1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 #include <linux/module.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by xtime_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding xtime_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with xtime_lock held */ 60 write_seqlock(&xtime_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&xtime_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&xtime_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&xtime_lock); 99 return period; 100 } 101 102 /* 103 * NOHZ - aka dynamic tick functionality 104 */ 105 #ifdef CONFIG_NO_HZ 106 /* 107 * NO HZ enabled ? 108 */ 109 static int tick_nohz_enabled __read_mostly = 1; 110 111 /* 112 * Enable / Disable tickless mode 113 */ 114 static int __init setup_tick_nohz(char *str) 115 { 116 if (!strcmp(str, "off")) 117 tick_nohz_enabled = 0; 118 else if (!strcmp(str, "on")) 119 tick_nohz_enabled = 1; 120 else 121 return 0; 122 return 1; 123 } 124 125 __setup("nohz=", setup_tick_nohz); 126 127 /** 128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 129 * 130 * Called from interrupt entry when the CPU was idle 131 * 132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 133 * must be updated. Otherwise an interrupt handler could use a stale jiffy 134 * value. We do this unconditionally on any cpu, as we don't know whether the 135 * cpu, which has the update task assigned is in a long sleep. 136 */ 137 static void tick_nohz_update_jiffies(void) 138 { 139 int cpu = smp_processor_id(); 140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 141 unsigned long flags; 142 ktime_t now; 143 144 if (!ts->tick_stopped) 145 return; 146 147 cpumask_clear_cpu(cpu, nohz_cpu_mask); 148 now = ktime_get(); 149 ts->idle_waketime = now; 150 151 local_irq_save(flags); 152 tick_do_update_jiffies64(now); 153 local_irq_restore(flags); 154 155 touch_softlockup_watchdog(); 156 } 157 158 static void tick_nohz_stop_idle(int cpu) 159 { 160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 161 162 if (ts->idle_active) { 163 ktime_t now, delta; 164 now = ktime_get(); 165 delta = ktime_sub(now, ts->idle_entrytime); 166 ts->idle_lastupdate = now; 167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 168 ts->idle_active = 0; 169 170 sched_clock_idle_wakeup_event(0); 171 } 172 } 173 174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 175 { 176 ktime_t now, delta; 177 178 now = ktime_get(); 179 if (ts->idle_active) { 180 delta = ktime_sub(now, ts->idle_entrytime); 181 ts->idle_lastupdate = now; 182 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 183 } 184 ts->idle_entrytime = now; 185 ts->idle_active = 1; 186 sched_clock_idle_sleep_event(); 187 return now; 188 } 189 190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 191 { 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 193 194 if (!tick_nohz_enabled) 195 return -1; 196 197 if (ts->idle_active) 198 *last_update_time = ktime_to_us(ts->idle_lastupdate); 199 else 200 *last_update_time = ktime_to_us(ktime_get()); 201 202 return ktime_to_us(ts->idle_sleeptime); 203 } 204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 205 206 /** 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 208 * 209 * When the next event is more than a tick into the future, stop the idle tick 210 * Called either from the idle loop or from irq_exit() when an idle period was 211 * just interrupted by an interrupt which did not cause a reschedule. 212 */ 213 void tick_nohz_stop_sched_tick(int inidle) 214 { 215 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 216 struct tick_sched *ts; 217 ktime_t last_update, expires, now; 218 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 219 int cpu; 220 221 local_irq_save(flags); 222 223 cpu = smp_processor_id(); 224 ts = &per_cpu(tick_cpu_sched, cpu); 225 226 /* 227 * Call to tick_nohz_start_idle stops the last_update_time from being 228 * updated. Thus, it must not be called in the event we are called from 229 * irq_exit() with the prior state different than idle. 230 */ 231 if (!inidle && !ts->inidle) 232 goto end; 233 234 /* 235 * Set ts->inidle unconditionally. Even if the system did not 236 * switch to NOHZ mode the cpu frequency governers rely on the 237 * update of the idle time accounting in tick_nohz_start_idle(). 238 */ 239 ts->inidle = 1; 240 241 now = tick_nohz_start_idle(ts); 242 243 /* 244 * If this cpu is offline and it is the one which updates 245 * jiffies, then give up the assignment and let it be taken by 246 * the cpu which runs the tick timer next. If we don't drop 247 * this here the jiffies might be stale and do_timer() never 248 * invoked. 249 */ 250 if (unlikely(!cpu_online(cpu))) { 251 if (cpu == tick_do_timer_cpu) 252 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 253 } 254 255 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 256 goto end; 257 258 if (need_resched()) 259 goto end; 260 261 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 262 static int ratelimit; 263 264 if (ratelimit < 10) { 265 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 266 local_softirq_pending()); 267 ratelimit++; 268 } 269 goto end; 270 } 271 272 ts->idle_calls++; 273 /* Read jiffies and the time when jiffies were updated last */ 274 do { 275 seq = read_seqbegin(&xtime_lock); 276 last_update = last_jiffies_update; 277 last_jiffies = jiffies; 278 } while (read_seqretry(&xtime_lock, seq)); 279 280 /* Get the next timer wheel timer */ 281 next_jiffies = get_next_timer_interrupt(last_jiffies); 282 delta_jiffies = next_jiffies - last_jiffies; 283 284 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu)) 285 delta_jiffies = 1; 286 /* 287 * Do not stop the tick, if we are only one off 288 * or if the cpu is required for rcu 289 */ 290 if (!ts->tick_stopped && delta_jiffies == 1) 291 goto out; 292 293 /* Schedule the tick, if we are at least one jiffie off */ 294 if ((long)delta_jiffies >= 1) { 295 296 /* 297 * calculate the expiry time for the next timer wheel 298 * timer 299 */ 300 expires = ktime_add_ns(last_update, tick_period.tv64 * 301 delta_jiffies); 302 303 /* 304 * If this cpu is the one which updates jiffies, then 305 * give up the assignment and let it be taken by the 306 * cpu which runs the tick timer next, which might be 307 * this cpu as well. If we don't drop this here the 308 * jiffies might be stale and do_timer() never 309 * invoked. 310 */ 311 if (cpu == tick_do_timer_cpu) 312 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 313 314 if (delta_jiffies > 1) 315 cpumask_set_cpu(cpu, nohz_cpu_mask); 316 317 /* Skip reprogram of event if its not changed */ 318 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 319 goto out; 320 321 /* 322 * nohz_stop_sched_tick can be called several times before 323 * the nohz_restart_sched_tick is called. This happens when 324 * interrupts arrive which do not cause a reschedule. In the 325 * first call we save the current tick time, so we can restart 326 * the scheduler tick in nohz_restart_sched_tick. 327 */ 328 if (!ts->tick_stopped) { 329 if (select_nohz_load_balancer(1)) { 330 /* 331 * sched tick not stopped! 332 */ 333 cpumask_clear_cpu(cpu, nohz_cpu_mask); 334 goto out; 335 } 336 337 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 338 ts->tick_stopped = 1; 339 ts->idle_jiffies = last_jiffies; 340 rcu_enter_nohz(); 341 } 342 343 ts->idle_sleeps++; 344 345 /* 346 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 347 * there is no timer pending or at least extremly far 348 * into the future (12 days for HZ=1000). In this case 349 * we simply stop the tick timer: 350 */ 351 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 352 ts->idle_expires.tv64 = KTIME_MAX; 353 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 354 hrtimer_cancel(&ts->sched_timer); 355 goto out; 356 } 357 358 /* Mark expiries */ 359 ts->idle_expires = expires; 360 361 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 362 hrtimer_start(&ts->sched_timer, expires, 363 HRTIMER_MODE_ABS_PINNED); 364 /* Check, if the timer was already in the past */ 365 if (hrtimer_active(&ts->sched_timer)) 366 goto out; 367 } else if (!tick_program_event(expires, 0)) 368 goto out; 369 /* 370 * We are past the event already. So we crossed a 371 * jiffie boundary. Update jiffies and raise the 372 * softirq. 373 */ 374 tick_do_update_jiffies64(ktime_get()); 375 cpumask_clear_cpu(cpu, nohz_cpu_mask); 376 } 377 raise_softirq_irqoff(TIMER_SOFTIRQ); 378 out: 379 ts->next_jiffies = next_jiffies; 380 ts->last_jiffies = last_jiffies; 381 ts->sleep_length = ktime_sub(dev->next_event, now); 382 end: 383 local_irq_restore(flags); 384 } 385 386 /** 387 * tick_nohz_get_sleep_length - return the length of the current sleep 388 * 389 * Called from power state control code with interrupts disabled 390 */ 391 ktime_t tick_nohz_get_sleep_length(void) 392 { 393 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 394 395 return ts->sleep_length; 396 } 397 398 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 399 { 400 hrtimer_cancel(&ts->sched_timer); 401 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 402 403 while (1) { 404 /* Forward the time to expire in the future */ 405 hrtimer_forward(&ts->sched_timer, now, tick_period); 406 407 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 408 hrtimer_start_expires(&ts->sched_timer, 409 HRTIMER_MODE_ABS_PINNED); 410 /* Check, if the timer was already in the past */ 411 if (hrtimer_active(&ts->sched_timer)) 412 break; 413 } else { 414 if (!tick_program_event( 415 hrtimer_get_expires(&ts->sched_timer), 0)) 416 break; 417 } 418 /* Update jiffies and reread time */ 419 tick_do_update_jiffies64(now); 420 now = ktime_get(); 421 } 422 } 423 424 /** 425 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 426 * 427 * Restart the idle tick when the CPU is woken up from idle 428 */ 429 void tick_nohz_restart_sched_tick(void) 430 { 431 int cpu = smp_processor_id(); 432 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 434 unsigned long ticks; 435 #endif 436 ktime_t now; 437 438 local_irq_disable(); 439 tick_nohz_stop_idle(cpu); 440 441 if (!ts->inidle || !ts->tick_stopped) { 442 ts->inidle = 0; 443 local_irq_enable(); 444 return; 445 } 446 447 ts->inidle = 0; 448 449 rcu_exit_nohz(); 450 451 /* Update jiffies first */ 452 select_nohz_load_balancer(0); 453 now = ktime_get(); 454 tick_do_update_jiffies64(now); 455 cpumask_clear_cpu(cpu, nohz_cpu_mask); 456 457 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 458 /* 459 * We stopped the tick in idle. Update process times would miss the 460 * time we slept as update_process_times does only a 1 tick 461 * accounting. Enforce that this is accounted to idle ! 462 */ 463 ticks = jiffies - ts->idle_jiffies; 464 /* 465 * We might be one off. Do not randomly account a huge number of ticks! 466 */ 467 if (ticks && ticks < LONG_MAX) 468 account_idle_ticks(ticks); 469 #endif 470 471 touch_softlockup_watchdog(); 472 /* 473 * Cancel the scheduled timer and restore the tick 474 */ 475 ts->tick_stopped = 0; 476 ts->idle_exittime = now; 477 478 tick_nohz_restart(ts, now); 479 480 local_irq_enable(); 481 } 482 483 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 484 { 485 hrtimer_forward(&ts->sched_timer, now, tick_period); 486 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 487 } 488 489 /* 490 * The nohz low res interrupt handler 491 */ 492 static void tick_nohz_handler(struct clock_event_device *dev) 493 { 494 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 495 struct pt_regs *regs = get_irq_regs(); 496 int cpu = smp_processor_id(); 497 ktime_t now = ktime_get(); 498 499 dev->next_event.tv64 = KTIME_MAX; 500 501 /* 502 * Check if the do_timer duty was dropped. We don't care about 503 * concurrency: This happens only when the cpu in charge went 504 * into a long sleep. If two cpus happen to assign themself to 505 * this duty, then the jiffies update is still serialized by 506 * xtime_lock. 507 */ 508 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 509 tick_do_timer_cpu = cpu; 510 511 /* Check, if the jiffies need an update */ 512 if (tick_do_timer_cpu == cpu) 513 tick_do_update_jiffies64(now); 514 515 /* 516 * When we are idle and the tick is stopped, we have to touch 517 * the watchdog as we might not schedule for a really long 518 * time. This happens on complete idle SMP systems while 519 * waiting on the login prompt. We also increment the "start 520 * of idle" jiffy stamp so the idle accounting adjustment we 521 * do when we go busy again does not account too much ticks. 522 */ 523 if (ts->tick_stopped) { 524 touch_softlockup_watchdog(); 525 ts->idle_jiffies++; 526 } 527 528 update_process_times(user_mode(regs)); 529 profile_tick(CPU_PROFILING); 530 531 while (tick_nohz_reprogram(ts, now)) { 532 now = ktime_get(); 533 tick_do_update_jiffies64(now); 534 } 535 } 536 537 /** 538 * tick_nohz_switch_to_nohz - switch to nohz mode 539 */ 540 static void tick_nohz_switch_to_nohz(void) 541 { 542 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 543 ktime_t next; 544 545 if (!tick_nohz_enabled) 546 return; 547 548 local_irq_disable(); 549 if (tick_switch_to_oneshot(tick_nohz_handler)) { 550 local_irq_enable(); 551 return; 552 } 553 554 ts->nohz_mode = NOHZ_MODE_LOWRES; 555 556 /* 557 * Recycle the hrtimer in ts, so we can share the 558 * hrtimer_forward with the highres code. 559 */ 560 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 561 /* Get the next period */ 562 next = tick_init_jiffy_update(); 563 564 for (;;) { 565 hrtimer_set_expires(&ts->sched_timer, next); 566 if (!tick_program_event(next, 0)) 567 break; 568 next = ktime_add(next, tick_period); 569 } 570 local_irq_enable(); 571 572 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 573 smp_processor_id()); 574 } 575 576 /* 577 * When NOHZ is enabled and the tick is stopped, we need to kick the 578 * tick timer from irq_enter() so that the jiffies update is kept 579 * alive during long running softirqs. That's ugly as hell, but 580 * correctness is key even if we need to fix the offending softirq in 581 * the first place. 582 * 583 * Note, this is different to tick_nohz_restart. We just kick the 584 * timer and do not touch the other magic bits which need to be done 585 * when idle is left. 586 */ 587 static void tick_nohz_kick_tick(int cpu) 588 { 589 #if 0 590 /* Switch back to 2.6.27 behaviour */ 591 592 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 593 ktime_t delta, now; 594 595 if (!ts->tick_stopped) 596 return; 597 598 /* 599 * Do not touch the tick device, when the next expiry is either 600 * already reached or less/equal than the tick period. 601 */ 602 now = ktime_get(); 603 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 604 if (delta.tv64 <= tick_period.tv64) 605 return; 606 607 tick_nohz_restart(ts, now); 608 #endif 609 } 610 611 #else 612 613 static inline void tick_nohz_switch_to_nohz(void) { } 614 615 #endif /* NO_HZ */ 616 617 /* 618 * Called from irq_enter to notify about the possible interruption of idle() 619 */ 620 void tick_check_idle(int cpu) 621 { 622 tick_check_oneshot_broadcast(cpu); 623 #ifdef CONFIG_NO_HZ 624 tick_nohz_stop_idle(cpu); 625 tick_nohz_update_jiffies(); 626 tick_nohz_kick_tick(cpu); 627 #endif 628 } 629 630 /* 631 * High resolution timer specific code 632 */ 633 #ifdef CONFIG_HIGH_RES_TIMERS 634 /* 635 * We rearm the timer until we get disabled by the idle code. 636 * Called with interrupts disabled and timer->base->cpu_base->lock held. 637 */ 638 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 639 { 640 struct tick_sched *ts = 641 container_of(timer, struct tick_sched, sched_timer); 642 struct pt_regs *regs = get_irq_regs(); 643 ktime_t now = ktime_get(); 644 int cpu = smp_processor_id(); 645 646 #ifdef CONFIG_NO_HZ 647 /* 648 * Check if the do_timer duty was dropped. We don't care about 649 * concurrency: This happens only when the cpu in charge went 650 * into a long sleep. If two cpus happen to assign themself to 651 * this duty, then the jiffies update is still serialized by 652 * xtime_lock. 653 */ 654 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 655 tick_do_timer_cpu = cpu; 656 #endif 657 658 /* Check, if the jiffies need an update */ 659 if (tick_do_timer_cpu == cpu) 660 tick_do_update_jiffies64(now); 661 662 /* 663 * Do not call, when we are not in irq context and have 664 * no valid regs pointer 665 */ 666 if (regs) { 667 /* 668 * When we are idle and the tick is stopped, we have to touch 669 * the watchdog as we might not schedule for a really long 670 * time. This happens on complete idle SMP systems while 671 * waiting on the login prompt. We also increment the "start of 672 * idle" jiffy stamp so the idle accounting adjustment we do 673 * when we go busy again does not account too much ticks. 674 */ 675 if (ts->tick_stopped) { 676 touch_softlockup_watchdog(); 677 ts->idle_jiffies++; 678 } 679 update_process_times(user_mode(regs)); 680 profile_tick(CPU_PROFILING); 681 } 682 683 hrtimer_forward(timer, now, tick_period); 684 685 return HRTIMER_RESTART; 686 } 687 688 /** 689 * tick_setup_sched_timer - setup the tick emulation timer 690 */ 691 void tick_setup_sched_timer(void) 692 { 693 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 694 ktime_t now = ktime_get(); 695 u64 offset; 696 697 /* 698 * Emulate tick processing via per-CPU hrtimers: 699 */ 700 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 701 ts->sched_timer.function = tick_sched_timer; 702 703 /* Get the next period (per cpu) */ 704 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 705 offset = ktime_to_ns(tick_period) >> 1; 706 do_div(offset, num_possible_cpus()); 707 offset *= smp_processor_id(); 708 hrtimer_add_expires_ns(&ts->sched_timer, offset); 709 710 for (;;) { 711 hrtimer_forward(&ts->sched_timer, now, tick_period); 712 hrtimer_start_expires(&ts->sched_timer, 713 HRTIMER_MODE_ABS_PINNED); 714 /* Check, if the timer was already in the past */ 715 if (hrtimer_active(&ts->sched_timer)) 716 break; 717 now = ktime_get(); 718 } 719 720 #ifdef CONFIG_NO_HZ 721 if (tick_nohz_enabled) 722 ts->nohz_mode = NOHZ_MODE_HIGHRES; 723 #endif 724 } 725 #endif /* HIGH_RES_TIMERS */ 726 727 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 728 void tick_cancel_sched_timer(int cpu) 729 { 730 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 731 732 # ifdef CONFIG_HIGH_RES_TIMERS 733 if (ts->sched_timer.base) 734 hrtimer_cancel(&ts->sched_timer); 735 # endif 736 737 ts->nohz_mode = NOHZ_MODE_INACTIVE; 738 } 739 #endif 740 741 /** 742 * Async notification about clocksource changes 743 */ 744 void tick_clock_notify(void) 745 { 746 int cpu; 747 748 for_each_possible_cpu(cpu) 749 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 750 } 751 752 /* 753 * Async notification about clock event changes 754 */ 755 void tick_oneshot_notify(void) 756 { 757 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 758 759 set_bit(0, &ts->check_clocks); 760 } 761 762 /** 763 * Check, if a change happened, which makes oneshot possible. 764 * 765 * Called cyclic from the hrtimer softirq (driven by the timer 766 * softirq) allow_nohz signals, that we can switch into low-res nohz 767 * mode, because high resolution timers are disabled (either compile 768 * or runtime). 769 */ 770 int tick_check_oneshot_change(int allow_nohz) 771 { 772 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 773 774 if (!test_and_clear_bit(0, &ts->check_clocks)) 775 return 0; 776 777 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 778 return 0; 779 780 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 781 return 0; 782 783 if (!allow_nohz) 784 return 1; 785 786 tick_nohz_switch_to_nohz(); 787 return 0; 788 } 789