1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/compiler.h> 12 #include <linux/cpu.h> 13 #include <linux/err.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/percpu.h> 18 #include <linux/nmi.h> 19 #include <linux/profile.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/clock.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/nohz.h> 24 #include <linux/sched/loadavg.h> 25 #include <linux/module.h> 26 #include <linux/irq_work.h> 27 #include <linux/posix-timers.h> 28 #include <linux/context_tracking.h> 29 #include <linux/mm.h> 30 31 #include <asm/irq_regs.h> 32 33 #include "tick-internal.h" 34 35 #include <trace/events/timer.h> 36 37 /* 38 * Per-CPU nohz control structure 39 */ 40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 41 42 struct tick_sched *tick_get_tick_sched(int cpu) 43 { 44 return &per_cpu(tick_cpu_sched, cpu); 45 } 46 47 /* 48 * The time when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64-bit can do a quick check without holding the jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32-bit cannot do that because the store of 'tick_next_period' 68 * consists of two 32-bit stores, and the first store could be 69 * moved by the CPU to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on 'jiffies_lock' and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Re-evaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 118 jiffies_64 += ticks; 119 120 /* Keep the tick_next_period variable up to date */ 121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 122 123 if (IS_ENABLED(CONFIG_64BIT)) { 124 /* 125 * Pairs with smp_load_acquire() in the lockless quick 126 * check above, and ensures that the update to 'jiffies_64' is 127 * not reordered vs. the store to 'tick_next_period', neither 128 * by the compiler nor by the CPU. 129 */ 130 smp_store_release(&tick_next_period, nextp); 131 } else { 132 /* 133 * A plain store is good enough on 32-bit, as the quick check 134 * above is protected by the sequence count. 135 */ 136 tick_next_period = nextp; 137 } 138 139 /* 140 * Release the sequence count. calc_global_load() below is not 141 * protected by it, but 'jiffies_lock' needs to be held to prevent 142 * concurrent invocations. 143 */ 144 write_seqcount_end(&jiffies_seq); 145 146 calc_global_load(); 147 148 raw_spin_unlock(&jiffies_lock); 149 update_wall_time(); 150 } 151 152 /* 153 * Initialize and return retrieve the jiffies update. 154 */ 155 static ktime_t tick_init_jiffy_update(void) 156 { 157 ktime_t period; 158 159 raw_spin_lock(&jiffies_lock); 160 write_seqcount_begin(&jiffies_seq); 161 162 /* Have we started the jiffies update yet ? */ 163 if (last_jiffies_update == 0) { 164 u32 rem; 165 166 /* 167 * Ensure that the tick is aligned to a multiple of 168 * TICK_NSEC. 169 */ 170 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 171 if (rem) 172 tick_next_period += TICK_NSEC - rem; 173 174 last_jiffies_update = tick_next_period; 175 } 176 period = last_jiffies_update; 177 178 write_seqcount_end(&jiffies_seq); 179 raw_spin_unlock(&jiffies_lock); 180 181 return period; 182 } 183 184 static inline int tick_sched_flag_test(struct tick_sched *ts, 185 unsigned long flag) 186 { 187 return !!(ts->flags & flag); 188 } 189 190 static inline void tick_sched_flag_set(struct tick_sched *ts, 191 unsigned long flag) 192 { 193 lockdep_assert_irqs_disabled(); 194 ts->flags |= flag; 195 } 196 197 static inline void tick_sched_flag_clear(struct tick_sched *ts, 198 unsigned long flag) 199 { 200 lockdep_assert_irqs_disabled(); 201 ts->flags &= ~flag; 202 } 203 204 /* 205 * Allow only one non-timekeeper CPU at a time update jiffies from 206 * the timer tick. 207 * 208 * Returns true if update was run. 209 */ 210 static bool tick_limited_update_jiffies64(struct tick_sched *ts, ktime_t now) 211 { 212 static atomic_t in_progress; 213 int inp; 214 215 inp = atomic_read(&in_progress); 216 if (inp || !atomic_try_cmpxchg(&in_progress, &inp, 1)) 217 return false; 218 219 if (ts->last_tick_jiffies == jiffies) 220 tick_do_update_jiffies64(now); 221 atomic_set(&in_progress, 0); 222 return true; 223 } 224 225 #define MAX_STALLED_JIFFIES 5 226 227 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 228 { 229 int tick_cpu, cpu = smp_processor_id(); 230 231 /* 232 * Check if the do_timer duty was dropped. We don't care about 233 * concurrency: This happens only when the CPU in charge went 234 * into a long sleep. If two CPUs happen to assign themselves to 235 * this duty, then the jiffies update is still serialized by 236 * 'jiffies_lock'. 237 * 238 * If nohz_full is enabled, this should not happen because the 239 * 'tick_do_timer_cpu' CPU never relinquishes. 240 */ 241 tick_cpu = READ_ONCE(tick_do_timer_cpu); 242 243 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) { 244 #ifdef CONFIG_NO_HZ_FULL 245 WARN_ON_ONCE(tick_nohz_full_running); 246 #endif 247 WRITE_ONCE(tick_do_timer_cpu, cpu); 248 tick_cpu = cpu; 249 } 250 251 /* Check if jiffies need an update */ 252 if (tick_cpu == cpu) 253 tick_do_update_jiffies64(now); 254 255 /* 256 * If the jiffies update stalled for too long (timekeeper in stop_machine() 257 * or VMEXIT'ed for several msecs), force an update. 258 */ 259 if (ts->last_tick_jiffies != jiffies) { 260 ts->stalled_jiffies = 0; 261 ts->last_tick_jiffies = READ_ONCE(jiffies); 262 } else { 263 if (++ts->stalled_jiffies >= MAX_STALLED_JIFFIES) { 264 if (tick_limited_update_jiffies64(ts, now)) { 265 ts->stalled_jiffies = 0; 266 ts->last_tick_jiffies = READ_ONCE(jiffies); 267 } 268 } 269 } 270 271 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 272 ts->got_idle_tick = 1; 273 } 274 275 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 276 { 277 /* 278 * When we are idle and the tick is stopped, we have to touch 279 * the watchdog as we might not schedule for a really long 280 * time. This happens on completely idle SMP systems while 281 * waiting on the login prompt. We also increment the "start of 282 * idle" jiffy stamp so the idle accounting adjustment we do 283 * when we go busy again does not account too many ticks. 284 */ 285 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 286 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 287 touch_softlockup_watchdog_sched(); 288 if (is_idle_task(current)) 289 ts->idle_jiffies++; 290 /* 291 * In case the current tick fired too early past its expected 292 * expiration, make sure we don't bypass the next clock reprogramming 293 * to the same deadline. 294 */ 295 ts->next_tick = 0; 296 } 297 298 update_process_times(user_mode(regs)); 299 profile_tick(CPU_PROFILING); 300 } 301 302 /* 303 * We rearm the timer until we get disabled by the idle code. 304 * Called with interrupts disabled. 305 */ 306 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) 307 { 308 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); 309 struct pt_regs *regs = get_irq_regs(); 310 ktime_t now = ktime_get(); 311 312 tick_sched_do_timer(ts, now); 313 314 /* 315 * Do not call when we are not in IRQ context and have 316 * no valid 'regs' pointer 317 */ 318 if (regs) 319 tick_sched_handle(ts, regs); 320 else 321 ts->next_tick = 0; 322 323 /* 324 * In dynticks mode, tick reprogram is deferred: 325 * - to the idle task if in dynticks-idle 326 * - to IRQ exit if in full-dynticks. 327 */ 328 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) 329 return HRTIMER_NORESTART; 330 331 hrtimer_forward(timer, now, TICK_NSEC); 332 333 return HRTIMER_RESTART; 334 } 335 336 #ifdef CONFIG_NO_HZ_FULL 337 cpumask_var_t tick_nohz_full_mask; 338 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 339 bool tick_nohz_full_running; 340 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 341 static atomic_t tick_dep_mask; 342 343 static bool check_tick_dependency(atomic_t *dep) 344 { 345 int val = atomic_read(dep); 346 347 if (val & TICK_DEP_MASK_POSIX_TIMER) { 348 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 349 return true; 350 } 351 352 if (val & TICK_DEP_MASK_PERF_EVENTS) { 353 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 354 return true; 355 } 356 357 if (val & TICK_DEP_MASK_SCHED) { 358 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 359 return true; 360 } 361 362 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 363 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 364 return true; 365 } 366 367 if (val & TICK_DEP_MASK_RCU) { 368 trace_tick_stop(0, TICK_DEP_MASK_RCU); 369 return true; 370 } 371 372 if (val & TICK_DEP_MASK_RCU_EXP) { 373 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 374 return true; 375 } 376 377 return false; 378 } 379 380 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 381 { 382 lockdep_assert_irqs_disabled(); 383 384 if (unlikely(!cpu_online(cpu))) 385 return false; 386 387 if (check_tick_dependency(&tick_dep_mask)) 388 return false; 389 390 if (check_tick_dependency(&ts->tick_dep_mask)) 391 return false; 392 393 if (check_tick_dependency(¤t->tick_dep_mask)) 394 return false; 395 396 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 397 return false; 398 399 return true; 400 } 401 402 static void nohz_full_kick_func(struct irq_work *work) 403 { 404 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 405 } 406 407 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 408 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 409 410 /* 411 * Kick this CPU if it's full dynticks in order to force it to 412 * re-evaluate its dependency on the tick and restart it if necessary. 413 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 414 * is NMI safe. 415 */ 416 static void tick_nohz_full_kick(void) 417 { 418 if (!tick_nohz_full_cpu(smp_processor_id())) 419 return; 420 421 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 422 } 423 424 /* 425 * Kick the CPU if it's full dynticks in order to force it to 426 * re-evaluate its dependency on the tick and restart it if necessary. 427 */ 428 void tick_nohz_full_kick_cpu(int cpu) 429 { 430 if (!tick_nohz_full_cpu(cpu)) 431 return; 432 433 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 434 } 435 436 static void tick_nohz_kick_task(struct task_struct *tsk) 437 { 438 int cpu; 439 440 /* 441 * If the task is not running, run_posix_cpu_timers() 442 * has nothing to elapse, and an IPI can then be optimized out. 443 * 444 * activate_task() STORE p->tick_dep_mask 445 * STORE p->on_rq 446 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 447 * LOCK rq->lock LOAD p->on_rq 448 * smp_mb__after_spin_lock() 449 * tick_nohz_task_switch() 450 * LOAD p->tick_dep_mask 451 * 452 * XXX given a task picks up the dependency on schedule(), should we 453 * only care about tasks that are currently on the CPU instead of all 454 * that are on the runqueue? 455 * 456 * That is, does this want to be: task_on_cpu() / task_curr()? 457 */ 458 if (!sched_task_on_rq(tsk)) 459 return; 460 461 /* 462 * If the task concurrently migrates to another CPU, 463 * we guarantee it sees the new tick dependency upon 464 * schedule. 465 * 466 * set_task_cpu(p, cpu); 467 * STORE p->cpu = @cpu 468 * __schedule() (switch to task 'p') 469 * LOCK rq->lock 470 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 471 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 472 * LOAD p->tick_dep_mask LOAD p->cpu 473 */ 474 cpu = task_cpu(tsk); 475 476 preempt_disable(); 477 if (cpu_online(cpu)) 478 tick_nohz_full_kick_cpu(cpu); 479 preempt_enable(); 480 } 481 482 /* 483 * Kick all full dynticks CPUs in order to force these to re-evaluate 484 * their dependency on the tick and restart it if necessary. 485 */ 486 static void tick_nohz_full_kick_all(void) 487 { 488 int cpu; 489 490 if (!tick_nohz_full_running) 491 return; 492 493 preempt_disable(); 494 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 495 tick_nohz_full_kick_cpu(cpu); 496 preempt_enable(); 497 } 498 499 static void tick_nohz_dep_set_all(atomic_t *dep, 500 enum tick_dep_bits bit) 501 { 502 int prev; 503 504 prev = atomic_fetch_or(BIT(bit), dep); 505 if (!prev) 506 tick_nohz_full_kick_all(); 507 } 508 509 /* 510 * Set a global tick dependency. Used by perf events that rely on freq and 511 * unstable clocks. 512 */ 513 void tick_nohz_dep_set(enum tick_dep_bits bit) 514 { 515 tick_nohz_dep_set_all(&tick_dep_mask, bit); 516 } 517 518 void tick_nohz_dep_clear(enum tick_dep_bits bit) 519 { 520 atomic_andnot(BIT(bit), &tick_dep_mask); 521 } 522 523 /* 524 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 525 * manage event-throttling. 526 */ 527 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 528 { 529 int prev; 530 struct tick_sched *ts; 531 532 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 533 534 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 535 if (!prev) { 536 preempt_disable(); 537 /* Perf needs local kick that is NMI safe */ 538 if (cpu == smp_processor_id()) { 539 tick_nohz_full_kick(); 540 } else { 541 /* Remote IRQ work not NMI-safe */ 542 if (!WARN_ON_ONCE(in_nmi())) 543 tick_nohz_full_kick_cpu(cpu); 544 } 545 preempt_enable(); 546 } 547 } 548 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 549 550 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 551 { 552 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 553 554 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 555 } 556 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 557 558 /* 559 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 560 * in order to elapse per task timers. 561 */ 562 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 563 { 564 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 565 tick_nohz_kick_task(tsk); 566 } 567 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 568 569 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 570 { 571 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 572 } 573 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 574 575 /* 576 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 577 * per process timers. 578 */ 579 void tick_nohz_dep_set_signal(struct task_struct *tsk, 580 enum tick_dep_bits bit) 581 { 582 int prev; 583 struct signal_struct *sig = tsk->signal; 584 585 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 586 if (!prev) { 587 struct task_struct *t; 588 589 lockdep_assert_held(&tsk->sighand->siglock); 590 __for_each_thread(sig, t) 591 tick_nohz_kick_task(t); 592 } 593 } 594 595 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 596 { 597 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 598 } 599 600 /* 601 * Re-evaluate the need for the tick as we switch the current task. 602 * It might need the tick due to per task/process properties: 603 * perf events, posix CPU timers, ... 604 */ 605 void __tick_nohz_task_switch(void) 606 { 607 struct tick_sched *ts; 608 609 if (!tick_nohz_full_cpu(smp_processor_id())) 610 return; 611 612 ts = this_cpu_ptr(&tick_cpu_sched); 613 614 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 615 if (atomic_read(¤t->tick_dep_mask) || 616 atomic_read(¤t->signal->tick_dep_mask)) 617 tick_nohz_full_kick(); 618 } 619 } 620 621 /* Get the boot-time nohz CPU list from the kernel parameters. */ 622 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 623 { 624 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 625 cpumask_copy(tick_nohz_full_mask, cpumask); 626 tick_nohz_full_running = true; 627 } 628 629 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 630 { 631 /* 632 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 633 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 634 * CPUs. It must remain online when nohz full is enabled. 635 */ 636 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu) 637 return false; 638 return true; 639 } 640 641 static int tick_nohz_cpu_down(unsigned int cpu) 642 { 643 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 644 } 645 646 void __init tick_nohz_init(void) 647 { 648 int cpu, ret; 649 650 if (!tick_nohz_full_running) 651 return; 652 653 /* 654 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 655 * locking contexts. But then we need IRQ work to raise its own 656 * interrupts to avoid circular dependency on the tick. 657 */ 658 if (!arch_irq_work_has_interrupt()) { 659 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 660 cpumask_clear(tick_nohz_full_mask); 661 tick_nohz_full_running = false; 662 return; 663 } 664 665 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 666 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 667 cpu = smp_processor_id(); 668 669 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 670 pr_warn("NO_HZ: Clearing %d from nohz_full range " 671 "for timekeeping\n", cpu); 672 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 673 } 674 } 675 676 for_each_cpu(cpu, tick_nohz_full_mask) 677 ct_cpu_track_user(cpu); 678 679 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 680 "kernel/nohz:predown", NULL, 681 tick_nohz_cpu_down); 682 WARN_ON(ret < 0); 683 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 684 cpumask_pr_args(tick_nohz_full_mask)); 685 } 686 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 687 688 /* 689 * NOHZ - aka dynamic tick functionality 690 */ 691 #ifdef CONFIG_NO_HZ_COMMON 692 /* 693 * NO HZ enabled ? 694 */ 695 bool tick_nohz_enabled __read_mostly = true; 696 unsigned long tick_nohz_active __read_mostly; 697 /* 698 * Enable / Disable tickless mode 699 */ 700 static int __init setup_tick_nohz(char *str) 701 { 702 return (kstrtobool(str, &tick_nohz_enabled) == 0); 703 } 704 705 __setup("nohz=", setup_tick_nohz); 706 707 bool tick_nohz_tick_stopped(void) 708 { 709 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 710 711 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 712 } 713 714 bool tick_nohz_tick_stopped_cpu(int cpu) 715 { 716 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 717 718 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 719 } 720 721 /** 722 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 723 * @now: current ktime_t 724 * 725 * Called from interrupt entry when the CPU was idle 726 * 727 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 728 * must be updated. Otherwise an interrupt handler could use a stale jiffy 729 * value. We do this unconditionally on any CPU, as we don't know whether the 730 * CPU, which has the update task assigned, is in a long sleep. 731 */ 732 static void tick_nohz_update_jiffies(ktime_t now) 733 { 734 unsigned long flags; 735 736 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 737 738 local_irq_save(flags); 739 tick_do_update_jiffies64(now); 740 local_irq_restore(flags); 741 742 touch_softlockup_watchdog_sched(); 743 } 744 745 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 746 { 747 ktime_t delta; 748 749 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) 750 return; 751 752 delta = ktime_sub(now, ts->idle_entrytime); 753 754 write_seqcount_begin(&ts->idle_sleeptime_seq); 755 if (nr_iowait_cpu(smp_processor_id()) > 0) 756 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 757 else 758 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 759 760 ts->idle_entrytime = now; 761 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); 762 write_seqcount_end(&ts->idle_sleeptime_seq); 763 764 sched_clock_idle_wakeup_event(); 765 } 766 767 static void tick_nohz_start_idle(struct tick_sched *ts) 768 { 769 write_seqcount_begin(&ts->idle_sleeptime_seq); 770 ts->idle_entrytime = ktime_get(); 771 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); 772 write_seqcount_end(&ts->idle_sleeptime_seq); 773 774 sched_clock_idle_sleep_event(); 775 } 776 777 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 778 bool compute_delta, u64 *last_update_time) 779 { 780 ktime_t now, idle; 781 unsigned int seq; 782 783 if (!tick_nohz_active) 784 return -1; 785 786 now = ktime_get(); 787 if (last_update_time) 788 *last_update_time = ktime_to_us(now); 789 790 do { 791 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 792 793 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { 794 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 795 796 idle = ktime_add(*sleeptime, delta); 797 } else { 798 idle = *sleeptime; 799 } 800 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 801 802 return ktime_to_us(idle); 803 804 } 805 806 /** 807 * get_cpu_idle_time_us - get the total idle time of a CPU 808 * @cpu: CPU number to query 809 * @last_update_time: variable to store update time in. Do not update 810 * counters if NULL. 811 * 812 * Return the cumulative idle time (since boot) for a given 813 * CPU, in microseconds. Note that this is partially broken due to 814 * the counter of iowait tasks that can be remotely updated without 815 * any synchronization. Therefore it is possible to observe backward 816 * values within two consecutive reads. 817 * 818 * This time is measured via accounting rather than sampling, 819 * and is as accurate as ktime_get() is. 820 * 821 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu 822 */ 823 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 824 { 825 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 826 827 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 828 !nr_iowait_cpu(cpu), last_update_time); 829 } 830 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 831 832 /** 833 * get_cpu_iowait_time_us - get the total iowait time of a CPU 834 * @cpu: CPU number to query 835 * @last_update_time: variable to store update time in. Do not update 836 * counters if NULL. 837 * 838 * Return the cumulative iowait time (since boot) for a given 839 * CPU, in microseconds. Note this is partially broken due to 840 * the counter of iowait tasks that can be remotely updated without 841 * any synchronization. Therefore it is possible to observe backward 842 * values within two consecutive reads. 843 * 844 * This time is measured via accounting rather than sampling, 845 * and is as accurate as ktime_get() is. 846 * 847 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu 848 */ 849 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 850 { 851 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 852 853 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 854 nr_iowait_cpu(cpu), last_update_time); 855 } 856 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 857 858 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 859 { 860 hrtimer_cancel(&ts->sched_timer); 861 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 862 863 /* Forward the time to expire in the future */ 864 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 865 866 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 867 hrtimer_start_expires(&ts->sched_timer, 868 HRTIMER_MODE_ABS_PINNED_HARD); 869 } else { 870 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 871 } 872 873 /* 874 * Reset to make sure the next tick stop doesn't get fooled by past 875 * cached clock deadline. 876 */ 877 ts->next_tick = 0; 878 } 879 880 static inline bool local_timer_softirq_pending(void) 881 { 882 return local_timers_pending() & BIT(TIMER_SOFTIRQ); 883 } 884 885 /* 886 * Read jiffies and the time when jiffies were updated last 887 */ 888 u64 get_jiffies_update(unsigned long *basej) 889 { 890 unsigned long basejiff; 891 unsigned int seq; 892 u64 basemono; 893 894 do { 895 seq = read_seqcount_begin(&jiffies_seq); 896 basemono = last_jiffies_update; 897 basejiff = jiffies; 898 } while (read_seqcount_retry(&jiffies_seq, seq)); 899 *basej = basejiff; 900 return basemono; 901 } 902 903 /** 904 * tick_nohz_next_event() - return the clock monotonic based next event 905 * @ts: pointer to tick_sched struct 906 * @cpu: CPU number 907 * 908 * Return: 909 * *%0 - When the next event is a maximum of TICK_NSEC in the future 910 * and the tick is not stopped yet 911 * *%next_event - Next event based on clock monotonic 912 */ 913 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 914 { 915 u64 basemono, next_tick, delta, expires; 916 unsigned long basejiff; 917 int tick_cpu; 918 919 basemono = get_jiffies_update(&basejiff); 920 ts->last_jiffies = basejiff; 921 ts->timer_expires_base = basemono; 922 923 /* 924 * Keep the periodic tick, when RCU, architecture or irq_work 925 * requests it. 926 * Aside of that, check whether the local timer softirq is 927 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 928 * because there is an already expired timer, so it will request 929 * immediate expiry, which rearms the hardware timer with a 930 * minimal delta, which brings us back to this place 931 * immediately. Lather, rinse and repeat... 932 */ 933 if (rcu_needs_cpu() || arch_needs_cpu() || 934 irq_work_needs_cpu() || local_timer_softirq_pending()) { 935 next_tick = basemono + TICK_NSEC; 936 } else { 937 /* 938 * Get the next pending timer. If high resolution 939 * timers are enabled this only takes the timer wheel 940 * timers into account. If high resolution timers are 941 * disabled this also looks at the next expiring 942 * hrtimer. 943 */ 944 next_tick = get_next_timer_interrupt(basejiff, basemono); 945 ts->next_timer = next_tick; 946 } 947 948 /* Make sure next_tick is never before basemono! */ 949 if (WARN_ON_ONCE(basemono > next_tick)) 950 next_tick = basemono; 951 952 /* 953 * If the tick is due in the next period, keep it ticking or 954 * force prod the timer. 955 */ 956 delta = next_tick - basemono; 957 if (delta <= (u64)TICK_NSEC) { 958 /* 959 * We've not stopped the tick yet, and there's a timer in the 960 * next period, so no point in stopping it either, bail. 961 */ 962 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 963 ts->timer_expires = 0; 964 goto out; 965 } 966 } 967 968 /* 969 * If this CPU is the one which had the do_timer() duty last, we limit 970 * the sleep time to the timekeeping 'max_deferment' value. 971 * Otherwise we can sleep as long as we want. 972 */ 973 delta = timekeeping_max_deferment(); 974 tick_cpu = READ_ONCE(tick_do_timer_cpu); 975 if (tick_cpu != cpu && 976 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) 977 delta = KTIME_MAX; 978 979 /* Calculate the next expiry time */ 980 if (delta < (KTIME_MAX - basemono)) 981 expires = basemono + delta; 982 else 983 expires = KTIME_MAX; 984 985 ts->timer_expires = min_t(u64, expires, next_tick); 986 987 out: 988 return ts->timer_expires; 989 } 990 991 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 992 { 993 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 994 unsigned long basejiff = ts->last_jiffies; 995 u64 basemono = ts->timer_expires_base; 996 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 997 int tick_cpu; 998 u64 expires; 999 1000 /* Make sure we won't be trying to stop it twice in a row. */ 1001 ts->timer_expires_base = 0; 1002 1003 /* 1004 * Now the tick should be stopped definitely - so the timer base needs 1005 * to be marked idle as well to not miss a newly queued timer. 1006 */ 1007 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); 1008 if (expires > ts->timer_expires) { 1009 /* 1010 * This path could only happen when the first timer was removed 1011 * between calculating the possible sleep length and now (when 1012 * high resolution mode is not active, timer could also be a 1013 * hrtimer). 1014 * 1015 * We have to stick to the original calculated expiry value to 1016 * not stop the tick for too long with a shallow C-state (which 1017 * was programmed by cpuidle because of an early next expiration 1018 * value). 1019 */ 1020 expires = ts->timer_expires; 1021 } 1022 1023 /* If the timer base is not idle, retain the not yet stopped tick. */ 1024 if (!timer_idle) 1025 return; 1026 1027 /* 1028 * If this CPU is the one which updates jiffies, then give up 1029 * the assignment and let it be taken by the CPU which runs 1030 * the tick timer next, which might be this CPU as well. If we 1031 * don't drop this here, the jiffies might be stale and 1032 * do_timer() never gets invoked. Keep track of the fact that it 1033 * was the one which had the do_timer() duty last. 1034 */ 1035 tick_cpu = READ_ONCE(tick_do_timer_cpu); 1036 if (tick_cpu == cpu) { 1037 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE); 1038 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); 1039 } else if (tick_cpu != TICK_DO_TIMER_NONE) { 1040 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); 1041 } 1042 1043 /* Skip reprogram of event if it's not changed */ 1044 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { 1045 /* Sanity check: make sure clockevent is actually programmed */ 1046 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 1047 return; 1048 1049 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu " 1050 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, 1051 dev->next_event, hrtimer_active(&ts->sched_timer), 1052 hrtimer_get_expires(&ts->sched_timer)); 1053 } 1054 1055 /* 1056 * tick_nohz_stop_tick() can be called several times before 1057 * tick_nohz_restart_sched_tick() is called. This happens when 1058 * interrupts arrive which do not cause a reschedule. In the first 1059 * call we save the current tick time, so we can restart the 1060 * scheduler tick in tick_nohz_restart_sched_tick(). 1061 */ 1062 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1063 calc_load_nohz_start(); 1064 quiet_vmstat(); 1065 1066 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 1067 tick_sched_flag_set(ts, TS_FLAG_STOPPED); 1068 trace_tick_stop(1, TICK_DEP_MASK_NONE); 1069 } 1070 1071 ts->next_tick = expires; 1072 1073 /* 1074 * If the expiration time == KTIME_MAX, then we simply stop 1075 * the tick timer. 1076 */ 1077 if (unlikely(expires == KTIME_MAX)) { 1078 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 1079 hrtimer_cancel(&ts->sched_timer); 1080 else 1081 tick_program_event(KTIME_MAX, 1); 1082 return; 1083 } 1084 1085 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 1086 hrtimer_start(&ts->sched_timer, expires, 1087 HRTIMER_MODE_ABS_PINNED_HARD); 1088 } else { 1089 hrtimer_set_expires(&ts->sched_timer, expires); 1090 tick_program_event(expires, 1); 1091 } 1092 } 1093 1094 static void tick_nohz_retain_tick(struct tick_sched *ts) 1095 { 1096 ts->timer_expires_base = 0; 1097 } 1098 1099 #ifdef CONFIG_NO_HZ_FULL 1100 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) 1101 { 1102 if (tick_nohz_next_event(ts, cpu)) 1103 tick_nohz_stop_tick(ts, cpu); 1104 else 1105 tick_nohz_retain_tick(ts); 1106 } 1107 #endif /* CONFIG_NO_HZ_FULL */ 1108 1109 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 1110 { 1111 /* Update jiffies first */ 1112 tick_do_update_jiffies64(now); 1113 1114 /* 1115 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 1116 * the clock forward checks in the enqueue path: 1117 */ 1118 timer_clear_idle(); 1119 1120 calc_load_nohz_stop(); 1121 touch_softlockup_watchdog_sched(); 1122 1123 /* Cancel the scheduled timer and restore the tick: */ 1124 tick_sched_flag_clear(ts, TS_FLAG_STOPPED); 1125 tick_nohz_restart(ts, now); 1126 } 1127 1128 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 1129 ktime_t now) 1130 { 1131 #ifdef CONFIG_NO_HZ_FULL 1132 int cpu = smp_processor_id(); 1133 1134 if (can_stop_full_tick(cpu, ts)) 1135 tick_nohz_full_stop_tick(ts, cpu); 1136 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1137 tick_nohz_restart_sched_tick(ts, now); 1138 #endif 1139 } 1140 1141 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1142 { 1143 if (!tick_nohz_full_cpu(smp_processor_id())) 1144 return; 1145 1146 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1147 return; 1148 1149 __tick_nohz_full_update_tick(ts, ktime_get()); 1150 } 1151 1152 /* 1153 * A pending softirq outside an IRQ (or softirq disabled section) context 1154 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1155 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1156 * 1157 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1158 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1159 * triggering the code below, since wakep_softirqd() is ignored. 1160 * 1161 */ 1162 static bool report_idle_softirq(void) 1163 { 1164 static int ratelimit; 1165 unsigned int pending = local_softirq_pending(); 1166 1167 if (likely(!pending)) 1168 return false; 1169 1170 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1171 if (!cpu_active(smp_processor_id())) { 1172 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1173 if (!pending) 1174 return false; 1175 } 1176 1177 /* On RT, softirq handling may be waiting on some lock */ 1178 if (local_bh_blocked()) 1179 return false; 1180 1181 if (ratelimit < 10) { 1182 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1183 pending); 1184 ratelimit++; 1185 } 1186 1187 return true; 1188 } 1189 1190 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1191 { 1192 WARN_ON_ONCE(cpu_is_offline(cpu)); 1193 1194 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) 1195 return false; 1196 1197 if (need_resched()) 1198 return false; 1199 1200 if (unlikely(report_idle_softirq())) 1201 return false; 1202 1203 if (tick_nohz_full_enabled()) { 1204 int tick_cpu = READ_ONCE(tick_do_timer_cpu); 1205 1206 /* 1207 * Keep the tick alive to guarantee timekeeping progression 1208 * if there are full dynticks CPUs around 1209 */ 1210 if (tick_cpu == cpu) 1211 return false; 1212 1213 /* Should not happen for nohz-full */ 1214 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE)) 1215 return false; 1216 } 1217 1218 return true; 1219 } 1220 1221 /** 1222 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1223 * 1224 * When the next event is more than a tick into the future, stop the idle tick 1225 */ 1226 void tick_nohz_idle_stop_tick(void) 1227 { 1228 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1229 int cpu = smp_processor_id(); 1230 ktime_t expires; 1231 1232 /* 1233 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1234 * tick timer expiration time is known already. 1235 */ 1236 if (ts->timer_expires_base) 1237 expires = ts->timer_expires; 1238 else if (can_stop_idle_tick(cpu, ts)) 1239 expires = tick_nohz_next_event(ts, cpu); 1240 else 1241 return; 1242 1243 ts->idle_calls++; 1244 1245 if (expires > 0LL) { 1246 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1247 1248 tick_nohz_stop_tick(ts, cpu); 1249 1250 ts->idle_sleeps++; 1251 ts->idle_expires = expires; 1252 1253 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1254 ts->idle_jiffies = ts->last_jiffies; 1255 nohz_balance_enter_idle(cpu); 1256 } 1257 } else { 1258 tick_nohz_retain_tick(ts); 1259 } 1260 } 1261 1262 void tick_nohz_idle_retain_tick(void) 1263 { 1264 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1265 } 1266 1267 /** 1268 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1269 * 1270 * Called when we start the idle loop. 1271 */ 1272 void tick_nohz_idle_enter(void) 1273 { 1274 struct tick_sched *ts; 1275 1276 lockdep_assert_irqs_enabled(); 1277 1278 local_irq_disable(); 1279 1280 ts = this_cpu_ptr(&tick_cpu_sched); 1281 1282 WARN_ON_ONCE(ts->timer_expires_base); 1283 1284 tick_sched_flag_set(ts, TS_FLAG_INIDLE); 1285 tick_nohz_start_idle(ts); 1286 1287 local_irq_enable(); 1288 } 1289 1290 /** 1291 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1292 * 1293 * A timer may have been added/modified/deleted either by the current IRQ, 1294 * or by another place using this IRQ as a notification. This IRQ may have 1295 * also updated the RCU callback list. These events may require a 1296 * re-evaluation of the next tick. Depending on the context: 1297 * 1298 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1299 * time accounting. The next tick will be re-evaluated on the next idle 1300 * loop iteration. 1301 * 1302 * 2) If the CPU is nohz_full: 1303 * 1304 * 2.1) If there is any tick dependency, restart the tick if stopped. 1305 * 1306 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1307 * stop/update it accordingly. 1308 */ 1309 void tick_nohz_irq_exit(void) 1310 { 1311 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1312 1313 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 1314 tick_nohz_start_idle(ts); 1315 else 1316 tick_nohz_full_update_tick(ts); 1317 } 1318 1319 /** 1320 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1321 * 1322 * Return: %true if the tick handler has run, otherwise %false 1323 */ 1324 bool tick_nohz_idle_got_tick(void) 1325 { 1326 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1327 1328 if (ts->got_idle_tick) { 1329 ts->got_idle_tick = 0; 1330 return true; 1331 } 1332 return false; 1333 } 1334 1335 /** 1336 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1337 * or the tick, whichever expires first. Note that, if the tick has been 1338 * stopped, it returns the next hrtimer. 1339 * 1340 * Called from power state control code with interrupts disabled 1341 * 1342 * Return: the next expiration time 1343 */ 1344 ktime_t tick_nohz_get_next_hrtimer(void) 1345 { 1346 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1347 } 1348 1349 /** 1350 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1351 * @delta_next: duration until the next event if the tick cannot be stopped 1352 * 1353 * Called from power state control code with interrupts disabled. 1354 * 1355 * The return value of this function and/or the value returned by it through the 1356 * @delta_next pointer can be negative which must be taken into account by its 1357 * callers. 1358 * 1359 * Return: the expected length of the current sleep 1360 */ 1361 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1362 { 1363 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1364 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1365 int cpu = smp_processor_id(); 1366 /* 1367 * The idle entry time is expected to be a sufficient approximation of 1368 * the current time at this point. 1369 */ 1370 ktime_t now = ts->idle_entrytime; 1371 ktime_t next_event; 1372 1373 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1374 1375 *delta_next = ktime_sub(dev->next_event, now); 1376 1377 if (!can_stop_idle_tick(cpu, ts)) 1378 return *delta_next; 1379 1380 next_event = tick_nohz_next_event(ts, cpu); 1381 if (!next_event) 1382 return *delta_next; 1383 1384 /* 1385 * If the next highres timer to expire is earlier than 'next_event', the 1386 * idle governor needs to know that. 1387 */ 1388 next_event = min_t(u64, next_event, 1389 hrtimer_next_event_without(&ts->sched_timer)); 1390 1391 return ktime_sub(next_event, now); 1392 } 1393 1394 /** 1395 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1396 * for a particular CPU. 1397 * @cpu: target CPU number 1398 * 1399 * Called from the schedutil frequency scaling governor in scheduler context. 1400 * 1401 * Return: the current idle calls counter value for @cpu 1402 */ 1403 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1404 { 1405 struct tick_sched *ts = tick_get_tick_sched(cpu); 1406 1407 return ts->idle_calls; 1408 } 1409 1410 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1411 ktime_t now) 1412 { 1413 unsigned long ticks; 1414 1415 ts->idle_exittime = now; 1416 1417 if (vtime_accounting_enabled_this_cpu()) 1418 return; 1419 /* 1420 * We stopped the tick in idle. update_process_times() would miss the 1421 * time we slept, as it does only a 1 tick accounting. 1422 * Enforce that this is accounted to idle ! 1423 */ 1424 ticks = jiffies - ts->idle_jiffies; 1425 /* 1426 * We might be one off. Do not randomly account a huge number of ticks! 1427 */ 1428 if (ticks && ticks < LONG_MAX) 1429 account_idle_ticks(ticks); 1430 } 1431 1432 void tick_nohz_idle_restart_tick(void) 1433 { 1434 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1435 1436 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1437 ktime_t now = ktime_get(); 1438 tick_nohz_restart_sched_tick(ts, now); 1439 tick_nohz_account_idle_time(ts, now); 1440 } 1441 } 1442 1443 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1444 { 1445 if (tick_nohz_full_cpu(smp_processor_id())) 1446 __tick_nohz_full_update_tick(ts, now); 1447 else 1448 tick_nohz_restart_sched_tick(ts, now); 1449 1450 tick_nohz_account_idle_time(ts, now); 1451 } 1452 1453 /** 1454 * tick_nohz_idle_exit - Update the tick upon idle task exit 1455 * 1456 * When the idle task exits, update the tick depending on the 1457 * following situations: 1458 * 1459 * 1) If the CPU is not in nohz_full mode (most cases), then 1460 * restart the tick. 1461 * 1462 * 2) If the CPU is in nohz_full mode (corner case): 1463 * 2.1) If the tick can be kept stopped (no tick dependencies) 1464 * then re-evaluate the next tick and try to keep it stopped 1465 * as long as possible. 1466 * 2.2) If the tick has dependencies, restart the tick. 1467 * 1468 */ 1469 void tick_nohz_idle_exit(void) 1470 { 1471 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1472 bool idle_active, tick_stopped; 1473 ktime_t now; 1474 1475 local_irq_disable(); 1476 1477 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1478 WARN_ON_ONCE(ts->timer_expires_base); 1479 1480 tick_sched_flag_clear(ts, TS_FLAG_INIDLE); 1481 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); 1482 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1483 1484 if (idle_active || tick_stopped) 1485 now = ktime_get(); 1486 1487 if (idle_active) 1488 tick_nohz_stop_idle(ts, now); 1489 1490 if (tick_stopped) 1491 tick_nohz_idle_update_tick(ts, now); 1492 1493 local_irq_enable(); 1494 } 1495 1496 /* 1497 * In low-resolution mode, the tick handler must be implemented directly 1498 * at the clockevent level. hrtimer can't be used instead, because its 1499 * infrastructure actually relies on the tick itself as a backend in 1500 * low-resolution mode (see hrtimer_run_queues()). 1501 */ 1502 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1503 { 1504 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1505 1506 dev->next_event = KTIME_MAX; 1507 1508 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) 1509 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1510 } 1511 1512 static inline void tick_nohz_activate(struct tick_sched *ts) 1513 { 1514 if (!tick_nohz_enabled) 1515 return; 1516 tick_sched_flag_set(ts, TS_FLAG_NOHZ); 1517 /* One update is enough */ 1518 if (!test_and_set_bit(0, &tick_nohz_active)) 1519 timers_update_nohz(); 1520 } 1521 1522 /** 1523 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1524 */ 1525 static void tick_nohz_switch_to_nohz(void) 1526 { 1527 if (!tick_nohz_enabled) 1528 return; 1529 1530 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1531 return; 1532 1533 /* 1534 * Recycle the hrtimer in 'ts', so we can share the 1535 * highres code. 1536 */ 1537 tick_setup_sched_timer(false); 1538 } 1539 1540 static inline void tick_nohz_irq_enter(void) 1541 { 1542 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1543 ktime_t now; 1544 1545 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) 1546 return; 1547 now = ktime_get(); 1548 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) 1549 tick_nohz_stop_idle(ts, now); 1550 /* 1551 * If all CPUs are idle we may need to update a stale jiffies value. 1552 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1553 * alive but it might be busy looping with interrupts disabled in some 1554 * rare case (typically stop machine). So we must make sure we have a 1555 * last resort. 1556 */ 1557 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1558 tick_nohz_update_jiffies(now); 1559 } 1560 1561 #else 1562 1563 static inline void tick_nohz_switch_to_nohz(void) { } 1564 static inline void tick_nohz_irq_enter(void) { } 1565 static inline void tick_nohz_activate(struct tick_sched *ts) { } 1566 1567 #endif /* CONFIG_NO_HZ_COMMON */ 1568 1569 /* 1570 * Called from irq_enter() to notify about the possible interruption of idle() 1571 */ 1572 void tick_irq_enter(void) 1573 { 1574 tick_check_oneshot_broadcast_this_cpu(); 1575 tick_nohz_irq_enter(); 1576 } 1577 1578 static int sched_skew_tick; 1579 1580 static int __init skew_tick(char *str) 1581 { 1582 get_option(&str, &sched_skew_tick); 1583 1584 return 0; 1585 } 1586 early_param("skew_tick", skew_tick); 1587 1588 /** 1589 * tick_setup_sched_timer - setup the tick emulation timer 1590 * @hrtimer: whether to use the hrtimer or not 1591 */ 1592 void tick_setup_sched_timer(bool hrtimer) 1593 { 1594 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1595 1596 /* Emulate tick processing via per-CPU hrtimers: */ 1597 hrtimer_setup(&ts->sched_timer, tick_nohz_handler, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1598 1599 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1600 tick_sched_flag_set(ts, TS_FLAG_HIGHRES); 1601 1602 /* Get the next period (per-CPU) */ 1603 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1604 1605 /* Offset the tick to avert 'jiffies_lock' contention. */ 1606 if (sched_skew_tick) { 1607 u64 offset = TICK_NSEC >> 1; 1608 do_div(offset, num_possible_cpus()); 1609 offset *= smp_processor_id(); 1610 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1611 } 1612 1613 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1614 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1615 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1616 else 1617 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1618 tick_nohz_activate(ts); 1619 } 1620 1621 /* 1622 * Shut down the tick and make sure the CPU won't try to retake the timekeeping 1623 * duty before disabling IRQs in idle for the last time. 1624 */ 1625 void tick_sched_timer_dying(int cpu) 1626 { 1627 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1628 ktime_t idle_sleeptime, iowait_sleeptime; 1629 unsigned long idle_calls, idle_sleeps; 1630 1631 /* This must happen before hrtimers are migrated! */ 1632 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 1633 hrtimer_cancel(&ts->sched_timer); 1634 1635 idle_sleeptime = ts->idle_sleeptime; 1636 iowait_sleeptime = ts->iowait_sleeptime; 1637 idle_calls = ts->idle_calls; 1638 idle_sleeps = ts->idle_sleeps; 1639 memset(ts, 0, sizeof(*ts)); 1640 ts->idle_sleeptime = idle_sleeptime; 1641 ts->iowait_sleeptime = iowait_sleeptime; 1642 ts->idle_calls = idle_calls; 1643 ts->idle_sleeps = idle_sleeps; 1644 } 1645 1646 /* 1647 * Async notification about clocksource changes 1648 */ 1649 void tick_clock_notify(void) 1650 { 1651 int cpu; 1652 1653 for_each_possible_cpu(cpu) 1654 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1655 } 1656 1657 /* 1658 * Async notification about clock event changes 1659 */ 1660 void tick_oneshot_notify(void) 1661 { 1662 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1663 1664 set_bit(0, &ts->check_clocks); 1665 } 1666 1667 /* 1668 * Check if a change happened, which makes oneshot possible. 1669 * 1670 * Called cyclically from the hrtimer softirq (driven by the timer 1671 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1672 * mode, because high resolution timers are disabled (either compile 1673 * or runtime). Called with interrupts disabled. 1674 */ 1675 int tick_check_oneshot_change(int allow_nohz) 1676 { 1677 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1678 1679 if (!test_and_clear_bit(0, &ts->check_clocks)) 1680 return 0; 1681 1682 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1683 return 0; 1684 1685 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1686 return 0; 1687 1688 if (!allow_nohz) 1689 return 1; 1690 1691 tick_nohz_switch_to_nohz(); 1692 return 0; 1693 } 1694