xref: /linux/kernel/time/tick-sched.c (revision 608241f36ad6d11f18cff8f415048bb5dfe6403b)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per-CPU nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta < tick_period)
62 		return;
63 
64 	/* Reevaluate with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta >= tick_period) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta >= tick_period)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the CPU in charge went
120 	 * into a long sleep. If two CPUs happen to assign themselves to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
161 
162 static bool check_tick_dependency(atomic_t *dep)
163 {
164 	int val = atomic_read(dep);
165 
166 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 		return true;
169 	}
170 
171 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 		return true;
174 	}
175 
176 	if (val & TICK_DEP_MASK_SCHED) {
177 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 		return true;
184 	}
185 
186 	return false;
187 }
188 
189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
190 {
191 	WARN_ON_ONCE(!irqs_disabled());
192 
193 	if (unlikely(!cpu_online(cpu)))
194 		return false;
195 
196 	if (check_tick_dependency(&tick_dep_mask))
197 		return false;
198 
199 	if (check_tick_dependency(&ts->tick_dep_mask))
200 		return false;
201 
202 	if (check_tick_dependency(&current->tick_dep_mask))
203 		return false;
204 
205 	if (check_tick_dependency(&current->signal->tick_dep_mask))
206 		return false;
207 
208 	return true;
209 }
210 
211 static void nohz_full_kick_func(struct irq_work *work)
212 {
213 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
214 }
215 
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 	.func = nohz_full_kick_func,
218 };
219 
220 /*
221  * Kick this CPU if it's full dynticks in order to force it to
222  * re-evaluate its dependency on the tick and restart it if necessary.
223  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
224  * is NMI safe.
225  */
226 static void tick_nohz_full_kick(void)
227 {
228 	if (!tick_nohz_full_cpu(smp_processor_id()))
229 		return;
230 
231 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
232 }
233 
234 /*
235  * Kick the CPU if it's full dynticks in order to force it to
236  * re-evaluate its dependency on the tick and restart it if necessary.
237  */
238 void tick_nohz_full_kick_cpu(int cpu)
239 {
240 	if (!tick_nohz_full_cpu(cpu))
241 		return;
242 
243 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
244 }
245 
246 /*
247  * Kick all full dynticks CPUs in order to force these to re-evaluate
248  * their dependency on the tick and restart it if necessary.
249  */
250 static void tick_nohz_full_kick_all(void)
251 {
252 	int cpu;
253 
254 	if (!tick_nohz_full_running)
255 		return;
256 
257 	preempt_disable();
258 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
259 		tick_nohz_full_kick_cpu(cpu);
260 	preempt_enable();
261 }
262 
263 static void tick_nohz_dep_set_all(atomic_t *dep,
264 				  enum tick_dep_bits bit)
265 {
266 	int prev;
267 
268 	prev = atomic_fetch_or(BIT(bit), dep);
269 	if (!prev)
270 		tick_nohz_full_kick_all();
271 }
272 
273 /*
274  * Set a global tick dependency. Used by perf events that rely on freq and
275  * by unstable clock.
276  */
277 void tick_nohz_dep_set(enum tick_dep_bits bit)
278 {
279 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
280 }
281 
282 void tick_nohz_dep_clear(enum tick_dep_bits bit)
283 {
284 	atomic_andnot(BIT(bit), &tick_dep_mask);
285 }
286 
287 /*
288  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289  * manage events throttling.
290  */
291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
292 {
293 	int prev;
294 	struct tick_sched *ts;
295 
296 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
297 
298 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 	if (!prev) {
300 		preempt_disable();
301 		/* Perf needs local kick that is NMI safe */
302 		if (cpu == smp_processor_id()) {
303 			tick_nohz_full_kick();
304 		} else {
305 			/* Remote irq work not NMI-safe */
306 			if (!WARN_ON_ONCE(in_nmi()))
307 				tick_nohz_full_kick_cpu(cpu);
308 		}
309 		preempt_enable();
310 	}
311 }
312 
313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
314 {
315 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316 
317 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
318 }
319 
320 /*
321  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
322  * per task timers.
323  */
324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
325 {
326 	/*
327 	 * We could optimize this with just kicking the target running the task
328 	 * if that noise matters for nohz full users.
329 	 */
330 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
331 }
332 
333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
334 {
335 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
336 }
337 
338 /*
339  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340  * per process timers.
341  */
342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
343 {
344 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
345 }
346 
347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
348 {
349 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
350 }
351 
352 /*
353  * Re-evaluate the need for the tick as we switch the current task.
354  * It might need the tick due to per task/process properties:
355  * perf events, posix CPU timers, ...
356  */
357 void __tick_nohz_task_switch(void)
358 {
359 	unsigned long flags;
360 	struct tick_sched *ts;
361 
362 	local_irq_save(flags);
363 
364 	if (!tick_nohz_full_cpu(smp_processor_id()))
365 		goto out;
366 
367 	ts = this_cpu_ptr(&tick_cpu_sched);
368 
369 	if (ts->tick_stopped) {
370 		if (atomic_read(&current->tick_dep_mask) ||
371 		    atomic_read(&current->signal->tick_dep_mask))
372 			tick_nohz_full_kick();
373 	}
374 out:
375 	local_irq_restore(flags);
376 }
377 
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init tick_nohz_full_setup(char *str)
380 {
381 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
382 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 		free_bootmem_cpumask_var(tick_nohz_full_mask);
385 		return 1;
386 	}
387 	tick_nohz_full_running = true;
388 
389 	return 1;
390 }
391 __setup("nohz_full=", tick_nohz_full_setup);
392 
393 static int tick_nohz_cpu_down(unsigned int cpu)
394 {
395 	/*
396 	 * The boot CPU handles housekeeping duty (unbound timers,
397 	 * workqueues, timekeeping, ...) on behalf of full dynticks
398 	 * CPUs. It must remain online when nohz full is enabled.
399 	 */
400 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
401 		return -EBUSY;
402 	return 0;
403 }
404 
405 static int tick_nohz_init_all(void)
406 {
407 	int err = -1;
408 
409 #ifdef CONFIG_NO_HZ_FULL_ALL
410 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
411 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
412 		return err;
413 	}
414 	err = 0;
415 	cpumask_setall(tick_nohz_full_mask);
416 	tick_nohz_full_running = true;
417 #endif
418 	return err;
419 }
420 
421 void __init tick_nohz_init(void)
422 {
423 	int cpu, ret;
424 
425 	if (!tick_nohz_full_running) {
426 		if (tick_nohz_init_all() < 0)
427 			return;
428 	}
429 
430 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
431 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
432 		cpumask_clear(tick_nohz_full_mask);
433 		tick_nohz_full_running = false;
434 		return;
435 	}
436 
437 	/*
438 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
439 	 * locking contexts. But then we need irq work to raise its own
440 	 * interrupts to avoid circular dependency on the tick
441 	 */
442 	if (!arch_irq_work_has_interrupt()) {
443 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
444 		cpumask_clear(tick_nohz_full_mask);
445 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
446 		tick_nohz_full_running = false;
447 		return;
448 	}
449 
450 	cpu = smp_processor_id();
451 
452 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
453 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
454 			cpu);
455 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
456 	}
457 
458 	cpumask_andnot(housekeeping_mask,
459 		       cpu_possible_mask, tick_nohz_full_mask);
460 
461 	for_each_cpu(cpu, tick_nohz_full_mask)
462 		context_tracking_cpu_set(cpu);
463 
464 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
465 					"kernel/nohz:predown", NULL,
466 					tick_nohz_cpu_down);
467 	WARN_ON(ret < 0);
468 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
469 		cpumask_pr_args(tick_nohz_full_mask));
470 
471 	/*
472 	 * We need at least one CPU to handle housekeeping work such
473 	 * as timekeeping, unbound timers, workqueues, ...
474 	 */
475 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
476 }
477 #endif
478 
479 /*
480  * NOHZ - aka dynamic tick functionality
481  */
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484  * NO HZ enabled ?
485  */
486 bool tick_nohz_enabled __read_mostly  = true;
487 unsigned long tick_nohz_active  __read_mostly;
488 /*
489  * Enable / Disable tickless mode
490  */
491 static int __init setup_tick_nohz(char *str)
492 {
493 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
494 }
495 
496 __setup("nohz=", setup_tick_nohz);
497 
498 int tick_nohz_tick_stopped(void)
499 {
500 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
501 }
502 
503 /**
504  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
505  *
506  * Called from interrupt entry when the CPU was idle
507  *
508  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509  * must be updated. Otherwise an interrupt handler could use a stale jiffy
510  * value. We do this unconditionally on any CPU, as we don't know whether the
511  * CPU, which has the update task assigned is in a long sleep.
512  */
513 static void tick_nohz_update_jiffies(ktime_t now)
514 {
515 	unsigned long flags;
516 
517 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
518 
519 	local_irq_save(flags);
520 	tick_do_update_jiffies64(now);
521 	local_irq_restore(flags);
522 
523 	touch_softlockup_watchdog_sched();
524 }
525 
526 /*
527  * Updates the per-CPU time idle statistics counters
528  */
529 static void
530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
531 {
532 	ktime_t delta;
533 
534 	if (ts->idle_active) {
535 		delta = ktime_sub(now, ts->idle_entrytime);
536 		if (nr_iowait_cpu(cpu) > 0)
537 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 		else
539 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540 		ts->idle_entrytime = now;
541 	}
542 
543 	if (last_update_time)
544 		*last_update_time = ktime_to_us(now);
545 
546 }
547 
548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
549 {
550 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551 	ts->idle_active = 0;
552 
553 	sched_clock_idle_wakeup_event(0);
554 }
555 
556 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
557 {
558 	ktime_t now = ktime_get();
559 
560 	ts->idle_entrytime = now;
561 	ts->idle_active = 1;
562 	sched_clock_idle_sleep_event();
563 	return now;
564 }
565 
566 /**
567  * get_cpu_idle_time_us - get the total idle time of a CPU
568  * @cpu: CPU number to query
569  * @last_update_time: variable to store update time in. Do not update
570  * counters if NULL.
571  *
572  * Return the cumulative idle time (since boot) for a given
573  * CPU, in microseconds.
574  *
575  * This time is measured via accounting rather than sampling,
576  * and is as accurate as ktime_get() is.
577  *
578  * This function returns -1 if NOHZ is not enabled.
579  */
580 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
581 {
582 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583 	ktime_t now, idle;
584 
585 	if (!tick_nohz_active)
586 		return -1;
587 
588 	now = ktime_get();
589 	if (last_update_time) {
590 		update_ts_time_stats(cpu, ts, now, last_update_time);
591 		idle = ts->idle_sleeptime;
592 	} else {
593 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
594 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
595 
596 			idle = ktime_add(ts->idle_sleeptime, delta);
597 		} else {
598 			idle = ts->idle_sleeptime;
599 		}
600 	}
601 
602 	return ktime_to_us(idle);
603 
604 }
605 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
606 
607 /**
608  * get_cpu_iowait_time_us - get the total iowait time of a CPU
609  * @cpu: CPU number to query
610  * @last_update_time: variable to store update time in. Do not update
611  * counters if NULL.
612  *
613  * Return the cumulative iowait time (since boot) for a given
614  * CPU, in microseconds.
615  *
616  * This time is measured via accounting rather than sampling,
617  * and is as accurate as ktime_get() is.
618  *
619  * This function returns -1 if NOHZ is not enabled.
620  */
621 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
622 {
623 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
624 	ktime_t now, iowait;
625 
626 	if (!tick_nohz_active)
627 		return -1;
628 
629 	now = ktime_get();
630 	if (last_update_time) {
631 		update_ts_time_stats(cpu, ts, now, last_update_time);
632 		iowait = ts->iowait_sleeptime;
633 	} else {
634 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
635 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
636 
637 			iowait = ktime_add(ts->iowait_sleeptime, delta);
638 		} else {
639 			iowait = ts->iowait_sleeptime;
640 		}
641 	}
642 
643 	return ktime_to_us(iowait);
644 }
645 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
646 
647 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
648 {
649 	hrtimer_cancel(&ts->sched_timer);
650 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
651 
652 	/* Forward the time to expire in the future */
653 	hrtimer_forward(&ts->sched_timer, now, tick_period);
654 
655 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
656 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
657 	else
658 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
659 }
660 
661 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
662 					 ktime_t now, int cpu)
663 {
664 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
665 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
666 	unsigned long seq, basejiff;
667 	ktime_t	tick;
668 
669 	/* Read jiffies and the time when jiffies were updated last */
670 	do {
671 		seq = read_seqbegin(&jiffies_lock);
672 		basemono = last_jiffies_update;
673 		basejiff = jiffies;
674 	} while (read_seqretry(&jiffies_lock, seq));
675 	ts->last_jiffies = basejiff;
676 
677 	if (rcu_needs_cpu(basemono, &next_rcu) ||
678 	    arch_needs_cpu() || irq_work_needs_cpu()) {
679 		next_tick = basemono + TICK_NSEC;
680 	} else {
681 		/*
682 		 * Get the next pending timer. If high resolution
683 		 * timers are enabled this only takes the timer wheel
684 		 * timers into account. If high resolution timers are
685 		 * disabled this also looks at the next expiring
686 		 * hrtimer.
687 		 */
688 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
689 		ts->next_timer = next_tmr;
690 		/* Take the next rcu event into account */
691 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
692 	}
693 
694 	/*
695 	 * If the tick is due in the next period, keep it ticking or
696 	 * force prod the timer.
697 	 */
698 	delta = next_tick - basemono;
699 	if (delta <= (u64)TICK_NSEC) {
700 		tick = 0;
701 
702 		/*
703 		 * Tell the timer code that the base is not idle, i.e. undo
704 		 * the effect of get_next_timer_interrupt():
705 		 */
706 		timer_clear_idle();
707 		/*
708 		 * We've not stopped the tick yet, and there's a timer in the
709 		 * next period, so no point in stopping it either, bail.
710 		 */
711 		if (!ts->tick_stopped)
712 			goto out;
713 
714 		/*
715 		 * If, OTOH, we did stop it, but there's a pending (expired)
716 		 * timer reprogram the timer hardware to fire now.
717 		 *
718 		 * We will not restart the tick proper, just prod the timer
719 		 * hardware into firing an interrupt to process the pending
720 		 * timers. Just like tick_irq_exit() will not restart the tick
721 		 * for 'normal' interrupts.
722 		 *
723 		 * Only once we exit the idle loop will we re-enable the tick,
724 		 * see tick_nohz_idle_exit().
725 		 */
726 		if (delta == 0) {
727 			tick_nohz_restart(ts, now);
728 			/*
729 			 * Make sure next tick stop doesn't get fooled by past
730 			 * clock deadline
731 			 */
732 			ts->next_tick = 0;
733 			goto out;
734 		}
735 	}
736 
737 	/*
738 	 * If this CPU is the one which updates jiffies, then give up
739 	 * the assignment and let it be taken by the CPU which runs
740 	 * the tick timer next, which might be this CPU as well. If we
741 	 * don't drop this here the jiffies might be stale and
742 	 * do_timer() never invoked. Keep track of the fact that it
743 	 * was the one which had the do_timer() duty last. If this CPU
744 	 * is the one which had the do_timer() duty last, we limit the
745 	 * sleep time to the timekeeping max_deferment value.
746 	 * Otherwise we can sleep as long as we want.
747 	 */
748 	delta = timekeeping_max_deferment();
749 	if (cpu == tick_do_timer_cpu) {
750 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
751 		ts->do_timer_last = 1;
752 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
753 		delta = KTIME_MAX;
754 		ts->do_timer_last = 0;
755 	} else if (!ts->do_timer_last) {
756 		delta = KTIME_MAX;
757 	}
758 
759 #ifdef CONFIG_NO_HZ_FULL
760 	/* Limit the tick delta to the maximum scheduler deferment */
761 	if (!ts->inidle)
762 		delta = min(delta, scheduler_tick_max_deferment());
763 #endif
764 
765 	/* Calculate the next expiry time */
766 	if (delta < (KTIME_MAX - basemono))
767 		expires = basemono + delta;
768 	else
769 		expires = KTIME_MAX;
770 
771 	expires = min_t(u64, expires, next_tick);
772 	tick = expires;
773 
774 	/* Skip reprogram of event if its not changed */
775 	if (ts->tick_stopped && (expires == ts->next_tick))
776 		goto out;
777 
778 	/*
779 	 * nohz_stop_sched_tick can be called several times before
780 	 * the nohz_restart_sched_tick is called. This happens when
781 	 * interrupts arrive which do not cause a reschedule. In the
782 	 * first call we save the current tick time, so we can restart
783 	 * the scheduler tick in nohz_restart_sched_tick.
784 	 */
785 	if (!ts->tick_stopped) {
786 		nohz_balance_enter_idle(cpu);
787 		calc_load_enter_idle();
788 		cpu_load_update_nohz_start();
789 
790 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
791 		ts->tick_stopped = 1;
792 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
793 	}
794 
795 	ts->next_tick = tick;
796 
797 	/*
798 	 * If the expiration time == KTIME_MAX, then we simply stop
799 	 * the tick timer.
800 	 */
801 	if (unlikely(expires == KTIME_MAX)) {
802 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 			hrtimer_cancel(&ts->sched_timer);
804 		goto out;
805 	}
806 
807 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
808 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
809 	else
810 		tick_program_event(tick, 1);
811 out:
812 	/*
813 	 * Update the estimated sleep length until the next timer
814 	 * (not only the tick).
815 	 */
816 	ts->sleep_length = ktime_sub(dev->next_event, now);
817 	return tick;
818 }
819 
820 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
821 {
822 	/* Update jiffies first */
823 	tick_do_update_jiffies64(now);
824 	cpu_load_update_nohz_stop();
825 
826 	/*
827 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
828 	 * the clock forward checks in the enqueue path:
829 	 */
830 	timer_clear_idle();
831 
832 	calc_load_exit_idle();
833 	touch_softlockup_watchdog_sched();
834 	/*
835 	 * Cancel the scheduled timer and restore the tick
836 	 */
837 	ts->tick_stopped  = 0;
838 	ts->idle_exittime = now;
839 
840 	tick_nohz_restart(ts, now);
841 }
842 
843 static void tick_nohz_full_update_tick(struct tick_sched *ts)
844 {
845 #ifdef CONFIG_NO_HZ_FULL
846 	int cpu = smp_processor_id();
847 
848 	if (!tick_nohz_full_cpu(cpu))
849 		return;
850 
851 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
852 		return;
853 
854 	if (can_stop_full_tick(cpu, ts))
855 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
856 	else if (ts->tick_stopped)
857 		tick_nohz_restart_sched_tick(ts, ktime_get());
858 #endif
859 }
860 
861 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
862 {
863 	/*
864 	 * If this CPU is offline and it is the one which updates
865 	 * jiffies, then give up the assignment and let it be taken by
866 	 * the CPU which runs the tick timer next. If we don't drop
867 	 * this here the jiffies might be stale and do_timer() never
868 	 * invoked.
869 	 */
870 	if (unlikely(!cpu_online(cpu))) {
871 		if (cpu == tick_do_timer_cpu)
872 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
873 		return false;
874 	}
875 
876 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
877 		ts->sleep_length = NSEC_PER_SEC / HZ;
878 		return false;
879 	}
880 
881 	if (need_resched())
882 		return false;
883 
884 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
885 		static int ratelimit;
886 
887 		if (ratelimit < 10 &&
888 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
889 			pr_warn("NOHZ: local_softirq_pending %02x\n",
890 				(unsigned int) local_softirq_pending());
891 			ratelimit++;
892 		}
893 		return false;
894 	}
895 
896 	if (tick_nohz_full_enabled()) {
897 		/*
898 		 * Keep the tick alive to guarantee timekeeping progression
899 		 * if there are full dynticks CPUs around
900 		 */
901 		if (tick_do_timer_cpu == cpu)
902 			return false;
903 		/*
904 		 * Boot safety: make sure the timekeeping duty has been
905 		 * assigned before entering dyntick-idle mode,
906 		 */
907 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
908 			return false;
909 	}
910 
911 	return true;
912 }
913 
914 static void __tick_nohz_idle_enter(struct tick_sched *ts)
915 {
916 	ktime_t now, expires;
917 	int cpu = smp_processor_id();
918 
919 	now = tick_nohz_start_idle(ts);
920 
921 	if (can_stop_idle_tick(cpu, ts)) {
922 		int was_stopped = ts->tick_stopped;
923 
924 		ts->idle_calls++;
925 
926 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
927 		if (expires > 0LL) {
928 			ts->idle_sleeps++;
929 			ts->idle_expires = expires;
930 		}
931 
932 		if (!was_stopped && ts->tick_stopped)
933 			ts->idle_jiffies = ts->last_jiffies;
934 	}
935 }
936 
937 /**
938  * tick_nohz_idle_enter - stop the idle tick from the idle task
939  *
940  * When the next event is more than a tick into the future, stop the idle tick
941  * Called when we start the idle loop.
942  *
943  * The arch is responsible of calling:
944  *
945  * - rcu_idle_enter() after its last use of RCU before the CPU is put
946  *  to sleep.
947  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
948  */
949 void tick_nohz_idle_enter(void)
950 {
951 	struct tick_sched *ts;
952 
953 	WARN_ON_ONCE(irqs_disabled());
954 
955 	/*
956 	 * Update the idle state in the scheduler domain hierarchy
957 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
958 	 * State will be updated to busy during the first busy tick after
959 	 * exiting idle.
960 	 */
961 	set_cpu_sd_state_idle();
962 
963 	local_irq_disable();
964 
965 	ts = this_cpu_ptr(&tick_cpu_sched);
966 	ts->inidle = 1;
967 	__tick_nohz_idle_enter(ts);
968 
969 	local_irq_enable();
970 }
971 
972 /**
973  * tick_nohz_irq_exit - update next tick event from interrupt exit
974  *
975  * When an interrupt fires while we are idle and it doesn't cause
976  * a reschedule, it may still add, modify or delete a timer, enqueue
977  * an RCU callback, etc...
978  * So we need to re-calculate and reprogram the next tick event.
979  */
980 void tick_nohz_irq_exit(void)
981 {
982 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
983 
984 	if (ts->inidle)
985 		__tick_nohz_idle_enter(ts);
986 	else
987 		tick_nohz_full_update_tick(ts);
988 }
989 
990 /**
991  * tick_nohz_get_sleep_length - return the length of the current sleep
992  *
993  * Called from power state control code with interrupts disabled
994  */
995 ktime_t tick_nohz_get_sleep_length(void)
996 {
997 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
998 
999 	return ts->sleep_length;
1000 }
1001 
1002 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1003 {
1004 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1005 	unsigned long ticks;
1006 
1007 	if (vtime_accounting_cpu_enabled())
1008 		return;
1009 	/*
1010 	 * We stopped the tick in idle. Update process times would miss the
1011 	 * time we slept as update_process_times does only a 1 tick
1012 	 * accounting. Enforce that this is accounted to idle !
1013 	 */
1014 	ticks = jiffies - ts->idle_jiffies;
1015 	/*
1016 	 * We might be one off. Do not randomly account a huge number of ticks!
1017 	 */
1018 	if (ticks && ticks < LONG_MAX)
1019 		account_idle_ticks(ticks);
1020 #endif
1021 }
1022 
1023 /**
1024  * tick_nohz_idle_exit - restart the idle tick from the idle task
1025  *
1026  * Restart the idle tick when the CPU is woken up from idle
1027  * This also exit the RCU extended quiescent state. The CPU
1028  * can use RCU again after this function is called.
1029  */
1030 void tick_nohz_idle_exit(void)
1031 {
1032 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033 	ktime_t now;
1034 
1035 	local_irq_disable();
1036 
1037 	WARN_ON_ONCE(!ts->inidle);
1038 
1039 	ts->inidle = 0;
1040 
1041 	if (ts->idle_active || ts->tick_stopped)
1042 		now = ktime_get();
1043 
1044 	if (ts->idle_active)
1045 		tick_nohz_stop_idle(ts, now);
1046 
1047 	if (ts->tick_stopped) {
1048 		tick_nohz_restart_sched_tick(ts, now);
1049 		tick_nohz_account_idle_ticks(ts);
1050 	}
1051 
1052 	local_irq_enable();
1053 }
1054 
1055 /*
1056  * The nohz low res interrupt handler
1057  */
1058 static void tick_nohz_handler(struct clock_event_device *dev)
1059 {
1060 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1061 	struct pt_regs *regs = get_irq_regs();
1062 	ktime_t now = ktime_get();
1063 
1064 	dev->next_event = KTIME_MAX;
1065 
1066 	tick_sched_do_timer(now);
1067 	tick_sched_handle(ts, regs);
1068 
1069 	/* No need to reprogram if we are running tickless  */
1070 	if (unlikely(ts->tick_stopped))
1071 		return;
1072 
1073 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1074 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1075 }
1076 
1077 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1078 {
1079 	if (!tick_nohz_enabled)
1080 		return;
1081 	ts->nohz_mode = mode;
1082 	/* One update is enough */
1083 	if (!test_and_set_bit(0, &tick_nohz_active))
1084 		timers_update_migration(true);
1085 }
1086 
1087 /**
1088  * tick_nohz_switch_to_nohz - switch to nohz mode
1089  */
1090 static void tick_nohz_switch_to_nohz(void)
1091 {
1092 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1093 	ktime_t next;
1094 
1095 	if (!tick_nohz_enabled)
1096 		return;
1097 
1098 	if (tick_switch_to_oneshot(tick_nohz_handler))
1099 		return;
1100 
1101 	/*
1102 	 * Recycle the hrtimer in ts, so we can share the
1103 	 * hrtimer_forward with the highres code.
1104 	 */
1105 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1106 	/* Get the next period */
1107 	next = tick_init_jiffy_update();
1108 
1109 	hrtimer_set_expires(&ts->sched_timer, next);
1110 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1111 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1112 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1113 }
1114 
1115 static inline void tick_nohz_irq_enter(void)
1116 {
1117 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1118 	ktime_t now;
1119 
1120 	if (!ts->idle_active && !ts->tick_stopped)
1121 		return;
1122 	now = ktime_get();
1123 	if (ts->idle_active)
1124 		tick_nohz_stop_idle(ts, now);
1125 	if (ts->tick_stopped)
1126 		tick_nohz_update_jiffies(now);
1127 }
1128 
1129 #else
1130 
1131 static inline void tick_nohz_switch_to_nohz(void) { }
1132 static inline void tick_nohz_irq_enter(void) { }
1133 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1134 
1135 #endif /* CONFIG_NO_HZ_COMMON */
1136 
1137 /*
1138  * Called from irq_enter to notify about the possible interruption of idle()
1139  */
1140 void tick_irq_enter(void)
1141 {
1142 	tick_check_oneshot_broadcast_this_cpu();
1143 	tick_nohz_irq_enter();
1144 }
1145 
1146 /*
1147  * High resolution timer specific code
1148  */
1149 #ifdef CONFIG_HIGH_RES_TIMERS
1150 /*
1151  * We rearm the timer until we get disabled by the idle code.
1152  * Called with interrupts disabled.
1153  */
1154 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1155 {
1156 	struct tick_sched *ts =
1157 		container_of(timer, struct tick_sched, sched_timer);
1158 	struct pt_regs *regs = get_irq_regs();
1159 	ktime_t now = ktime_get();
1160 
1161 	tick_sched_do_timer(now);
1162 
1163 	/*
1164 	 * Do not call, when we are not in irq context and have
1165 	 * no valid regs pointer
1166 	 */
1167 	if (regs)
1168 		tick_sched_handle(ts, regs);
1169 
1170 	/* No need to reprogram if we are in idle or full dynticks mode */
1171 	if (unlikely(ts->tick_stopped))
1172 		return HRTIMER_NORESTART;
1173 
1174 	hrtimer_forward(timer, now, tick_period);
1175 
1176 	return HRTIMER_RESTART;
1177 }
1178 
1179 static int sched_skew_tick;
1180 
1181 static int __init skew_tick(char *str)
1182 {
1183 	get_option(&str, &sched_skew_tick);
1184 
1185 	return 0;
1186 }
1187 early_param("skew_tick", skew_tick);
1188 
1189 /**
1190  * tick_setup_sched_timer - setup the tick emulation timer
1191  */
1192 void tick_setup_sched_timer(void)
1193 {
1194 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1195 	ktime_t now = ktime_get();
1196 
1197 	/*
1198 	 * Emulate tick processing via per-CPU hrtimers:
1199 	 */
1200 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1201 	ts->sched_timer.function = tick_sched_timer;
1202 
1203 	/* Get the next period (per-CPU) */
1204 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1205 
1206 	/* Offset the tick to avert jiffies_lock contention. */
1207 	if (sched_skew_tick) {
1208 		u64 offset = ktime_to_ns(tick_period) >> 1;
1209 		do_div(offset, num_possible_cpus());
1210 		offset *= smp_processor_id();
1211 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1212 	}
1213 
1214 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1215 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1216 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1217 }
1218 #endif /* HIGH_RES_TIMERS */
1219 
1220 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1221 void tick_cancel_sched_timer(int cpu)
1222 {
1223 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1224 
1225 # ifdef CONFIG_HIGH_RES_TIMERS
1226 	if (ts->sched_timer.base)
1227 		hrtimer_cancel(&ts->sched_timer);
1228 # endif
1229 
1230 	memset(ts, 0, sizeof(*ts));
1231 }
1232 #endif
1233 
1234 /**
1235  * Async notification about clocksource changes
1236  */
1237 void tick_clock_notify(void)
1238 {
1239 	int cpu;
1240 
1241 	for_each_possible_cpu(cpu)
1242 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1243 }
1244 
1245 /*
1246  * Async notification about clock event changes
1247  */
1248 void tick_oneshot_notify(void)
1249 {
1250 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1251 
1252 	set_bit(0, &ts->check_clocks);
1253 }
1254 
1255 /**
1256  * Check, if a change happened, which makes oneshot possible.
1257  *
1258  * Called cyclic from the hrtimer softirq (driven by the timer
1259  * softirq) allow_nohz signals, that we can switch into low-res nohz
1260  * mode, because high resolution timers are disabled (either compile
1261  * or runtime). Called with interrupts disabled.
1262  */
1263 int tick_check_oneshot_change(int allow_nohz)
1264 {
1265 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1266 
1267 	if (!test_and_clear_bit(0, &ts->check_clocks))
1268 		return 0;
1269 
1270 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1271 		return 0;
1272 
1273 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1274 		return 0;
1275 
1276 	if (!allow_nohz)
1277 		return 1;
1278 
1279 	tick_nohz_switch_to_nohz();
1280 	return 0;
1281 }
1282