xref: /linux/kernel/time/tick-sched.c (revision 860a9bed265146b10311bcadbbcef59c3af4454d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  NOHZ implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 /*
47  * The time when the last jiffy update happened. Write access must hold
48  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
49  * consistent view of jiffies and last_jiffies_update.
50  */
51 static ktime_t last_jiffies_update;
52 
53 /*
54  * Must be called with interrupts disabled !
55  */
56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 	unsigned long ticks = 1;
59 	ktime_t delta, nextp;
60 
61 	/*
62 	 * 64-bit can do a quick check without holding the jiffies lock and
63 	 * without looking at the sequence count. The smp_load_acquire()
64 	 * pairs with the update done later in this function.
65 	 *
66 	 * 32-bit cannot do that because the store of 'tick_next_period'
67 	 * consists of two 32-bit stores, and the first store could be
68 	 * moved by the CPU to a random point in the future.
69 	 */
70 	if (IS_ENABLED(CONFIG_64BIT)) {
71 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
72 			return;
73 	} else {
74 		unsigned int seq;
75 
76 		/*
77 		 * Avoid contention on 'jiffies_lock' and protect the quick
78 		 * check with the sequence count.
79 		 */
80 		do {
81 			seq = read_seqcount_begin(&jiffies_seq);
82 			nextp = tick_next_period;
83 		} while (read_seqcount_retry(&jiffies_seq, seq));
84 
85 		if (ktime_before(now, nextp))
86 			return;
87 	}
88 
89 	/* Quick check failed, i.e. update is required. */
90 	raw_spin_lock(&jiffies_lock);
91 	/*
92 	 * Re-evaluate with the lock held. Another CPU might have done the
93 	 * update already.
94 	 */
95 	if (ktime_before(now, tick_next_period)) {
96 		raw_spin_unlock(&jiffies_lock);
97 		return;
98 	}
99 
100 	write_seqcount_begin(&jiffies_seq);
101 
102 	delta = ktime_sub(now, tick_next_period);
103 	if (unlikely(delta >= TICK_NSEC)) {
104 		/* Slow path for long idle sleep times */
105 		s64 incr = TICK_NSEC;
106 
107 		ticks += ktime_divns(delta, incr);
108 
109 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
110 						   incr * ticks);
111 	} else {
112 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
113 						   TICK_NSEC);
114 	}
115 
116 	/* Advance jiffies to complete the 'jiffies_seq' protected job */
117 	jiffies_64 += ticks;
118 
119 	/* Keep the tick_next_period variable up to date */
120 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
121 
122 	if (IS_ENABLED(CONFIG_64BIT)) {
123 		/*
124 		 * Pairs with smp_load_acquire() in the lockless quick
125 		 * check above, and ensures that the update to 'jiffies_64' is
126 		 * not reordered vs. the store to 'tick_next_period', neither
127 		 * by the compiler nor by the CPU.
128 		 */
129 		smp_store_release(&tick_next_period, nextp);
130 	} else {
131 		/*
132 		 * A plain store is good enough on 32-bit, as the quick check
133 		 * above is protected by the sequence count.
134 		 */
135 		tick_next_period = nextp;
136 	}
137 
138 	/*
139 	 * Release the sequence count. calc_global_load() below is not
140 	 * protected by it, but 'jiffies_lock' needs to be held to prevent
141 	 * concurrent invocations.
142 	 */
143 	write_seqcount_end(&jiffies_seq);
144 
145 	calc_global_load();
146 
147 	raw_spin_unlock(&jiffies_lock);
148 	update_wall_time();
149 }
150 
151 /*
152  * Initialize and return retrieve the jiffies update.
153  */
154 static ktime_t tick_init_jiffy_update(void)
155 {
156 	ktime_t period;
157 
158 	raw_spin_lock(&jiffies_lock);
159 	write_seqcount_begin(&jiffies_seq);
160 
161 	/* Have we started the jiffies update yet ? */
162 	if (last_jiffies_update == 0) {
163 		u32 rem;
164 
165 		/*
166 		 * Ensure that the tick is aligned to a multiple of
167 		 * TICK_NSEC.
168 		 */
169 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
170 		if (rem)
171 			tick_next_period += TICK_NSEC - rem;
172 
173 		last_jiffies_update = tick_next_period;
174 	}
175 	period = last_jiffies_update;
176 
177 	write_seqcount_end(&jiffies_seq);
178 	raw_spin_unlock(&jiffies_lock);
179 
180 	return period;
181 }
182 
183 static inline int tick_sched_flag_test(struct tick_sched *ts,
184 				       unsigned long flag)
185 {
186 	return !!(ts->flags & flag);
187 }
188 
189 static inline void tick_sched_flag_set(struct tick_sched *ts,
190 				       unsigned long flag)
191 {
192 	lockdep_assert_irqs_disabled();
193 	ts->flags |= flag;
194 }
195 
196 static inline void tick_sched_flag_clear(struct tick_sched *ts,
197 					 unsigned long flag)
198 {
199 	lockdep_assert_irqs_disabled();
200 	ts->flags &= ~flag;
201 }
202 
203 #define MAX_STALLED_JIFFIES 5
204 
205 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
206 {
207 	int cpu = smp_processor_id();
208 
209 	/*
210 	 * Check if the do_timer duty was dropped. We don't care about
211 	 * concurrency: This happens only when the CPU in charge went
212 	 * into a long sleep. If two CPUs happen to assign themselves to
213 	 * this duty, then the jiffies update is still serialized by
214 	 * 'jiffies_lock'.
215 	 *
216 	 * If nohz_full is enabled, this should not happen because the
217 	 * 'tick_do_timer_cpu' CPU never relinquishes.
218 	 */
219 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
220 	    unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
221 #ifdef CONFIG_NO_HZ_FULL
222 		WARN_ON_ONCE(tick_nohz_full_running);
223 #endif
224 		tick_do_timer_cpu = cpu;
225 	}
226 
227 	/* Check if jiffies need an update */
228 	if (tick_do_timer_cpu == cpu)
229 		tick_do_update_jiffies64(now);
230 
231 	/*
232 	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
233 	 * or VMEXIT'ed for several msecs), force an update.
234 	 */
235 	if (ts->last_tick_jiffies != jiffies) {
236 		ts->stalled_jiffies = 0;
237 		ts->last_tick_jiffies = READ_ONCE(jiffies);
238 	} else {
239 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
240 			tick_do_update_jiffies64(now);
241 			ts->stalled_jiffies = 0;
242 			ts->last_tick_jiffies = READ_ONCE(jiffies);
243 		}
244 	}
245 
246 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
247 		ts->got_idle_tick = 1;
248 }
249 
250 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
251 {
252 	/*
253 	 * When we are idle and the tick is stopped, we have to touch
254 	 * the watchdog as we might not schedule for a really long
255 	 * time. This happens on completely idle SMP systems while
256 	 * waiting on the login prompt. We also increment the "start of
257 	 * idle" jiffy stamp so the idle accounting adjustment we do
258 	 * when we go busy again does not account too many ticks.
259 	 */
260 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
261 	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
262 		touch_softlockup_watchdog_sched();
263 		if (is_idle_task(current))
264 			ts->idle_jiffies++;
265 		/*
266 		 * In case the current tick fired too early past its expected
267 		 * expiration, make sure we don't bypass the next clock reprogramming
268 		 * to the same deadline.
269 		 */
270 		ts->next_tick = 0;
271 	}
272 
273 	update_process_times(user_mode(regs));
274 	profile_tick(CPU_PROFILING);
275 }
276 
277 /*
278  * We rearm the timer until we get disabled by the idle code.
279  * Called with interrupts disabled.
280  */
281 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
282 {
283 	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
284 	struct pt_regs *regs = get_irq_regs();
285 	ktime_t now = ktime_get();
286 
287 	tick_sched_do_timer(ts, now);
288 
289 	/*
290 	 * Do not call when we are not in IRQ context and have
291 	 * no valid 'regs' pointer
292 	 */
293 	if (regs)
294 		tick_sched_handle(ts, regs);
295 	else
296 		ts->next_tick = 0;
297 
298 	/*
299 	 * In dynticks mode, tick reprogram is deferred:
300 	 * - to the idle task if in dynticks-idle
301 	 * - to IRQ exit if in full-dynticks.
302 	 */
303 	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
304 		return HRTIMER_NORESTART;
305 
306 	hrtimer_forward(timer, now, TICK_NSEC);
307 
308 	return HRTIMER_RESTART;
309 }
310 
311 static void tick_sched_timer_cancel(struct tick_sched *ts)
312 {
313 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
314 		hrtimer_cancel(&ts->sched_timer);
315 	else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
316 		tick_program_event(KTIME_MAX, 1);
317 }
318 
319 #ifdef CONFIG_NO_HZ_FULL
320 cpumask_var_t tick_nohz_full_mask;
321 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
322 bool tick_nohz_full_running;
323 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
324 static atomic_t tick_dep_mask;
325 
326 static bool check_tick_dependency(atomic_t *dep)
327 {
328 	int val = atomic_read(dep);
329 
330 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
331 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
332 		return true;
333 	}
334 
335 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
336 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
337 		return true;
338 	}
339 
340 	if (val & TICK_DEP_MASK_SCHED) {
341 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
342 		return true;
343 	}
344 
345 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
346 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
347 		return true;
348 	}
349 
350 	if (val & TICK_DEP_MASK_RCU) {
351 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
352 		return true;
353 	}
354 
355 	if (val & TICK_DEP_MASK_RCU_EXP) {
356 		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
357 		return true;
358 	}
359 
360 	return false;
361 }
362 
363 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
364 {
365 	lockdep_assert_irqs_disabled();
366 
367 	if (unlikely(!cpu_online(cpu)))
368 		return false;
369 
370 	if (check_tick_dependency(&tick_dep_mask))
371 		return false;
372 
373 	if (check_tick_dependency(&ts->tick_dep_mask))
374 		return false;
375 
376 	if (check_tick_dependency(&current->tick_dep_mask))
377 		return false;
378 
379 	if (check_tick_dependency(&current->signal->tick_dep_mask))
380 		return false;
381 
382 	return true;
383 }
384 
385 static void nohz_full_kick_func(struct irq_work *work)
386 {
387 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
388 }
389 
390 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
391 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
392 
393 /*
394  * Kick this CPU if it's full dynticks in order to force it to
395  * re-evaluate its dependency on the tick and restart it if necessary.
396  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
397  * is NMI safe.
398  */
399 static void tick_nohz_full_kick(void)
400 {
401 	if (!tick_nohz_full_cpu(smp_processor_id()))
402 		return;
403 
404 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
405 }
406 
407 /*
408  * Kick the CPU if it's full dynticks in order to force it to
409  * re-evaluate its dependency on the tick and restart it if necessary.
410  */
411 void tick_nohz_full_kick_cpu(int cpu)
412 {
413 	if (!tick_nohz_full_cpu(cpu))
414 		return;
415 
416 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
417 }
418 
419 static void tick_nohz_kick_task(struct task_struct *tsk)
420 {
421 	int cpu;
422 
423 	/*
424 	 * If the task is not running, run_posix_cpu_timers()
425 	 * has nothing to elapse, and an IPI can then be optimized out.
426 	 *
427 	 * activate_task()                      STORE p->tick_dep_mask
428 	 *   STORE p->on_rq
429 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
430 	 *   LOCK rq->lock                      LOAD p->on_rq
431 	 *   smp_mb__after_spin_lock()
432 	 *   tick_nohz_task_switch()
433 	 *     LOAD p->tick_dep_mask
434 	 */
435 	if (!sched_task_on_rq(tsk))
436 		return;
437 
438 	/*
439 	 * If the task concurrently migrates to another CPU,
440 	 * we guarantee it sees the new tick dependency upon
441 	 * schedule.
442 	 *
443 	 * set_task_cpu(p, cpu);
444 	 *   STORE p->cpu = @cpu
445 	 * __schedule() (switch to task 'p')
446 	 *   LOCK rq->lock
447 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
448 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
449 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
450 	 */
451 	cpu = task_cpu(tsk);
452 
453 	preempt_disable();
454 	if (cpu_online(cpu))
455 		tick_nohz_full_kick_cpu(cpu);
456 	preempt_enable();
457 }
458 
459 /*
460  * Kick all full dynticks CPUs in order to force these to re-evaluate
461  * their dependency on the tick and restart it if necessary.
462  */
463 static void tick_nohz_full_kick_all(void)
464 {
465 	int cpu;
466 
467 	if (!tick_nohz_full_running)
468 		return;
469 
470 	preempt_disable();
471 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
472 		tick_nohz_full_kick_cpu(cpu);
473 	preempt_enable();
474 }
475 
476 static void tick_nohz_dep_set_all(atomic_t *dep,
477 				  enum tick_dep_bits bit)
478 {
479 	int prev;
480 
481 	prev = atomic_fetch_or(BIT(bit), dep);
482 	if (!prev)
483 		tick_nohz_full_kick_all();
484 }
485 
486 /*
487  * Set a global tick dependency. Used by perf events that rely on freq and
488  * unstable clocks.
489  */
490 void tick_nohz_dep_set(enum tick_dep_bits bit)
491 {
492 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
493 }
494 
495 void tick_nohz_dep_clear(enum tick_dep_bits bit)
496 {
497 	atomic_andnot(BIT(bit), &tick_dep_mask);
498 }
499 
500 /*
501  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
502  * manage event-throttling.
503  */
504 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
505 {
506 	int prev;
507 	struct tick_sched *ts;
508 
509 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
510 
511 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
512 	if (!prev) {
513 		preempt_disable();
514 		/* Perf needs local kick that is NMI safe */
515 		if (cpu == smp_processor_id()) {
516 			tick_nohz_full_kick();
517 		} else {
518 			/* Remote IRQ work not NMI-safe */
519 			if (!WARN_ON_ONCE(in_nmi()))
520 				tick_nohz_full_kick_cpu(cpu);
521 		}
522 		preempt_enable();
523 	}
524 }
525 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
526 
527 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
528 {
529 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
530 
531 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
532 }
533 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
534 
535 /*
536  * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
537  * in order to elapse per task timers.
538  */
539 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
540 {
541 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
542 		tick_nohz_kick_task(tsk);
543 }
544 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
545 
546 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
547 {
548 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
549 }
550 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
551 
552 /*
553  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
554  * per process timers.
555  */
556 void tick_nohz_dep_set_signal(struct task_struct *tsk,
557 			      enum tick_dep_bits bit)
558 {
559 	int prev;
560 	struct signal_struct *sig = tsk->signal;
561 
562 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
563 	if (!prev) {
564 		struct task_struct *t;
565 
566 		lockdep_assert_held(&tsk->sighand->siglock);
567 		__for_each_thread(sig, t)
568 			tick_nohz_kick_task(t);
569 	}
570 }
571 
572 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
573 {
574 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
575 }
576 
577 /*
578  * Re-evaluate the need for the tick as we switch the current task.
579  * It might need the tick due to per task/process properties:
580  * perf events, posix CPU timers, ...
581  */
582 void __tick_nohz_task_switch(void)
583 {
584 	struct tick_sched *ts;
585 
586 	if (!tick_nohz_full_cpu(smp_processor_id()))
587 		return;
588 
589 	ts = this_cpu_ptr(&tick_cpu_sched);
590 
591 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
592 		if (atomic_read(&current->tick_dep_mask) ||
593 		    atomic_read(&current->signal->tick_dep_mask))
594 			tick_nohz_full_kick();
595 	}
596 }
597 
598 /* Get the boot-time nohz CPU list from the kernel parameters. */
599 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
600 {
601 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
602 	cpumask_copy(tick_nohz_full_mask, cpumask);
603 	tick_nohz_full_running = true;
604 }
605 
606 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
607 {
608 	/*
609 	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
610 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
611 	 * CPUs. It must remain online when nohz full is enabled.
612 	 */
613 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
614 		return false;
615 	return true;
616 }
617 
618 static int tick_nohz_cpu_down(unsigned int cpu)
619 {
620 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
621 }
622 
623 void __init tick_nohz_init(void)
624 {
625 	int cpu, ret;
626 
627 	if (!tick_nohz_full_running)
628 		return;
629 
630 	/*
631 	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
632 	 * locking contexts. But then we need IRQ work to raise its own
633 	 * interrupts to avoid circular dependency on the tick.
634 	 */
635 	if (!arch_irq_work_has_interrupt()) {
636 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
637 		cpumask_clear(tick_nohz_full_mask);
638 		tick_nohz_full_running = false;
639 		return;
640 	}
641 
642 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
643 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
644 		cpu = smp_processor_id();
645 
646 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
647 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
648 				"for timekeeping\n", cpu);
649 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
650 		}
651 	}
652 
653 	for_each_cpu(cpu, tick_nohz_full_mask)
654 		ct_cpu_track_user(cpu);
655 
656 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
657 					"kernel/nohz:predown", NULL,
658 					tick_nohz_cpu_down);
659 	WARN_ON(ret < 0);
660 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
661 		cpumask_pr_args(tick_nohz_full_mask));
662 }
663 #endif /* #ifdef CONFIG_NO_HZ_FULL */
664 
665 /*
666  * NOHZ - aka dynamic tick functionality
667  */
668 #ifdef CONFIG_NO_HZ_COMMON
669 /*
670  * NO HZ enabled ?
671  */
672 bool tick_nohz_enabled __read_mostly  = true;
673 unsigned long tick_nohz_active  __read_mostly;
674 /*
675  * Enable / Disable tickless mode
676  */
677 static int __init setup_tick_nohz(char *str)
678 {
679 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
680 }
681 
682 __setup("nohz=", setup_tick_nohz);
683 
684 bool tick_nohz_tick_stopped(void)
685 {
686 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
687 
688 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
689 }
690 
691 bool tick_nohz_tick_stopped_cpu(int cpu)
692 {
693 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
694 
695 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
696 }
697 
698 /**
699  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
700  * @now: current ktime_t
701  *
702  * Called from interrupt entry when the CPU was idle
703  *
704  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
705  * must be updated. Otherwise an interrupt handler could use a stale jiffy
706  * value. We do this unconditionally on any CPU, as we don't know whether the
707  * CPU, which has the update task assigned, is in a long sleep.
708  */
709 static void tick_nohz_update_jiffies(ktime_t now)
710 {
711 	unsigned long flags;
712 
713 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
714 
715 	local_irq_save(flags);
716 	tick_do_update_jiffies64(now);
717 	local_irq_restore(flags);
718 
719 	touch_softlockup_watchdog_sched();
720 }
721 
722 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
723 {
724 	ktime_t delta;
725 
726 	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
727 		return;
728 
729 	delta = ktime_sub(now, ts->idle_entrytime);
730 
731 	write_seqcount_begin(&ts->idle_sleeptime_seq);
732 	if (nr_iowait_cpu(smp_processor_id()) > 0)
733 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
734 	else
735 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
736 
737 	ts->idle_entrytime = now;
738 	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
739 	write_seqcount_end(&ts->idle_sleeptime_seq);
740 
741 	sched_clock_idle_wakeup_event();
742 }
743 
744 static void tick_nohz_start_idle(struct tick_sched *ts)
745 {
746 	write_seqcount_begin(&ts->idle_sleeptime_seq);
747 	ts->idle_entrytime = ktime_get();
748 	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
749 	write_seqcount_end(&ts->idle_sleeptime_seq);
750 
751 	sched_clock_idle_sleep_event();
752 }
753 
754 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
755 				 bool compute_delta, u64 *last_update_time)
756 {
757 	ktime_t now, idle;
758 	unsigned int seq;
759 
760 	if (!tick_nohz_active)
761 		return -1;
762 
763 	now = ktime_get();
764 	if (last_update_time)
765 		*last_update_time = ktime_to_us(now);
766 
767 	do {
768 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
769 
770 		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
771 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
772 
773 			idle = ktime_add(*sleeptime, delta);
774 		} else {
775 			idle = *sleeptime;
776 		}
777 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
778 
779 	return ktime_to_us(idle);
780 
781 }
782 
783 /**
784  * get_cpu_idle_time_us - get the total idle time of a CPU
785  * @cpu: CPU number to query
786  * @last_update_time: variable to store update time in. Do not update
787  * counters if NULL.
788  *
789  * Return the cumulative idle time (since boot) for a given
790  * CPU, in microseconds. Note that this is partially broken due to
791  * the counter of iowait tasks that can be remotely updated without
792  * any synchronization. Therefore it is possible to observe backward
793  * values within two consecutive reads.
794  *
795  * This time is measured via accounting rather than sampling,
796  * and is as accurate as ktime_get() is.
797  *
798  * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
799  */
800 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
801 {
802 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
803 
804 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
805 				     !nr_iowait_cpu(cpu), last_update_time);
806 }
807 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
808 
809 /**
810  * get_cpu_iowait_time_us - get the total iowait time of a CPU
811  * @cpu: CPU number to query
812  * @last_update_time: variable to store update time in. Do not update
813  * counters if NULL.
814  *
815  * Return the cumulative iowait time (since boot) for a given
816  * CPU, in microseconds. Note this is partially broken due to
817  * the counter of iowait tasks that can be remotely updated without
818  * any synchronization. Therefore it is possible to observe backward
819  * values within two consecutive reads.
820  *
821  * This time is measured via accounting rather than sampling,
822  * and is as accurate as ktime_get() is.
823  *
824  * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
825  */
826 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
827 {
828 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
829 
830 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
831 				     nr_iowait_cpu(cpu), last_update_time);
832 }
833 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
834 
835 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
836 {
837 	hrtimer_cancel(&ts->sched_timer);
838 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
839 
840 	/* Forward the time to expire in the future */
841 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
842 
843 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
844 		hrtimer_start_expires(&ts->sched_timer,
845 				      HRTIMER_MODE_ABS_PINNED_HARD);
846 	} else {
847 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
848 	}
849 
850 	/*
851 	 * Reset to make sure the next tick stop doesn't get fooled by past
852 	 * cached clock deadline.
853 	 */
854 	ts->next_tick = 0;
855 }
856 
857 static inline bool local_timer_softirq_pending(void)
858 {
859 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
860 }
861 
862 /*
863  * Read jiffies and the time when jiffies were updated last
864  */
865 u64 get_jiffies_update(unsigned long *basej)
866 {
867 	unsigned long basejiff;
868 	unsigned int seq;
869 	u64 basemono;
870 
871 	do {
872 		seq = read_seqcount_begin(&jiffies_seq);
873 		basemono = last_jiffies_update;
874 		basejiff = jiffies;
875 	} while (read_seqcount_retry(&jiffies_seq, seq));
876 	*basej = basejiff;
877 	return basemono;
878 }
879 
880 /**
881  * tick_nohz_next_event() - return the clock monotonic based next event
882  * @ts:		pointer to tick_sched struct
883  * @cpu:	CPU number
884  *
885  * Return:
886  * *%0		- When the next event is a maximum of TICK_NSEC in the future
887  *		  and the tick is not stopped yet
888  * *%next_event	- Next event based on clock monotonic
889  */
890 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
891 {
892 	u64 basemono, next_tick, delta, expires;
893 	unsigned long basejiff;
894 
895 	basemono = get_jiffies_update(&basejiff);
896 	ts->last_jiffies = basejiff;
897 	ts->timer_expires_base = basemono;
898 
899 	/*
900 	 * Keep the periodic tick, when RCU, architecture or irq_work
901 	 * requests it.
902 	 * Aside of that, check whether the local timer softirq is
903 	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
904 	 * because there is an already expired timer, so it will request
905 	 * immediate expiry, which rearms the hardware timer with a
906 	 * minimal delta, which brings us back to this place
907 	 * immediately. Lather, rinse and repeat...
908 	 */
909 	if (rcu_needs_cpu() || arch_needs_cpu() ||
910 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
911 		next_tick = basemono + TICK_NSEC;
912 	} else {
913 		/*
914 		 * Get the next pending timer. If high resolution
915 		 * timers are enabled this only takes the timer wheel
916 		 * timers into account. If high resolution timers are
917 		 * disabled this also looks at the next expiring
918 		 * hrtimer.
919 		 */
920 		next_tick = get_next_timer_interrupt(basejiff, basemono);
921 		ts->next_timer = next_tick;
922 	}
923 
924 	/* Make sure next_tick is never before basemono! */
925 	if (WARN_ON_ONCE(basemono > next_tick))
926 		next_tick = basemono;
927 
928 	/*
929 	 * If the tick is due in the next period, keep it ticking or
930 	 * force prod the timer.
931 	 */
932 	delta = next_tick - basemono;
933 	if (delta <= (u64)TICK_NSEC) {
934 		/*
935 		 * We've not stopped the tick yet, and there's a timer in the
936 		 * next period, so no point in stopping it either, bail.
937 		 */
938 		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
939 			ts->timer_expires = 0;
940 			goto out;
941 		}
942 	}
943 
944 	/*
945 	 * If this CPU is the one which had the do_timer() duty last, we limit
946 	 * the sleep time to the timekeeping 'max_deferment' value.
947 	 * Otherwise we can sleep as long as we want.
948 	 */
949 	delta = timekeeping_max_deferment();
950 	if (cpu != tick_do_timer_cpu &&
951 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE ||
952 	     !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
953 		delta = KTIME_MAX;
954 
955 	/* Calculate the next expiry time */
956 	if (delta < (KTIME_MAX - basemono))
957 		expires = basemono + delta;
958 	else
959 		expires = KTIME_MAX;
960 
961 	ts->timer_expires = min_t(u64, expires, next_tick);
962 
963 out:
964 	return ts->timer_expires;
965 }
966 
967 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
968 {
969 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
970 	unsigned long basejiff = ts->last_jiffies;
971 	u64 basemono = ts->timer_expires_base;
972 	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
973 	u64 expires;
974 
975 	/* Make sure we won't be trying to stop it twice in a row. */
976 	ts->timer_expires_base = 0;
977 
978 	/*
979 	 * Now the tick should be stopped definitely - so the timer base needs
980 	 * to be marked idle as well to not miss a newly queued timer.
981 	 */
982 	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
983 	if (expires > ts->timer_expires) {
984 		/*
985 		 * This path could only happen when the first timer was removed
986 		 * between calculating the possible sleep length and now (when
987 		 * high resolution mode is not active, timer could also be a
988 		 * hrtimer).
989 		 *
990 		 * We have to stick to the original calculated expiry value to
991 		 * not stop the tick for too long with a shallow C-state (which
992 		 * was programmed by cpuidle because of an early next expiration
993 		 * value).
994 		 */
995 		expires = ts->timer_expires;
996 	}
997 
998 	/* If the timer base is not idle, retain the not yet stopped tick. */
999 	if (!timer_idle)
1000 		return;
1001 
1002 	/*
1003 	 * If this CPU is the one which updates jiffies, then give up
1004 	 * the assignment and let it be taken by the CPU which runs
1005 	 * the tick timer next, which might be this CPU as well. If we
1006 	 * don't drop this here, the jiffies might be stale and
1007 	 * do_timer() never gets invoked. Keep track of the fact that it
1008 	 * was the one which had the do_timer() duty last.
1009 	 */
1010 	if (cpu == tick_do_timer_cpu) {
1011 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1012 		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1013 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
1014 		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1015 	}
1016 
1017 	/* Skip reprogram of event if it's not changed */
1018 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1019 		/* Sanity check: make sure clockevent is actually programmed */
1020 		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1021 			return;
1022 
1023 		WARN_ON_ONCE(1);
1024 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
1025 			    basemono, ts->next_tick, dev->next_event,
1026 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
1027 	}
1028 
1029 	/*
1030 	 * tick_nohz_stop_tick() can be called several times before
1031 	 * tick_nohz_restart_sched_tick() is called. This happens when
1032 	 * interrupts arrive which do not cause a reschedule. In the first
1033 	 * call we save the current tick time, so we can restart the
1034 	 * scheduler tick in tick_nohz_restart_sched_tick().
1035 	 */
1036 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1037 		calc_load_nohz_start();
1038 		quiet_vmstat();
1039 
1040 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1041 		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1042 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1043 	}
1044 
1045 	ts->next_tick = expires;
1046 
1047 	/*
1048 	 * If the expiration time == KTIME_MAX, then we simply stop
1049 	 * the tick timer.
1050 	 */
1051 	if (unlikely(expires == KTIME_MAX)) {
1052 		tick_sched_timer_cancel(ts);
1053 		return;
1054 	}
1055 
1056 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1057 		hrtimer_start(&ts->sched_timer, expires,
1058 			      HRTIMER_MODE_ABS_PINNED_HARD);
1059 	} else {
1060 		hrtimer_set_expires(&ts->sched_timer, expires);
1061 		tick_program_event(expires, 1);
1062 	}
1063 }
1064 
1065 static void tick_nohz_retain_tick(struct tick_sched *ts)
1066 {
1067 	ts->timer_expires_base = 0;
1068 }
1069 
1070 #ifdef CONFIG_NO_HZ_FULL
1071 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1072 {
1073 	if (tick_nohz_next_event(ts, cpu))
1074 		tick_nohz_stop_tick(ts, cpu);
1075 	else
1076 		tick_nohz_retain_tick(ts);
1077 }
1078 #endif /* CONFIG_NO_HZ_FULL */
1079 
1080 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1081 {
1082 	/* Update jiffies first */
1083 	tick_do_update_jiffies64(now);
1084 
1085 	/*
1086 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1087 	 * the clock forward checks in the enqueue path:
1088 	 */
1089 	timer_clear_idle();
1090 
1091 	calc_load_nohz_stop();
1092 	touch_softlockup_watchdog_sched();
1093 
1094 	/* Cancel the scheduled timer and restore the tick: */
1095 	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1096 	tick_nohz_restart(ts, now);
1097 }
1098 
1099 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1100 					 ktime_t now)
1101 {
1102 #ifdef CONFIG_NO_HZ_FULL
1103 	int cpu = smp_processor_id();
1104 
1105 	if (can_stop_full_tick(cpu, ts))
1106 		tick_nohz_full_stop_tick(ts, cpu);
1107 	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1108 		tick_nohz_restart_sched_tick(ts, now);
1109 #endif
1110 }
1111 
1112 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1113 {
1114 	if (!tick_nohz_full_cpu(smp_processor_id()))
1115 		return;
1116 
1117 	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1118 		return;
1119 
1120 	__tick_nohz_full_update_tick(ts, ktime_get());
1121 }
1122 
1123 /*
1124  * A pending softirq outside an IRQ (or softirq disabled section) context
1125  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1126  * reach this code due to the need_resched() early check in can_stop_idle_tick().
1127  *
1128  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1129  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1130  * triggering the code below, since wakep_softirqd() is ignored.
1131  *
1132  */
1133 static bool report_idle_softirq(void)
1134 {
1135 	static int ratelimit;
1136 	unsigned int pending = local_softirq_pending();
1137 
1138 	if (likely(!pending))
1139 		return false;
1140 
1141 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1142 	if (!cpu_active(smp_processor_id())) {
1143 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1144 		if (!pending)
1145 			return false;
1146 	}
1147 
1148 	if (ratelimit >= 10)
1149 		return false;
1150 
1151 	/* On RT, softirq handling may be waiting on some lock */
1152 	if (local_bh_blocked())
1153 		return false;
1154 
1155 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1156 		pending);
1157 	ratelimit++;
1158 
1159 	return true;
1160 }
1161 
1162 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1163 {
1164 	WARN_ON_ONCE(cpu_is_offline(cpu));
1165 
1166 	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1167 		return false;
1168 
1169 	if (need_resched())
1170 		return false;
1171 
1172 	if (unlikely(report_idle_softirq()))
1173 		return false;
1174 
1175 	if (tick_nohz_full_enabled()) {
1176 		/*
1177 		 * Keep the tick alive to guarantee timekeeping progression
1178 		 * if there are full dynticks CPUs around
1179 		 */
1180 		if (tick_do_timer_cpu == cpu)
1181 			return false;
1182 
1183 		/* Should not happen for nohz-full */
1184 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1185 			return false;
1186 	}
1187 
1188 	return true;
1189 }
1190 
1191 /**
1192  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1193  *
1194  * When the next event is more than a tick into the future, stop the idle tick
1195  */
1196 void tick_nohz_idle_stop_tick(void)
1197 {
1198 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1199 	int cpu = smp_processor_id();
1200 	ktime_t expires;
1201 
1202 	/*
1203 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1204 	 * tick timer expiration time is known already.
1205 	 */
1206 	if (ts->timer_expires_base)
1207 		expires = ts->timer_expires;
1208 	else if (can_stop_idle_tick(cpu, ts))
1209 		expires = tick_nohz_next_event(ts, cpu);
1210 	else
1211 		return;
1212 
1213 	ts->idle_calls++;
1214 
1215 	if (expires > 0LL) {
1216 		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1217 
1218 		tick_nohz_stop_tick(ts, cpu);
1219 
1220 		ts->idle_sleeps++;
1221 		ts->idle_expires = expires;
1222 
1223 		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1224 			ts->idle_jiffies = ts->last_jiffies;
1225 			nohz_balance_enter_idle(cpu);
1226 		}
1227 	} else {
1228 		tick_nohz_retain_tick(ts);
1229 	}
1230 }
1231 
1232 void tick_nohz_idle_retain_tick(void)
1233 {
1234 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1235 }
1236 
1237 /**
1238  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1239  *
1240  * Called when we start the idle loop.
1241  */
1242 void tick_nohz_idle_enter(void)
1243 {
1244 	struct tick_sched *ts;
1245 
1246 	lockdep_assert_irqs_enabled();
1247 
1248 	local_irq_disable();
1249 
1250 	ts = this_cpu_ptr(&tick_cpu_sched);
1251 
1252 	WARN_ON_ONCE(ts->timer_expires_base);
1253 
1254 	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1255 	tick_nohz_start_idle(ts);
1256 
1257 	local_irq_enable();
1258 }
1259 
1260 /**
1261  * tick_nohz_irq_exit - Notify the tick about IRQ exit
1262  *
1263  * A timer may have been added/modified/deleted either by the current IRQ,
1264  * or by another place using this IRQ as a notification. This IRQ may have
1265  * also updated the RCU callback list. These events may require a
1266  * re-evaluation of the next tick. Depending on the context:
1267  *
1268  * 1) If the CPU is idle and no resched is pending, just proceed with idle
1269  *    time accounting. The next tick will be re-evaluated on the next idle
1270  *    loop iteration.
1271  *
1272  * 2) If the CPU is nohz_full:
1273  *
1274  *    2.1) If there is any tick dependency, restart the tick if stopped.
1275  *
1276  *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1277  *         stop/update it accordingly.
1278  */
1279 void tick_nohz_irq_exit(void)
1280 {
1281 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1282 
1283 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1284 		tick_nohz_start_idle(ts);
1285 	else
1286 		tick_nohz_full_update_tick(ts);
1287 }
1288 
1289 /**
1290  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1291  *
1292  * Return: %true if the tick handler has run, otherwise %false
1293  */
1294 bool tick_nohz_idle_got_tick(void)
1295 {
1296 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1297 
1298 	if (ts->got_idle_tick) {
1299 		ts->got_idle_tick = 0;
1300 		return true;
1301 	}
1302 	return false;
1303 }
1304 
1305 /**
1306  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1307  * or the tick, whichever expires first. Note that, if the tick has been
1308  * stopped, it returns the next hrtimer.
1309  *
1310  * Called from power state control code with interrupts disabled
1311  *
1312  * Return: the next expiration time
1313  */
1314 ktime_t tick_nohz_get_next_hrtimer(void)
1315 {
1316 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1317 }
1318 
1319 /**
1320  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1321  * @delta_next: duration until the next event if the tick cannot be stopped
1322  *
1323  * Called from power state control code with interrupts disabled.
1324  *
1325  * The return value of this function and/or the value returned by it through the
1326  * @delta_next pointer can be negative which must be taken into account by its
1327  * callers.
1328  *
1329  * Return: the expected length of the current sleep
1330  */
1331 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1332 {
1333 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1334 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1335 	int cpu = smp_processor_id();
1336 	/*
1337 	 * The idle entry time is expected to be a sufficient approximation of
1338 	 * the current time at this point.
1339 	 */
1340 	ktime_t now = ts->idle_entrytime;
1341 	ktime_t next_event;
1342 
1343 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1344 
1345 	*delta_next = ktime_sub(dev->next_event, now);
1346 
1347 	if (!can_stop_idle_tick(cpu, ts))
1348 		return *delta_next;
1349 
1350 	next_event = tick_nohz_next_event(ts, cpu);
1351 	if (!next_event)
1352 		return *delta_next;
1353 
1354 	/*
1355 	 * If the next highres timer to expire is earlier than 'next_event', the
1356 	 * idle governor needs to know that.
1357 	 */
1358 	next_event = min_t(u64, next_event,
1359 			   hrtimer_next_event_without(&ts->sched_timer));
1360 
1361 	return ktime_sub(next_event, now);
1362 }
1363 
1364 /**
1365  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1366  * for a particular CPU.
1367  * @cpu: target CPU number
1368  *
1369  * Called from the schedutil frequency scaling governor in scheduler context.
1370  *
1371  * Return: the current idle calls counter value for @cpu
1372  */
1373 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1374 {
1375 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1376 
1377 	return ts->idle_calls;
1378 }
1379 
1380 /**
1381  * tick_nohz_get_idle_calls - return the current idle calls counter value
1382  *
1383  * Called from the schedutil frequency scaling governor in scheduler context.
1384  *
1385  * Return: the current idle calls counter value for the current CPU
1386  */
1387 unsigned long tick_nohz_get_idle_calls(void)
1388 {
1389 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1390 
1391 	return ts->idle_calls;
1392 }
1393 
1394 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1395 					ktime_t now)
1396 {
1397 	unsigned long ticks;
1398 
1399 	ts->idle_exittime = now;
1400 
1401 	if (vtime_accounting_enabled_this_cpu())
1402 		return;
1403 	/*
1404 	 * We stopped the tick in idle. update_process_times() would miss the
1405 	 * time we slept, as it does only a 1 tick accounting.
1406 	 * Enforce that this is accounted to idle !
1407 	 */
1408 	ticks = jiffies - ts->idle_jiffies;
1409 	/*
1410 	 * We might be one off. Do not randomly account a huge number of ticks!
1411 	 */
1412 	if (ticks && ticks < LONG_MAX)
1413 		account_idle_ticks(ticks);
1414 }
1415 
1416 void tick_nohz_idle_restart_tick(void)
1417 {
1418 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1419 
1420 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1421 		ktime_t now = ktime_get();
1422 		tick_nohz_restart_sched_tick(ts, now);
1423 		tick_nohz_account_idle_time(ts, now);
1424 	}
1425 }
1426 
1427 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1428 {
1429 	if (tick_nohz_full_cpu(smp_processor_id()))
1430 		__tick_nohz_full_update_tick(ts, now);
1431 	else
1432 		tick_nohz_restart_sched_tick(ts, now);
1433 
1434 	tick_nohz_account_idle_time(ts, now);
1435 }
1436 
1437 /**
1438  * tick_nohz_idle_exit - Update the tick upon idle task exit
1439  *
1440  * When the idle task exits, update the tick depending on the
1441  * following situations:
1442  *
1443  * 1) If the CPU is not in nohz_full mode (most cases), then
1444  *    restart the tick.
1445  *
1446  * 2) If the CPU is in nohz_full mode (corner case):
1447  *   2.1) If the tick can be kept stopped (no tick dependencies)
1448  *        then re-evaluate the next tick and try to keep it stopped
1449  *        as long as possible.
1450  *   2.2) If the tick has dependencies, restart the tick.
1451  *
1452  */
1453 void tick_nohz_idle_exit(void)
1454 {
1455 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1456 	bool idle_active, tick_stopped;
1457 	ktime_t now;
1458 
1459 	local_irq_disable();
1460 
1461 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1462 	WARN_ON_ONCE(ts->timer_expires_base);
1463 
1464 	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1465 	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1466 	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1467 
1468 	if (idle_active || tick_stopped)
1469 		now = ktime_get();
1470 
1471 	if (idle_active)
1472 		tick_nohz_stop_idle(ts, now);
1473 
1474 	if (tick_stopped)
1475 		tick_nohz_idle_update_tick(ts, now);
1476 
1477 	local_irq_enable();
1478 }
1479 
1480 /*
1481  * In low-resolution mode, the tick handler must be implemented directly
1482  * at the clockevent level. hrtimer can't be used instead, because its
1483  * infrastructure actually relies on the tick itself as a backend in
1484  * low-resolution mode (see hrtimer_run_queues()).
1485  */
1486 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1487 {
1488 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1489 
1490 	dev->next_event = KTIME_MAX;
1491 
1492 	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1493 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1494 }
1495 
1496 static inline void tick_nohz_activate(struct tick_sched *ts)
1497 {
1498 	if (!tick_nohz_enabled)
1499 		return;
1500 	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1501 	/* One update is enough */
1502 	if (!test_and_set_bit(0, &tick_nohz_active))
1503 		timers_update_nohz();
1504 }
1505 
1506 /**
1507  * tick_nohz_switch_to_nohz - switch to NOHZ mode
1508  */
1509 static void tick_nohz_switch_to_nohz(void)
1510 {
1511 	if (!tick_nohz_enabled)
1512 		return;
1513 
1514 	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1515 		return;
1516 
1517 	/*
1518 	 * Recycle the hrtimer in 'ts', so we can share the
1519 	 * highres code.
1520 	 */
1521 	tick_setup_sched_timer(false);
1522 }
1523 
1524 static inline void tick_nohz_irq_enter(void)
1525 {
1526 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1527 	ktime_t now;
1528 
1529 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1530 		return;
1531 	now = ktime_get();
1532 	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1533 		tick_nohz_stop_idle(ts, now);
1534 	/*
1535 	 * If all CPUs are idle we may need to update a stale jiffies value.
1536 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1537 	 * alive but it might be busy looping with interrupts disabled in some
1538 	 * rare case (typically stop machine). So we must make sure we have a
1539 	 * last resort.
1540 	 */
1541 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1542 		tick_nohz_update_jiffies(now);
1543 }
1544 
1545 #else
1546 
1547 static inline void tick_nohz_switch_to_nohz(void) { }
1548 static inline void tick_nohz_irq_enter(void) { }
1549 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1550 
1551 #endif /* CONFIG_NO_HZ_COMMON */
1552 
1553 /*
1554  * Called from irq_enter() to notify about the possible interruption of idle()
1555  */
1556 void tick_irq_enter(void)
1557 {
1558 	tick_check_oneshot_broadcast_this_cpu();
1559 	tick_nohz_irq_enter();
1560 }
1561 
1562 static int sched_skew_tick;
1563 
1564 static int __init skew_tick(char *str)
1565 {
1566 	get_option(&str, &sched_skew_tick);
1567 
1568 	return 0;
1569 }
1570 early_param("skew_tick", skew_tick);
1571 
1572 /**
1573  * tick_setup_sched_timer - setup the tick emulation timer
1574  * @hrtimer: whether to use the hrtimer or not
1575  */
1576 void tick_setup_sched_timer(bool hrtimer)
1577 {
1578 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1579 
1580 	/* Emulate tick processing via per-CPU hrtimers: */
1581 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1582 
1583 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1584 		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1585 		ts->sched_timer.function = tick_nohz_handler;
1586 	}
1587 
1588 	/* Get the next period (per-CPU) */
1589 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1590 
1591 	/* Offset the tick to avert 'jiffies_lock' contention. */
1592 	if (sched_skew_tick) {
1593 		u64 offset = TICK_NSEC >> 1;
1594 		do_div(offset, num_possible_cpus());
1595 		offset *= smp_processor_id();
1596 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1597 	}
1598 
1599 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1600 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1601 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1602 	else
1603 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1604 	tick_nohz_activate(ts);
1605 }
1606 
1607 /*
1608  * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1609  * duty before disabling IRQs in idle for the last time.
1610  */
1611 void tick_sched_timer_dying(int cpu)
1612 {
1613 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1614 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1615 	struct clock_event_device *dev = td->evtdev;
1616 	ktime_t idle_sleeptime, iowait_sleeptime;
1617 	unsigned long idle_calls, idle_sleeps;
1618 
1619 	/* This must happen before hrtimers are migrated! */
1620 	tick_sched_timer_cancel(ts);
1621 
1622 	/*
1623 	 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1624 	 * make sure not to call low-res tick handler.
1625 	 */
1626 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1627 		dev->event_handler = clockevents_handle_noop;
1628 
1629 	idle_sleeptime = ts->idle_sleeptime;
1630 	iowait_sleeptime = ts->iowait_sleeptime;
1631 	idle_calls = ts->idle_calls;
1632 	idle_sleeps = ts->idle_sleeps;
1633 	memset(ts, 0, sizeof(*ts));
1634 	ts->idle_sleeptime = idle_sleeptime;
1635 	ts->iowait_sleeptime = iowait_sleeptime;
1636 	ts->idle_calls = idle_calls;
1637 	ts->idle_sleeps = idle_sleeps;
1638 }
1639 
1640 /*
1641  * Async notification about clocksource changes
1642  */
1643 void tick_clock_notify(void)
1644 {
1645 	int cpu;
1646 
1647 	for_each_possible_cpu(cpu)
1648 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1649 }
1650 
1651 /*
1652  * Async notification about clock event changes
1653  */
1654 void tick_oneshot_notify(void)
1655 {
1656 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1657 
1658 	set_bit(0, &ts->check_clocks);
1659 }
1660 
1661 /*
1662  * Check if a change happened, which makes oneshot possible.
1663  *
1664  * Called cyclically from the hrtimer softirq (driven by the timer
1665  * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1666  * mode, because high resolution timers are disabled (either compile
1667  * or runtime). Called with interrupts disabled.
1668  */
1669 int tick_check_oneshot_change(int allow_nohz)
1670 {
1671 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1672 
1673 	if (!test_and_clear_bit(0, &ts->check_clocks))
1674 		return 0;
1675 
1676 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1677 		return 0;
1678 
1679 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1680 		return 0;
1681 
1682 	if (!allow_nohz)
1683 		return 1;
1684 
1685 	tick_nohz_switch_to_nohz();
1686 	return 0;
1687 }
1688