xref: /linux/kernel/time/tick-sched.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 static void tick_nohz_update_jiffies(void)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 	ktime_t now;
143 
144 	if (!ts->tick_stopped)
145 		return;
146 
147 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
148 	now = ktime_get();
149 	ts->idle_waketime = now;
150 
151 	local_irq_save(flags);
152 	tick_do_update_jiffies64(now);
153 	local_irq_restore(flags);
154 
155 	touch_softlockup_watchdog();
156 }
157 
158 static void tick_nohz_stop_idle(int cpu)
159 {
160 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
161 
162 	if (ts->idle_active) {
163 		ktime_t now, delta;
164 		now = ktime_get();
165 		delta = ktime_sub(now, ts->idle_entrytime);
166 		ts->idle_lastupdate = now;
167 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
168 		ts->idle_active = 0;
169 
170 		sched_clock_idle_wakeup_event(0);
171 	}
172 }
173 
174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
175 {
176 	ktime_t now, delta;
177 
178 	now = ktime_get();
179 	if (ts->idle_active) {
180 		delta = ktime_sub(now, ts->idle_entrytime);
181 		ts->idle_lastupdate = now;
182 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
183 	}
184 	ts->idle_entrytime = now;
185 	ts->idle_active = 1;
186 	sched_clock_idle_sleep_event();
187 	return now;
188 }
189 
190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
191 {
192 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
193 
194 	if (!tick_nohz_enabled)
195 		return -1;
196 
197 	if (ts->idle_active)
198 		*last_update_time = ktime_to_us(ts->idle_lastupdate);
199 	else
200 		*last_update_time = ktime_to_us(ktime_get());
201 
202 	return ktime_to_us(ts->idle_sleeptime);
203 }
204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
205 
206 /**
207  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
208  *
209  * When the next event is more than a tick into the future, stop the idle tick
210  * Called either from the idle loop or from irq_exit() when an idle period was
211  * just interrupted by an interrupt which did not cause a reschedule.
212  */
213 void tick_nohz_stop_sched_tick(int inidle)
214 {
215 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
216 	struct tick_sched *ts;
217 	ktime_t last_update, expires, now;
218 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
219 	int cpu;
220 
221 	local_irq_save(flags);
222 
223 	cpu = smp_processor_id();
224 	ts = &per_cpu(tick_cpu_sched, cpu);
225 
226 	/*
227 	 * Call to tick_nohz_start_idle stops the last_update_time from being
228 	 * updated. Thus, it must not be called in the event we are called from
229 	 * irq_exit() with the prior state different than idle.
230 	 */
231 	if (!inidle && !ts->inidle)
232 		goto end;
233 
234 	/*
235 	 * Set ts->inidle unconditionally. Even if the system did not
236 	 * switch to NOHZ mode the cpu frequency governers rely on the
237 	 * update of the idle time accounting in tick_nohz_start_idle().
238 	 */
239 	ts->inidle = 1;
240 
241 	now = tick_nohz_start_idle(ts);
242 
243 	/*
244 	 * If this cpu is offline and it is the one which updates
245 	 * jiffies, then give up the assignment and let it be taken by
246 	 * the cpu which runs the tick timer next. If we don't drop
247 	 * this here the jiffies might be stale and do_timer() never
248 	 * invoked.
249 	 */
250 	if (unlikely(!cpu_online(cpu))) {
251 		if (cpu == tick_do_timer_cpu)
252 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
253 	}
254 
255 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
256 		goto end;
257 
258 	if (need_resched())
259 		goto end;
260 
261 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
262 		static int ratelimit;
263 
264 		if (ratelimit < 10) {
265 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
266 			       local_softirq_pending());
267 			ratelimit++;
268 		}
269 		goto end;
270 	}
271 
272 	ts->idle_calls++;
273 	/* Read jiffies and the time when jiffies were updated last */
274 	do {
275 		seq = read_seqbegin(&xtime_lock);
276 		last_update = last_jiffies_update;
277 		last_jiffies = jiffies;
278 	} while (read_seqretry(&xtime_lock, seq));
279 
280 	/* Get the next timer wheel timer */
281 	next_jiffies = get_next_timer_interrupt(last_jiffies);
282 	delta_jiffies = next_jiffies - last_jiffies;
283 
284 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
285 		delta_jiffies = 1;
286 	/*
287 	 * Do not stop the tick, if we are only one off
288 	 * or if the cpu is required for rcu
289 	 */
290 	if (!ts->tick_stopped && delta_jiffies == 1)
291 		goto out;
292 
293 	/* Schedule the tick, if we are at least one jiffie off */
294 	if ((long)delta_jiffies >= 1) {
295 
296 		/*
297 		* calculate the expiry time for the next timer wheel
298 		* timer
299 		*/
300 		expires = ktime_add_ns(last_update, tick_period.tv64 *
301 				   delta_jiffies);
302 
303 		/*
304 		 * If this cpu is the one which updates jiffies, then
305 		 * give up the assignment and let it be taken by the
306 		 * cpu which runs the tick timer next, which might be
307 		 * this cpu as well. If we don't drop this here the
308 		 * jiffies might be stale and do_timer() never
309 		 * invoked.
310 		 */
311 		if (cpu == tick_do_timer_cpu)
312 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
313 
314 		if (delta_jiffies > 1)
315 			cpumask_set_cpu(cpu, nohz_cpu_mask);
316 
317 		/* Skip reprogram of event if its not changed */
318 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
319 			goto out;
320 
321 		/*
322 		 * nohz_stop_sched_tick can be called several times before
323 		 * the nohz_restart_sched_tick is called. This happens when
324 		 * interrupts arrive which do not cause a reschedule. In the
325 		 * first call we save the current tick time, so we can restart
326 		 * the scheduler tick in nohz_restart_sched_tick.
327 		 */
328 		if (!ts->tick_stopped) {
329 			if (select_nohz_load_balancer(1)) {
330 				/*
331 				 * sched tick not stopped!
332 				 */
333 				cpumask_clear_cpu(cpu, nohz_cpu_mask);
334 				goto out;
335 			}
336 
337 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
338 			ts->tick_stopped = 1;
339 			ts->idle_jiffies = last_jiffies;
340 			rcu_enter_nohz();
341 		}
342 
343 		ts->idle_sleeps++;
344 
345 		/*
346 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
347 		 * there is no timer pending or at least extremly far
348 		 * into the future (12 days for HZ=1000). In this case
349 		 * we simply stop the tick timer:
350 		 */
351 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
352 			ts->idle_expires.tv64 = KTIME_MAX;
353 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
354 				hrtimer_cancel(&ts->sched_timer);
355 			goto out;
356 		}
357 
358 		/* Mark expiries */
359 		ts->idle_expires = expires;
360 
361 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
362 			hrtimer_start(&ts->sched_timer, expires,
363 				      HRTIMER_MODE_ABS_PINNED);
364 			/* Check, if the timer was already in the past */
365 			if (hrtimer_active(&ts->sched_timer))
366 				goto out;
367 		} else if (!tick_program_event(expires, 0))
368 				goto out;
369 		/*
370 		 * We are past the event already. So we crossed a
371 		 * jiffie boundary. Update jiffies and raise the
372 		 * softirq.
373 		 */
374 		tick_do_update_jiffies64(ktime_get());
375 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
376 	}
377 	raise_softirq_irqoff(TIMER_SOFTIRQ);
378 out:
379 	ts->next_jiffies = next_jiffies;
380 	ts->last_jiffies = last_jiffies;
381 	ts->sleep_length = ktime_sub(dev->next_event, now);
382 end:
383 	local_irq_restore(flags);
384 }
385 
386 /**
387  * tick_nohz_get_sleep_length - return the length of the current sleep
388  *
389  * Called from power state control code with interrupts disabled
390  */
391 ktime_t tick_nohz_get_sleep_length(void)
392 {
393 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
394 
395 	return ts->sleep_length;
396 }
397 
398 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
399 {
400 	hrtimer_cancel(&ts->sched_timer);
401 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
402 
403 	while (1) {
404 		/* Forward the time to expire in the future */
405 		hrtimer_forward(&ts->sched_timer, now, tick_period);
406 
407 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
408 			hrtimer_start_expires(&ts->sched_timer,
409 					      HRTIMER_MODE_ABS_PINNED);
410 			/* Check, if the timer was already in the past */
411 			if (hrtimer_active(&ts->sched_timer))
412 				break;
413 		} else {
414 			if (!tick_program_event(
415 				hrtimer_get_expires(&ts->sched_timer), 0))
416 				break;
417 		}
418 		/* Update jiffies and reread time */
419 		tick_do_update_jiffies64(now);
420 		now = ktime_get();
421 	}
422 }
423 
424 /**
425  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
426  *
427  * Restart the idle tick when the CPU is woken up from idle
428  */
429 void tick_nohz_restart_sched_tick(void)
430 {
431 	int cpu = smp_processor_id();
432 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
434 	unsigned long ticks;
435 #endif
436 	ktime_t now;
437 
438 	local_irq_disable();
439 	tick_nohz_stop_idle(cpu);
440 
441 	if (!ts->inidle || !ts->tick_stopped) {
442 		ts->inidle = 0;
443 		local_irq_enable();
444 		return;
445 	}
446 
447 	ts->inidle = 0;
448 
449 	rcu_exit_nohz();
450 
451 	/* Update jiffies first */
452 	select_nohz_load_balancer(0);
453 	now = ktime_get();
454 	tick_do_update_jiffies64(now);
455 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
456 
457 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
458 	/*
459 	 * We stopped the tick in idle. Update process times would miss the
460 	 * time we slept as update_process_times does only a 1 tick
461 	 * accounting. Enforce that this is accounted to idle !
462 	 */
463 	ticks = jiffies - ts->idle_jiffies;
464 	/*
465 	 * We might be one off. Do not randomly account a huge number of ticks!
466 	 */
467 	if (ticks && ticks < LONG_MAX)
468 		account_idle_ticks(ticks);
469 #endif
470 
471 	touch_softlockup_watchdog();
472 	/*
473 	 * Cancel the scheduled timer and restore the tick
474 	 */
475 	ts->tick_stopped  = 0;
476 	ts->idle_exittime = now;
477 
478 	tick_nohz_restart(ts, now);
479 
480 	local_irq_enable();
481 }
482 
483 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
484 {
485 	hrtimer_forward(&ts->sched_timer, now, tick_period);
486 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
487 }
488 
489 /*
490  * The nohz low res interrupt handler
491  */
492 static void tick_nohz_handler(struct clock_event_device *dev)
493 {
494 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
495 	struct pt_regs *regs = get_irq_regs();
496 	int cpu = smp_processor_id();
497 	ktime_t now = ktime_get();
498 
499 	dev->next_event.tv64 = KTIME_MAX;
500 
501 	/*
502 	 * Check if the do_timer duty was dropped. We don't care about
503 	 * concurrency: This happens only when the cpu in charge went
504 	 * into a long sleep. If two cpus happen to assign themself to
505 	 * this duty, then the jiffies update is still serialized by
506 	 * xtime_lock.
507 	 */
508 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
509 		tick_do_timer_cpu = cpu;
510 
511 	/* Check, if the jiffies need an update */
512 	if (tick_do_timer_cpu == cpu)
513 		tick_do_update_jiffies64(now);
514 
515 	/*
516 	 * When we are idle and the tick is stopped, we have to touch
517 	 * the watchdog as we might not schedule for a really long
518 	 * time. This happens on complete idle SMP systems while
519 	 * waiting on the login prompt. We also increment the "start
520 	 * of idle" jiffy stamp so the idle accounting adjustment we
521 	 * do when we go busy again does not account too much ticks.
522 	 */
523 	if (ts->tick_stopped) {
524 		touch_softlockup_watchdog();
525 		ts->idle_jiffies++;
526 	}
527 
528 	update_process_times(user_mode(regs));
529 	profile_tick(CPU_PROFILING);
530 
531 	while (tick_nohz_reprogram(ts, now)) {
532 		now = ktime_get();
533 		tick_do_update_jiffies64(now);
534 	}
535 }
536 
537 /**
538  * tick_nohz_switch_to_nohz - switch to nohz mode
539  */
540 static void tick_nohz_switch_to_nohz(void)
541 {
542 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
543 	ktime_t next;
544 
545 	if (!tick_nohz_enabled)
546 		return;
547 
548 	local_irq_disable();
549 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
550 		local_irq_enable();
551 		return;
552 	}
553 
554 	ts->nohz_mode = NOHZ_MODE_LOWRES;
555 
556 	/*
557 	 * Recycle the hrtimer in ts, so we can share the
558 	 * hrtimer_forward with the highres code.
559 	 */
560 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
561 	/* Get the next period */
562 	next = tick_init_jiffy_update();
563 
564 	for (;;) {
565 		hrtimer_set_expires(&ts->sched_timer, next);
566 		if (!tick_program_event(next, 0))
567 			break;
568 		next = ktime_add(next, tick_period);
569 	}
570 	local_irq_enable();
571 
572 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
573 	       smp_processor_id());
574 }
575 
576 /*
577  * When NOHZ is enabled and the tick is stopped, we need to kick the
578  * tick timer from irq_enter() so that the jiffies update is kept
579  * alive during long running softirqs. That's ugly as hell, but
580  * correctness is key even if we need to fix the offending softirq in
581  * the first place.
582  *
583  * Note, this is different to tick_nohz_restart. We just kick the
584  * timer and do not touch the other magic bits which need to be done
585  * when idle is left.
586  */
587 static void tick_nohz_kick_tick(int cpu)
588 {
589 #if 0
590 	/* Switch back to 2.6.27 behaviour */
591 
592 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
593 	ktime_t delta, now;
594 
595 	if (!ts->tick_stopped)
596 		return;
597 
598 	/*
599 	 * Do not touch the tick device, when the next expiry is either
600 	 * already reached or less/equal than the tick period.
601 	 */
602 	now = ktime_get();
603 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
604 	if (delta.tv64 <= tick_period.tv64)
605 		return;
606 
607 	tick_nohz_restart(ts, now);
608 #endif
609 }
610 
611 #else
612 
613 static inline void tick_nohz_switch_to_nohz(void) { }
614 
615 #endif /* NO_HZ */
616 
617 /*
618  * Called from irq_enter to notify about the possible interruption of idle()
619  */
620 void tick_check_idle(int cpu)
621 {
622 	tick_check_oneshot_broadcast(cpu);
623 #ifdef CONFIG_NO_HZ
624 	tick_nohz_stop_idle(cpu);
625 	tick_nohz_update_jiffies();
626 	tick_nohz_kick_tick(cpu);
627 #endif
628 }
629 
630 /*
631  * High resolution timer specific code
632  */
633 #ifdef CONFIG_HIGH_RES_TIMERS
634 /*
635  * We rearm the timer until we get disabled by the idle code.
636  * Called with interrupts disabled and timer->base->cpu_base->lock held.
637  */
638 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
639 {
640 	struct tick_sched *ts =
641 		container_of(timer, struct tick_sched, sched_timer);
642 	struct pt_regs *regs = get_irq_regs();
643 	ktime_t now = ktime_get();
644 	int cpu = smp_processor_id();
645 
646 #ifdef CONFIG_NO_HZ
647 	/*
648 	 * Check if the do_timer duty was dropped. We don't care about
649 	 * concurrency: This happens only when the cpu in charge went
650 	 * into a long sleep. If two cpus happen to assign themself to
651 	 * this duty, then the jiffies update is still serialized by
652 	 * xtime_lock.
653 	 */
654 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
655 		tick_do_timer_cpu = cpu;
656 #endif
657 
658 	/* Check, if the jiffies need an update */
659 	if (tick_do_timer_cpu == cpu)
660 		tick_do_update_jiffies64(now);
661 
662 	/*
663 	 * Do not call, when we are not in irq context and have
664 	 * no valid regs pointer
665 	 */
666 	if (regs) {
667 		/*
668 		 * When we are idle and the tick is stopped, we have to touch
669 		 * the watchdog as we might not schedule for a really long
670 		 * time. This happens on complete idle SMP systems while
671 		 * waiting on the login prompt. We also increment the "start of
672 		 * idle" jiffy stamp so the idle accounting adjustment we do
673 		 * when we go busy again does not account too much ticks.
674 		 */
675 		if (ts->tick_stopped) {
676 			touch_softlockup_watchdog();
677 			ts->idle_jiffies++;
678 		}
679 		update_process_times(user_mode(regs));
680 		profile_tick(CPU_PROFILING);
681 	}
682 
683 	hrtimer_forward(timer, now, tick_period);
684 
685 	return HRTIMER_RESTART;
686 }
687 
688 /**
689  * tick_setup_sched_timer - setup the tick emulation timer
690  */
691 void tick_setup_sched_timer(void)
692 {
693 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
694 	ktime_t now = ktime_get();
695 	u64 offset;
696 
697 	/*
698 	 * Emulate tick processing via per-CPU hrtimers:
699 	 */
700 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
701 	ts->sched_timer.function = tick_sched_timer;
702 
703 	/* Get the next period (per cpu) */
704 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
705 	offset = ktime_to_ns(tick_period) >> 1;
706 	do_div(offset, num_possible_cpus());
707 	offset *= smp_processor_id();
708 	hrtimer_add_expires_ns(&ts->sched_timer, offset);
709 
710 	for (;;) {
711 		hrtimer_forward(&ts->sched_timer, now, tick_period);
712 		hrtimer_start_expires(&ts->sched_timer,
713 				      HRTIMER_MODE_ABS_PINNED);
714 		/* Check, if the timer was already in the past */
715 		if (hrtimer_active(&ts->sched_timer))
716 			break;
717 		now = ktime_get();
718 	}
719 
720 #ifdef CONFIG_NO_HZ
721 	if (tick_nohz_enabled)
722 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
723 #endif
724 }
725 #endif /* HIGH_RES_TIMERS */
726 
727 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
728 void tick_cancel_sched_timer(int cpu)
729 {
730 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
731 
732 # ifdef CONFIG_HIGH_RES_TIMERS
733 	if (ts->sched_timer.base)
734 		hrtimer_cancel(&ts->sched_timer);
735 # endif
736 
737 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
738 }
739 #endif
740 
741 /**
742  * Async notification about clocksource changes
743  */
744 void tick_clock_notify(void)
745 {
746 	int cpu;
747 
748 	for_each_possible_cpu(cpu)
749 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
750 }
751 
752 /*
753  * Async notification about clock event changes
754  */
755 void tick_oneshot_notify(void)
756 {
757 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
758 
759 	set_bit(0, &ts->check_clocks);
760 }
761 
762 /**
763  * Check, if a change happened, which makes oneshot possible.
764  *
765  * Called cyclic from the hrtimer softirq (driven by the timer
766  * softirq) allow_nohz signals, that we can switch into low-res nohz
767  * mode, because high resolution timers are disabled (either compile
768  * or runtime).
769  */
770 int tick_check_oneshot_change(int allow_nohz)
771 {
772 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
773 
774 	if (!test_and_clear_bit(0, &ts->check_clocks))
775 		return 0;
776 
777 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
778 		return 0;
779 
780 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
781 		return 0;
782 
783 	if (!allow_nohz)
784 		return 1;
785 
786 	tick_nohz_switch_to_nohz();
787 	return 0;
788 }
789