1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/context_tracking.h> 26 27 #include <asm/irq_regs.h> 28 29 #include "tick-internal.h" 30 31 #include <trace/events/timer.h> 32 33 /* 34 * Per-CPU nohz control structure 35 */ 36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 44 /* 45 * The time, when the last jiffy update happened. Protected by jiffies_lock. 46 */ 47 static ktime_t last_jiffies_update; 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta < tick_period) 62 return; 63 64 /* Reevaluate with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta >= tick_period) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta >= tick_period)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } else { 88 write_sequnlock(&jiffies_lock); 89 return; 90 } 91 write_sequnlock(&jiffies_lock); 92 update_wall_time(); 93 } 94 95 /* 96 * Initialize and return retrieve the jiffies update. 97 */ 98 static ktime_t tick_init_jiffy_update(void) 99 { 100 ktime_t period; 101 102 write_seqlock(&jiffies_lock); 103 /* Did we start the jiffies update yet ? */ 104 if (last_jiffies_update == 0) 105 last_jiffies_update = tick_next_period; 106 period = last_jiffies_update; 107 write_sequnlock(&jiffies_lock); 108 return period; 109 } 110 111 112 static void tick_sched_do_timer(ktime_t now) 113 { 114 int cpu = smp_processor_id(); 115 116 #ifdef CONFIG_NO_HZ_COMMON 117 /* 118 * Check if the do_timer duty was dropped. We don't care about 119 * concurrency: This happens only when the CPU in charge went 120 * into a long sleep. If two CPUs happen to assign themselves to 121 * this duty, then the jiffies update is still serialized by 122 * jiffies_lock. 123 */ 124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 125 && !tick_nohz_full_cpu(cpu)) 126 tick_do_timer_cpu = cpu; 127 #endif 128 129 /* Check, if the jiffies need an update */ 130 if (tick_do_timer_cpu == cpu) 131 tick_do_update_jiffies64(now); 132 } 133 134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 135 { 136 #ifdef CONFIG_NO_HZ_COMMON 137 /* 138 * When we are idle and the tick is stopped, we have to touch 139 * the watchdog as we might not schedule for a really long 140 * time. This happens on complete idle SMP systems while 141 * waiting on the login prompt. We also increment the "start of 142 * idle" jiffy stamp so the idle accounting adjustment we do 143 * when we go busy again does not account too much ticks. 144 */ 145 if (ts->tick_stopped) { 146 touch_softlockup_watchdog_sched(); 147 if (is_idle_task(current)) 148 ts->idle_jiffies++; 149 } 150 #endif 151 update_process_times(user_mode(regs)); 152 profile_tick(CPU_PROFILING); 153 } 154 #endif 155 156 #ifdef CONFIG_NO_HZ_FULL 157 cpumask_var_t tick_nohz_full_mask; 158 cpumask_var_t housekeeping_mask; 159 bool tick_nohz_full_running; 160 static atomic_t tick_dep_mask; 161 162 static bool check_tick_dependency(atomic_t *dep) 163 { 164 int val = atomic_read(dep); 165 166 if (val & TICK_DEP_MASK_POSIX_TIMER) { 167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 168 return true; 169 } 170 171 if (val & TICK_DEP_MASK_PERF_EVENTS) { 172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 173 return true; 174 } 175 176 if (val & TICK_DEP_MASK_SCHED) { 177 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 183 return true; 184 } 185 186 return false; 187 } 188 189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 190 { 191 WARN_ON_ONCE(!irqs_disabled()); 192 193 if (unlikely(!cpu_online(cpu))) 194 return false; 195 196 if (check_tick_dependency(&tick_dep_mask)) 197 return false; 198 199 if (check_tick_dependency(&ts->tick_dep_mask)) 200 return false; 201 202 if (check_tick_dependency(¤t->tick_dep_mask)) 203 return false; 204 205 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 206 return false; 207 208 return true; 209 } 210 211 static void nohz_full_kick_func(struct irq_work *work) 212 { 213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 214 } 215 216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 217 .func = nohz_full_kick_func, 218 }; 219 220 /* 221 * Kick this CPU if it's full dynticks in order to force it to 222 * re-evaluate its dependency on the tick and restart it if necessary. 223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 224 * is NMI safe. 225 */ 226 static void tick_nohz_full_kick(void) 227 { 228 if (!tick_nohz_full_cpu(smp_processor_id())) 229 return; 230 231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 232 } 233 234 /* 235 * Kick the CPU if it's full dynticks in order to force it to 236 * re-evaluate its dependency on the tick and restart it if necessary. 237 */ 238 void tick_nohz_full_kick_cpu(int cpu) 239 { 240 if (!tick_nohz_full_cpu(cpu)) 241 return; 242 243 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 244 } 245 246 /* 247 * Kick all full dynticks CPUs in order to force these to re-evaluate 248 * their dependency on the tick and restart it if necessary. 249 */ 250 static void tick_nohz_full_kick_all(void) 251 { 252 int cpu; 253 254 if (!tick_nohz_full_running) 255 return; 256 257 preempt_disable(); 258 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 259 tick_nohz_full_kick_cpu(cpu); 260 preempt_enable(); 261 } 262 263 static void tick_nohz_dep_set_all(atomic_t *dep, 264 enum tick_dep_bits bit) 265 { 266 int prev; 267 268 prev = atomic_fetch_or(BIT(bit), dep); 269 if (!prev) 270 tick_nohz_full_kick_all(); 271 } 272 273 /* 274 * Set a global tick dependency. Used by perf events that rely on freq and 275 * by unstable clock. 276 */ 277 void tick_nohz_dep_set(enum tick_dep_bits bit) 278 { 279 tick_nohz_dep_set_all(&tick_dep_mask, bit); 280 } 281 282 void tick_nohz_dep_clear(enum tick_dep_bits bit) 283 { 284 atomic_andnot(BIT(bit), &tick_dep_mask); 285 } 286 287 /* 288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 289 * manage events throttling. 290 */ 291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 292 { 293 int prev; 294 struct tick_sched *ts; 295 296 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 297 298 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 299 if (!prev) { 300 preempt_disable(); 301 /* Perf needs local kick that is NMI safe */ 302 if (cpu == smp_processor_id()) { 303 tick_nohz_full_kick(); 304 } else { 305 /* Remote irq work not NMI-safe */ 306 if (!WARN_ON_ONCE(in_nmi())) 307 tick_nohz_full_kick_cpu(cpu); 308 } 309 preempt_enable(); 310 } 311 } 312 313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 314 { 315 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 316 317 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 318 } 319 320 /* 321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 322 * per task timers. 323 */ 324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 325 { 326 /* 327 * We could optimize this with just kicking the target running the task 328 * if that noise matters for nohz full users. 329 */ 330 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 331 } 332 333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 334 { 335 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 336 } 337 338 /* 339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 340 * per process timers. 341 */ 342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 343 { 344 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 345 } 346 347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 348 { 349 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 350 } 351 352 /* 353 * Re-evaluate the need for the tick as we switch the current task. 354 * It might need the tick due to per task/process properties: 355 * perf events, posix CPU timers, ... 356 */ 357 void __tick_nohz_task_switch(void) 358 { 359 unsigned long flags; 360 struct tick_sched *ts; 361 362 local_irq_save(flags); 363 364 if (!tick_nohz_full_cpu(smp_processor_id())) 365 goto out; 366 367 ts = this_cpu_ptr(&tick_cpu_sched); 368 369 if (ts->tick_stopped) { 370 if (atomic_read(¤t->tick_dep_mask) || 371 atomic_read(¤t->signal->tick_dep_mask)) 372 tick_nohz_full_kick(); 373 } 374 out: 375 local_irq_restore(flags); 376 } 377 378 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 379 static int __init tick_nohz_full_setup(char *str) 380 { 381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 382 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n"); 384 free_bootmem_cpumask_var(tick_nohz_full_mask); 385 return 1; 386 } 387 tick_nohz_full_running = true; 388 389 return 1; 390 } 391 __setup("nohz_full=", tick_nohz_full_setup); 392 393 static int tick_nohz_cpu_down(unsigned int cpu) 394 { 395 /* 396 * The boot CPU handles housekeeping duty (unbound timers, 397 * workqueues, timekeeping, ...) on behalf of full dynticks 398 * CPUs. It must remain online when nohz full is enabled. 399 */ 400 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 401 return -EBUSY; 402 return 0; 403 } 404 405 static int tick_nohz_init_all(void) 406 { 407 int err = -1; 408 409 #ifdef CONFIG_NO_HZ_FULL_ALL 410 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 411 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 412 return err; 413 } 414 err = 0; 415 cpumask_setall(tick_nohz_full_mask); 416 tick_nohz_full_running = true; 417 #endif 418 return err; 419 } 420 421 void __init tick_nohz_init(void) 422 { 423 int cpu, ret; 424 425 if (!tick_nohz_full_running) { 426 if (tick_nohz_init_all() < 0) 427 return; 428 } 429 430 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 431 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 432 cpumask_clear(tick_nohz_full_mask); 433 tick_nohz_full_running = false; 434 return; 435 } 436 437 /* 438 * Full dynticks uses irq work to drive the tick rescheduling on safe 439 * locking contexts. But then we need irq work to raise its own 440 * interrupts to avoid circular dependency on the tick 441 */ 442 if (!arch_irq_work_has_interrupt()) { 443 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 444 cpumask_clear(tick_nohz_full_mask); 445 cpumask_copy(housekeeping_mask, cpu_possible_mask); 446 tick_nohz_full_running = false; 447 return; 448 } 449 450 cpu = smp_processor_id(); 451 452 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 453 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 454 cpu); 455 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 456 } 457 458 cpumask_andnot(housekeeping_mask, 459 cpu_possible_mask, tick_nohz_full_mask); 460 461 for_each_cpu(cpu, tick_nohz_full_mask) 462 context_tracking_cpu_set(cpu); 463 464 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 465 "kernel/nohz:predown", NULL, 466 tick_nohz_cpu_down); 467 WARN_ON(ret < 0); 468 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 469 cpumask_pr_args(tick_nohz_full_mask)); 470 471 /* 472 * We need at least one CPU to handle housekeeping work such 473 * as timekeeping, unbound timers, workqueues, ... 474 */ 475 WARN_ON_ONCE(cpumask_empty(housekeeping_mask)); 476 } 477 #endif 478 479 /* 480 * NOHZ - aka dynamic tick functionality 481 */ 482 #ifdef CONFIG_NO_HZ_COMMON 483 /* 484 * NO HZ enabled ? 485 */ 486 bool tick_nohz_enabled __read_mostly = true; 487 unsigned long tick_nohz_active __read_mostly; 488 /* 489 * Enable / Disable tickless mode 490 */ 491 static int __init setup_tick_nohz(char *str) 492 { 493 return (kstrtobool(str, &tick_nohz_enabled) == 0); 494 } 495 496 __setup("nohz=", setup_tick_nohz); 497 498 int tick_nohz_tick_stopped(void) 499 { 500 return __this_cpu_read(tick_cpu_sched.tick_stopped); 501 } 502 503 /** 504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 505 * 506 * Called from interrupt entry when the CPU was idle 507 * 508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 509 * must be updated. Otherwise an interrupt handler could use a stale jiffy 510 * value. We do this unconditionally on any CPU, as we don't know whether the 511 * CPU, which has the update task assigned is in a long sleep. 512 */ 513 static void tick_nohz_update_jiffies(ktime_t now) 514 { 515 unsigned long flags; 516 517 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 518 519 local_irq_save(flags); 520 tick_do_update_jiffies64(now); 521 local_irq_restore(flags); 522 523 touch_softlockup_watchdog_sched(); 524 } 525 526 /* 527 * Updates the per-CPU time idle statistics counters 528 */ 529 static void 530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 531 { 532 ktime_t delta; 533 534 if (ts->idle_active) { 535 delta = ktime_sub(now, ts->idle_entrytime); 536 if (nr_iowait_cpu(cpu) > 0) 537 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 538 else 539 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 540 ts->idle_entrytime = now; 541 } 542 543 if (last_update_time) 544 *last_update_time = ktime_to_us(now); 545 546 } 547 548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 549 { 550 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 551 ts->idle_active = 0; 552 553 sched_clock_idle_wakeup_event(0); 554 } 555 556 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 557 { 558 ktime_t now = ktime_get(); 559 560 ts->idle_entrytime = now; 561 ts->idle_active = 1; 562 sched_clock_idle_sleep_event(); 563 return now; 564 } 565 566 /** 567 * get_cpu_idle_time_us - get the total idle time of a CPU 568 * @cpu: CPU number to query 569 * @last_update_time: variable to store update time in. Do not update 570 * counters if NULL. 571 * 572 * Return the cumulative idle time (since boot) for a given 573 * CPU, in microseconds. 574 * 575 * This time is measured via accounting rather than sampling, 576 * and is as accurate as ktime_get() is. 577 * 578 * This function returns -1 if NOHZ is not enabled. 579 */ 580 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 581 { 582 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 583 ktime_t now, idle; 584 585 if (!tick_nohz_active) 586 return -1; 587 588 now = ktime_get(); 589 if (last_update_time) { 590 update_ts_time_stats(cpu, ts, now, last_update_time); 591 idle = ts->idle_sleeptime; 592 } else { 593 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 594 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 595 596 idle = ktime_add(ts->idle_sleeptime, delta); 597 } else { 598 idle = ts->idle_sleeptime; 599 } 600 } 601 602 return ktime_to_us(idle); 603 604 } 605 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 606 607 /** 608 * get_cpu_iowait_time_us - get the total iowait time of a CPU 609 * @cpu: CPU number to query 610 * @last_update_time: variable to store update time in. Do not update 611 * counters if NULL. 612 * 613 * Return the cumulative iowait time (since boot) for a given 614 * CPU, in microseconds. 615 * 616 * This time is measured via accounting rather than sampling, 617 * and is as accurate as ktime_get() is. 618 * 619 * This function returns -1 if NOHZ is not enabled. 620 */ 621 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 622 { 623 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 624 ktime_t now, iowait; 625 626 if (!tick_nohz_active) 627 return -1; 628 629 now = ktime_get(); 630 if (last_update_time) { 631 update_ts_time_stats(cpu, ts, now, last_update_time); 632 iowait = ts->iowait_sleeptime; 633 } else { 634 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 635 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 636 637 iowait = ktime_add(ts->iowait_sleeptime, delta); 638 } else { 639 iowait = ts->iowait_sleeptime; 640 } 641 } 642 643 return ktime_to_us(iowait); 644 } 645 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 646 647 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 648 { 649 hrtimer_cancel(&ts->sched_timer); 650 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 651 652 /* Forward the time to expire in the future */ 653 hrtimer_forward(&ts->sched_timer, now, tick_period); 654 655 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 656 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 657 else 658 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 659 } 660 661 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 662 ktime_t now, int cpu) 663 { 664 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 665 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 666 unsigned long seq, basejiff; 667 ktime_t tick; 668 669 /* Read jiffies and the time when jiffies were updated last */ 670 do { 671 seq = read_seqbegin(&jiffies_lock); 672 basemono = last_jiffies_update; 673 basejiff = jiffies; 674 } while (read_seqretry(&jiffies_lock, seq)); 675 ts->last_jiffies = basejiff; 676 677 if (rcu_needs_cpu(basemono, &next_rcu) || 678 arch_needs_cpu() || irq_work_needs_cpu()) { 679 next_tick = basemono + TICK_NSEC; 680 } else { 681 /* 682 * Get the next pending timer. If high resolution 683 * timers are enabled this only takes the timer wheel 684 * timers into account. If high resolution timers are 685 * disabled this also looks at the next expiring 686 * hrtimer. 687 */ 688 next_tmr = get_next_timer_interrupt(basejiff, basemono); 689 ts->next_timer = next_tmr; 690 /* Take the next rcu event into account */ 691 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 692 } 693 694 /* 695 * If the tick is due in the next period, keep it ticking or 696 * force prod the timer. 697 */ 698 delta = next_tick - basemono; 699 if (delta <= (u64)TICK_NSEC) { 700 tick = 0; 701 702 /* 703 * Tell the timer code that the base is not idle, i.e. undo 704 * the effect of get_next_timer_interrupt(): 705 */ 706 timer_clear_idle(); 707 /* 708 * We've not stopped the tick yet, and there's a timer in the 709 * next period, so no point in stopping it either, bail. 710 */ 711 if (!ts->tick_stopped) 712 goto out; 713 714 /* 715 * If, OTOH, we did stop it, but there's a pending (expired) 716 * timer reprogram the timer hardware to fire now. 717 * 718 * We will not restart the tick proper, just prod the timer 719 * hardware into firing an interrupt to process the pending 720 * timers. Just like tick_irq_exit() will not restart the tick 721 * for 'normal' interrupts. 722 * 723 * Only once we exit the idle loop will we re-enable the tick, 724 * see tick_nohz_idle_exit(). 725 */ 726 if (delta == 0) { 727 tick_nohz_restart(ts, now); 728 /* 729 * Make sure next tick stop doesn't get fooled by past 730 * clock deadline 731 */ 732 ts->next_tick = 0; 733 goto out; 734 } 735 } 736 737 /* 738 * If this CPU is the one which updates jiffies, then give up 739 * the assignment and let it be taken by the CPU which runs 740 * the tick timer next, which might be this CPU as well. If we 741 * don't drop this here the jiffies might be stale and 742 * do_timer() never invoked. Keep track of the fact that it 743 * was the one which had the do_timer() duty last. If this CPU 744 * is the one which had the do_timer() duty last, we limit the 745 * sleep time to the timekeeping max_deferment value. 746 * Otherwise we can sleep as long as we want. 747 */ 748 delta = timekeeping_max_deferment(); 749 if (cpu == tick_do_timer_cpu) { 750 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 751 ts->do_timer_last = 1; 752 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 753 delta = KTIME_MAX; 754 ts->do_timer_last = 0; 755 } else if (!ts->do_timer_last) { 756 delta = KTIME_MAX; 757 } 758 759 #ifdef CONFIG_NO_HZ_FULL 760 /* Limit the tick delta to the maximum scheduler deferment */ 761 if (!ts->inidle) 762 delta = min(delta, scheduler_tick_max_deferment()); 763 #endif 764 765 /* Calculate the next expiry time */ 766 if (delta < (KTIME_MAX - basemono)) 767 expires = basemono + delta; 768 else 769 expires = KTIME_MAX; 770 771 expires = min_t(u64, expires, next_tick); 772 tick = expires; 773 774 /* Skip reprogram of event if its not changed */ 775 if (ts->tick_stopped && (expires == ts->next_tick)) 776 goto out; 777 778 /* 779 * nohz_stop_sched_tick can be called several times before 780 * the nohz_restart_sched_tick is called. This happens when 781 * interrupts arrive which do not cause a reschedule. In the 782 * first call we save the current tick time, so we can restart 783 * the scheduler tick in nohz_restart_sched_tick. 784 */ 785 if (!ts->tick_stopped) { 786 nohz_balance_enter_idle(cpu); 787 calc_load_enter_idle(); 788 cpu_load_update_nohz_start(); 789 790 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 791 ts->tick_stopped = 1; 792 trace_tick_stop(1, TICK_DEP_MASK_NONE); 793 } 794 795 ts->next_tick = tick; 796 797 /* 798 * If the expiration time == KTIME_MAX, then we simply stop 799 * the tick timer. 800 */ 801 if (unlikely(expires == KTIME_MAX)) { 802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 803 hrtimer_cancel(&ts->sched_timer); 804 goto out; 805 } 806 807 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 808 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 809 else 810 tick_program_event(tick, 1); 811 out: 812 /* 813 * Update the estimated sleep length until the next timer 814 * (not only the tick). 815 */ 816 ts->sleep_length = ktime_sub(dev->next_event, now); 817 return tick; 818 } 819 820 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 821 { 822 /* Update jiffies first */ 823 tick_do_update_jiffies64(now); 824 cpu_load_update_nohz_stop(); 825 826 /* 827 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 828 * the clock forward checks in the enqueue path: 829 */ 830 timer_clear_idle(); 831 832 calc_load_exit_idle(); 833 touch_softlockup_watchdog_sched(); 834 /* 835 * Cancel the scheduled timer and restore the tick 836 */ 837 ts->tick_stopped = 0; 838 ts->idle_exittime = now; 839 840 tick_nohz_restart(ts, now); 841 } 842 843 static void tick_nohz_full_update_tick(struct tick_sched *ts) 844 { 845 #ifdef CONFIG_NO_HZ_FULL 846 int cpu = smp_processor_id(); 847 848 if (!tick_nohz_full_cpu(cpu)) 849 return; 850 851 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 852 return; 853 854 if (can_stop_full_tick(cpu, ts)) 855 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 856 else if (ts->tick_stopped) 857 tick_nohz_restart_sched_tick(ts, ktime_get()); 858 #endif 859 } 860 861 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 862 { 863 /* 864 * If this CPU is offline and it is the one which updates 865 * jiffies, then give up the assignment and let it be taken by 866 * the CPU which runs the tick timer next. If we don't drop 867 * this here the jiffies might be stale and do_timer() never 868 * invoked. 869 */ 870 if (unlikely(!cpu_online(cpu))) { 871 if (cpu == tick_do_timer_cpu) 872 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 873 return false; 874 } 875 876 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 877 ts->sleep_length = NSEC_PER_SEC / HZ; 878 return false; 879 } 880 881 if (need_resched()) 882 return false; 883 884 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 885 static int ratelimit; 886 887 if (ratelimit < 10 && 888 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 889 pr_warn("NOHZ: local_softirq_pending %02x\n", 890 (unsigned int) local_softirq_pending()); 891 ratelimit++; 892 } 893 return false; 894 } 895 896 if (tick_nohz_full_enabled()) { 897 /* 898 * Keep the tick alive to guarantee timekeeping progression 899 * if there are full dynticks CPUs around 900 */ 901 if (tick_do_timer_cpu == cpu) 902 return false; 903 /* 904 * Boot safety: make sure the timekeeping duty has been 905 * assigned before entering dyntick-idle mode, 906 */ 907 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 908 return false; 909 } 910 911 return true; 912 } 913 914 static void __tick_nohz_idle_enter(struct tick_sched *ts) 915 { 916 ktime_t now, expires; 917 int cpu = smp_processor_id(); 918 919 now = tick_nohz_start_idle(ts); 920 921 if (can_stop_idle_tick(cpu, ts)) { 922 int was_stopped = ts->tick_stopped; 923 924 ts->idle_calls++; 925 926 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 927 if (expires > 0LL) { 928 ts->idle_sleeps++; 929 ts->idle_expires = expires; 930 } 931 932 if (!was_stopped && ts->tick_stopped) 933 ts->idle_jiffies = ts->last_jiffies; 934 } 935 } 936 937 /** 938 * tick_nohz_idle_enter - stop the idle tick from the idle task 939 * 940 * When the next event is more than a tick into the future, stop the idle tick 941 * Called when we start the idle loop. 942 * 943 * The arch is responsible of calling: 944 * 945 * - rcu_idle_enter() after its last use of RCU before the CPU is put 946 * to sleep. 947 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 948 */ 949 void tick_nohz_idle_enter(void) 950 { 951 struct tick_sched *ts; 952 953 WARN_ON_ONCE(irqs_disabled()); 954 955 /* 956 * Update the idle state in the scheduler domain hierarchy 957 * when tick_nohz_stop_sched_tick() is called from the idle loop. 958 * State will be updated to busy during the first busy tick after 959 * exiting idle. 960 */ 961 set_cpu_sd_state_idle(); 962 963 local_irq_disable(); 964 965 ts = this_cpu_ptr(&tick_cpu_sched); 966 ts->inidle = 1; 967 __tick_nohz_idle_enter(ts); 968 969 local_irq_enable(); 970 } 971 972 /** 973 * tick_nohz_irq_exit - update next tick event from interrupt exit 974 * 975 * When an interrupt fires while we are idle and it doesn't cause 976 * a reschedule, it may still add, modify or delete a timer, enqueue 977 * an RCU callback, etc... 978 * So we need to re-calculate and reprogram the next tick event. 979 */ 980 void tick_nohz_irq_exit(void) 981 { 982 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 983 984 if (ts->inidle) 985 __tick_nohz_idle_enter(ts); 986 else 987 tick_nohz_full_update_tick(ts); 988 } 989 990 /** 991 * tick_nohz_get_sleep_length - return the length of the current sleep 992 * 993 * Called from power state control code with interrupts disabled 994 */ 995 ktime_t tick_nohz_get_sleep_length(void) 996 { 997 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 998 999 return ts->sleep_length; 1000 } 1001 1002 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1003 { 1004 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1005 unsigned long ticks; 1006 1007 if (vtime_accounting_cpu_enabled()) 1008 return; 1009 /* 1010 * We stopped the tick in idle. Update process times would miss the 1011 * time we slept as update_process_times does only a 1 tick 1012 * accounting. Enforce that this is accounted to idle ! 1013 */ 1014 ticks = jiffies - ts->idle_jiffies; 1015 /* 1016 * We might be one off. Do not randomly account a huge number of ticks! 1017 */ 1018 if (ticks && ticks < LONG_MAX) 1019 account_idle_ticks(ticks); 1020 #endif 1021 } 1022 1023 /** 1024 * tick_nohz_idle_exit - restart the idle tick from the idle task 1025 * 1026 * Restart the idle tick when the CPU is woken up from idle 1027 * This also exit the RCU extended quiescent state. The CPU 1028 * can use RCU again after this function is called. 1029 */ 1030 void tick_nohz_idle_exit(void) 1031 { 1032 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1033 ktime_t now; 1034 1035 local_irq_disable(); 1036 1037 WARN_ON_ONCE(!ts->inidle); 1038 1039 ts->inidle = 0; 1040 1041 if (ts->idle_active || ts->tick_stopped) 1042 now = ktime_get(); 1043 1044 if (ts->idle_active) 1045 tick_nohz_stop_idle(ts, now); 1046 1047 if (ts->tick_stopped) { 1048 tick_nohz_restart_sched_tick(ts, now); 1049 tick_nohz_account_idle_ticks(ts); 1050 } 1051 1052 local_irq_enable(); 1053 } 1054 1055 /* 1056 * The nohz low res interrupt handler 1057 */ 1058 static void tick_nohz_handler(struct clock_event_device *dev) 1059 { 1060 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1061 struct pt_regs *regs = get_irq_regs(); 1062 ktime_t now = ktime_get(); 1063 1064 dev->next_event = KTIME_MAX; 1065 1066 tick_sched_do_timer(now); 1067 tick_sched_handle(ts, regs); 1068 1069 /* No need to reprogram if we are running tickless */ 1070 if (unlikely(ts->tick_stopped)) 1071 return; 1072 1073 hrtimer_forward(&ts->sched_timer, now, tick_period); 1074 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1075 } 1076 1077 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1078 { 1079 if (!tick_nohz_enabled) 1080 return; 1081 ts->nohz_mode = mode; 1082 /* One update is enough */ 1083 if (!test_and_set_bit(0, &tick_nohz_active)) 1084 timers_update_migration(true); 1085 } 1086 1087 /** 1088 * tick_nohz_switch_to_nohz - switch to nohz mode 1089 */ 1090 static void tick_nohz_switch_to_nohz(void) 1091 { 1092 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1093 ktime_t next; 1094 1095 if (!tick_nohz_enabled) 1096 return; 1097 1098 if (tick_switch_to_oneshot(tick_nohz_handler)) 1099 return; 1100 1101 /* 1102 * Recycle the hrtimer in ts, so we can share the 1103 * hrtimer_forward with the highres code. 1104 */ 1105 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1106 /* Get the next period */ 1107 next = tick_init_jiffy_update(); 1108 1109 hrtimer_set_expires(&ts->sched_timer, next); 1110 hrtimer_forward_now(&ts->sched_timer, tick_period); 1111 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1112 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1113 } 1114 1115 static inline void tick_nohz_irq_enter(void) 1116 { 1117 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1118 ktime_t now; 1119 1120 if (!ts->idle_active && !ts->tick_stopped) 1121 return; 1122 now = ktime_get(); 1123 if (ts->idle_active) 1124 tick_nohz_stop_idle(ts, now); 1125 if (ts->tick_stopped) 1126 tick_nohz_update_jiffies(now); 1127 } 1128 1129 #else 1130 1131 static inline void tick_nohz_switch_to_nohz(void) { } 1132 static inline void tick_nohz_irq_enter(void) { } 1133 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1134 1135 #endif /* CONFIG_NO_HZ_COMMON */ 1136 1137 /* 1138 * Called from irq_enter to notify about the possible interruption of idle() 1139 */ 1140 void tick_irq_enter(void) 1141 { 1142 tick_check_oneshot_broadcast_this_cpu(); 1143 tick_nohz_irq_enter(); 1144 } 1145 1146 /* 1147 * High resolution timer specific code 1148 */ 1149 #ifdef CONFIG_HIGH_RES_TIMERS 1150 /* 1151 * We rearm the timer until we get disabled by the idle code. 1152 * Called with interrupts disabled. 1153 */ 1154 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1155 { 1156 struct tick_sched *ts = 1157 container_of(timer, struct tick_sched, sched_timer); 1158 struct pt_regs *regs = get_irq_regs(); 1159 ktime_t now = ktime_get(); 1160 1161 tick_sched_do_timer(now); 1162 1163 /* 1164 * Do not call, when we are not in irq context and have 1165 * no valid regs pointer 1166 */ 1167 if (regs) 1168 tick_sched_handle(ts, regs); 1169 1170 /* No need to reprogram if we are in idle or full dynticks mode */ 1171 if (unlikely(ts->tick_stopped)) 1172 return HRTIMER_NORESTART; 1173 1174 hrtimer_forward(timer, now, tick_period); 1175 1176 return HRTIMER_RESTART; 1177 } 1178 1179 static int sched_skew_tick; 1180 1181 static int __init skew_tick(char *str) 1182 { 1183 get_option(&str, &sched_skew_tick); 1184 1185 return 0; 1186 } 1187 early_param("skew_tick", skew_tick); 1188 1189 /** 1190 * tick_setup_sched_timer - setup the tick emulation timer 1191 */ 1192 void tick_setup_sched_timer(void) 1193 { 1194 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1195 ktime_t now = ktime_get(); 1196 1197 /* 1198 * Emulate tick processing via per-CPU hrtimers: 1199 */ 1200 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1201 ts->sched_timer.function = tick_sched_timer; 1202 1203 /* Get the next period (per-CPU) */ 1204 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1205 1206 /* Offset the tick to avert jiffies_lock contention. */ 1207 if (sched_skew_tick) { 1208 u64 offset = ktime_to_ns(tick_period) >> 1; 1209 do_div(offset, num_possible_cpus()); 1210 offset *= smp_processor_id(); 1211 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1212 } 1213 1214 hrtimer_forward(&ts->sched_timer, now, tick_period); 1215 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1216 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1217 } 1218 #endif /* HIGH_RES_TIMERS */ 1219 1220 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1221 void tick_cancel_sched_timer(int cpu) 1222 { 1223 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1224 1225 # ifdef CONFIG_HIGH_RES_TIMERS 1226 if (ts->sched_timer.base) 1227 hrtimer_cancel(&ts->sched_timer); 1228 # endif 1229 1230 memset(ts, 0, sizeof(*ts)); 1231 } 1232 #endif 1233 1234 /** 1235 * Async notification about clocksource changes 1236 */ 1237 void tick_clock_notify(void) 1238 { 1239 int cpu; 1240 1241 for_each_possible_cpu(cpu) 1242 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1243 } 1244 1245 /* 1246 * Async notification about clock event changes 1247 */ 1248 void tick_oneshot_notify(void) 1249 { 1250 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1251 1252 set_bit(0, &ts->check_clocks); 1253 } 1254 1255 /** 1256 * Check, if a change happened, which makes oneshot possible. 1257 * 1258 * Called cyclic from the hrtimer softirq (driven by the timer 1259 * softirq) allow_nohz signals, that we can switch into low-res nohz 1260 * mode, because high resolution timers are disabled (either compile 1261 * or runtime). Called with interrupts disabled. 1262 */ 1263 int tick_check_oneshot_change(int allow_nohz) 1264 { 1265 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1266 1267 if (!test_and_clear_bit(0, &ts->check_clocks)) 1268 return 0; 1269 1270 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1271 return 0; 1272 1273 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1274 return 0; 1275 1276 if (!allow_nohz) 1277 return 1; 1278 1279 tick_nohz_switch_to_nohz(); 1280 return 0; 1281 } 1282