037 1038 /** 1039 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1040 */ 1041 bool tick_nohz_idle_got_tick(void) 1042 { 1043 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1044 1045 if (ts->got_idle_tick) { 1046 ts->got_idle_tick = 0; 1047 return true; 1048 } 1049 return false; 1050 } 1051 1052 /** 1053 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1054 * or the tick, whatever that expires first. Note that, if the tick has been 1055 * stopped, it returns the next hrtimer. 1056 * 1057 * Called from power state control code with interrupts disabled 1058 */ 1059 ktime_t tick_nohz_get_next_hrtimer(void) 1060 { 1061 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1062 } 1063 1064 /** 1065 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1066 * @delta_next: duration until the next event if the tick cannot be stopped 1067 * 1068 * Called from power state control code with interrupts disabled 1069 */ 1070 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1071 { 1072 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1073 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1074 int cpu = smp_processor_id(); 1075 /* 1076 * The idle entry time is expected to be a sufficient approximation of 1077 * the current time at this point. 1078 */ 1079 ktime_t now = ts->idle_entrytime; 1080 ktime_t next_event; 1081 1082 WARN_ON_ONCE(!ts->inidle); 1083 1084 *delta_next = ktime_sub(dev->next_event, now); 1085 1086 if (!can_stop_idle_tick(cpu, ts)) 1087 return *delta_next; 1088 1089 next_event = tick_nohz_next_event(ts, cpu); 1090 if (!next_event) 1091 return *delta_next; 1092 1093 /* 1094 * If the next highres timer to expire is earlier than next_event, the 1095 * idle governor needs to know that. 1096 */ 1097 next_event = min_t(u64, next_event, 1098 hrtimer_next_event_without(&ts->sched_timer)); 1099 1100 return ktime_sub(next_event, now); 1101 } 1102 1103 /** 1104 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1105 * for a particular CPU. 1106 * 1107 * Called from the schedutil frequency scaling governor in scheduler context. 1108 */ 1109 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1110 { 1111 struct tick_sched *ts = tick_get_tick_sched(cpu); 1112 1113 return ts->idle_calls; 1114 } 1115 1116 /** 1117 * tick_nohz_get_idle_calls - return the current idle calls counter value 1118 * 1119 * Called from the schedutil frequency scaling governor in scheduler context. 1120 */ 1121 unsigned long tick_nohz_get_idle_calls(void) 1122 { 1123 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1124 1125 return ts->idle_calls; 1126 } 1127 1128 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1129 { 1130 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1131 unsigned long ticks; 1132 1133 if (vtime_accounting_enabled_this_cpu()) 1134 return; 1135 /* 1136 * We stopped the tick in idle. Update process times would miss the 1137 * time we slept as update_process_times does only a 1 tick 1138 * accounting. Enforce that this is accounted to idle ! 1139 */ 1140 ticks = jiffies - ts->idle_jiffies; 1141 /* 1142 * We might be one off. Do not randomly account a huge number of ticks! 1143 */ 1144 if (ticks && ticks < LONG_MAX) 1145 account_idle_ticks(ticks); 1146 #endif 1147 } 1148 1149 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1150 { 1151 tick_nohz_restart_sched_tick(ts, now); 1152 tick_nohz_account_idle_ticks(ts); 1153 } 1154 1155 void tick_nohz_idle_restart_tick(void) 1156 { 1157 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1158 1159 if (ts->tick_stopped) 1160 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1161 } 1162 1163 /** 1164 * tick_nohz_idle_exit - restart the idle tick from the idle task 1165 * 1166 * Restart the idle tick when the CPU is woken up from idle 1167 * This also exit the RCU extended quiescent state. The CPU 1168 * can use RCU again after this function is called. 1169 */ 1170 void tick_nohz_idle_exit(void) 1171 { 1172 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1173 bool idle_active, tick_stopped; 1174 ktime_t now; 1175 1176 local_irq_disable(); 1177 1178 WARN_ON_ONCE(!ts->inidle); 1179 WARN_ON_ONCE(ts->timer_expires_base); 1180 1181 ts->inidle = 0; 1182 idle_active = ts->idle_active; 1183 tick_stopped = ts->tick_stopped; 1184 1185 if (idle_active || tick_stopped) 1186 now = ktime_get(); 1187 1188 if (idle_active) 1189 tick_nohz_stop_idle(ts, now); 1190 1191 if (tick_stopped) 1192 __tick_nohz_idle_restart_tick(ts, now); 1193 1194 local_irq_enable(); 1195 } 1196 1197 /* 1198 * The nohz low res interrupt handler 1199 */ 1200 static void tick_nohz_handler(struct clock_event_device *dev) 1201 { 1202 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1203 struct pt_regs *regs = get_irq_regs(); 1204 ktime_t now = ktime_get(); 1205 1206 dev->next_event = KTIME_MAX; 1207 1208 tick_sched_do_timer(ts, now); 1209 tick_sched_handle(ts, regs); 1210 1211 /* No need to reprogram if we are running tickless */ 1212 if (unlikely(ts->tick_stopped)) 1213 return; 1214 1215 hrtimer_forward(&ts->sched_timer, now, tick_period); 1216 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1217 } 1218 1219 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1220 { 1221 if (!tick_nohz_enabled) 1222 return; 1223 ts->nohz_mode = mode; 1224 /* One update is enough */ 1225 if (!test_and_set_bit(0, &tick_nohz_active)) 1226 timers_update_nohz(); 1227 } 1228 1229 /** 1230 * tick_nohz_switch_to_nohz - switch to nohz mode 1231 */ 1232 static void tick_nohz_switch_to_nohz(void) 1233 { 1234 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1235 ktime_t next; 1236 1237 if (!tick_nohz_enabled) 1238 return; 1239 1240 if (tick_switch_to_oneshot(tick_nohz_handler)) 1241 return; 1242 1243 /* 1244 * Recycle the hrtimer in ts, so we can share the 1245 * hrtimer_forward with the highres code. 1246 */ 1247 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1248 /* Get the next period */ 1249 next = tick_init_jiffy_update(); 1250 1251 hrtimer_set_expires(&ts->sched_timer, next); 1252 hrtimer_forward_now(&ts->sched_timer, tick_period); 1253 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1254 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1255 } 1256 1257 static inline void tick_nohz_irq_enter(void) 1258 { 1259 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1260 ktime_t now; 1261 1262 if (!ts->idle_active && !ts->tick_stopped) 1263 return; 1264 now = ktime_get(); 1265 if (ts->idle_active) 1266 tick_nohz_stop_idle(ts, now); 1267 if (ts->tick_stopped) 1268 tick_nohz_update_jiffies(now); 1269 } 1270 1271 #else 1272 1273 static inline void tick_nohz_switch_to_nohz(void) { } 1274 static inline void tick_nohz_irq_enter(void) { } 1275 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1276 1277 #endif /* CONFIG_NO_HZ_COMMON */ 1278 1279 /* 1280 * Called from irq_enter to notify about the possible interruption of idle() 1281 */ 1282 void tick_irq_enter(void) 1283 { 1284 tick_check_oneshot_broadcast_this_cpu(); 1285 tick_nohz_irq_enter(); 1286 } 1287 1288 /* 1289 * High resolution timer specific code 1290 */ 1291 #ifdef CONFIG_HIGH_RES_TIMERS 1292 /* 1293 * We rearm the timer until we get disabled by the idle code. 1294 * Called with interrupts disabled. 1295 */ 1296 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1297 { 1298 struct tick_sched *ts = 1299 container_of(timer, struct tick_sched, sched_timer); 1300 struct pt_regs *regs = get_irq_regs(); 1301 ktime_t now = ktime_get(); 1302 1303 tick_sched_do_timer(ts, now); 1304 1305 /* 1306 * Do not call, when we are not in irq context and have 1307 * no valid regs pointer 1308 */ 1309 if (regs) 1310 tick_sched_handle(ts, regs); 1311 else 1312 ts->next_tick = 0; 1313 1314 /* No need to reprogram if we are in idle or full dynticks mode */ 1315 if (unlikely(ts->tick_stopped)) 1316 return HRTIMER_NORESTART; 1317 1318 hrtimer_forward(timer, now, tick_period); 1319 1320 return HRTIMER_RESTART; 1321 } 1322 1323 static int sched_skew_tick; 1324 1325 static int __init skew_tick(char *str) 1326 { 1327 get_option(&str, &sched_skew_tick); 1328 1329 return 0; 1330 } 1331 early_param("skew_tick", skew_tick); 1332 1333 /** 1334 * tick_setup_sched_timer - setup the tick emulation timer 1335 */ 1336 void tick_setup_sched_timer(void) 1337 { 1338 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1339 ktime_t now = ktime_get(); 1340 1341 /* 1342 * Emulate tick processing via per-CPU hrtimers: 1343 */ 1344 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1345 ts->sched_timer.function = tick_sched_timer; 1346 1347 /* Get the next period (per-CPU) */ 1348 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1349 1350 /* Offset the tick to avert jiffies_lock contention. */ 1351 if (sched_skew_tick) { 1352 u64 offset = ktime_to_ns(tick_period) >> 1; 1353 do_div(offset, num_possible_cpus()); 1354 offset *= smp_processor_id(); 1355 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1356 } 1357 1358 hrtimer_forward(&ts->sched_timer, now, tick_period); 1359 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1360 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1361 } 1362 #endif /* HIGH_RES_TIMERS */ 1363 1364 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1365 void tick_cancel_sched_timer(int cpu) 1366 { 1367 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1368 1369 # ifdef CONFIG_HIGH_RES_TIMERS 1370 if (ts->sched_timer.base) 1371 hrtimer_cancel(&ts->sched_timer); 1372 # endif 1373 1374 memset(ts, 0, sizeof(*ts)); 1375 } 1376 #endif 1377 1378 /** 1379 * Async notification about clocksource changes 1380 */ 1381 void tick_clock_notify(void) 1382 { 1383 int cpu; 1384 1385 for_each_possible_cpu(cpu) 1386 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1387 } 1388 1389 /* 1390 * Async notification about clock event changes 1391 */ 1392 void tick_oneshot_notify(void) 1393 { 1394 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1395 1396 set_bit(0, &ts->check_clocks); 1397 } 1398 1399 /** 1400 * Check, if a change happened, which makes oneshot possible. 1401 * 1402 * Called cyclic from the hrtimer softirq (driven by the timer 1403 * softirq) allow_nohz signals, that we can switch into low-res nohz 1404 * mode, because high resolution timers are disabled (either compile 1405 * or runtime). Called with interrupts disabled. 1406 */ 1407 int tick_check_oneshot_change(int allow_nohz) 1408 { 1409 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1410 1411 if (!test_and_clear_bit(0, &ts->check_clocks)) 1412 return 0; 1413 1414 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1415 return 0; 1416 1417 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1418 return 0; 1419 1420 if (!allow_nohz) 1421 return 1; 1422 1423 tick_nohz_switch_to_nohz(); 1424 return 0; 1425 } 1426