xref: /linux/kernel/time/tick-sched.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  NOHZ implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 /*
48  * The time when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64-bit can do a quick check without holding the jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32-bit cannot do that because the store of 'tick_next_period'
68 	 * consists of two 32-bit stores, and the first store could be
69 	 * moved by the CPU to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on 'jiffies_lock' and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Re-evaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the 'jiffies_seq' protected job */
118 	jiffies_64 += ticks;
119 
120 	/* Keep the tick_next_period variable up to date */
121 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122 
123 	if (IS_ENABLED(CONFIG_64BIT)) {
124 		/*
125 		 * Pairs with smp_load_acquire() in the lockless quick
126 		 * check above, and ensures that the update to 'jiffies_64' is
127 		 * not reordered vs. the store to 'tick_next_period', neither
128 		 * by the compiler nor by the CPU.
129 		 */
130 		smp_store_release(&tick_next_period, nextp);
131 	} else {
132 		/*
133 		 * A plain store is good enough on 32-bit, as the quick check
134 		 * above is protected by the sequence count.
135 		 */
136 		tick_next_period = nextp;
137 	}
138 
139 	/*
140 	 * Release the sequence count. calc_global_load() below is not
141 	 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 	 * concurrent invocations.
143 	 */
144 	write_seqcount_end(&jiffies_seq);
145 
146 	calc_global_load();
147 
148 	raw_spin_unlock(&jiffies_lock);
149 	update_wall_time();
150 }
151 
152 /*
153  * Initialize and return retrieve the jiffies update.
154  */
155 static ktime_t tick_init_jiffy_update(void)
156 {
157 	ktime_t period;
158 
159 	raw_spin_lock(&jiffies_lock);
160 	write_seqcount_begin(&jiffies_seq);
161 
162 	/* Have we started the jiffies update yet ? */
163 	if (last_jiffies_update == 0) {
164 		u32 rem;
165 
166 		/*
167 		 * Ensure that the tick is aligned to a multiple of
168 		 * TICK_NSEC.
169 		 */
170 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 		if (rem)
172 			tick_next_period += TICK_NSEC - rem;
173 
174 		last_jiffies_update = tick_next_period;
175 	}
176 	period = last_jiffies_update;
177 
178 	write_seqcount_end(&jiffies_seq);
179 	raw_spin_unlock(&jiffies_lock);
180 
181 	return period;
182 }
183 
184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 				       unsigned long flag)
186 {
187 	return !!(ts->flags & flag);
188 }
189 
190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 				       unsigned long flag)
192 {
193 	lockdep_assert_irqs_disabled();
194 	ts->flags |= flag;
195 }
196 
197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 					 unsigned long flag)
199 {
200 	lockdep_assert_irqs_disabled();
201 	ts->flags &= ~flag;
202 }
203 
204 /*
205  * Allow only one non-timekeeper CPU at a time update jiffies from
206  * the timer tick.
207  *
208  * Returns true if update was run.
209  */
210 static bool tick_limited_update_jiffies64(struct tick_sched *ts, ktime_t now)
211 {
212 	static atomic_t in_progress;
213 	int inp;
214 
215 	inp = atomic_read(&in_progress);
216 	if (inp || !atomic_try_cmpxchg(&in_progress, &inp, 1))
217 		return false;
218 
219 	if (ts->last_tick_jiffies == jiffies)
220 		tick_do_update_jiffies64(now);
221 	atomic_set(&in_progress, 0);
222 	return true;
223 }
224 
225 #define MAX_STALLED_JIFFIES 5
226 
227 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
228 {
229 	int tick_cpu, cpu = smp_processor_id();
230 
231 	/*
232 	 * Check if the do_timer duty was dropped. We don't care about
233 	 * concurrency: This happens only when the CPU in charge went
234 	 * into a long sleep. If two CPUs happen to assign themselves to
235 	 * this duty, then the jiffies update is still serialized by
236 	 * 'jiffies_lock'.
237 	 *
238 	 * If nohz_full is enabled, this should not happen because the
239 	 * 'tick_do_timer_cpu' CPU never relinquishes.
240 	 */
241 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
242 
243 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
244 #ifdef CONFIG_NO_HZ_FULL
245 		WARN_ON_ONCE(tick_nohz_full_running);
246 #endif
247 		WRITE_ONCE(tick_do_timer_cpu, cpu);
248 		tick_cpu = cpu;
249 	}
250 
251 	/* Check if jiffies need an update */
252 	if (tick_cpu == cpu)
253 		tick_do_update_jiffies64(now);
254 
255 	/*
256 	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
257 	 * or VMEXIT'ed for several msecs), force an update.
258 	 */
259 	if (ts->last_tick_jiffies != jiffies) {
260 		ts->stalled_jiffies = 0;
261 		ts->last_tick_jiffies = READ_ONCE(jiffies);
262 	} else {
263 		if (++ts->stalled_jiffies >= MAX_STALLED_JIFFIES) {
264 			if (tick_limited_update_jiffies64(ts, now)) {
265 				ts->stalled_jiffies = 0;
266 				ts->last_tick_jiffies = READ_ONCE(jiffies);
267 			}
268 		}
269 	}
270 
271 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
272 		ts->got_idle_tick = 1;
273 }
274 
275 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
276 {
277 	/*
278 	 * When we are idle and the tick is stopped, we have to touch
279 	 * the watchdog as we might not schedule for a really long
280 	 * time. This happens on completely idle SMP systems while
281 	 * waiting on the login prompt. We also increment the "start of
282 	 * idle" jiffy stamp so the idle accounting adjustment we do
283 	 * when we go busy again does not account too many ticks.
284 	 */
285 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
286 	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
287 		touch_softlockup_watchdog_sched();
288 		if (is_idle_task(current))
289 			ts->idle_jiffies++;
290 		/*
291 		 * In case the current tick fired too early past its expected
292 		 * expiration, make sure we don't bypass the next clock reprogramming
293 		 * to the same deadline.
294 		 */
295 		ts->next_tick = 0;
296 	}
297 
298 	update_process_times(user_mode(regs));
299 	profile_tick(CPU_PROFILING);
300 }
301 
302 /*
303  * We rearm the timer until we get disabled by the idle code.
304  * Called with interrupts disabled.
305  */
306 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
307 {
308 	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
309 	struct pt_regs *regs = get_irq_regs();
310 	ktime_t now = ktime_get();
311 
312 	tick_sched_do_timer(ts, now);
313 
314 	/*
315 	 * Do not call when we are not in IRQ context and have
316 	 * no valid 'regs' pointer
317 	 */
318 	if (regs)
319 		tick_sched_handle(ts, regs);
320 	else
321 		ts->next_tick = 0;
322 
323 	/*
324 	 * In dynticks mode, tick reprogram is deferred:
325 	 * - to the idle task if in dynticks-idle
326 	 * - to IRQ exit if in full-dynticks.
327 	 */
328 	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
329 		return HRTIMER_NORESTART;
330 
331 	hrtimer_forward(timer, now, TICK_NSEC);
332 
333 	return HRTIMER_RESTART;
334 }
335 
336 #ifdef CONFIG_NO_HZ_FULL
337 cpumask_var_t tick_nohz_full_mask;
338 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
339 bool tick_nohz_full_running;
340 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
341 static atomic_t tick_dep_mask;
342 
343 static bool check_tick_dependency(atomic_t *dep)
344 {
345 	int val = atomic_read(dep);
346 
347 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
348 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
349 		return true;
350 	}
351 
352 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
353 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
354 		return true;
355 	}
356 
357 	if (val & TICK_DEP_MASK_SCHED) {
358 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
359 		return true;
360 	}
361 
362 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
363 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
364 		return true;
365 	}
366 
367 	if (val & TICK_DEP_MASK_RCU) {
368 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
369 		return true;
370 	}
371 
372 	if (val & TICK_DEP_MASK_RCU_EXP) {
373 		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
374 		return true;
375 	}
376 
377 	return false;
378 }
379 
380 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
381 {
382 	lockdep_assert_irqs_disabled();
383 
384 	if (unlikely(!cpu_online(cpu)))
385 		return false;
386 
387 	if (check_tick_dependency(&tick_dep_mask))
388 		return false;
389 
390 	if (check_tick_dependency(&ts->tick_dep_mask))
391 		return false;
392 
393 	if (check_tick_dependency(&current->tick_dep_mask))
394 		return false;
395 
396 	if (check_tick_dependency(&current->signal->tick_dep_mask))
397 		return false;
398 
399 	return true;
400 }
401 
402 static void nohz_full_kick_func(struct irq_work *work)
403 {
404 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
405 }
406 
407 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
408 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
409 
410 /*
411  * Kick this CPU if it's full dynticks in order to force it to
412  * re-evaluate its dependency on the tick and restart it if necessary.
413  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
414  * is NMI safe.
415  */
416 static void tick_nohz_full_kick(void)
417 {
418 	if (!tick_nohz_full_cpu(smp_processor_id()))
419 		return;
420 
421 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
422 }
423 
424 /*
425  * Kick the CPU if it's full dynticks in order to force it to
426  * re-evaluate its dependency on the tick and restart it if necessary.
427  */
428 void tick_nohz_full_kick_cpu(int cpu)
429 {
430 	if (!tick_nohz_full_cpu(cpu))
431 		return;
432 
433 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
434 }
435 
436 static void tick_nohz_kick_task(struct task_struct *tsk)
437 {
438 	int cpu;
439 
440 	/*
441 	 * If the task is not running, run_posix_cpu_timers()
442 	 * has nothing to elapse, and an IPI can then be optimized out.
443 	 *
444 	 * activate_task()                      STORE p->tick_dep_mask
445 	 *   STORE p->on_rq
446 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
447 	 *   LOCK rq->lock                      LOAD p->on_rq
448 	 *   smp_mb__after_spin_lock()
449 	 *   tick_nohz_task_switch()
450 	 *     LOAD p->tick_dep_mask
451 	 *
452 	 * XXX given a task picks up the dependency on schedule(), should we
453 	 * only care about tasks that are currently on the CPU instead of all
454 	 * that are on the runqueue?
455 	 *
456 	 * That is, does this want to be: task_on_cpu() / task_curr()?
457 	 */
458 	if (!sched_task_on_rq(tsk))
459 		return;
460 
461 	/*
462 	 * If the task concurrently migrates to another CPU,
463 	 * we guarantee it sees the new tick dependency upon
464 	 * schedule.
465 	 *
466 	 * set_task_cpu(p, cpu);
467 	 *   STORE p->cpu = @cpu
468 	 * __schedule() (switch to task 'p')
469 	 *   LOCK rq->lock
470 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
471 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
472 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
473 	 */
474 	cpu = task_cpu(tsk);
475 
476 	preempt_disable();
477 	if (cpu_online(cpu))
478 		tick_nohz_full_kick_cpu(cpu);
479 	preempt_enable();
480 }
481 
482 /*
483  * Kick all full dynticks CPUs in order to force these to re-evaluate
484  * their dependency on the tick and restart it if necessary.
485  */
486 static void tick_nohz_full_kick_all(void)
487 {
488 	int cpu;
489 
490 	if (!tick_nohz_full_running)
491 		return;
492 
493 	preempt_disable();
494 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
495 		tick_nohz_full_kick_cpu(cpu);
496 	preempt_enable();
497 }
498 
499 static void tick_nohz_dep_set_all(atomic_t *dep,
500 				  enum tick_dep_bits bit)
501 {
502 	int prev;
503 
504 	prev = atomic_fetch_or(BIT(bit), dep);
505 	if (!prev)
506 		tick_nohz_full_kick_all();
507 }
508 
509 /*
510  * Set a global tick dependency. Used by perf events that rely on freq and
511  * unstable clocks.
512  */
513 void tick_nohz_dep_set(enum tick_dep_bits bit)
514 {
515 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
516 }
517 
518 void tick_nohz_dep_clear(enum tick_dep_bits bit)
519 {
520 	atomic_andnot(BIT(bit), &tick_dep_mask);
521 }
522 
523 /*
524  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
525  * manage event-throttling.
526  */
527 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
528 {
529 	int prev;
530 	struct tick_sched *ts;
531 
532 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
533 
534 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
535 	if (!prev) {
536 		preempt_disable();
537 		/* Perf needs local kick that is NMI safe */
538 		if (cpu == smp_processor_id()) {
539 			tick_nohz_full_kick();
540 		} else {
541 			/* Remote IRQ work not NMI-safe */
542 			if (!WARN_ON_ONCE(in_nmi()))
543 				tick_nohz_full_kick_cpu(cpu);
544 		}
545 		preempt_enable();
546 	}
547 }
548 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
549 
550 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
551 {
552 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
553 
554 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
555 }
556 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
557 
558 /*
559  * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
560  * in order to elapse per task timers.
561  */
562 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
563 {
564 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
565 		tick_nohz_kick_task(tsk);
566 }
567 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
568 
569 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
570 {
571 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
572 }
573 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
574 
575 /*
576  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
577  * per process timers.
578  */
579 void tick_nohz_dep_set_signal(struct task_struct *tsk,
580 			      enum tick_dep_bits bit)
581 {
582 	int prev;
583 	struct signal_struct *sig = tsk->signal;
584 
585 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
586 	if (!prev) {
587 		struct task_struct *t;
588 
589 		lockdep_assert_held(&tsk->sighand->siglock);
590 		__for_each_thread(sig, t)
591 			tick_nohz_kick_task(t);
592 	}
593 }
594 
595 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
596 {
597 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
598 }
599 
600 /*
601  * Re-evaluate the need for the tick as we switch the current task.
602  * It might need the tick due to per task/process properties:
603  * perf events, posix CPU timers, ...
604  */
605 void __tick_nohz_task_switch(void)
606 {
607 	struct tick_sched *ts;
608 
609 	if (!tick_nohz_full_cpu(smp_processor_id()))
610 		return;
611 
612 	ts = this_cpu_ptr(&tick_cpu_sched);
613 
614 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
615 		if (atomic_read(&current->tick_dep_mask) ||
616 		    atomic_read(&current->signal->tick_dep_mask))
617 			tick_nohz_full_kick();
618 	}
619 }
620 
621 /* Get the boot-time nohz CPU list from the kernel parameters. */
622 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
623 {
624 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
625 	cpumask_copy(tick_nohz_full_mask, cpumask);
626 	tick_nohz_full_running = true;
627 }
628 
629 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
630 {
631 	/*
632 	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
633 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
634 	 * CPUs. It must remain online when nohz full is enabled.
635 	 */
636 	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
637 		return false;
638 	return true;
639 }
640 
641 static int tick_nohz_cpu_down(unsigned int cpu)
642 {
643 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
644 }
645 
646 void __init tick_nohz_init(void)
647 {
648 	int cpu, ret;
649 
650 	if (!tick_nohz_full_running)
651 		return;
652 
653 	/*
654 	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
655 	 * locking contexts. But then we need IRQ work to raise its own
656 	 * interrupts to avoid circular dependency on the tick.
657 	 */
658 	if (!arch_irq_work_has_interrupt()) {
659 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
660 		cpumask_clear(tick_nohz_full_mask);
661 		tick_nohz_full_running = false;
662 		return;
663 	}
664 
665 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
666 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
667 		cpu = smp_processor_id();
668 
669 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
670 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
671 				"for timekeeping\n", cpu);
672 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
673 		}
674 	}
675 
676 	for_each_cpu(cpu, tick_nohz_full_mask)
677 		ct_cpu_track_user(cpu);
678 
679 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
680 					"kernel/nohz:predown", NULL,
681 					tick_nohz_cpu_down);
682 	WARN_ON(ret < 0);
683 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
684 		cpumask_pr_args(tick_nohz_full_mask));
685 }
686 #endif /* #ifdef CONFIG_NO_HZ_FULL */
687 
688 /*
689  * NOHZ - aka dynamic tick functionality
690  */
691 #ifdef CONFIG_NO_HZ_COMMON
692 /*
693  * NO HZ enabled ?
694  */
695 bool tick_nohz_enabled __read_mostly  = true;
696 unsigned long tick_nohz_active  __read_mostly;
697 /*
698  * Enable / Disable tickless mode
699  */
700 static int __init setup_tick_nohz(char *str)
701 {
702 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
703 }
704 
705 __setup("nohz=", setup_tick_nohz);
706 
707 bool tick_nohz_tick_stopped(void)
708 {
709 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
710 
711 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
712 }
713 
714 bool tick_nohz_tick_stopped_cpu(int cpu)
715 {
716 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
717 
718 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
719 }
720 
721 /**
722  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
723  * @now: current ktime_t
724  *
725  * Called from interrupt entry when the CPU was idle
726  *
727  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
728  * must be updated. Otherwise an interrupt handler could use a stale jiffy
729  * value. We do this unconditionally on any CPU, as we don't know whether the
730  * CPU, which has the update task assigned, is in a long sleep.
731  */
732 static void tick_nohz_update_jiffies(ktime_t now)
733 {
734 	unsigned long flags;
735 
736 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
737 
738 	local_irq_save(flags);
739 	tick_do_update_jiffies64(now);
740 	local_irq_restore(flags);
741 
742 	touch_softlockup_watchdog_sched();
743 }
744 
745 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
746 {
747 	ktime_t delta;
748 
749 	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
750 		return;
751 
752 	delta = ktime_sub(now, ts->idle_entrytime);
753 
754 	write_seqcount_begin(&ts->idle_sleeptime_seq);
755 	if (nr_iowait_cpu(smp_processor_id()) > 0)
756 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
757 	else
758 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
759 
760 	ts->idle_entrytime = now;
761 	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
762 	write_seqcount_end(&ts->idle_sleeptime_seq);
763 
764 	sched_clock_idle_wakeup_event();
765 }
766 
767 static void tick_nohz_start_idle(struct tick_sched *ts)
768 {
769 	write_seqcount_begin(&ts->idle_sleeptime_seq);
770 	ts->idle_entrytime = ktime_get();
771 	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
772 	write_seqcount_end(&ts->idle_sleeptime_seq);
773 
774 	sched_clock_idle_sleep_event();
775 }
776 
777 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
778 				 bool compute_delta, u64 *last_update_time)
779 {
780 	ktime_t now, idle;
781 	unsigned int seq;
782 
783 	if (!tick_nohz_active)
784 		return -1;
785 
786 	now = ktime_get();
787 	if (last_update_time)
788 		*last_update_time = ktime_to_us(now);
789 
790 	do {
791 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
792 
793 		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
794 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
795 
796 			idle = ktime_add(*sleeptime, delta);
797 		} else {
798 			idle = *sleeptime;
799 		}
800 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
801 
802 	return ktime_to_us(idle);
803 
804 }
805 
806 /**
807  * get_cpu_idle_time_us - get the total idle time of a CPU
808  * @cpu: CPU number to query
809  * @last_update_time: variable to store update time in. Do not update
810  * counters if NULL.
811  *
812  * Return the cumulative idle time (since boot) for a given
813  * CPU, in microseconds. Note that this is partially broken due to
814  * the counter of iowait tasks that can be remotely updated without
815  * any synchronization. Therefore it is possible to observe backward
816  * values within two consecutive reads.
817  *
818  * This time is measured via accounting rather than sampling,
819  * and is as accurate as ktime_get() is.
820  *
821  * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
822  */
823 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
824 {
825 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
826 
827 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
828 				     !nr_iowait_cpu(cpu), last_update_time);
829 }
830 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
831 
832 /**
833  * get_cpu_iowait_time_us - get the total iowait time of a CPU
834  * @cpu: CPU number to query
835  * @last_update_time: variable to store update time in. Do not update
836  * counters if NULL.
837  *
838  * Return the cumulative iowait time (since boot) for a given
839  * CPU, in microseconds. Note this is partially broken due to
840  * the counter of iowait tasks that can be remotely updated without
841  * any synchronization. Therefore it is possible to observe backward
842  * values within two consecutive reads.
843  *
844  * This time is measured via accounting rather than sampling,
845  * and is as accurate as ktime_get() is.
846  *
847  * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
848  */
849 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
850 {
851 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
852 
853 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
854 				     nr_iowait_cpu(cpu), last_update_time);
855 }
856 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
857 
858 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
859 {
860 	hrtimer_cancel(&ts->sched_timer);
861 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
862 
863 	/* Forward the time to expire in the future */
864 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
865 
866 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
867 		hrtimer_start_expires(&ts->sched_timer,
868 				      HRTIMER_MODE_ABS_PINNED_HARD);
869 	} else {
870 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
871 	}
872 
873 	/*
874 	 * Reset to make sure the next tick stop doesn't get fooled by past
875 	 * cached clock deadline.
876 	 */
877 	ts->next_tick = 0;
878 }
879 
880 static inline bool local_timer_softirq_pending(void)
881 {
882 	return local_timers_pending() & BIT(TIMER_SOFTIRQ);
883 }
884 
885 /*
886  * Read jiffies and the time when jiffies were updated last
887  */
888 u64 get_jiffies_update(unsigned long *basej)
889 {
890 	unsigned long basejiff;
891 	unsigned int seq;
892 	u64 basemono;
893 
894 	do {
895 		seq = read_seqcount_begin(&jiffies_seq);
896 		basemono = last_jiffies_update;
897 		basejiff = jiffies;
898 	} while (read_seqcount_retry(&jiffies_seq, seq));
899 	*basej = basejiff;
900 	return basemono;
901 }
902 
903 /**
904  * tick_nohz_next_event() - return the clock monotonic based next event
905  * @ts:		pointer to tick_sched struct
906  * @cpu:	CPU number
907  *
908  * Return:
909  * *%0		- When the next event is a maximum of TICK_NSEC in the future
910  *		  and the tick is not stopped yet
911  * *%next_event	- Next event based on clock monotonic
912  */
913 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
914 {
915 	u64 basemono, next_tick, delta, expires;
916 	unsigned long basejiff;
917 	int tick_cpu;
918 
919 	basemono = get_jiffies_update(&basejiff);
920 	ts->last_jiffies = basejiff;
921 	ts->timer_expires_base = basemono;
922 
923 	/*
924 	 * Keep the periodic tick, when RCU, architecture or irq_work
925 	 * requests it.
926 	 * Aside of that, check whether the local timer softirq is
927 	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
928 	 * because there is an already expired timer, so it will request
929 	 * immediate expiry, which rearms the hardware timer with a
930 	 * minimal delta, which brings us back to this place
931 	 * immediately. Lather, rinse and repeat...
932 	 */
933 	if (rcu_needs_cpu() || arch_needs_cpu() ||
934 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
935 		next_tick = basemono + TICK_NSEC;
936 	} else {
937 		/*
938 		 * Get the next pending timer. If high resolution
939 		 * timers are enabled this only takes the timer wheel
940 		 * timers into account. If high resolution timers are
941 		 * disabled this also looks at the next expiring
942 		 * hrtimer.
943 		 */
944 		next_tick = get_next_timer_interrupt(basejiff, basemono);
945 		ts->next_timer = next_tick;
946 	}
947 
948 	/* Make sure next_tick is never before basemono! */
949 	if (WARN_ON_ONCE(basemono > next_tick))
950 		next_tick = basemono;
951 
952 	/*
953 	 * If the tick is due in the next period, keep it ticking or
954 	 * force prod the timer.
955 	 */
956 	delta = next_tick - basemono;
957 	if (delta <= (u64)TICK_NSEC) {
958 		/*
959 		 * We've not stopped the tick yet, and there's a timer in the
960 		 * next period, so no point in stopping it either, bail.
961 		 */
962 		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
963 			ts->timer_expires = 0;
964 			goto out;
965 		}
966 	}
967 
968 	/*
969 	 * If this CPU is the one which had the do_timer() duty last, we limit
970 	 * the sleep time to the timekeeping 'max_deferment' value.
971 	 * Otherwise we can sleep as long as we want.
972 	 */
973 	delta = timekeeping_max_deferment();
974 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
975 	if (tick_cpu != cpu &&
976 	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
977 		delta = KTIME_MAX;
978 
979 	/* Calculate the next expiry time */
980 	if (delta < (KTIME_MAX - basemono))
981 		expires = basemono + delta;
982 	else
983 		expires = KTIME_MAX;
984 
985 	ts->timer_expires = min_t(u64, expires, next_tick);
986 
987 out:
988 	return ts->timer_expires;
989 }
990 
991 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
992 {
993 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
994 	unsigned long basejiff = ts->last_jiffies;
995 	u64 basemono = ts->timer_expires_base;
996 	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
997 	int tick_cpu;
998 	u64 expires;
999 
1000 	/* Make sure we won't be trying to stop it twice in a row. */
1001 	ts->timer_expires_base = 0;
1002 
1003 	/*
1004 	 * Now the tick should be stopped definitely - so the timer base needs
1005 	 * to be marked idle as well to not miss a newly queued timer.
1006 	 */
1007 	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
1008 	if (expires > ts->timer_expires) {
1009 		/*
1010 		 * This path could only happen when the first timer was removed
1011 		 * between calculating the possible sleep length and now (when
1012 		 * high resolution mode is not active, timer could also be a
1013 		 * hrtimer).
1014 		 *
1015 		 * We have to stick to the original calculated expiry value to
1016 		 * not stop the tick for too long with a shallow C-state (which
1017 		 * was programmed by cpuidle because of an early next expiration
1018 		 * value).
1019 		 */
1020 		expires = ts->timer_expires;
1021 	}
1022 
1023 	/* If the timer base is not idle, retain the not yet stopped tick. */
1024 	if (!timer_idle)
1025 		return;
1026 
1027 	/*
1028 	 * If this CPU is the one which updates jiffies, then give up
1029 	 * the assignment and let it be taken by the CPU which runs
1030 	 * the tick timer next, which might be this CPU as well. If we
1031 	 * don't drop this here, the jiffies might be stale and
1032 	 * do_timer() never gets invoked. Keep track of the fact that it
1033 	 * was the one which had the do_timer() duty last.
1034 	 */
1035 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1036 	if (tick_cpu == cpu) {
1037 		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1038 		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1039 	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1040 		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1041 	}
1042 
1043 	/* Skip reprogram of event if it's not changed */
1044 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1045 		/* Sanity check: make sure clockevent is actually programmed */
1046 		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1047 			return;
1048 
1049 		WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1050 			  "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1051 			  dev->next_event, hrtimer_active(&ts->sched_timer),
1052 			  hrtimer_get_expires(&ts->sched_timer));
1053 	}
1054 
1055 	/*
1056 	 * tick_nohz_stop_tick() can be called several times before
1057 	 * tick_nohz_restart_sched_tick() is called. This happens when
1058 	 * interrupts arrive which do not cause a reschedule. In the first
1059 	 * call we save the current tick time, so we can restart the
1060 	 * scheduler tick in tick_nohz_restart_sched_tick().
1061 	 */
1062 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1063 		calc_load_nohz_start();
1064 		quiet_vmstat();
1065 
1066 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1067 		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1068 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1069 	}
1070 
1071 	ts->next_tick = expires;
1072 
1073 	/*
1074 	 * If the expiration time == KTIME_MAX, then we simply stop
1075 	 * the tick timer.
1076 	 */
1077 	if (unlikely(expires == KTIME_MAX)) {
1078 		if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1079 			hrtimer_cancel(&ts->sched_timer);
1080 		else
1081 			tick_program_event(KTIME_MAX, 1);
1082 		return;
1083 	}
1084 
1085 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1086 		hrtimer_start(&ts->sched_timer, expires,
1087 			      HRTIMER_MODE_ABS_PINNED_HARD);
1088 	} else {
1089 		hrtimer_set_expires(&ts->sched_timer, expires);
1090 		tick_program_event(expires, 1);
1091 	}
1092 }
1093 
1094 static void tick_nohz_retain_tick(struct tick_sched *ts)
1095 {
1096 	ts->timer_expires_base = 0;
1097 }
1098 
1099 #ifdef CONFIG_NO_HZ_FULL
1100 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1101 {
1102 	if (tick_nohz_next_event(ts, cpu))
1103 		tick_nohz_stop_tick(ts, cpu);
1104 	else
1105 		tick_nohz_retain_tick(ts);
1106 }
1107 #endif /* CONFIG_NO_HZ_FULL */
1108 
1109 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1110 {
1111 	/* Update jiffies first */
1112 	tick_do_update_jiffies64(now);
1113 
1114 	/*
1115 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1116 	 * the clock forward checks in the enqueue path:
1117 	 */
1118 	timer_clear_idle();
1119 
1120 	calc_load_nohz_stop();
1121 	touch_softlockup_watchdog_sched();
1122 
1123 	/* Cancel the scheduled timer and restore the tick: */
1124 	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1125 	tick_nohz_restart(ts, now);
1126 }
1127 
1128 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1129 					 ktime_t now)
1130 {
1131 #ifdef CONFIG_NO_HZ_FULL
1132 	int cpu = smp_processor_id();
1133 
1134 	if (can_stop_full_tick(cpu, ts))
1135 		tick_nohz_full_stop_tick(ts, cpu);
1136 	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1137 		tick_nohz_restart_sched_tick(ts, now);
1138 #endif
1139 }
1140 
1141 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1142 {
1143 	if (!tick_nohz_full_cpu(smp_processor_id()))
1144 		return;
1145 
1146 	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1147 		return;
1148 
1149 	__tick_nohz_full_update_tick(ts, ktime_get());
1150 }
1151 
1152 /*
1153  * A pending softirq outside an IRQ (or softirq disabled section) context
1154  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1155  * reach this code due to the need_resched() early check in can_stop_idle_tick().
1156  *
1157  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1158  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1159  * triggering the code below, since wakep_softirqd() is ignored.
1160  *
1161  */
1162 static bool report_idle_softirq(void)
1163 {
1164 	static int ratelimit;
1165 	unsigned int pending = local_softirq_pending();
1166 
1167 	if (likely(!pending))
1168 		return false;
1169 
1170 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1171 	if (!cpu_active(smp_processor_id())) {
1172 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1173 		if (!pending)
1174 			return false;
1175 	}
1176 
1177 	/* On RT, softirq handling may be waiting on some lock */
1178 	if (local_bh_blocked())
1179 		return false;
1180 
1181 	if (ratelimit < 10) {
1182 		pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1183 			pending);
1184 		ratelimit++;
1185 	}
1186 
1187 	return true;
1188 }
1189 
1190 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1191 {
1192 	WARN_ON_ONCE(cpu_is_offline(cpu));
1193 
1194 	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1195 		return false;
1196 
1197 	if (need_resched())
1198 		return false;
1199 
1200 	if (unlikely(report_idle_softirq()))
1201 		return false;
1202 
1203 	if (tick_nohz_full_enabled()) {
1204 		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1205 
1206 		/*
1207 		 * Keep the tick alive to guarantee timekeeping progression
1208 		 * if there are full dynticks CPUs around
1209 		 */
1210 		if (tick_cpu == cpu)
1211 			return false;
1212 
1213 		/* Should not happen for nohz-full */
1214 		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1215 			return false;
1216 	}
1217 
1218 	return true;
1219 }
1220 
1221 /**
1222  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1223  *
1224  * When the next event is more than a tick into the future, stop the idle tick
1225  */
1226 void tick_nohz_idle_stop_tick(void)
1227 {
1228 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1229 	int cpu = smp_processor_id();
1230 	ktime_t expires;
1231 
1232 	/*
1233 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1234 	 * tick timer expiration time is known already.
1235 	 */
1236 	if (ts->timer_expires_base)
1237 		expires = ts->timer_expires;
1238 	else if (can_stop_idle_tick(cpu, ts))
1239 		expires = tick_nohz_next_event(ts, cpu);
1240 	else
1241 		return;
1242 
1243 	ts->idle_calls++;
1244 
1245 	if (expires > 0LL) {
1246 		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1247 
1248 		tick_nohz_stop_tick(ts, cpu);
1249 
1250 		ts->idle_sleeps++;
1251 		ts->idle_expires = expires;
1252 
1253 		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1254 			ts->idle_jiffies = ts->last_jiffies;
1255 			nohz_balance_enter_idle(cpu);
1256 		}
1257 	} else {
1258 		tick_nohz_retain_tick(ts);
1259 	}
1260 }
1261 
1262 void tick_nohz_idle_retain_tick(void)
1263 {
1264 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1265 }
1266 
1267 /**
1268  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1269  *
1270  * Called when we start the idle loop.
1271  */
1272 void tick_nohz_idle_enter(void)
1273 {
1274 	struct tick_sched *ts;
1275 
1276 	lockdep_assert_irqs_enabled();
1277 
1278 	local_irq_disable();
1279 
1280 	ts = this_cpu_ptr(&tick_cpu_sched);
1281 
1282 	WARN_ON_ONCE(ts->timer_expires_base);
1283 
1284 	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1285 	tick_nohz_start_idle(ts);
1286 
1287 	local_irq_enable();
1288 }
1289 
1290 /**
1291  * tick_nohz_irq_exit - Notify the tick about IRQ exit
1292  *
1293  * A timer may have been added/modified/deleted either by the current IRQ,
1294  * or by another place using this IRQ as a notification. This IRQ may have
1295  * also updated the RCU callback list. These events may require a
1296  * re-evaluation of the next tick. Depending on the context:
1297  *
1298  * 1) If the CPU is idle and no resched is pending, just proceed with idle
1299  *    time accounting. The next tick will be re-evaluated on the next idle
1300  *    loop iteration.
1301  *
1302  * 2) If the CPU is nohz_full:
1303  *
1304  *    2.1) If there is any tick dependency, restart the tick if stopped.
1305  *
1306  *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1307  *         stop/update it accordingly.
1308  */
1309 void tick_nohz_irq_exit(void)
1310 {
1311 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1312 
1313 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1314 		tick_nohz_start_idle(ts);
1315 	else
1316 		tick_nohz_full_update_tick(ts);
1317 }
1318 
1319 /**
1320  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1321  *
1322  * Return: %true if the tick handler has run, otherwise %false
1323  */
1324 bool tick_nohz_idle_got_tick(void)
1325 {
1326 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1327 
1328 	if (ts->got_idle_tick) {
1329 		ts->got_idle_tick = 0;
1330 		return true;
1331 	}
1332 	return false;
1333 }
1334 
1335 /**
1336  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1337  * or the tick, whichever expires first. Note that, if the tick has been
1338  * stopped, it returns the next hrtimer.
1339  *
1340  * Called from power state control code with interrupts disabled
1341  *
1342  * Return: the next expiration time
1343  */
1344 ktime_t tick_nohz_get_next_hrtimer(void)
1345 {
1346 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1347 }
1348 
1349 /**
1350  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1351  * @delta_next: duration until the next event if the tick cannot be stopped
1352  *
1353  * Called from power state control code with interrupts disabled.
1354  *
1355  * The return value of this function and/or the value returned by it through the
1356  * @delta_next pointer can be negative which must be taken into account by its
1357  * callers.
1358  *
1359  * Return: the expected length of the current sleep
1360  */
1361 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1362 {
1363 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1364 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1365 	int cpu = smp_processor_id();
1366 	/*
1367 	 * The idle entry time is expected to be a sufficient approximation of
1368 	 * the current time at this point.
1369 	 */
1370 	ktime_t now = ts->idle_entrytime;
1371 	ktime_t next_event;
1372 
1373 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1374 
1375 	*delta_next = ktime_sub(dev->next_event, now);
1376 
1377 	if (!can_stop_idle_tick(cpu, ts))
1378 		return *delta_next;
1379 
1380 	next_event = tick_nohz_next_event(ts, cpu);
1381 	if (!next_event)
1382 		return *delta_next;
1383 
1384 	/*
1385 	 * If the next highres timer to expire is earlier than 'next_event', the
1386 	 * idle governor needs to know that.
1387 	 */
1388 	next_event = min_t(u64, next_event,
1389 			   hrtimer_next_event_without(&ts->sched_timer));
1390 
1391 	return ktime_sub(next_event, now);
1392 }
1393 
1394 /**
1395  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1396  * for a particular CPU.
1397  * @cpu: target CPU number
1398  *
1399  * Called from the schedutil frequency scaling governor in scheduler context.
1400  *
1401  * Return: the current idle calls counter value for @cpu
1402  */
1403 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1404 {
1405 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1406 
1407 	return ts->idle_calls;
1408 }
1409 
1410 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1411 					ktime_t now)
1412 {
1413 	unsigned long ticks;
1414 
1415 	ts->idle_exittime = now;
1416 
1417 	if (vtime_accounting_enabled_this_cpu())
1418 		return;
1419 	/*
1420 	 * We stopped the tick in idle. update_process_times() would miss the
1421 	 * time we slept, as it does only a 1 tick accounting.
1422 	 * Enforce that this is accounted to idle !
1423 	 */
1424 	ticks = jiffies - ts->idle_jiffies;
1425 	/*
1426 	 * We might be one off. Do not randomly account a huge number of ticks!
1427 	 */
1428 	if (ticks && ticks < LONG_MAX)
1429 		account_idle_ticks(ticks);
1430 }
1431 
1432 void tick_nohz_idle_restart_tick(void)
1433 {
1434 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1435 
1436 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1437 		ktime_t now = ktime_get();
1438 		tick_nohz_restart_sched_tick(ts, now);
1439 		tick_nohz_account_idle_time(ts, now);
1440 	}
1441 }
1442 
1443 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1444 {
1445 	if (tick_nohz_full_cpu(smp_processor_id()))
1446 		__tick_nohz_full_update_tick(ts, now);
1447 	else
1448 		tick_nohz_restart_sched_tick(ts, now);
1449 
1450 	tick_nohz_account_idle_time(ts, now);
1451 }
1452 
1453 /**
1454  * tick_nohz_idle_exit - Update the tick upon idle task exit
1455  *
1456  * When the idle task exits, update the tick depending on the
1457  * following situations:
1458  *
1459  * 1) If the CPU is not in nohz_full mode (most cases), then
1460  *    restart the tick.
1461  *
1462  * 2) If the CPU is in nohz_full mode (corner case):
1463  *   2.1) If the tick can be kept stopped (no tick dependencies)
1464  *        then re-evaluate the next tick and try to keep it stopped
1465  *        as long as possible.
1466  *   2.2) If the tick has dependencies, restart the tick.
1467  *
1468  */
1469 void tick_nohz_idle_exit(void)
1470 {
1471 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1472 	bool idle_active, tick_stopped;
1473 	ktime_t now;
1474 
1475 	local_irq_disable();
1476 
1477 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1478 	WARN_ON_ONCE(ts->timer_expires_base);
1479 
1480 	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1481 	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1482 	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1483 
1484 	if (idle_active || tick_stopped)
1485 		now = ktime_get();
1486 
1487 	if (idle_active)
1488 		tick_nohz_stop_idle(ts, now);
1489 
1490 	if (tick_stopped)
1491 		tick_nohz_idle_update_tick(ts, now);
1492 
1493 	local_irq_enable();
1494 }
1495 
1496 /*
1497  * In low-resolution mode, the tick handler must be implemented directly
1498  * at the clockevent level. hrtimer can't be used instead, because its
1499  * infrastructure actually relies on the tick itself as a backend in
1500  * low-resolution mode (see hrtimer_run_queues()).
1501  */
1502 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1503 {
1504 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1505 
1506 	dev->next_event = KTIME_MAX;
1507 
1508 	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1509 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1510 }
1511 
1512 static inline void tick_nohz_activate(struct tick_sched *ts)
1513 {
1514 	if (!tick_nohz_enabled)
1515 		return;
1516 	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1517 	/* One update is enough */
1518 	if (!test_and_set_bit(0, &tick_nohz_active))
1519 		timers_update_nohz();
1520 }
1521 
1522 /**
1523  * tick_nohz_switch_to_nohz - switch to NOHZ mode
1524  */
1525 static void tick_nohz_switch_to_nohz(void)
1526 {
1527 	if (!tick_nohz_enabled)
1528 		return;
1529 
1530 	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1531 		return;
1532 
1533 	/*
1534 	 * Recycle the hrtimer in 'ts', so we can share the
1535 	 * highres code.
1536 	 */
1537 	tick_setup_sched_timer(false);
1538 }
1539 
1540 static inline void tick_nohz_irq_enter(void)
1541 {
1542 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1543 	ktime_t now;
1544 
1545 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1546 		return;
1547 	now = ktime_get();
1548 	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1549 		tick_nohz_stop_idle(ts, now);
1550 	/*
1551 	 * If all CPUs are idle we may need to update a stale jiffies value.
1552 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1553 	 * alive but it might be busy looping with interrupts disabled in some
1554 	 * rare case (typically stop machine). So we must make sure we have a
1555 	 * last resort.
1556 	 */
1557 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1558 		tick_nohz_update_jiffies(now);
1559 }
1560 
1561 #else
1562 
1563 static inline void tick_nohz_switch_to_nohz(void) { }
1564 static inline void tick_nohz_irq_enter(void) { }
1565 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1566 
1567 #endif /* CONFIG_NO_HZ_COMMON */
1568 
1569 /*
1570  * Called from irq_enter() to notify about the possible interruption of idle()
1571  */
1572 void tick_irq_enter(void)
1573 {
1574 	tick_check_oneshot_broadcast_this_cpu();
1575 	tick_nohz_irq_enter();
1576 }
1577 
1578 static int sched_skew_tick;
1579 
1580 static int __init skew_tick(char *str)
1581 {
1582 	get_option(&str, &sched_skew_tick);
1583 
1584 	return 0;
1585 }
1586 early_param("skew_tick", skew_tick);
1587 
1588 /**
1589  * tick_setup_sched_timer - setup the tick emulation timer
1590  * @hrtimer: whether to use the hrtimer or not
1591  */
1592 void tick_setup_sched_timer(bool hrtimer)
1593 {
1594 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1595 
1596 	/* Emulate tick processing via per-CPU hrtimers: */
1597 	hrtimer_setup(&ts->sched_timer, tick_nohz_handler, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1598 
1599 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1600 		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1601 
1602 	/* Get the next period (per-CPU) */
1603 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1604 
1605 	/* Offset the tick to avert 'jiffies_lock' contention. */
1606 	if (sched_skew_tick) {
1607 		u64 offset = TICK_NSEC >> 1;
1608 		do_div(offset, num_possible_cpus());
1609 		offset *= smp_processor_id();
1610 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1611 	}
1612 
1613 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1614 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1615 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1616 	else
1617 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1618 	tick_nohz_activate(ts);
1619 }
1620 
1621 /*
1622  * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1623  * duty before disabling IRQs in idle for the last time.
1624  */
1625 void tick_sched_timer_dying(int cpu)
1626 {
1627 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1628 	ktime_t idle_sleeptime, iowait_sleeptime;
1629 	unsigned long idle_calls, idle_sleeps;
1630 
1631 	/* This must happen before hrtimers are migrated! */
1632 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1633 		hrtimer_cancel(&ts->sched_timer);
1634 
1635 	idle_sleeptime = ts->idle_sleeptime;
1636 	iowait_sleeptime = ts->iowait_sleeptime;
1637 	idle_calls = ts->idle_calls;
1638 	idle_sleeps = ts->idle_sleeps;
1639 	memset(ts, 0, sizeof(*ts));
1640 	ts->idle_sleeptime = idle_sleeptime;
1641 	ts->iowait_sleeptime = iowait_sleeptime;
1642 	ts->idle_calls = idle_calls;
1643 	ts->idle_sleeps = idle_sleeps;
1644 }
1645 
1646 /*
1647  * Async notification about clocksource changes
1648  */
1649 void tick_clock_notify(void)
1650 {
1651 	int cpu;
1652 
1653 	for_each_possible_cpu(cpu)
1654 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1655 }
1656 
1657 /*
1658  * Async notification about clock event changes
1659  */
1660 void tick_oneshot_notify(void)
1661 {
1662 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1663 
1664 	set_bit(0, &ts->check_clocks);
1665 }
1666 
1667 /*
1668  * Check if a change happened, which makes oneshot possible.
1669  *
1670  * Called cyclically from the hrtimer softirq (driven by the timer
1671  * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1672  * mode, because high resolution timers are disabled (either compile
1673  * or runtime). Called with interrupts disabled.
1674  */
1675 int tick_check_oneshot_change(int allow_nohz)
1676 {
1677 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1678 
1679 	if (!test_and_clear_bit(0, &ts->check_clocks))
1680 		return 0;
1681 
1682 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1683 		return 0;
1684 
1685 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1686 		return 0;
1687 
1688 	if (!allow_nohz)
1689 		return 1;
1690 
1691 	tick_nohz_switch_to_nohz();
1692 	return 0;
1693 }
1694