1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* Reevalute with xtime_lock held */ 52 write_seqlock(&xtime_lock); 53 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 >= tick_period.tv64) { 56 57 delta = ktime_sub(delta, tick_period); 58 last_jiffies_update = ktime_add(last_jiffies_update, 59 tick_period); 60 61 /* Slow path for long timeouts */ 62 if (unlikely(delta.tv64 >= tick_period.tv64)) { 63 s64 incr = ktime_to_ns(tick_period); 64 65 ticks = ktime_divns(delta, incr); 66 67 last_jiffies_update = ktime_add_ns(last_jiffies_update, 68 incr * ticks); 69 } 70 do_timer(++ticks); 71 } 72 write_sequnlock(&xtime_lock); 73 } 74 75 /* 76 * Initialize and return retrieve the jiffies update. 77 */ 78 static ktime_t tick_init_jiffy_update(void) 79 { 80 ktime_t period; 81 82 write_seqlock(&xtime_lock); 83 /* Did we start the jiffies update yet ? */ 84 if (last_jiffies_update.tv64 == 0) 85 last_jiffies_update = tick_next_period; 86 period = last_jiffies_update; 87 write_sequnlock(&xtime_lock); 88 return period; 89 } 90 91 /* 92 * NOHZ - aka dynamic tick functionality 93 */ 94 #ifdef CONFIG_NO_HZ 95 /* 96 * NO HZ enabled ? 97 */ 98 static int tick_nohz_enabled __read_mostly = 1; 99 100 /* 101 * Enable / Disable tickless mode 102 */ 103 static int __init setup_tick_nohz(char *str) 104 { 105 if (!strcmp(str, "off")) 106 tick_nohz_enabled = 0; 107 else if (!strcmp(str, "on")) 108 tick_nohz_enabled = 1; 109 else 110 return 0; 111 return 1; 112 } 113 114 __setup("nohz=", setup_tick_nohz); 115 116 /** 117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 118 * 119 * Called from interrupt entry when the CPU was idle 120 * 121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 122 * must be updated. Otherwise an interrupt handler could use a stale jiffy 123 * value. We do this unconditionally on any cpu, as we don't know whether the 124 * cpu, which has the update task assigned is in a long sleep. 125 */ 126 void tick_nohz_update_jiffies(void) 127 { 128 int cpu = smp_processor_id(); 129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 130 unsigned long flags; 131 ktime_t now; 132 133 if (!ts->tick_stopped) 134 return; 135 136 touch_softlockup_watchdog(); 137 138 cpu_clear(cpu, nohz_cpu_mask); 139 now = ktime_get(); 140 141 local_irq_save(flags); 142 tick_do_update_jiffies64(now); 143 local_irq_restore(flags); 144 } 145 146 /** 147 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 148 * 149 * When the next event is more than a tick into the future, stop the idle tick 150 * Called either from the idle loop or from irq_exit() when an idle period was 151 * just interrupted by an interrupt which did not cause a reschedule. 152 */ 153 void tick_nohz_stop_sched_tick(void) 154 { 155 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 156 struct tick_sched *ts; 157 ktime_t last_update, expires, now, delta; 158 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 159 int cpu; 160 161 local_irq_save(flags); 162 163 cpu = smp_processor_id(); 164 ts = &per_cpu(tick_cpu_sched, cpu); 165 166 /* 167 * If this cpu is offline and it is the one which updates 168 * jiffies, then give up the assignment and let it be taken by 169 * the cpu which runs the tick timer next. If we don't drop 170 * this here the jiffies might be stale and do_timer() never 171 * invoked. 172 */ 173 if (unlikely(!cpu_online(cpu))) { 174 if (cpu == tick_do_timer_cpu) 175 tick_do_timer_cpu = -1; 176 } 177 178 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 179 goto end; 180 181 if (need_resched()) 182 goto end; 183 184 cpu = smp_processor_id(); 185 if (unlikely(local_softirq_pending())) { 186 static int ratelimit; 187 188 if (ratelimit < 10) { 189 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 190 local_softirq_pending()); 191 ratelimit++; 192 } 193 } 194 195 now = ktime_get(); 196 /* 197 * When called from irq_exit we need to account the idle sleep time 198 * correctly. 199 */ 200 if (ts->tick_stopped) { 201 delta = ktime_sub(now, ts->idle_entrytime); 202 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 203 } 204 205 ts->idle_entrytime = now; 206 ts->idle_calls++; 207 208 /* Read jiffies and the time when jiffies were updated last */ 209 do { 210 seq = read_seqbegin(&xtime_lock); 211 last_update = last_jiffies_update; 212 last_jiffies = jiffies; 213 } while (read_seqretry(&xtime_lock, seq)); 214 215 /* Get the next timer wheel timer */ 216 next_jiffies = get_next_timer_interrupt(last_jiffies); 217 delta_jiffies = next_jiffies - last_jiffies; 218 219 if (rcu_needs_cpu(cpu)) 220 delta_jiffies = 1; 221 /* 222 * Do not stop the tick, if we are only one off 223 * or if the cpu is required for rcu 224 */ 225 if (!ts->tick_stopped && delta_jiffies == 1) 226 goto out; 227 228 /* Schedule the tick, if we are at least one jiffie off */ 229 if ((long)delta_jiffies >= 1) { 230 231 if (delta_jiffies > 1) 232 cpu_set(cpu, nohz_cpu_mask); 233 /* 234 * nohz_stop_sched_tick can be called several times before 235 * the nohz_restart_sched_tick is called. This happens when 236 * interrupts arrive which do not cause a reschedule. In the 237 * first call we save the current tick time, so we can restart 238 * the scheduler tick in nohz_restart_sched_tick. 239 */ 240 if (!ts->tick_stopped) { 241 if (select_nohz_load_balancer(1)) { 242 /* 243 * sched tick not stopped! 244 */ 245 cpu_clear(cpu, nohz_cpu_mask); 246 goto out; 247 } 248 249 ts->idle_tick = ts->sched_timer.expires; 250 ts->tick_stopped = 1; 251 ts->idle_jiffies = last_jiffies; 252 } 253 254 /* 255 * If this cpu is the one which updates jiffies, then 256 * give up the assignment and let it be taken by the 257 * cpu which runs the tick timer next, which might be 258 * this cpu as well. If we don't drop this here the 259 * jiffies might be stale and do_timer() never 260 * invoked. 261 */ 262 if (cpu == tick_do_timer_cpu) 263 tick_do_timer_cpu = -1; 264 265 ts->idle_sleeps++; 266 267 /* 268 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 269 * there is no timer pending or at least extremly far 270 * into the future (12 days for HZ=1000). In this case 271 * we simply stop the tick timer: 272 */ 273 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 274 ts->idle_expires.tv64 = KTIME_MAX; 275 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 276 hrtimer_cancel(&ts->sched_timer); 277 goto out; 278 } 279 280 /* 281 * calculate the expiry time for the next timer wheel 282 * timer 283 */ 284 expires = ktime_add_ns(last_update, tick_period.tv64 * 285 delta_jiffies); 286 ts->idle_expires = expires; 287 288 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 289 hrtimer_start(&ts->sched_timer, expires, 290 HRTIMER_MODE_ABS); 291 /* Check, if the timer was already in the past */ 292 if (hrtimer_active(&ts->sched_timer)) 293 goto out; 294 } else if(!tick_program_event(expires, 0)) 295 goto out; 296 /* 297 * We are past the event already. So we crossed a 298 * jiffie boundary. Update jiffies and raise the 299 * softirq. 300 */ 301 tick_do_update_jiffies64(ktime_get()); 302 cpu_clear(cpu, nohz_cpu_mask); 303 } 304 raise_softirq_irqoff(TIMER_SOFTIRQ); 305 out: 306 ts->next_jiffies = next_jiffies; 307 ts->last_jiffies = last_jiffies; 308 ts->sleep_length = ktime_sub(dev->next_event, now); 309 end: 310 local_irq_restore(flags); 311 } 312 313 /** 314 * tick_nohz_get_sleep_length - return the length of the current sleep 315 * 316 * Called from power state control code with interrupts disabled 317 */ 318 ktime_t tick_nohz_get_sleep_length(void) 319 { 320 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 321 322 return ts->sleep_length; 323 } 324 325 /** 326 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 327 * 328 * Restart the idle tick when the CPU is woken up from idle 329 */ 330 void tick_nohz_restart_sched_tick(void) 331 { 332 int cpu = smp_processor_id(); 333 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 334 unsigned long ticks; 335 ktime_t now, delta; 336 337 if (!ts->tick_stopped) 338 return; 339 340 /* Update jiffies first */ 341 now = ktime_get(); 342 343 local_irq_disable(); 344 select_nohz_load_balancer(0); 345 tick_do_update_jiffies64(now); 346 cpu_clear(cpu, nohz_cpu_mask); 347 348 /* Account the idle time */ 349 delta = ktime_sub(now, ts->idle_entrytime); 350 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 351 352 /* 353 * We stopped the tick in idle. Update process times would miss the 354 * time we slept as update_process_times does only a 1 tick 355 * accounting. Enforce that this is accounted to idle ! 356 */ 357 ticks = jiffies - ts->idle_jiffies; 358 /* 359 * We might be one off. Do not randomly account a huge number of ticks! 360 */ 361 if (ticks && ticks < LONG_MAX) { 362 add_preempt_count(HARDIRQ_OFFSET); 363 account_system_time(current, HARDIRQ_OFFSET, 364 jiffies_to_cputime(ticks)); 365 sub_preempt_count(HARDIRQ_OFFSET); 366 } 367 368 /* 369 * Cancel the scheduled timer and restore the tick 370 */ 371 ts->tick_stopped = 0; 372 hrtimer_cancel(&ts->sched_timer); 373 ts->sched_timer.expires = ts->idle_tick; 374 375 while (1) { 376 /* Forward the time to expire in the future */ 377 hrtimer_forward(&ts->sched_timer, now, tick_period); 378 379 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 380 hrtimer_start(&ts->sched_timer, 381 ts->sched_timer.expires, 382 HRTIMER_MODE_ABS); 383 /* Check, if the timer was already in the past */ 384 if (hrtimer_active(&ts->sched_timer)) 385 break; 386 } else { 387 if (!tick_program_event(ts->sched_timer.expires, 0)) 388 break; 389 } 390 /* Update jiffies and reread time */ 391 tick_do_update_jiffies64(now); 392 now = ktime_get(); 393 } 394 local_irq_enable(); 395 } 396 397 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 398 { 399 hrtimer_forward(&ts->sched_timer, now, tick_period); 400 return tick_program_event(ts->sched_timer.expires, 0); 401 } 402 403 /* 404 * The nohz low res interrupt handler 405 */ 406 static void tick_nohz_handler(struct clock_event_device *dev) 407 { 408 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 409 struct pt_regs *regs = get_irq_regs(); 410 int cpu = smp_processor_id(); 411 ktime_t now = ktime_get(); 412 413 dev->next_event.tv64 = KTIME_MAX; 414 415 /* 416 * Check if the do_timer duty was dropped. We don't care about 417 * concurrency: This happens only when the cpu in charge went 418 * into a long sleep. If two cpus happen to assign themself to 419 * this duty, then the jiffies update is still serialized by 420 * xtime_lock. 421 */ 422 if (unlikely(tick_do_timer_cpu == -1)) 423 tick_do_timer_cpu = cpu; 424 425 /* Check, if the jiffies need an update */ 426 if (tick_do_timer_cpu == cpu) 427 tick_do_update_jiffies64(now); 428 429 /* 430 * When we are idle and the tick is stopped, we have to touch 431 * the watchdog as we might not schedule for a really long 432 * time. This happens on complete idle SMP systems while 433 * waiting on the login prompt. We also increment the "start 434 * of idle" jiffy stamp so the idle accounting adjustment we 435 * do when we go busy again does not account too much ticks. 436 */ 437 if (ts->tick_stopped) { 438 touch_softlockup_watchdog(); 439 ts->idle_jiffies++; 440 } 441 442 update_process_times(user_mode(regs)); 443 profile_tick(CPU_PROFILING); 444 445 /* Do not restart, when we are in the idle loop */ 446 if (ts->tick_stopped) 447 return; 448 449 while (tick_nohz_reprogram(ts, now)) { 450 now = ktime_get(); 451 tick_do_update_jiffies64(now); 452 } 453 } 454 455 /** 456 * tick_nohz_switch_to_nohz - switch to nohz mode 457 */ 458 static void tick_nohz_switch_to_nohz(void) 459 { 460 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 461 ktime_t next; 462 463 if (!tick_nohz_enabled) 464 return; 465 466 local_irq_disable(); 467 if (tick_switch_to_oneshot(tick_nohz_handler)) { 468 local_irq_enable(); 469 return; 470 } 471 472 ts->nohz_mode = NOHZ_MODE_LOWRES; 473 474 /* 475 * Recycle the hrtimer in ts, so we can share the 476 * hrtimer_forward with the highres code. 477 */ 478 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 479 /* Get the next period */ 480 next = tick_init_jiffy_update(); 481 482 for (;;) { 483 ts->sched_timer.expires = next; 484 if (!tick_program_event(next, 0)) 485 break; 486 next = ktime_add(next, tick_period); 487 } 488 local_irq_enable(); 489 490 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 491 smp_processor_id()); 492 } 493 494 #else 495 496 static inline void tick_nohz_switch_to_nohz(void) { } 497 498 #endif /* NO_HZ */ 499 500 /* 501 * High resolution timer specific code 502 */ 503 #ifdef CONFIG_HIGH_RES_TIMERS 504 /* 505 * We rearm the timer until we get disabled by the idle code 506 * Called with interrupts disabled and timer->base->cpu_base->lock held. 507 */ 508 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 509 { 510 struct tick_sched *ts = 511 container_of(timer, struct tick_sched, sched_timer); 512 struct hrtimer_cpu_base *base = timer->base->cpu_base; 513 struct pt_regs *regs = get_irq_regs(); 514 ktime_t now = ktime_get(); 515 int cpu = smp_processor_id(); 516 517 #ifdef CONFIG_NO_HZ 518 /* 519 * Check if the do_timer duty was dropped. We don't care about 520 * concurrency: This happens only when the cpu in charge went 521 * into a long sleep. If two cpus happen to assign themself to 522 * this duty, then the jiffies update is still serialized by 523 * xtime_lock. 524 */ 525 if (unlikely(tick_do_timer_cpu == -1)) 526 tick_do_timer_cpu = cpu; 527 #endif 528 529 /* Check, if the jiffies need an update */ 530 if (tick_do_timer_cpu == cpu) 531 tick_do_update_jiffies64(now); 532 533 /* 534 * Do not call, when we are not in irq context and have 535 * no valid regs pointer 536 */ 537 if (regs) { 538 /* 539 * When we are idle and the tick is stopped, we have to touch 540 * the watchdog as we might not schedule for a really long 541 * time. This happens on complete idle SMP systems while 542 * waiting on the login prompt. We also increment the "start of 543 * idle" jiffy stamp so the idle accounting adjustment we do 544 * when we go busy again does not account too much ticks. 545 */ 546 if (ts->tick_stopped) { 547 touch_softlockup_watchdog(); 548 ts->idle_jiffies++; 549 } 550 /* 551 * update_process_times() might take tasklist_lock, hence 552 * drop the base lock. sched-tick hrtimers are per-CPU and 553 * never accessible by userspace APIs, so this is safe to do. 554 */ 555 spin_unlock(&base->lock); 556 update_process_times(user_mode(regs)); 557 profile_tick(CPU_PROFILING); 558 spin_lock(&base->lock); 559 } 560 561 /* Do not restart, when we are in the idle loop */ 562 if (ts->tick_stopped) 563 return HRTIMER_NORESTART; 564 565 hrtimer_forward(timer, now, tick_period); 566 567 return HRTIMER_RESTART; 568 } 569 570 /** 571 * tick_setup_sched_timer - setup the tick emulation timer 572 */ 573 void tick_setup_sched_timer(void) 574 { 575 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 576 ktime_t now = ktime_get(); 577 u64 offset; 578 579 /* 580 * Emulate tick processing via per-CPU hrtimers: 581 */ 582 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 583 ts->sched_timer.function = tick_sched_timer; 584 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 585 586 /* Get the next period (per cpu) */ 587 ts->sched_timer.expires = tick_init_jiffy_update(); 588 offset = ktime_to_ns(tick_period) >> 1; 589 do_div(offset, num_possible_cpus()); 590 offset *= smp_processor_id(); 591 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); 592 593 for (;;) { 594 hrtimer_forward(&ts->sched_timer, now, tick_period); 595 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, 596 HRTIMER_MODE_ABS); 597 /* Check, if the timer was already in the past */ 598 if (hrtimer_active(&ts->sched_timer)) 599 break; 600 now = ktime_get(); 601 } 602 603 #ifdef CONFIG_NO_HZ 604 if (tick_nohz_enabled) 605 ts->nohz_mode = NOHZ_MODE_HIGHRES; 606 #endif 607 } 608 609 void tick_cancel_sched_timer(int cpu) 610 { 611 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 612 613 if (ts->sched_timer.base) 614 hrtimer_cancel(&ts->sched_timer); 615 ts->tick_stopped = 0; 616 ts->nohz_mode = NOHZ_MODE_INACTIVE; 617 } 618 #endif /* HIGH_RES_TIMERS */ 619 620 /** 621 * Async notification about clocksource changes 622 */ 623 void tick_clock_notify(void) 624 { 625 int cpu; 626 627 for_each_possible_cpu(cpu) 628 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 629 } 630 631 /* 632 * Async notification about clock event changes 633 */ 634 void tick_oneshot_notify(void) 635 { 636 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 637 638 set_bit(0, &ts->check_clocks); 639 } 640 641 /** 642 * Check, if a change happened, which makes oneshot possible. 643 * 644 * Called cyclic from the hrtimer softirq (driven by the timer 645 * softirq) allow_nohz signals, that we can switch into low-res nohz 646 * mode, because high resolution timers are disabled (either compile 647 * or runtime). 648 */ 649 int tick_check_oneshot_change(int allow_nohz) 650 { 651 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 652 653 if (!test_and_clear_bit(0, &ts->check_clocks)) 654 return 0; 655 656 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 657 return 0; 658 659 if (!timekeeping_is_continuous() || !tick_is_oneshot_available()) 660 return 0; 661 662 if (!allow_nohz) 663 return 1; 664 665 tick_nohz_switch_to_nohz(); 666 return 0; 667 } 668