xref: /linux/kernel/time/tick-sched.c (revision 61ffb9d27860769c5d5596f6e4cca3cded2755e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 * The READ_ONCE() pairs with two updates done later in this function.
62 	 */
63 	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 	if (delta < tick_period)
65 		return;
66 
67 	/* Reevaluate with jiffies_lock held */
68 	write_seqlock(&jiffies_lock);
69 
70 	delta = ktime_sub(now, last_jiffies_update);
71 	if (delta >= tick_period) {
72 
73 		delta = ktime_sub(delta, tick_period);
74 		/* Pairs with the lockless read in this function. */
75 		WRITE_ONCE(last_jiffies_update,
76 			   ktime_add(last_jiffies_update, tick_period));
77 
78 		/* Slow path for long timeouts */
79 		if (unlikely(delta >= tick_period)) {
80 			s64 incr = ktime_to_ns(tick_period);
81 
82 			ticks = ktime_divns(delta, incr);
83 
84 			/* Pairs with the lockless read in this function. */
85 			WRITE_ONCE(last_jiffies_update,
86 				   ktime_add_ns(last_jiffies_update,
87 						incr * ticks));
88 		}
89 		do_timer(++ticks);
90 
91 		/* Keep the tick_next_period variable up to date */
92 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
93 	} else {
94 		write_sequnlock(&jiffies_lock);
95 		return;
96 	}
97 	write_sequnlock(&jiffies_lock);
98 	update_wall_time();
99 }
100 
101 /*
102  * Initialize and return retrieve the jiffies update.
103  */
104 static ktime_t tick_init_jiffy_update(void)
105 {
106 	ktime_t period;
107 
108 	write_seqlock(&jiffies_lock);
109 	/* Did we start the jiffies update yet ? */
110 	if (last_jiffies_update == 0)
111 		last_jiffies_update = tick_next_period;
112 	period = last_jiffies_update;
113 	write_sequnlock(&jiffies_lock);
114 	return period;
115 }
116 
117 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
118 {
119 	int cpu = smp_processor_id();
120 
121 #ifdef CONFIG_NO_HZ_COMMON
122 	/*
123 	 * Check if the do_timer duty was dropped. We don't care about
124 	 * concurrency: This happens only when the CPU in charge went
125 	 * into a long sleep. If two CPUs happen to assign themselves to
126 	 * this duty, then the jiffies update is still serialized by
127 	 * jiffies_lock.
128 	 *
129 	 * If nohz_full is enabled, this should not happen because the
130 	 * tick_do_timer_cpu never relinquishes.
131 	 */
132 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
133 #ifdef CONFIG_NO_HZ_FULL
134 		WARN_ON(tick_nohz_full_running);
135 #endif
136 		tick_do_timer_cpu = cpu;
137 	}
138 #endif
139 
140 	/* Check, if the jiffies need an update */
141 	if (tick_do_timer_cpu == cpu)
142 		tick_do_update_jiffies64(now);
143 
144 	if (ts->inidle)
145 		ts->got_idle_tick = 1;
146 }
147 
148 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
149 {
150 #ifdef CONFIG_NO_HZ_COMMON
151 	/*
152 	 * When we are idle and the tick is stopped, we have to touch
153 	 * the watchdog as we might not schedule for a really long
154 	 * time. This happens on complete idle SMP systems while
155 	 * waiting on the login prompt. We also increment the "start of
156 	 * idle" jiffy stamp so the idle accounting adjustment we do
157 	 * when we go busy again does not account too much ticks.
158 	 */
159 	if (ts->tick_stopped) {
160 		touch_softlockup_watchdog_sched();
161 		if (is_idle_task(current))
162 			ts->idle_jiffies++;
163 		/*
164 		 * In case the current tick fired too early past its expected
165 		 * expiration, make sure we don't bypass the next clock reprogramming
166 		 * to the same deadline.
167 		 */
168 		ts->next_tick = 0;
169 	}
170 #endif
171 	update_process_times(user_mode(regs));
172 	profile_tick(CPU_PROFILING);
173 }
174 #endif
175 
176 #ifdef CONFIG_NO_HZ_FULL
177 cpumask_var_t tick_nohz_full_mask;
178 bool tick_nohz_full_running;
179 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
180 static atomic_t tick_dep_mask;
181 
182 static bool check_tick_dependency(atomic_t *dep)
183 {
184 	int val = atomic_read(dep);
185 
186 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
187 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
192 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
193 		return true;
194 	}
195 
196 	if (val & TICK_DEP_MASK_SCHED) {
197 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
198 		return true;
199 	}
200 
201 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
202 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
203 		return true;
204 	}
205 
206 	if (val & TICK_DEP_MASK_RCU) {
207 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
208 		return true;
209 	}
210 
211 	return false;
212 }
213 
214 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
215 {
216 	lockdep_assert_irqs_disabled();
217 
218 	if (unlikely(!cpu_online(cpu)))
219 		return false;
220 
221 	if (check_tick_dependency(&tick_dep_mask))
222 		return false;
223 
224 	if (check_tick_dependency(&ts->tick_dep_mask))
225 		return false;
226 
227 	if (check_tick_dependency(&current->tick_dep_mask))
228 		return false;
229 
230 	if (check_tick_dependency(&current->signal->tick_dep_mask))
231 		return false;
232 
233 	return true;
234 }
235 
236 static void nohz_full_kick_func(struct irq_work *work)
237 {
238 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
239 }
240 
241 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
242 	.func = nohz_full_kick_func,
243 };
244 
245 /*
246  * Kick this CPU if it's full dynticks in order to force it to
247  * re-evaluate its dependency on the tick and restart it if necessary.
248  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
249  * is NMI safe.
250  */
251 static void tick_nohz_full_kick(void)
252 {
253 	if (!tick_nohz_full_cpu(smp_processor_id()))
254 		return;
255 
256 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
257 }
258 
259 /*
260  * Kick the CPU if it's full dynticks in order to force it to
261  * re-evaluate its dependency on the tick and restart it if necessary.
262  */
263 void tick_nohz_full_kick_cpu(int cpu)
264 {
265 	if (!tick_nohz_full_cpu(cpu))
266 		return;
267 
268 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
269 }
270 
271 /*
272  * Kick all full dynticks CPUs in order to force these to re-evaluate
273  * their dependency on the tick and restart it if necessary.
274  */
275 static void tick_nohz_full_kick_all(void)
276 {
277 	int cpu;
278 
279 	if (!tick_nohz_full_running)
280 		return;
281 
282 	preempt_disable();
283 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
284 		tick_nohz_full_kick_cpu(cpu);
285 	preempt_enable();
286 }
287 
288 static void tick_nohz_dep_set_all(atomic_t *dep,
289 				  enum tick_dep_bits bit)
290 {
291 	int prev;
292 
293 	prev = atomic_fetch_or(BIT(bit), dep);
294 	if (!prev)
295 		tick_nohz_full_kick_all();
296 }
297 
298 /*
299  * Set a global tick dependency. Used by perf events that rely on freq and
300  * by unstable clock.
301  */
302 void tick_nohz_dep_set(enum tick_dep_bits bit)
303 {
304 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
305 }
306 
307 void tick_nohz_dep_clear(enum tick_dep_bits bit)
308 {
309 	atomic_andnot(BIT(bit), &tick_dep_mask);
310 }
311 
312 /*
313  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
314  * manage events throttling.
315  */
316 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
317 {
318 	int prev;
319 	struct tick_sched *ts;
320 
321 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
322 
323 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
324 	if (!prev) {
325 		preempt_disable();
326 		/* Perf needs local kick that is NMI safe */
327 		if (cpu == smp_processor_id()) {
328 			tick_nohz_full_kick();
329 		} else {
330 			/* Remote irq work not NMI-safe */
331 			if (!WARN_ON_ONCE(in_nmi()))
332 				tick_nohz_full_kick_cpu(cpu);
333 		}
334 		preempt_enable();
335 	}
336 }
337 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
338 
339 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
340 {
341 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
342 
343 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
344 }
345 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
346 
347 /*
348  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
349  * per task timers.
350  */
351 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
352 {
353 	/*
354 	 * We could optimize this with just kicking the target running the task
355 	 * if that noise matters for nohz full users.
356 	 */
357 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
358 }
359 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
360 
361 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
362 {
363 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
364 }
365 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
366 
367 /*
368  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
369  * per process timers.
370  */
371 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
372 {
373 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
374 }
375 
376 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
377 {
378 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
379 }
380 
381 /*
382  * Re-evaluate the need for the tick as we switch the current task.
383  * It might need the tick due to per task/process properties:
384  * perf events, posix CPU timers, ...
385  */
386 void __tick_nohz_task_switch(void)
387 {
388 	unsigned long flags;
389 	struct tick_sched *ts;
390 
391 	local_irq_save(flags);
392 
393 	if (!tick_nohz_full_cpu(smp_processor_id()))
394 		goto out;
395 
396 	ts = this_cpu_ptr(&tick_cpu_sched);
397 
398 	if (ts->tick_stopped) {
399 		if (atomic_read(&current->tick_dep_mask) ||
400 		    atomic_read(&current->signal->tick_dep_mask))
401 			tick_nohz_full_kick();
402 	}
403 out:
404 	local_irq_restore(flags);
405 }
406 
407 /* Get the boot-time nohz CPU list from the kernel parameters. */
408 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
409 {
410 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
411 	cpumask_copy(tick_nohz_full_mask, cpumask);
412 	tick_nohz_full_running = true;
413 }
414 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
415 
416 static int tick_nohz_cpu_down(unsigned int cpu)
417 {
418 	/*
419 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
420 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
421 	 * CPUs. It must remain online when nohz full is enabled.
422 	 */
423 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
424 		return -EBUSY;
425 	return 0;
426 }
427 
428 void __init tick_nohz_init(void)
429 {
430 	int cpu, ret;
431 
432 	if (!tick_nohz_full_running)
433 		return;
434 
435 	/*
436 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
437 	 * locking contexts. But then we need irq work to raise its own
438 	 * interrupts to avoid circular dependency on the tick
439 	 */
440 	if (!arch_irq_work_has_interrupt()) {
441 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
442 		cpumask_clear(tick_nohz_full_mask);
443 		tick_nohz_full_running = false;
444 		return;
445 	}
446 
447 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
448 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
449 		cpu = smp_processor_id();
450 
451 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
452 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
453 				"for timekeeping\n", cpu);
454 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
455 		}
456 	}
457 
458 	for_each_cpu(cpu, tick_nohz_full_mask)
459 		context_tracking_cpu_set(cpu);
460 
461 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
462 					"kernel/nohz:predown", NULL,
463 					tick_nohz_cpu_down);
464 	WARN_ON(ret < 0);
465 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
466 		cpumask_pr_args(tick_nohz_full_mask));
467 }
468 #endif
469 
470 /*
471  * NOHZ - aka dynamic tick functionality
472  */
473 #ifdef CONFIG_NO_HZ_COMMON
474 /*
475  * NO HZ enabled ?
476  */
477 bool tick_nohz_enabled __read_mostly  = true;
478 unsigned long tick_nohz_active  __read_mostly;
479 /*
480  * Enable / Disable tickless mode
481  */
482 static int __init setup_tick_nohz(char *str)
483 {
484 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
485 }
486 
487 __setup("nohz=", setup_tick_nohz);
488 
489 bool tick_nohz_tick_stopped(void)
490 {
491 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
492 
493 	return ts->tick_stopped;
494 }
495 
496 bool tick_nohz_tick_stopped_cpu(int cpu)
497 {
498 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
499 
500 	return ts->tick_stopped;
501 }
502 
503 /**
504  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
505  *
506  * Called from interrupt entry when the CPU was idle
507  *
508  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509  * must be updated. Otherwise an interrupt handler could use a stale jiffy
510  * value. We do this unconditionally on any CPU, as we don't know whether the
511  * CPU, which has the update task assigned is in a long sleep.
512  */
513 static void tick_nohz_update_jiffies(ktime_t now)
514 {
515 	unsigned long flags;
516 
517 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
518 
519 	local_irq_save(flags);
520 	tick_do_update_jiffies64(now);
521 	local_irq_restore(flags);
522 
523 	touch_softlockup_watchdog_sched();
524 }
525 
526 /*
527  * Updates the per-CPU time idle statistics counters
528  */
529 static void
530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
531 {
532 	ktime_t delta;
533 
534 	if (ts->idle_active) {
535 		delta = ktime_sub(now, ts->idle_entrytime);
536 		if (nr_iowait_cpu(cpu) > 0)
537 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 		else
539 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540 		ts->idle_entrytime = now;
541 	}
542 
543 	if (last_update_time)
544 		*last_update_time = ktime_to_us(now);
545 
546 }
547 
548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
549 {
550 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551 	ts->idle_active = 0;
552 
553 	sched_clock_idle_wakeup_event();
554 }
555 
556 static void tick_nohz_start_idle(struct tick_sched *ts)
557 {
558 	ts->idle_entrytime = ktime_get();
559 	ts->idle_active = 1;
560 	sched_clock_idle_sleep_event();
561 }
562 
563 /**
564  * get_cpu_idle_time_us - get the total idle time of a CPU
565  * @cpu: CPU number to query
566  * @last_update_time: variable to store update time in. Do not update
567  * counters if NULL.
568  *
569  * Return the cumulative idle time (since boot) for a given
570  * CPU, in microseconds.
571  *
572  * This time is measured via accounting rather than sampling,
573  * and is as accurate as ktime_get() is.
574  *
575  * This function returns -1 if NOHZ is not enabled.
576  */
577 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
578 {
579 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
580 	ktime_t now, idle;
581 
582 	if (!tick_nohz_active)
583 		return -1;
584 
585 	now = ktime_get();
586 	if (last_update_time) {
587 		update_ts_time_stats(cpu, ts, now, last_update_time);
588 		idle = ts->idle_sleeptime;
589 	} else {
590 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
591 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
592 
593 			idle = ktime_add(ts->idle_sleeptime, delta);
594 		} else {
595 			idle = ts->idle_sleeptime;
596 		}
597 	}
598 
599 	return ktime_to_us(idle);
600 
601 }
602 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
603 
604 /**
605  * get_cpu_iowait_time_us - get the total iowait time of a CPU
606  * @cpu: CPU number to query
607  * @last_update_time: variable to store update time in. Do not update
608  * counters if NULL.
609  *
610  * Return the cumulative iowait time (since boot) for a given
611  * CPU, in microseconds.
612  *
613  * This time is measured via accounting rather than sampling,
614  * and is as accurate as ktime_get() is.
615  *
616  * This function returns -1 if NOHZ is not enabled.
617  */
618 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
619 {
620 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
621 	ktime_t now, iowait;
622 
623 	if (!tick_nohz_active)
624 		return -1;
625 
626 	now = ktime_get();
627 	if (last_update_time) {
628 		update_ts_time_stats(cpu, ts, now, last_update_time);
629 		iowait = ts->iowait_sleeptime;
630 	} else {
631 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
632 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
633 
634 			iowait = ktime_add(ts->iowait_sleeptime, delta);
635 		} else {
636 			iowait = ts->iowait_sleeptime;
637 		}
638 	}
639 
640 	return ktime_to_us(iowait);
641 }
642 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
643 
644 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
645 {
646 	hrtimer_cancel(&ts->sched_timer);
647 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
648 
649 	/* Forward the time to expire in the future */
650 	hrtimer_forward(&ts->sched_timer, now, tick_period);
651 
652 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
653 		hrtimer_start_expires(&ts->sched_timer,
654 				      HRTIMER_MODE_ABS_PINNED_HARD);
655 	} else {
656 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
657 	}
658 
659 	/*
660 	 * Reset to make sure next tick stop doesn't get fooled by past
661 	 * cached clock deadline.
662 	 */
663 	ts->next_tick = 0;
664 }
665 
666 static inline bool local_timer_softirq_pending(void)
667 {
668 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
669 }
670 
671 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
672 {
673 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
674 	unsigned long basejiff;
675 	unsigned int seq;
676 
677 	/* Read jiffies and the time when jiffies were updated last */
678 	do {
679 		seq = read_seqbegin(&jiffies_lock);
680 		basemono = last_jiffies_update;
681 		basejiff = jiffies;
682 	} while (read_seqretry(&jiffies_lock, seq));
683 	ts->last_jiffies = basejiff;
684 	ts->timer_expires_base = basemono;
685 
686 	/*
687 	 * Keep the periodic tick, when RCU, architecture or irq_work
688 	 * requests it.
689 	 * Aside of that check whether the local timer softirq is
690 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
691 	 * because there is an already expired timer, so it will request
692 	 * immeditate expiry, which rearms the hardware timer with a
693 	 * minimal delta which brings us back to this place
694 	 * immediately. Lather, rinse and repeat...
695 	 */
696 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
697 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
698 		next_tick = basemono + TICK_NSEC;
699 	} else {
700 		/*
701 		 * Get the next pending timer. If high resolution
702 		 * timers are enabled this only takes the timer wheel
703 		 * timers into account. If high resolution timers are
704 		 * disabled this also looks at the next expiring
705 		 * hrtimer.
706 		 */
707 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
708 		ts->next_timer = next_tmr;
709 		/* Take the next rcu event into account */
710 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
711 	}
712 
713 	/*
714 	 * If the tick is due in the next period, keep it ticking or
715 	 * force prod the timer.
716 	 */
717 	delta = next_tick - basemono;
718 	if (delta <= (u64)TICK_NSEC) {
719 		/*
720 		 * Tell the timer code that the base is not idle, i.e. undo
721 		 * the effect of get_next_timer_interrupt():
722 		 */
723 		timer_clear_idle();
724 		/*
725 		 * We've not stopped the tick yet, and there's a timer in the
726 		 * next period, so no point in stopping it either, bail.
727 		 */
728 		if (!ts->tick_stopped) {
729 			ts->timer_expires = 0;
730 			goto out;
731 		}
732 	}
733 
734 	/*
735 	 * If this CPU is the one which had the do_timer() duty last, we limit
736 	 * the sleep time to the timekeeping max_deferment value.
737 	 * Otherwise we can sleep as long as we want.
738 	 */
739 	delta = timekeeping_max_deferment();
740 	if (cpu != tick_do_timer_cpu &&
741 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
742 		delta = KTIME_MAX;
743 
744 	/* Calculate the next expiry time */
745 	if (delta < (KTIME_MAX - basemono))
746 		expires = basemono + delta;
747 	else
748 		expires = KTIME_MAX;
749 
750 	ts->timer_expires = min_t(u64, expires, next_tick);
751 
752 out:
753 	return ts->timer_expires;
754 }
755 
756 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
757 {
758 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
759 	u64 basemono = ts->timer_expires_base;
760 	u64 expires = ts->timer_expires;
761 	ktime_t tick = expires;
762 
763 	/* Make sure we won't be trying to stop it twice in a row. */
764 	ts->timer_expires_base = 0;
765 
766 	/*
767 	 * If this CPU is the one which updates jiffies, then give up
768 	 * the assignment and let it be taken by the CPU which runs
769 	 * the tick timer next, which might be this CPU as well. If we
770 	 * don't drop this here the jiffies might be stale and
771 	 * do_timer() never invoked. Keep track of the fact that it
772 	 * was the one which had the do_timer() duty last.
773 	 */
774 	if (cpu == tick_do_timer_cpu) {
775 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
776 		ts->do_timer_last = 1;
777 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
778 		ts->do_timer_last = 0;
779 	}
780 
781 	/* Skip reprogram of event if its not changed */
782 	if (ts->tick_stopped && (expires == ts->next_tick)) {
783 		/* Sanity check: make sure clockevent is actually programmed */
784 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
785 			return;
786 
787 		WARN_ON_ONCE(1);
788 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
789 			    basemono, ts->next_tick, dev->next_event,
790 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
791 	}
792 
793 	/*
794 	 * nohz_stop_sched_tick can be called several times before
795 	 * the nohz_restart_sched_tick is called. This happens when
796 	 * interrupts arrive which do not cause a reschedule. In the
797 	 * first call we save the current tick time, so we can restart
798 	 * the scheduler tick in nohz_restart_sched_tick.
799 	 */
800 	if (!ts->tick_stopped) {
801 		calc_load_nohz_start();
802 		quiet_vmstat();
803 
804 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
805 		ts->tick_stopped = 1;
806 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
807 	}
808 
809 	ts->next_tick = tick;
810 
811 	/*
812 	 * If the expiration time == KTIME_MAX, then we simply stop
813 	 * the tick timer.
814 	 */
815 	if (unlikely(expires == KTIME_MAX)) {
816 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
817 			hrtimer_cancel(&ts->sched_timer);
818 		return;
819 	}
820 
821 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
822 		hrtimer_start(&ts->sched_timer, tick,
823 			      HRTIMER_MODE_ABS_PINNED_HARD);
824 	} else {
825 		hrtimer_set_expires(&ts->sched_timer, tick);
826 		tick_program_event(tick, 1);
827 	}
828 }
829 
830 static void tick_nohz_retain_tick(struct tick_sched *ts)
831 {
832 	ts->timer_expires_base = 0;
833 }
834 
835 #ifdef CONFIG_NO_HZ_FULL
836 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
837 {
838 	if (tick_nohz_next_event(ts, cpu))
839 		tick_nohz_stop_tick(ts, cpu);
840 	else
841 		tick_nohz_retain_tick(ts);
842 }
843 #endif /* CONFIG_NO_HZ_FULL */
844 
845 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
846 {
847 	/* Update jiffies first */
848 	tick_do_update_jiffies64(now);
849 
850 	/*
851 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
852 	 * the clock forward checks in the enqueue path:
853 	 */
854 	timer_clear_idle();
855 
856 	calc_load_nohz_stop();
857 	touch_softlockup_watchdog_sched();
858 	/*
859 	 * Cancel the scheduled timer and restore the tick
860 	 */
861 	ts->tick_stopped  = 0;
862 	ts->idle_exittime = now;
863 
864 	tick_nohz_restart(ts, now);
865 }
866 
867 static void tick_nohz_full_update_tick(struct tick_sched *ts)
868 {
869 #ifdef CONFIG_NO_HZ_FULL
870 	int cpu = smp_processor_id();
871 
872 	if (!tick_nohz_full_cpu(cpu))
873 		return;
874 
875 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
876 		return;
877 
878 	if (can_stop_full_tick(cpu, ts))
879 		tick_nohz_stop_sched_tick(ts, cpu);
880 	else if (ts->tick_stopped)
881 		tick_nohz_restart_sched_tick(ts, ktime_get());
882 #endif
883 }
884 
885 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
886 {
887 	/*
888 	 * If this CPU is offline and it is the one which updates
889 	 * jiffies, then give up the assignment and let it be taken by
890 	 * the CPU which runs the tick timer next. If we don't drop
891 	 * this here the jiffies might be stale and do_timer() never
892 	 * invoked.
893 	 */
894 	if (unlikely(!cpu_online(cpu))) {
895 		if (cpu == tick_do_timer_cpu)
896 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
897 		/*
898 		 * Make sure the CPU doesn't get fooled by obsolete tick
899 		 * deadline if it comes back online later.
900 		 */
901 		ts->next_tick = 0;
902 		return false;
903 	}
904 
905 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
906 		return false;
907 
908 	if (need_resched())
909 		return false;
910 
911 	if (unlikely(local_softirq_pending())) {
912 		static int ratelimit;
913 
914 		if (ratelimit < 10 &&
915 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
916 			pr_warn("NOHZ: local_softirq_pending %02x\n",
917 				(unsigned int) local_softirq_pending());
918 			ratelimit++;
919 		}
920 		return false;
921 	}
922 
923 	if (tick_nohz_full_enabled()) {
924 		/*
925 		 * Keep the tick alive to guarantee timekeeping progression
926 		 * if there are full dynticks CPUs around
927 		 */
928 		if (tick_do_timer_cpu == cpu)
929 			return false;
930 		/*
931 		 * Boot safety: make sure the timekeeping duty has been
932 		 * assigned before entering dyntick-idle mode,
933 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
934 		 */
935 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
936 			return false;
937 
938 		/* Should not happen for nohz-full */
939 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
940 			return false;
941 	}
942 
943 	return true;
944 }
945 
946 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
947 {
948 	ktime_t expires;
949 	int cpu = smp_processor_id();
950 
951 	/*
952 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
953 	 * tick timer expiration time is known already.
954 	 */
955 	if (ts->timer_expires_base)
956 		expires = ts->timer_expires;
957 	else if (can_stop_idle_tick(cpu, ts))
958 		expires = tick_nohz_next_event(ts, cpu);
959 	else
960 		return;
961 
962 	ts->idle_calls++;
963 
964 	if (expires > 0LL) {
965 		int was_stopped = ts->tick_stopped;
966 
967 		tick_nohz_stop_tick(ts, cpu);
968 
969 		ts->idle_sleeps++;
970 		ts->idle_expires = expires;
971 
972 		if (!was_stopped && ts->tick_stopped) {
973 			ts->idle_jiffies = ts->last_jiffies;
974 			nohz_balance_enter_idle(cpu);
975 		}
976 	} else {
977 		tick_nohz_retain_tick(ts);
978 	}
979 }
980 
981 /**
982  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
983  *
984  * When the next event is more than a tick into the future, stop the idle tick
985  */
986 void tick_nohz_idle_stop_tick(void)
987 {
988 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
989 }
990 
991 void tick_nohz_idle_retain_tick(void)
992 {
993 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
994 	/*
995 	 * Undo the effect of get_next_timer_interrupt() called from
996 	 * tick_nohz_next_event().
997 	 */
998 	timer_clear_idle();
999 }
1000 
1001 /**
1002  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1003  *
1004  * Called when we start the idle loop.
1005  */
1006 void tick_nohz_idle_enter(void)
1007 {
1008 	struct tick_sched *ts;
1009 
1010 	lockdep_assert_irqs_enabled();
1011 
1012 	local_irq_disable();
1013 
1014 	ts = this_cpu_ptr(&tick_cpu_sched);
1015 
1016 	WARN_ON_ONCE(ts->timer_expires_base);
1017 
1018 	ts->inidle = 1;
1019 	tick_nohz_start_idle(ts);
1020 
1021 	local_irq_enable();
1022 }
1023 
1024 /**
1025  * tick_nohz_irq_exit - update next tick event from interrupt exit
1026  *
1027  * When an interrupt fires while we are idle and it doesn't cause
1028  * a reschedule, it may still add, modify or delete a timer, enqueue
1029  * an RCU callback, etc...
1030  * So we need to re-calculate and reprogram the next tick event.
1031  */
1032 void tick_nohz_irq_exit(void)
1033 {
1034 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1035 
1036 	if (ts->inidle)
1037 		tick_nohz_start_idle(ts);
1038 	else
1039 		tick_nohz_full_update_tick(ts);
1040 }
1041 
1042 /**
1043  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1044  */
1045 bool tick_nohz_idle_got_tick(void)
1046 {
1047 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1048 
1049 	if (ts->got_idle_tick) {
1050 		ts->got_idle_tick = 0;
1051 		return true;
1052 	}
1053 	return false;
1054 }
1055 
1056 /**
1057  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1058  * or the tick, whatever that expires first. Note that, if the tick has been
1059  * stopped, it returns the next hrtimer.
1060  *
1061  * Called from power state control code with interrupts disabled
1062  */
1063 ktime_t tick_nohz_get_next_hrtimer(void)
1064 {
1065 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1066 }
1067 
1068 /**
1069  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1070  * @delta_next: duration until the next event if the tick cannot be stopped
1071  *
1072  * Called from power state control code with interrupts disabled
1073  */
1074 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1075 {
1076 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1077 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1078 	int cpu = smp_processor_id();
1079 	/*
1080 	 * The idle entry time is expected to be a sufficient approximation of
1081 	 * the current time at this point.
1082 	 */
1083 	ktime_t now = ts->idle_entrytime;
1084 	ktime_t next_event;
1085 
1086 	WARN_ON_ONCE(!ts->inidle);
1087 
1088 	*delta_next = ktime_sub(dev->next_event, now);
1089 
1090 	if (!can_stop_idle_tick(cpu, ts))
1091 		return *delta_next;
1092 
1093 	next_event = tick_nohz_next_event(ts, cpu);
1094 	if (!next_event)
1095 		return *delta_next;
1096 
1097 	/*
1098 	 * If the next highres timer to expire is earlier than next_event, the
1099 	 * idle governor needs to know that.
1100 	 */
1101 	next_event = min_t(u64, next_event,
1102 			   hrtimer_next_event_without(&ts->sched_timer));
1103 
1104 	return ktime_sub(next_event, now);
1105 }
1106 
1107 /**
1108  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1109  * for a particular CPU.
1110  *
1111  * Called from the schedutil frequency scaling governor in scheduler context.
1112  */
1113 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1114 {
1115 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1116 
1117 	return ts->idle_calls;
1118 }
1119 
1120 /**
1121  * tick_nohz_get_idle_calls - return the current idle calls counter value
1122  *
1123  * Called from the schedutil frequency scaling governor in scheduler context.
1124  */
1125 unsigned long tick_nohz_get_idle_calls(void)
1126 {
1127 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1128 
1129 	return ts->idle_calls;
1130 }
1131 
1132 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1133 {
1134 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1135 	unsigned long ticks;
1136 
1137 	if (vtime_accounting_enabled_this_cpu())
1138 		return;
1139 	/*
1140 	 * We stopped the tick in idle. Update process times would miss the
1141 	 * time we slept as update_process_times does only a 1 tick
1142 	 * accounting. Enforce that this is accounted to idle !
1143 	 */
1144 	ticks = jiffies - ts->idle_jiffies;
1145 	/*
1146 	 * We might be one off. Do not randomly account a huge number of ticks!
1147 	 */
1148 	if (ticks && ticks < LONG_MAX)
1149 		account_idle_ticks(ticks);
1150 #endif
1151 }
1152 
1153 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1154 {
1155 	tick_nohz_restart_sched_tick(ts, now);
1156 	tick_nohz_account_idle_ticks(ts);
1157 }
1158 
1159 void tick_nohz_idle_restart_tick(void)
1160 {
1161 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162 
1163 	if (ts->tick_stopped)
1164 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1165 }
1166 
1167 /**
1168  * tick_nohz_idle_exit - restart the idle tick from the idle task
1169  *
1170  * Restart the idle tick when the CPU is woken up from idle
1171  * This also exit the RCU extended quiescent state. The CPU
1172  * can use RCU again after this function is called.
1173  */
1174 void tick_nohz_idle_exit(void)
1175 {
1176 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177 	bool idle_active, tick_stopped;
1178 	ktime_t now;
1179 
1180 	local_irq_disable();
1181 
1182 	WARN_ON_ONCE(!ts->inidle);
1183 	WARN_ON_ONCE(ts->timer_expires_base);
1184 
1185 	ts->inidle = 0;
1186 	idle_active = ts->idle_active;
1187 	tick_stopped = ts->tick_stopped;
1188 
1189 	if (idle_active || tick_stopped)
1190 		now = ktime_get();
1191 
1192 	if (idle_active)
1193 		tick_nohz_stop_idle(ts, now);
1194 
1195 	if (tick_stopped)
1196 		__tick_nohz_idle_restart_tick(ts, now);
1197 
1198 	local_irq_enable();
1199 }
1200 
1201 /*
1202  * The nohz low res interrupt handler
1203  */
1204 static void tick_nohz_handler(struct clock_event_device *dev)
1205 {
1206 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207 	struct pt_regs *regs = get_irq_regs();
1208 	ktime_t now = ktime_get();
1209 
1210 	dev->next_event = KTIME_MAX;
1211 
1212 	tick_sched_do_timer(ts, now);
1213 	tick_sched_handle(ts, regs);
1214 
1215 	/* No need to reprogram if we are running tickless  */
1216 	if (unlikely(ts->tick_stopped))
1217 		return;
1218 
1219 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1220 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1221 }
1222 
1223 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1224 {
1225 	if (!tick_nohz_enabled)
1226 		return;
1227 	ts->nohz_mode = mode;
1228 	/* One update is enough */
1229 	if (!test_and_set_bit(0, &tick_nohz_active))
1230 		timers_update_nohz();
1231 }
1232 
1233 /**
1234  * tick_nohz_switch_to_nohz - switch to nohz mode
1235  */
1236 static void tick_nohz_switch_to_nohz(void)
1237 {
1238 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1239 	ktime_t next;
1240 
1241 	if (!tick_nohz_enabled)
1242 		return;
1243 
1244 	if (tick_switch_to_oneshot(tick_nohz_handler))
1245 		return;
1246 
1247 	/*
1248 	 * Recycle the hrtimer in ts, so we can share the
1249 	 * hrtimer_forward with the highres code.
1250 	 */
1251 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1252 	/* Get the next period */
1253 	next = tick_init_jiffy_update();
1254 
1255 	hrtimer_set_expires(&ts->sched_timer, next);
1256 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1257 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1258 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1259 }
1260 
1261 static inline void tick_nohz_irq_enter(void)
1262 {
1263 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1264 	ktime_t now;
1265 
1266 	if (!ts->idle_active && !ts->tick_stopped)
1267 		return;
1268 	now = ktime_get();
1269 	if (ts->idle_active)
1270 		tick_nohz_stop_idle(ts, now);
1271 	if (ts->tick_stopped)
1272 		tick_nohz_update_jiffies(now);
1273 }
1274 
1275 #else
1276 
1277 static inline void tick_nohz_switch_to_nohz(void) { }
1278 static inline void tick_nohz_irq_enter(void) { }
1279 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1280 
1281 #endif /* CONFIG_NO_HZ_COMMON */
1282 
1283 /*
1284  * Called from irq_enter to notify about the possible interruption of idle()
1285  */
1286 void tick_irq_enter(void)
1287 {
1288 	tick_check_oneshot_broadcast_this_cpu();
1289 	tick_nohz_irq_enter();
1290 }
1291 
1292 /*
1293  * High resolution timer specific code
1294  */
1295 #ifdef CONFIG_HIGH_RES_TIMERS
1296 /*
1297  * We rearm the timer until we get disabled by the idle code.
1298  * Called with interrupts disabled.
1299  */
1300 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1301 {
1302 	struct tick_sched *ts =
1303 		container_of(timer, struct tick_sched, sched_timer);
1304 	struct pt_regs *regs = get_irq_regs();
1305 	ktime_t now = ktime_get();
1306 
1307 	tick_sched_do_timer(ts, now);
1308 
1309 	/*
1310 	 * Do not call, when we are not in irq context and have
1311 	 * no valid regs pointer
1312 	 */
1313 	if (regs)
1314 		tick_sched_handle(ts, regs);
1315 	else
1316 		ts->next_tick = 0;
1317 
1318 	/* No need to reprogram if we are in idle or full dynticks mode */
1319 	if (unlikely(ts->tick_stopped))
1320 		return HRTIMER_NORESTART;
1321 
1322 	hrtimer_forward(timer, now, tick_period);
1323 
1324 	return HRTIMER_RESTART;
1325 }
1326 
1327 static int sched_skew_tick;
1328 
1329 static int __init skew_tick(char *str)
1330 {
1331 	get_option(&str, &sched_skew_tick);
1332 
1333 	return 0;
1334 }
1335 early_param("skew_tick", skew_tick);
1336 
1337 /**
1338  * tick_setup_sched_timer - setup the tick emulation timer
1339  */
1340 void tick_setup_sched_timer(void)
1341 {
1342 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343 	ktime_t now = ktime_get();
1344 
1345 	/*
1346 	 * Emulate tick processing via per-CPU hrtimers:
1347 	 */
1348 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1349 	ts->sched_timer.function = tick_sched_timer;
1350 
1351 	/* Get the next period (per-CPU) */
1352 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1353 
1354 	/* Offset the tick to avert jiffies_lock contention. */
1355 	if (sched_skew_tick) {
1356 		u64 offset = ktime_to_ns(tick_period) >> 1;
1357 		do_div(offset, num_possible_cpus());
1358 		offset *= smp_processor_id();
1359 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1360 	}
1361 
1362 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1363 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1364 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1365 }
1366 #endif /* HIGH_RES_TIMERS */
1367 
1368 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1369 void tick_cancel_sched_timer(int cpu)
1370 {
1371 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1372 
1373 # ifdef CONFIG_HIGH_RES_TIMERS
1374 	if (ts->sched_timer.base)
1375 		hrtimer_cancel(&ts->sched_timer);
1376 # endif
1377 
1378 	memset(ts, 0, sizeof(*ts));
1379 }
1380 #endif
1381 
1382 /**
1383  * Async notification about clocksource changes
1384  */
1385 void tick_clock_notify(void)
1386 {
1387 	int cpu;
1388 
1389 	for_each_possible_cpu(cpu)
1390 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1391 }
1392 
1393 /*
1394  * Async notification about clock event changes
1395  */
1396 void tick_oneshot_notify(void)
1397 {
1398 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399 
1400 	set_bit(0, &ts->check_clocks);
1401 }
1402 
1403 /**
1404  * Check, if a change happened, which makes oneshot possible.
1405  *
1406  * Called cyclic from the hrtimer softirq (driven by the timer
1407  * softirq) allow_nohz signals, that we can switch into low-res nohz
1408  * mode, because high resolution timers are disabled (either compile
1409  * or runtime). Called with interrupts disabled.
1410  */
1411 int tick_check_oneshot_change(int allow_nohz)
1412 {
1413 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1414 
1415 	if (!test_and_clear_bit(0, &ts->check_clocks))
1416 		return 0;
1417 
1418 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1419 		return 0;
1420 
1421 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1422 		return 0;
1423 
1424 	if (!allow_nohz)
1425 		return 1;
1426 
1427 	tick_nohz_switch_to_nohz();
1428 	return 0;
1429 }
1430