1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 static int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 ts->idle_waketime = now; 143 144 local_irq_save(flags); 145 tick_do_update_jiffies64(now); 146 local_irq_restore(flags); 147 148 touch_softlockup_watchdog(); 149 } 150 151 /* 152 * Updates the per cpu time idle statistics counters 153 */ 154 static void 155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 156 { 157 ktime_t delta; 158 159 if (ts->idle_active) { 160 delta = ktime_sub(now, ts->idle_entrytime); 161 if (nr_iowait_cpu(cpu) > 0) 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 163 else 164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now; 186 187 now = ktime_get(); 188 189 update_ts_time_stats(cpu, ts, now, NULL); 190 191 ts->idle_entrytime = now; 192 ts->idle_active = 1; 193 sched_clock_idle_sleep_event(); 194 return now; 195 } 196 197 /** 198 * get_cpu_idle_time_us - get the total idle time of a cpu 199 * @cpu: CPU number to query 200 * @last_update_time: variable to store update time in. Do not update 201 * counters if NULL. 202 * 203 * Return the cummulative idle time (since boot) for a given 204 * CPU, in microseconds. 205 * 206 * This time is measured via accounting rather than sampling, 207 * and is as accurate as ktime_get() is. 208 * 209 * This function returns -1 if NOHZ is not enabled. 210 */ 211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 212 { 213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 214 ktime_t now, idle; 215 216 if (!tick_nohz_enabled) 217 return -1; 218 219 now = ktime_get(); 220 if (last_update_time) { 221 update_ts_time_stats(cpu, ts, now, last_update_time); 222 idle = ts->idle_sleeptime; 223 } else { 224 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 225 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 226 227 idle = ktime_add(ts->idle_sleeptime, delta); 228 } else { 229 idle = ts->idle_sleeptime; 230 } 231 } 232 233 return ktime_to_us(idle); 234 235 } 236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 237 238 /** 239 * get_cpu_iowait_time_us - get the total iowait time of a cpu 240 * @cpu: CPU number to query 241 * @last_update_time: variable to store update time in. Do not update 242 * counters if NULL. 243 * 244 * Return the cummulative iowait time (since boot) for a given 245 * CPU, in microseconds. 246 * 247 * This time is measured via accounting rather than sampling, 248 * and is as accurate as ktime_get() is. 249 * 250 * This function returns -1 if NOHZ is not enabled. 251 */ 252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 253 { 254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 255 ktime_t now, iowait; 256 257 if (!tick_nohz_enabled) 258 return -1; 259 260 now = ktime_get(); 261 if (last_update_time) { 262 update_ts_time_stats(cpu, ts, now, last_update_time); 263 iowait = ts->iowait_sleeptime; 264 } else { 265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 266 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 267 268 iowait = ktime_add(ts->iowait_sleeptime, delta); 269 } else { 270 iowait = ts->iowait_sleeptime; 271 } 272 } 273 274 return ktime_to_us(iowait); 275 } 276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 277 278 static void tick_nohz_stop_sched_tick(struct tick_sched *ts) 279 { 280 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 281 ktime_t last_update, expires, now; 282 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 283 u64 time_delta; 284 int cpu; 285 286 cpu = smp_processor_id(); 287 ts = &per_cpu(tick_cpu_sched, cpu); 288 289 now = tick_nohz_start_idle(cpu, ts); 290 291 /* 292 * If this cpu is offline and it is the one which updates 293 * jiffies, then give up the assignment and let it be taken by 294 * the cpu which runs the tick timer next. If we don't drop 295 * this here the jiffies might be stale and do_timer() never 296 * invoked. 297 */ 298 if (unlikely(!cpu_online(cpu))) { 299 if (cpu == tick_do_timer_cpu) 300 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 301 } 302 303 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 304 return; 305 306 if (need_resched()) 307 return; 308 309 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 310 static int ratelimit; 311 312 if (ratelimit < 10) { 313 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 314 (unsigned int) local_softirq_pending()); 315 ratelimit++; 316 } 317 return; 318 } 319 320 ts->idle_calls++; 321 /* Read jiffies and the time when jiffies were updated last */ 322 do { 323 seq = read_seqbegin(&xtime_lock); 324 last_update = last_jiffies_update; 325 last_jiffies = jiffies; 326 time_delta = timekeeping_max_deferment(); 327 } while (read_seqretry(&xtime_lock, seq)); 328 329 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || 330 arch_needs_cpu(cpu)) { 331 next_jiffies = last_jiffies + 1; 332 delta_jiffies = 1; 333 } else { 334 /* Get the next timer wheel timer */ 335 next_jiffies = get_next_timer_interrupt(last_jiffies); 336 delta_jiffies = next_jiffies - last_jiffies; 337 } 338 /* 339 * Do not stop the tick, if we are only one off 340 * or if the cpu is required for rcu 341 */ 342 if (!ts->tick_stopped && delta_jiffies == 1) 343 goto out; 344 345 /* Schedule the tick, if we are at least one jiffie off */ 346 if ((long)delta_jiffies >= 1) { 347 348 /* 349 * If this cpu is the one which updates jiffies, then 350 * give up the assignment and let it be taken by the 351 * cpu which runs the tick timer next, which might be 352 * this cpu as well. If we don't drop this here the 353 * jiffies might be stale and do_timer() never 354 * invoked. Keep track of the fact that it was the one 355 * which had the do_timer() duty last. If this cpu is 356 * the one which had the do_timer() duty last, we 357 * limit the sleep time to the timekeeping 358 * max_deferement value which we retrieved 359 * above. Otherwise we can sleep as long as we want. 360 */ 361 if (cpu == tick_do_timer_cpu) { 362 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 363 ts->do_timer_last = 1; 364 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 365 time_delta = KTIME_MAX; 366 ts->do_timer_last = 0; 367 } else if (!ts->do_timer_last) { 368 time_delta = KTIME_MAX; 369 } 370 371 /* 372 * calculate the expiry time for the next timer wheel 373 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 374 * that there is no timer pending or at least extremely 375 * far into the future (12 days for HZ=1000). In this 376 * case we set the expiry to the end of time. 377 */ 378 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 379 /* 380 * Calculate the time delta for the next timer event. 381 * If the time delta exceeds the maximum time delta 382 * permitted by the current clocksource then adjust 383 * the time delta accordingly to ensure the 384 * clocksource does not wrap. 385 */ 386 time_delta = min_t(u64, time_delta, 387 tick_period.tv64 * delta_jiffies); 388 } 389 390 if (time_delta < KTIME_MAX) 391 expires = ktime_add_ns(last_update, time_delta); 392 else 393 expires.tv64 = KTIME_MAX; 394 395 /* Skip reprogram of event if its not changed */ 396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 397 goto out; 398 399 /* 400 * nohz_stop_sched_tick can be called several times before 401 * the nohz_restart_sched_tick is called. This happens when 402 * interrupts arrive which do not cause a reschedule. In the 403 * first call we save the current tick time, so we can restart 404 * the scheduler tick in nohz_restart_sched_tick. 405 */ 406 if (!ts->tick_stopped) { 407 select_nohz_load_balancer(1); 408 409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 410 ts->tick_stopped = 1; 411 ts->idle_jiffies = last_jiffies; 412 } 413 414 ts->idle_sleeps++; 415 416 /* Mark expires */ 417 ts->idle_expires = expires; 418 419 /* 420 * If the expiration time == KTIME_MAX, then 421 * in this case we simply stop the tick timer. 422 */ 423 if (unlikely(expires.tv64 == KTIME_MAX)) { 424 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 425 hrtimer_cancel(&ts->sched_timer); 426 goto out; 427 } 428 429 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 430 hrtimer_start(&ts->sched_timer, expires, 431 HRTIMER_MODE_ABS_PINNED); 432 /* Check, if the timer was already in the past */ 433 if (hrtimer_active(&ts->sched_timer)) 434 goto out; 435 } else if (!tick_program_event(expires, 0)) 436 goto out; 437 /* 438 * We are past the event already. So we crossed a 439 * jiffie boundary. Update jiffies and raise the 440 * softirq. 441 */ 442 tick_do_update_jiffies64(ktime_get()); 443 } 444 raise_softirq_irqoff(TIMER_SOFTIRQ); 445 out: 446 ts->next_jiffies = next_jiffies; 447 ts->last_jiffies = last_jiffies; 448 ts->sleep_length = ktime_sub(dev->next_event, now); 449 } 450 451 /** 452 * tick_nohz_idle_enter - stop the idle tick from the idle task 453 * 454 * When the next event is more than a tick into the future, stop the idle tick 455 * Called when we start the idle loop. 456 * 457 * If no use of RCU is made in the idle loop between 458 * tick_nohz_idle_enter() and tick_nohz_idle_exit() calls, then 459 * tick_nohz_idle_enter_norcu() should be called instead and the arch 460 * doesn't need to call rcu_idle_enter() and rcu_idle_exit() explicitly. 461 * 462 * Otherwise the arch is responsible of calling: 463 * 464 * - rcu_idle_enter() after its last use of RCU before the CPU is put 465 * to sleep. 466 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 467 */ 468 void __tick_nohz_idle_enter(void) 469 { 470 struct tick_sched *ts; 471 472 ts = &__get_cpu_var(tick_cpu_sched); 473 /* 474 * set ts->inidle unconditionally. even if the system did not 475 * switch to nohz mode the cpu frequency governers rely on the 476 * update of the idle time accounting in tick_nohz_start_idle(). 477 */ 478 ts->inidle = 1; 479 tick_nohz_stop_sched_tick(ts); 480 } 481 482 /** 483 * tick_nohz_irq_exit - update next tick event from interrupt exit 484 * 485 * When an interrupt fires while we are idle and it doesn't cause 486 * a reschedule, it may still add, modify or delete a timer, enqueue 487 * an RCU callback, etc... 488 * So we need to re-calculate and reprogram the next tick event. 489 */ 490 void tick_nohz_irq_exit(void) 491 { 492 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 493 494 if (!ts->inidle) 495 return; 496 497 tick_nohz_stop_sched_tick(ts); 498 } 499 500 /** 501 * tick_nohz_get_sleep_length - return the length of the current sleep 502 * 503 * Called from power state control code with interrupts disabled 504 */ 505 ktime_t tick_nohz_get_sleep_length(void) 506 { 507 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 508 509 return ts->sleep_length; 510 } 511 512 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 513 { 514 hrtimer_cancel(&ts->sched_timer); 515 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 516 517 while (1) { 518 /* Forward the time to expire in the future */ 519 hrtimer_forward(&ts->sched_timer, now, tick_period); 520 521 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 522 hrtimer_start_expires(&ts->sched_timer, 523 HRTIMER_MODE_ABS_PINNED); 524 /* Check, if the timer was already in the past */ 525 if (hrtimer_active(&ts->sched_timer)) 526 break; 527 } else { 528 if (!tick_program_event( 529 hrtimer_get_expires(&ts->sched_timer), 0)) 530 break; 531 } 532 /* Update jiffies and reread time */ 533 tick_do_update_jiffies64(now); 534 now = ktime_get(); 535 } 536 } 537 538 /** 539 * tick_nohz_idle_exit - restart the idle tick from the idle task 540 * 541 * Restart the idle tick when the CPU is woken up from idle 542 * This also exit the RCU extended quiescent state. The CPU 543 * can use RCU again after this function is called. 544 */ 545 void tick_nohz_idle_exit(void) 546 { 547 int cpu = smp_processor_id(); 548 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 550 unsigned long ticks; 551 #endif 552 ktime_t now; 553 554 local_irq_disable(); 555 556 if (ts->idle_active || (ts->inidle && ts->tick_stopped)) 557 now = ktime_get(); 558 559 if (ts->idle_active) 560 tick_nohz_stop_idle(cpu, now); 561 562 if (!ts->inidle || !ts->tick_stopped) { 563 ts->inidle = 0; 564 local_irq_enable(); 565 return; 566 } 567 568 ts->inidle = 0; 569 570 /* Update jiffies first */ 571 select_nohz_load_balancer(0); 572 tick_do_update_jiffies64(now); 573 574 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 575 /* 576 * We stopped the tick in idle. Update process times would miss the 577 * time we slept as update_process_times does only a 1 tick 578 * accounting. Enforce that this is accounted to idle ! 579 */ 580 ticks = jiffies - ts->idle_jiffies; 581 /* 582 * We might be one off. Do not randomly account a huge number of ticks! 583 */ 584 if (ticks && ticks < LONG_MAX) 585 account_idle_ticks(ticks); 586 #endif 587 588 touch_softlockup_watchdog(); 589 /* 590 * Cancel the scheduled timer and restore the tick 591 */ 592 ts->tick_stopped = 0; 593 ts->idle_exittime = now; 594 595 tick_nohz_restart(ts, now); 596 597 local_irq_enable(); 598 } 599 600 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 601 { 602 hrtimer_forward(&ts->sched_timer, now, tick_period); 603 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 604 } 605 606 /* 607 * The nohz low res interrupt handler 608 */ 609 static void tick_nohz_handler(struct clock_event_device *dev) 610 { 611 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 612 struct pt_regs *regs = get_irq_regs(); 613 int cpu = smp_processor_id(); 614 ktime_t now = ktime_get(); 615 616 dev->next_event.tv64 = KTIME_MAX; 617 618 /* 619 * Check if the do_timer duty was dropped. We don't care about 620 * concurrency: This happens only when the cpu in charge went 621 * into a long sleep. If two cpus happen to assign themself to 622 * this duty, then the jiffies update is still serialized by 623 * xtime_lock. 624 */ 625 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 626 tick_do_timer_cpu = cpu; 627 628 /* Check, if the jiffies need an update */ 629 if (tick_do_timer_cpu == cpu) 630 tick_do_update_jiffies64(now); 631 632 /* 633 * When we are idle and the tick is stopped, we have to touch 634 * the watchdog as we might not schedule for a really long 635 * time. This happens on complete idle SMP systems while 636 * waiting on the login prompt. We also increment the "start 637 * of idle" jiffy stamp so the idle accounting adjustment we 638 * do when we go busy again does not account too much ticks. 639 */ 640 if (ts->tick_stopped) { 641 touch_softlockup_watchdog(); 642 ts->idle_jiffies++; 643 } 644 645 update_process_times(user_mode(regs)); 646 profile_tick(CPU_PROFILING); 647 648 while (tick_nohz_reprogram(ts, now)) { 649 now = ktime_get(); 650 tick_do_update_jiffies64(now); 651 } 652 } 653 654 /** 655 * tick_nohz_switch_to_nohz - switch to nohz mode 656 */ 657 static void tick_nohz_switch_to_nohz(void) 658 { 659 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 660 ktime_t next; 661 662 if (!tick_nohz_enabled) 663 return; 664 665 local_irq_disable(); 666 if (tick_switch_to_oneshot(tick_nohz_handler)) { 667 local_irq_enable(); 668 return; 669 } 670 671 ts->nohz_mode = NOHZ_MODE_LOWRES; 672 673 /* 674 * Recycle the hrtimer in ts, so we can share the 675 * hrtimer_forward with the highres code. 676 */ 677 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 678 /* Get the next period */ 679 next = tick_init_jiffy_update(); 680 681 for (;;) { 682 hrtimer_set_expires(&ts->sched_timer, next); 683 if (!tick_program_event(next, 0)) 684 break; 685 next = ktime_add(next, tick_period); 686 } 687 local_irq_enable(); 688 } 689 690 /* 691 * When NOHZ is enabled and the tick is stopped, we need to kick the 692 * tick timer from irq_enter() so that the jiffies update is kept 693 * alive during long running softirqs. That's ugly as hell, but 694 * correctness is key even if we need to fix the offending softirq in 695 * the first place. 696 * 697 * Note, this is different to tick_nohz_restart. We just kick the 698 * timer and do not touch the other magic bits which need to be done 699 * when idle is left. 700 */ 701 static void tick_nohz_kick_tick(int cpu, ktime_t now) 702 { 703 #if 0 704 /* Switch back to 2.6.27 behaviour */ 705 706 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 707 ktime_t delta; 708 709 /* 710 * Do not touch the tick device, when the next expiry is either 711 * already reached or less/equal than the tick period. 712 */ 713 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 714 if (delta.tv64 <= tick_period.tv64) 715 return; 716 717 tick_nohz_restart(ts, now); 718 #endif 719 } 720 721 static inline void tick_check_nohz(int cpu) 722 { 723 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 724 ktime_t now; 725 726 if (!ts->idle_active && !ts->tick_stopped) 727 return; 728 now = ktime_get(); 729 if (ts->idle_active) 730 tick_nohz_stop_idle(cpu, now); 731 if (ts->tick_stopped) { 732 tick_nohz_update_jiffies(now); 733 tick_nohz_kick_tick(cpu, now); 734 } 735 } 736 737 #else 738 739 static inline void tick_nohz_switch_to_nohz(void) { } 740 static inline void tick_check_nohz(int cpu) { } 741 742 #endif /* NO_HZ */ 743 744 /* 745 * Called from irq_enter to notify about the possible interruption of idle() 746 */ 747 void tick_check_idle(int cpu) 748 { 749 tick_check_oneshot_broadcast(cpu); 750 tick_check_nohz(cpu); 751 } 752 753 /* 754 * High resolution timer specific code 755 */ 756 #ifdef CONFIG_HIGH_RES_TIMERS 757 /* 758 * We rearm the timer until we get disabled by the idle code. 759 * Called with interrupts disabled and timer->base->cpu_base->lock held. 760 */ 761 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 762 { 763 struct tick_sched *ts = 764 container_of(timer, struct tick_sched, sched_timer); 765 struct pt_regs *regs = get_irq_regs(); 766 ktime_t now = ktime_get(); 767 int cpu = smp_processor_id(); 768 769 #ifdef CONFIG_NO_HZ 770 /* 771 * Check if the do_timer duty was dropped. We don't care about 772 * concurrency: This happens only when the cpu in charge went 773 * into a long sleep. If two cpus happen to assign themself to 774 * this duty, then the jiffies update is still serialized by 775 * xtime_lock. 776 */ 777 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 778 tick_do_timer_cpu = cpu; 779 #endif 780 781 /* Check, if the jiffies need an update */ 782 if (tick_do_timer_cpu == cpu) 783 tick_do_update_jiffies64(now); 784 785 /* 786 * Do not call, when we are not in irq context and have 787 * no valid regs pointer 788 */ 789 if (regs) { 790 /* 791 * When we are idle and the tick is stopped, we have to touch 792 * the watchdog as we might not schedule for a really long 793 * time. This happens on complete idle SMP systems while 794 * waiting on the login prompt. We also increment the "start of 795 * idle" jiffy stamp so the idle accounting adjustment we do 796 * when we go busy again does not account too much ticks. 797 */ 798 if (ts->tick_stopped) { 799 touch_softlockup_watchdog(); 800 ts->idle_jiffies++; 801 } 802 update_process_times(user_mode(regs)); 803 profile_tick(CPU_PROFILING); 804 } 805 806 hrtimer_forward(timer, now, tick_period); 807 808 return HRTIMER_RESTART; 809 } 810 811 /** 812 * tick_setup_sched_timer - setup the tick emulation timer 813 */ 814 void tick_setup_sched_timer(void) 815 { 816 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 817 ktime_t now = ktime_get(); 818 819 /* 820 * Emulate tick processing via per-CPU hrtimers: 821 */ 822 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 823 ts->sched_timer.function = tick_sched_timer; 824 825 /* Get the next period (per cpu) */ 826 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 827 828 for (;;) { 829 hrtimer_forward(&ts->sched_timer, now, tick_period); 830 hrtimer_start_expires(&ts->sched_timer, 831 HRTIMER_MODE_ABS_PINNED); 832 /* Check, if the timer was already in the past */ 833 if (hrtimer_active(&ts->sched_timer)) 834 break; 835 now = ktime_get(); 836 } 837 838 #ifdef CONFIG_NO_HZ 839 if (tick_nohz_enabled) 840 ts->nohz_mode = NOHZ_MODE_HIGHRES; 841 #endif 842 } 843 #endif /* HIGH_RES_TIMERS */ 844 845 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 846 void tick_cancel_sched_timer(int cpu) 847 { 848 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 849 850 # ifdef CONFIG_HIGH_RES_TIMERS 851 if (ts->sched_timer.base) 852 hrtimer_cancel(&ts->sched_timer); 853 # endif 854 855 ts->nohz_mode = NOHZ_MODE_INACTIVE; 856 } 857 #endif 858 859 /** 860 * Async notification about clocksource changes 861 */ 862 void tick_clock_notify(void) 863 { 864 int cpu; 865 866 for_each_possible_cpu(cpu) 867 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 868 } 869 870 /* 871 * Async notification about clock event changes 872 */ 873 void tick_oneshot_notify(void) 874 { 875 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 876 877 set_bit(0, &ts->check_clocks); 878 } 879 880 /** 881 * Check, if a change happened, which makes oneshot possible. 882 * 883 * Called cyclic from the hrtimer softirq (driven by the timer 884 * softirq) allow_nohz signals, that we can switch into low-res nohz 885 * mode, because high resolution timers are disabled (either compile 886 * or runtime). 887 */ 888 int tick_check_oneshot_change(int allow_nohz) 889 { 890 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 891 892 if (!test_and_clear_bit(0, &ts->check_clocks)) 893 return 0; 894 895 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 896 return 0; 897 898 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 899 return 0; 900 901 if (!allow_nohz) 902 return 1; 903 904 tick_nohz_switch_to_nohz(); 905 return 0; 906 } 907