1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 31 #include <asm/irq_regs.h> 32 33 #include "tick-internal.h" 34 35 #include <trace/events/timer.h> 36 37 /* 38 * Per-CPU nohz control structure 39 */ 40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 41 42 struct tick_sched *tick_get_tick_sched(int cpu) 43 { 44 return &per_cpu(tick_cpu_sched, cpu); 45 } 46 47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 48 /* 49 * The time, when the last jiffy update happened. Protected by jiffies_lock. 50 */ 51 static ktime_t last_jiffies_update; 52 53 /* 54 * Must be called with interrupts disabled ! 55 */ 56 static void tick_do_update_jiffies64(ktime_t now) 57 { 58 unsigned long ticks = 0; 59 ktime_t delta; 60 61 /* 62 * Do a quick check without holding jiffies_lock: 63 */ 64 delta = ktime_sub(now, last_jiffies_update); 65 if (delta < tick_period) 66 return; 67 68 /* Reevaluate with jiffies_lock held */ 69 write_seqlock(&jiffies_lock); 70 71 delta = ktime_sub(now, last_jiffies_update); 72 if (delta >= tick_period) { 73 74 delta = ktime_sub(delta, tick_period); 75 last_jiffies_update = ktime_add(last_jiffies_update, 76 tick_period); 77 78 /* Slow path for long timeouts */ 79 if (unlikely(delta >= tick_period)) { 80 s64 incr = ktime_to_ns(tick_period); 81 82 ticks = ktime_divns(delta, incr); 83 84 last_jiffies_update = ktime_add_ns(last_jiffies_update, 85 incr * ticks); 86 } 87 do_timer(++ticks); 88 89 /* Keep the tick_next_period variable up to date */ 90 tick_next_period = ktime_add(last_jiffies_update, tick_period); 91 } else { 92 write_sequnlock(&jiffies_lock); 93 return; 94 } 95 write_sequnlock(&jiffies_lock); 96 update_wall_time(); 97 } 98 99 /* 100 * Initialize and return retrieve the jiffies update. 101 */ 102 static ktime_t tick_init_jiffy_update(void) 103 { 104 ktime_t period; 105 106 write_seqlock(&jiffies_lock); 107 /* Did we start the jiffies update yet ? */ 108 if (last_jiffies_update == 0) 109 last_jiffies_update = tick_next_period; 110 period = last_jiffies_update; 111 write_sequnlock(&jiffies_lock); 112 return period; 113 } 114 115 116 static void tick_sched_do_timer(ktime_t now) 117 { 118 int cpu = smp_processor_id(); 119 120 #ifdef CONFIG_NO_HZ_COMMON 121 /* 122 * Check if the do_timer duty was dropped. We don't care about 123 * concurrency: This happens only when the CPU in charge went 124 * into a long sleep. If two CPUs happen to assign themselves to 125 * this duty, then the jiffies update is still serialized by 126 * jiffies_lock. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 129 && !tick_nohz_full_cpu(cpu)) 130 tick_do_timer_cpu = cpu; 131 #endif 132 133 /* Check, if the jiffies need an update */ 134 if (tick_do_timer_cpu == cpu) 135 tick_do_update_jiffies64(now); 136 } 137 138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 139 { 140 #ifdef CONFIG_NO_HZ_COMMON 141 /* 142 * When we are idle and the tick is stopped, we have to touch 143 * the watchdog as we might not schedule for a really long 144 * time. This happens on complete idle SMP systems while 145 * waiting on the login prompt. We also increment the "start of 146 * idle" jiffy stamp so the idle accounting adjustment we do 147 * when we go busy again does not account too much ticks. 148 */ 149 if (ts->tick_stopped) { 150 touch_softlockup_watchdog_sched(); 151 if (is_idle_task(current)) 152 ts->idle_jiffies++; 153 /* 154 * In case the current tick fired too early past its expected 155 * expiration, make sure we don't bypass the next clock reprogramming 156 * to the same deadline. 157 */ 158 ts->next_tick = 0; 159 } 160 #endif 161 update_process_times(user_mode(regs)); 162 profile_tick(CPU_PROFILING); 163 } 164 #endif 165 166 #ifdef CONFIG_NO_HZ_FULL 167 cpumask_var_t tick_nohz_full_mask; 168 cpumask_var_t housekeeping_mask; 169 bool tick_nohz_full_running; 170 static atomic_t tick_dep_mask; 171 172 static bool check_tick_dependency(atomic_t *dep) 173 { 174 int val = atomic_read(dep); 175 176 if (val & TICK_DEP_MASK_POSIX_TIMER) { 177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_PERF_EVENTS) { 182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_SCHED) { 187 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 193 return true; 194 } 195 196 return false; 197 } 198 199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 200 { 201 lockdep_assert_irqs_disabled(); 202 203 if (unlikely(!cpu_online(cpu))) 204 return false; 205 206 if (check_tick_dependency(&tick_dep_mask)) 207 return false; 208 209 if (check_tick_dependency(&ts->tick_dep_mask)) 210 return false; 211 212 if (check_tick_dependency(¤t->tick_dep_mask)) 213 return false; 214 215 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 216 return false; 217 218 return true; 219 } 220 221 static void nohz_full_kick_func(struct irq_work *work) 222 { 223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 224 } 225 226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 227 .func = nohz_full_kick_func, 228 }; 229 230 /* 231 * Kick this CPU if it's full dynticks in order to force it to 232 * re-evaluate its dependency on the tick and restart it if necessary. 233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 234 * is NMI safe. 235 */ 236 static void tick_nohz_full_kick(void) 237 { 238 if (!tick_nohz_full_cpu(smp_processor_id())) 239 return; 240 241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 242 } 243 244 /* 245 * Kick the CPU if it's full dynticks in order to force it to 246 * re-evaluate its dependency on the tick and restart it if necessary. 247 */ 248 void tick_nohz_full_kick_cpu(int cpu) 249 { 250 if (!tick_nohz_full_cpu(cpu)) 251 return; 252 253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 254 } 255 256 /* 257 * Kick all full dynticks CPUs in order to force these to re-evaluate 258 * their dependency on the tick and restart it if necessary. 259 */ 260 static void tick_nohz_full_kick_all(void) 261 { 262 int cpu; 263 264 if (!tick_nohz_full_running) 265 return; 266 267 preempt_disable(); 268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 269 tick_nohz_full_kick_cpu(cpu); 270 preempt_enable(); 271 } 272 273 static void tick_nohz_dep_set_all(atomic_t *dep, 274 enum tick_dep_bits bit) 275 { 276 int prev; 277 278 prev = atomic_fetch_or(BIT(bit), dep); 279 if (!prev) 280 tick_nohz_full_kick_all(); 281 } 282 283 /* 284 * Set a global tick dependency. Used by perf events that rely on freq and 285 * by unstable clock. 286 */ 287 void tick_nohz_dep_set(enum tick_dep_bits bit) 288 { 289 tick_nohz_dep_set_all(&tick_dep_mask, bit); 290 } 291 292 void tick_nohz_dep_clear(enum tick_dep_bits bit) 293 { 294 atomic_andnot(BIT(bit), &tick_dep_mask); 295 } 296 297 /* 298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 299 * manage events throttling. 300 */ 301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 302 { 303 int prev; 304 struct tick_sched *ts; 305 306 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 307 308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 309 if (!prev) { 310 preempt_disable(); 311 /* Perf needs local kick that is NMI safe */ 312 if (cpu == smp_processor_id()) { 313 tick_nohz_full_kick(); 314 } else { 315 /* Remote irq work not NMI-safe */ 316 if (!WARN_ON_ONCE(in_nmi())) 317 tick_nohz_full_kick_cpu(cpu); 318 } 319 preempt_enable(); 320 } 321 } 322 323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 324 { 325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 326 327 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 328 } 329 330 /* 331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 332 * per task timers. 333 */ 334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 335 { 336 /* 337 * We could optimize this with just kicking the target running the task 338 * if that noise matters for nohz full users. 339 */ 340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 341 } 342 343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 344 { 345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 346 } 347 348 /* 349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 350 * per process timers. 351 */ 352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 353 { 354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 355 } 356 357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 358 { 359 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 360 } 361 362 /* 363 * Re-evaluate the need for the tick as we switch the current task. 364 * It might need the tick due to per task/process properties: 365 * perf events, posix CPU timers, ... 366 */ 367 void __tick_nohz_task_switch(void) 368 { 369 unsigned long flags; 370 struct tick_sched *ts; 371 372 local_irq_save(flags); 373 374 if (!tick_nohz_full_cpu(smp_processor_id())) 375 goto out; 376 377 ts = this_cpu_ptr(&tick_cpu_sched); 378 379 if (ts->tick_stopped) { 380 if (atomic_read(¤t->tick_dep_mask) || 381 atomic_read(¤t->signal->tick_dep_mask)) 382 tick_nohz_full_kick(); 383 } 384 out: 385 local_irq_restore(flags); 386 } 387 388 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 389 static int __init tick_nohz_full_setup(char *str) 390 { 391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 392 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 393 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n"); 394 free_bootmem_cpumask_var(tick_nohz_full_mask); 395 return 1; 396 } 397 tick_nohz_full_running = true; 398 399 return 1; 400 } 401 __setup("nohz_full=", tick_nohz_full_setup); 402 403 static int tick_nohz_cpu_down(unsigned int cpu) 404 { 405 /* 406 * The boot CPU handles housekeeping duty (unbound timers, 407 * workqueues, timekeeping, ...) on behalf of full dynticks 408 * CPUs. It must remain online when nohz full is enabled. 409 */ 410 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 411 return -EBUSY; 412 return 0; 413 } 414 415 static int tick_nohz_init_all(void) 416 { 417 int err = -1; 418 419 #ifdef CONFIG_NO_HZ_FULL_ALL 420 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 421 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 422 return err; 423 } 424 err = 0; 425 cpumask_setall(tick_nohz_full_mask); 426 tick_nohz_full_running = true; 427 #endif 428 return err; 429 } 430 431 void __init tick_nohz_init(void) 432 { 433 int cpu, ret; 434 435 if (!tick_nohz_full_running) { 436 if (tick_nohz_init_all() < 0) 437 return; 438 } 439 440 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 441 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 442 cpumask_clear(tick_nohz_full_mask); 443 tick_nohz_full_running = false; 444 return; 445 } 446 447 /* 448 * Full dynticks uses irq work to drive the tick rescheduling on safe 449 * locking contexts. But then we need irq work to raise its own 450 * interrupts to avoid circular dependency on the tick 451 */ 452 if (!arch_irq_work_has_interrupt()) { 453 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 454 cpumask_clear(tick_nohz_full_mask); 455 cpumask_copy(housekeeping_mask, cpu_possible_mask); 456 tick_nohz_full_running = false; 457 return; 458 } 459 460 cpu = smp_processor_id(); 461 462 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 463 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 464 cpu); 465 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 466 } 467 468 cpumask_andnot(housekeeping_mask, 469 cpu_possible_mask, tick_nohz_full_mask); 470 471 for_each_cpu(cpu, tick_nohz_full_mask) 472 context_tracking_cpu_set(cpu); 473 474 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 475 "kernel/nohz:predown", NULL, 476 tick_nohz_cpu_down); 477 WARN_ON(ret < 0); 478 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 479 cpumask_pr_args(tick_nohz_full_mask)); 480 481 /* 482 * We need at least one CPU to handle housekeeping work such 483 * as timekeeping, unbound timers, workqueues, ... 484 */ 485 WARN_ON_ONCE(cpumask_empty(housekeeping_mask)); 486 } 487 #endif 488 489 /* 490 * NOHZ - aka dynamic tick functionality 491 */ 492 #ifdef CONFIG_NO_HZ_COMMON 493 /* 494 * NO HZ enabled ? 495 */ 496 bool tick_nohz_enabled __read_mostly = true; 497 unsigned long tick_nohz_active __read_mostly; 498 /* 499 * Enable / Disable tickless mode 500 */ 501 static int __init setup_tick_nohz(char *str) 502 { 503 return (kstrtobool(str, &tick_nohz_enabled) == 0); 504 } 505 506 __setup("nohz=", setup_tick_nohz); 507 508 int tick_nohz_tick_stopped(void) 509 { 510 return __this_cpu_read(tick_cpu_sched.tick_stopped); 511 } 512 513 /** 514 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 515 * 516 * Called from interrupt entry when the CPU was idle 517 * 518 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 519 * must be updated. Otherwise an interrupt handler could use a stale jiffy 520 * value. We do this unconditionally on any CPU, as we don't know whether the 521 * CPU, which has the update task assigned is in a long sleep. 522 */ 523 static void tick_nohz_update_jiffies(ktime_t now) 524 { 525 unsigned long flags; 526 527 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 528 529 local_irq_save(flags); 530 tick_do_update_jiffies64(now); 531 local_irq_restore(flags); 532 533 touch_softlockup_watchdog_sched(); 534 } 535 536 /* 537 * Updates the per-CPU time idle statistics counters 538 */ 539 static void 540 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 541 { 542 ktime_t delta; 543 544 if (ts->idle_active) { 545 delta = ktime_sub(now, ts->idle_entrytime); 546 if (nr_iowait_cpu(cpu) > 0) 547 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 548 else 549 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 550 ts->idle_entrytime = now; 551 } 552 553 if (last_update_time) 554 *last_update_time = ktime_to_us(now); 555 556 } 557 558 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 559 { 560 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 561 ts->idle_active = 0; 562 563 sched_clock_idle_wakeup_event(); 564 } 565 566 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 567 { 568 ktime_t now = ktime_get(); 569 570 ts->idle_entrytime = now; 571 ts->idle_active = 1; 572 sched_clock_idle_sleep_event(); 573 return now; 574 } 575 576 /** 577 * get_cpu_idle_time_us - get the total idle time of a CPU 578 * @cpu: CPU number to query 579 * @last_update_time: variable to store update time in. Do not update 580 * counters if NULL. 581 * 582 * Return the cumulative idle time (since boot) for a given 583 * CPU, in microseconds. 584 * 585 * This time is measured via accounting rather than sampling, 586 * and is as accurate as ktime_get() is. 587 * 588 * This function returns -1 if NOHZ is not enabled. 589 */ 590 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 591 { 592 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 593 ktime_t now, idle; 594 595 if (!tick_nohz_active) 596 return -1; 597 598 now = ktime_get(); 599 if (last_update_time) { 600 update_ts_time_stats(cpu, ts, now, last_update_time); 601 idle = ts->idle_sleeptime; 602 } else { 603 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 604 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 605 606 idle = ktime_add(ts->idle_sleeptime, delta); 607 } else { 608 idle = ts->idle_sleeptime; 609 } 610 } 611 612 return ktime_to_us(idle); 613 614 } 615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 616 617 /** 618 * get_cpu_iowait_time_us - get the total iowait time of a CPU 619 * @cpu: CPU number to query 620 * @last_update_time: variable to store update time in. Do not update 621 * counters if NULL. 622 * 623 * Return the cumulative iowait time (since boot) for a given 624 * CPU, in microseconds. 625 * 626 * This time is measured via accounting rather than sampling, 627 * and is as accurate as ktime_get() is. 628 * 629 * This function returns -1 if NOHZ is not enabled. 630 */ 631 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 632 { 633 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 634 ktime_t now, iowait; 635 636 if (!tick_nohz_active) 637 return -1; 638 639 now = ktime_get(); 640 if (last_update_time) { 641 update_ts_time_stats(cpu, ts, now, last_update_time); 642 iowait = ts->iowait_sleeptime; 643 } else { 644 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 645 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 646 647 iowait = ktime_add(ts->iowait_sleeptime, delta); 648 } else { 649 iowait = ts->iowait_sleeptime; 650 } 651 } 652 653 return ktime_to_us(iowait); 654 } 655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 656 657 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 658 { 659 hrtimer_cancel(&ts->sched_timer); 660 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 661 662 /* Forward the time to expire in the future */ 663 hrtimer_forward(&ts->sched_timer, now, tick_period); 664 665 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 666 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 667 else 668 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 669 670 /* 671 * Reset to make sure next tick stop doesn't get fooled by past 672 * cached clock deadline. 673 */ 674 ts->next_tick = 0; 675 } 676 677 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 678 ktime_t now, int cpu) 679 { 680 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 681 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 682 unsigned long seq, basejiff; 683 ktime_t tick; 684 685 /* Read jiffies and the time when jiffies were updated last */ 686 do { 687 seq = read_seqbegin(&jiffies_lock); 688 basemono = last_jiffies_update; 689 basejiff = jiffies; 690 } while (read_seqretry(&jiffies_lock, seq)); 691 ts->last_jiffies = basejiff; 692 693 if (rcu_needs_cpu(basemono, &next_rcu) || 694 arch_needs_cpu() || irq_work_needs_cpu()) { 695 next_tick = basemono + TICK_NSEC; 696 } else { 697 /* 698 * Get the next pending timer. If high resolution 699 * timers are enabled this only takes the timer wheel 700 * timers into account. If high resolution timers are 701 * disabled this also looks at the next expiring 702 * hrtimer. 703 */ 704 next_tmr = get_next_timer_interrupt(basejiff, basemono); 705 ts->next_timer = next_tmr; 706 /* Take the next rcu event into account */ 707 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 708 } 709 710 /* 711 * If the tick is due in the next period, keep it ticking or 712 * force prod the timer. 713 */ 714 delta = next_tick - basemono; 715 if (delta <= (u64)TICK_NSEC) { 716 /* 717 * Tell the timer code that the base is not idle, i.e. undo 718 * the effect of get_next_timer_interrupt(): 719 */ 720 timer_clear_idle(); 721 /* 722 * We've not stopped the tick yet, and there's a timer in the 723 * next period, so no point in stopping it either, bail. 724 */ 725 if (!ts->tick_stopped) { 726 tick = 0; 727 goto out; 728 } 729 } 730 731 /* 732 * If this CPU is the one which updates jiffies, then give up 733 * the assignment and let it be taken by the CPU which runs 734 * the tick timer next, which might be this CPU as well. If we 735 * don't drop this here the jiffies might be stale and 736 * do_timer() never invoked. Keep track of the fact that it 737 * was the one which had the do_timer() duty last. If this CPU 738 * is the one which had the do_timer() duty last, we limit the 739 * sleep time to the timekeeping max_deferment value. 740 * Otherwise we can sleep as long as we want. 741 */ 742 delta = timekeeping_max_deferment(); 743 if (cpu == tick_do_timer_cpu) { 744 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 745 ts->do_timer_last = 1; 746 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 747 delta = KTIME_MAX; 748 ts->do_timer_last = 0; 749 } else if (!ts->do_timer_last) { 750 delta = KTIME_MAX; 751 } 752 753 #ifdef CONFIG_NO_HZ_FULL 754 /* Limit the tick delta to the maximum scheduler deferment */ 755 if (!ts->inidle) 756 delta = min(delta, scheduler_tick_max_deferment()); 757 #endif 758 759 /* Calculate the next expiry time */ 760 if (delta < (KTIME_MAX - basemono)) 761 expires = basemono + delta; 762 else 763 expires = KTIME_MAX; 764 765 expires = min_t(u64, expires, next_tick); 766 tick = expires; 767 768 /* Skip reprogram of event if its not changed */ 769 if (ts->tick_stopped && (expires == ts->next_tick)) { 770 /* Sanity check: make sure clockevent is actually programmed */ 771 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 772 goto out; 773 774 WARN_ON_ONCE(1); 775 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 776 basemono, ts->next_tick, dev->next_event, 777 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 778 } 779 780 /* 781 * nohz_stop_sched_tick can be called several times before 782 * the nohz_restart_sched_tick is called. This happens when 783 * interrupts arrive which do not cause a reschedule. In the 784 * first call we save the current tick time, so we can restart 785 * the scheduler tick in nohz_restart_sched_tick. 786 */ 787 if (!ts->tick_stopped) { 788 calc_load_nohz_start(); 789 cpu_load_update_nohz_start(); 790 791 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 792 ts->tick_stopped = 1; 793 trace_tick_stop(1, TICK_DEP_MASK_NONE); 794 } 795 796 ts->next_tick = tick; 797 798 /* 799 * If the expiration time == KTIME_MAX, then we simply stop 800 * the tick timer. 801 */ 802 if (unlikely(expires == KTIME_MAX)) { 803 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 804 hrtimer_cancel(&ts->sched_timer); 805 goto out; 806 } 807 808 hrtimer_set_expires(&ts->sched_timer, tick); 809 810 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 811 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 812 else 813 tick_program_event(tick, 1); 814 out: 815 /* 816 * Update the estimated sleep length until the next timer 817 * (not only the tick). 818 */ 819 ts->sleep_length = ktime_sub(dev->next_event, now); 820 return tick; 821 } 822 823 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 824 { 825 /* Update jiffies first */ 826 tick_do_update_jiffies64(now); 827 cpu_load_update_nohz_stop(); 828 829 /* 830 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 831 * the clock forward checks in the enqueue path: 832 */ 833 timer_clear_idle(); 834 835 calc_load_nohz_stop(); 836 touch_softlockup_watchdog_sched(); 837 /* 838 * Cancel the scheduled timer and restore the tick 839 */ 840 ts->tick_stopped = 0; 841 ts->idle_exittime = now; 842 843 tick_nohz_restart(ts, now); 844 } 845 846 static void tick_nohz_full_update_tick(struct tick_sched *ts) 847 { 848 #ifdef CONFIG_NO_HZ_FULL 849 int cpu = smp_processor_id(); 850 851 if (!tick_nohz_full_cpu(cpu)) 852 return; 853 854 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 855 return; 856 857 if (can_stop_full_tick(cpu, ts)) 858 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 859 else if (ts->tick_stopped) 860 tick_nohz_restart_sched_tick(ts, ktime_get()); 861 #endif 862 } 863 864 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 865 { 866 /* 867 * If this CPU is offline and it is the one which updates 868 * jiffies, then give up the assignment and let it be taken by 869 * the CPU which runs the tick timer next. If we don't drop 870 * this here the jiffies might be stale and do_timer() never 871 * invoked. 872 */ 873 if (unlikely(!cpu_online(cpu))) { 874 if (cpu == tick_do_timer_cpu) 875 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 876 /* 877 * Make sure the CPU doesn't get fooled by obsolete tick 878 * deadline if it comes back online later. 879 */ 880 ts->next_tick = 0; 881 return false; 882 } 883 884 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 885 ts->sleep_length = NSEC_PER_SEC / HZ; 886 return false; 887 } 888 889 if (need_resched()) 890 return false; 891 892 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 893 static int ratelimit; 894 895 if (ratelimit < 10 && 896 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 897 pr_warn("NOHZ: local_softirq_pending %02x\n", 898 (unsigned int) local_softirq_pending()); 899 ratelimit++; 900 } 901 return false; 902 } 903 904 if (tick_nohz_full_enabled()) { 905 /* 906 * Keep the tick alive to guarantee timekeeping progression 907 * if there are full dynticks CPUs around 908 */ 909 if (tick_do_timer_cpu == cpu) 910 return false; 911 /* 912 * Boot safety: make sure the timekeeping duty has been 913 * assigned before entering dyntick-idle mode, 914 */ 915 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 916 return false; 917 } 918 919 return true; 920 } 921 922 static void __tick_nohz_idle_enter(struct tick_sched *ts) 923 { 924 ktime_t now, expires; 925 int cpu = smp_processor_id(); 926 927 now = tick_nohz_start_idle(ts); 928 929 if (can_stop_idle_tick(cpu, ts)) { 930 int was_stopped = ts->tick_stopped; 931 932 ts->idle_calls++; 933 934 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 935 if (expires > 0LL) { 936 ts->idle_sleeps++; 937 ts->idle_expires = expires; 938 } 939 940 if (!was_stopped && ts->tick_stopped) { 941 ts->idle_jiffies = ts->last_jiffies; 942 nohz_balance_enter_idle(cpu); 943 } 944 } 945 } 946 947 /** 948 * tick_nohz_idle_enter - stop the idle tick from the idle task 949 * 950 * When the next event is more than a tick into the future, stop the idle tick 951 * Called when we start the idle loop. 952 * 953 * The arch is responsible of calling: 954 * 955 * - rcu_idle_enter() after its last use of RCU before the CPU is put 956 * to sleep. 957 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 958 */ 959 void tick_nohz_idle_enter(void) 960 { 961 struct tick_sched *ts; 962 963 lockdep_assert_irqs_enabled(); 964 /* 965 * Update the idle state in the scheduler domain hierarchy 966 * when tick_nohz_stop_sched_tick() is called from the idle loop. 967 * State will be updated to busy during the first busy tick after 968 * exiting idle. 969 */ 970 set_cpu_sd_state_idle(); 971 972 local_irq_disable(); 973 974 ts = this_cpu_ptr(&tick_cpu_sched); 975 ts->inidle = 1; 976 __tick_nohz_idle_enter(ts); 977 978 local_irq_enable(); 979 } 980 981 /** 982 * tick_nohz_irq_exit - update next tick event from interrupt exit 983 * 984 * When an interrupt fires while we are idle and it doesn't cause 985 * a reschedule, it may still add, modify or delete a timer, enqueue 986 * an RCU callback, etc... 987 * So we need to re-calculate and reprogram the next tick event. 988 */ 989 void tick_nohz_irq_exit(void) 990 { 991 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 992 993 if (ts->inidle) 994 __tick_nohz_idle_enter(ts); 995 else 996 tick_nohz_full_update_tick(ts); 997 } 998 999 /** 1000 * tick_nohz_get_sleep_length - return the length of the current sleep 1001 * 1002 * Called from power state control code with interrupts disabled 1003 */ 1004 ktime_t tick_nohz_get_sleep_length(void) 1005 { 1006 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1007 1008 return ts->sleep_length; 1009 } 1010 1011 /** 1012 * tick_nohz_get_idle_calls - return the current idle calls counter value 1013 * 1014 * Called from the schedutil frequency scaling governor in scheduler context. 1015 */ 1016 unsigned long tick_nohz_get_idle_calls(void) 1017 { 1018 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1019 1020 return ts->idle_calls; 1021 } 1022 1023 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1024 { 1025 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1026 unsigned long ticks; 1027 1028 if (vtime_accounting_cpu_enabled()) 1029 return; 1030 /* 1031 * We stopped the tick in idle. Update process times would miss the 1032 * time we slept as update_process_times does only a 1 tick 1033 * accounting. Enforce that this is accounted to idle ! 1034 */ 1035 ticks = jiffies - ts->idle_jiffies; 1036 /* 1037 * We might be one off. Do not randomly account a huge number of ticks! 1038 */ 1039 if (ticks && ticks < LONG_MAX) 1040 account_idle_ticks(ticks); 1041 #endif 1042 } 1043 1044 /** 1045 * tick_nohz_idle_exit - restart the idle tick from the idle task 1046 * 1047 * Restart the idle tick when the CPU is woken up from idle 1048 * This also exit the RCU extended quiescent state. The CPU 1049 * can use RCU again after this function is called. 1050 */ 1051 void tick_nohz_idle_exit(void) 1052 { 1053 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1054 ktime_t now; 1055 1056 local_irq_disable(); 1057 1058 WARN_ON_ONCE(!ts->inidle); 1059 1060 ts->inidle = 0; 1061 1062 if (ts->idle_active || ts->tick_stopped) 1063 now = ktime_get(); 1064 1065 if (ts->idle_active) 1066 tick_nohz_stop_idle(ts, now); 1067 1068 if (ts->tick_stopped) { 1069 tick_nohz_restart_sched_tick(ts, now); 1070 tick_nohz_account_idle_ticks(ts); 1071 } 1072 1073 local_irq_enable(); 1074 } 1075 1076 /* 1077 * The nohz low res interrupt handler 1078 */ 1079 static void tick_nohz_handler(struct clock_event_device *dev) 1080 { 1081 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1082 struct pt_regs *regs = get_irq_regs(); 1083 ktime_t now = ktime_get(); 1084 1085 dev->next_event = KTIME_MAX; 1086 1087 tick_sched_do_timer(now); 1088 tick_sched_handle(ts, regs); 1089 1090 /* No need to reprogram if we are running tickless */ 1091 if (unlikely(ts->tick_stopped)) 1092 return; 1093 1094 hrtimer_forward(&ts->sched_timer, now, tick_period); 1095 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1096 } 1097 1098 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1099 { 1100 if (!tick_nohz_enabled) 1101 return; 1102 ts->nohz_mode = mode; 1103 /* One update is enough */ 1104 if (!test_and_set_bit(0, &tick_nohz_active)) 1105 timers_update_migration(true); 1106 } 1107 1108 /** 1109 * tick_nohz_switch_to_nohz - switch to nohz mode 1110 */ 1111 static void tick_nohz_switch_to_nohz(void) 1112 { 1113 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1114 ktime_t next; 1115 1116 if (!tick_nohz_enabled) 1117 return; 1118 1119 if (tick_switch_to_oneshot(tick_nohz_handler)) 1120 return; 1121 1122 /* 1123 * Recycle the hrtimer in ts, so we can share the 1124 * hrtimer_forward with the highres code. 1125 */ 1126 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1127 /* Get the next period */ 1128 next = tick_init_jiffy_update(); 1129 1130 hrtimer_set_expires(&ts->sched_timer, next); 1131 hrtimer_forward_now(&ts->sched_timer, tick_period); 1132 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1133 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1134 } 1135 1136 static inline void tick_nohz_irq_enter(void) 1137 { 1138 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1139 ktime_t now; 1140 1141 if (!ts->idle_active && !ts->tick_stopped) 1142 return; 1143 now = ktime_get(); 1144 if (ts->idle_active) 1145 tick_nohz_stop_idle(ts, now); 1146 if (ts->tick_stopped) 1147 tick_nohz_update_jiffies(now); 1148 } 1149 1150 #else 1151 1152 static inline void tick_nohz_switch_to_nohz(void) { } 1153 static inline void tick_nohz_irq_enter(void) { } 1154 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1155 1156 #endif /* CONFIG_NO_HZ_COMMON */ 1157 1158 /* 1159 * Called from irq_enter to notify about the possible interruption of idle() 1160 */ 1161 void tick_irq_enter(void) 1162 { 1163 tick_check_oneshot_broadcast_this_cpu(); 1164 tick_nohz_irq_enter(); 1165 } 1166 1167 /* 1168 * High resolution timer specific code 1169 */ 1170 #ifdef CONFIG_HIGH_RES_TIMERS 1171 /* 1172 * We rearm the timer until we get disabled by the idle code. 1173 * Called with interrupts disabled. 1174 */ 1175 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1176 { 1177 struct tick_sched *ts = 1178 container_of(timer, struct tick_sched, sched_timer); 1179 struct pt_regs *regs = get_irq_regs(); 1180 ktime_t now = ktime_get(); 1181 1182 tick_sched_do_timer(now); 1183 1184 /* 1185 * Do not call, when we are not in irq context and have 1186 * no valid regs pointer 1187 */ 1188 if (regs) 1189 tick_sched_handle(ts, regs); 1190 else 1191 ts->next_tick = 0; 1192 1193 /* No need to reprogram if we are in idle or full dynticks mode */ 1194 if (unlikely(ts->tick_stopped)) 1195 return HRTIMER_NORESTART; 1196 1197 hrtimer_forward(timer, now, tick_period); 1198 1199 return HRTIMER_RESTART; 1200 } 1201 1202 static int sched_skew_tick; 1203 1204 static int __init skew_tick(char *str) 1205 { 1206 get_option(&str, &sched_skew_tick); 1207 1208 return 0; 1209 } 1210 early_param("skew_tick", skew_tick); 1211 1212 /** 1213 * tick_setup_sched_timer - setup the tick emulation timer 1214 */ 1215 void tick_setup_sched_timer(void) 1216 { 1217 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1218 ktime_t now = ktime_get(); 1219 1220 /* 1221 * Emulate tick processing via per-CPU hrtimers: 1222 */ 1223 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1224 ts->sched_timer.function = tick_sched_timer; 1225 1226 /* Get the next period (per-CPU) */ 1227 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1228 1229 /* Offset the tick to avert jiffies_lock contention. */ 1230 if (sched_skew_tick) { 1231 u64 offset = ktime_to_ns(tick_period) >> 1; 1232 do_div(offset, num_possible_cpus()); 1233 offset *= smp_processor_id(); 1234 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1235 } 1236 1237 hrtimer_forward(&ts->sched_timer, now, tick_period); 1238 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1239 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1240 } 1241 #endif /* HIGH_RES_TIMERS */ 1242 1243 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1244 void tick_cancel_sched_timer(int cpu) 1245 { 1246 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1247 1248 # ifdef CONFIG_HIGH_RES_TIMERS 1249 if (ts->sched_timer.base) 1250 hrtimer_cancel(&ts->sched_timer); 1251 # endif 1252 1253 memset(ts, 0, sizeof(*ts)); 1254 } 1255 #endif 1256 1257 /** 1258 * Async notification about clocksource changes 1259 */ 1260 void tick_clock_notify(void) 1261 { 1262 int cpu; 1263 1264 for_each_possible_cpu(cpu) 1265 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1266 } 1267 1268 /* 1269 * Async notification about clock event changes 1270 */ 1271 void tick_oneshot_notify(void) 1272 { 1273 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1274 1275 set_bit(0, &ts->check_clocks); 1276 } 1277 1278 /** 1279 * Check, if a change happened, which makes oneshot possible. 1280 * 1281 * Called cyclic from the hrtimer softirq (driven by the timer 1282 * softirq) allow_nohz signals, that we can switch into low-res nohz 1283 * mode, because high resolution timers are disabled (either compile 1284 * or runtime). Called with interrupts disabled. 1285 */ 1286 int tick_check_oneshot_change(int allow_nohz) 1287 { 1288 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1289 1290 if (!test_and_clear_bit(0, &ts->check_clocks)) 1291 return 0; 1292 1293 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1294 return 0; 1295 1296 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1297 return 0; 1298 1299 if (!allow_nohz) 1300 return 1; 1301 1302 tick_nohz_switch_to_nohz(); 1303 return 0; 1304 } 1305