xref: /linux/kernel/time/tick-sched.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 static int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	ts->idle_waketime = now;
143 
144 	local_irq_save(flags);
145 	tick_do_update_jiffies64(now);
146 	local_irq_restore(flags);
147 
148 	touch_softlockup_watchdog();
149 }
150 
151 /*
152  * Updates the per cpu time idle statistics counters
153  */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 	ktime_t delta;
158 
159 	if (ts->idle_active) {
160 		delta = ktime_sub(now, ts->idle_entrytime);
161 		if (nr_iowait_cpu(cpu) > 0)
162 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 		else
164 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now = ktime_get();
186 
187 	ts->idle_entrytime = now;
188 	ts->idle_active = 1;
189 	sched_clock_idle_sleep_event();
190 	return now;
191 }
192 
193 /**
194  * get_cpu_idle_time_us - get the total idle time of a cpu
195  * @cpu: CPU number to query
196  * @last_update_time: variable to store update time in. Do not update
197  * counters if NULL.
198  *
199  * Return the cummulative idle time (since boot) for a given
200  * CPU, in microseconds.
201  *
202  * This time is measured via accounting rather than sampling,
203  * and is as accurate as ktime_get() is.
204  *
205  * This function returns -1 if NOHZ is not enabled.
206  */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 	ktime_t now, idle;
211 
212 	if (!tick_nohz_enabled)
213 		return -1;
214 
215 	now = ktime_get();
216 	if (last_update_time) {
217 		update_ts_time_stats(cpu, ts, now, last_update_time);
218 		idle = ts->idle_sleeptime;
219 	} else {
220 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222 
223 			idle = ktime_add(ts->idle_sleeptime, delta);
224 		} else {
225 			idle = ts->idle_sleeptime;
226 		}
227 	}
228 
229 	return ktime_to_us(idle);
230 
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233 
234 /**
235  * get_cpu_iowait_time_us - get the total iowait time of a cpu
236  * @cpu: CPU number to query
237  * @last_update_time: variable to store update time in. Do not update
238  * counters if NULL.
239  *
240  * Return the cummulative iowait time (since boot) for a given
241  * CPU, in microseconds.
242  *
243  * This time is measured via accounting rather than sampling,
244  * and is as accurate as ktime_get() is.
245  *
246  * This function returns -1 if NOHZ is not enabled.
247  */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 	ktime_t now, iowait;
252 
253 	if (!tick_nohz_enabled)
254 		return -1;
255 
256 	now = ktime_get();
257 	if (last_update_time) {
258 		update_ts_time_stats(cpu, ts, now, last_update_time);
259 		iowait = ts->iowait_sleeptime;
260 	} else {
261 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263 
264 			iowait = ktime_add(ts->iowait_sleeptime, delta);
265 		} else {
266 			iowait = ts->iowait_sleeptime;
267 		}
268 	}
269 
270 	return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273 
274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
275 {
276 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277 	unsigned long rcu_delta_jiffies;
278 	ktime_t last_update, expires, now;
279 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
280 	u64 time_delta;
281 	int cpu;
282 
283 	cpu = smp_processor_id();
284 	ts = &per_cpu(tick_cpu_sched, cpu);
285 
286 	now = tick_nohz_start_idle(cpu, ts);
287 
288 	/*
289 	 * If this cpu is offline and it is the one which updates
290 	 * jiffies, then give up the assignment and let it be taken by
291 	 * the cpu which runs the tick timer next. If we don't drop
292 	 * this here the jiffies might be stale and do_timer() never
293 	 * invoked.
294 	 */
295 	if (unlikely(!cpu_online(cpu))) {
296 		if (cpu == tick_do_timer_cpu)
297 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
298 	}
299 
300 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301 		return;
302 
303 	if (need_resched())
304 		return;
305 
306 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307 		static int ratelimit;
308 
309 		if (ratelimit < 10) {
310 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311 			       (unsigned int) local_softirq_pending());
312 			ratelimit++;
313 		}
314 		return;
315 	}
316 
317 	ts->idle_calls++;
318 	/* Read jiffies and the time when jiffies were updated last */
319 	do {
320 		seq = read_seqbegin(&xtime_lock);
321 		last_update = last_jiffies_update;
322 		last_jiffies = jiffies;
323 		time_delta = timekeeping_max_deferment();
324 	} while (read_seqretry(&xtime_lock, seq));
325 
326 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
327 	    arch_needs_cpu(cpu)) {
328 		next_jiffies = last_jiffies + 1;
329 		delta_jiffies = 1;
330 	} else {
331 		/* Get the next timer wheel timer */
332 		next_jiffies = get_next_timer_interrupt(last_jiffies);
333 		delta_jiffies = next_jiffies - last_jiffies;
334 		if (rcu_delta_jiffies < delta_jiffies) {
335 			next_jiffies = last_jiffies + rcu_delta_jiffies;
336 			delta_jiffies = rcu_delta_jiffies;
337 		}
338 	}
339 	/*
340 	 * Do not stop the tick, if we are only one off
341 	 * or if the cpu is required for rcu
342 	 */
343 	if (!ts->tick_stopped && delta_jiffies == 1)
344 		goto out;
345 
346 	/* Schedule the tick, if we are at least one jiffie off */
347 	if ((long)delta_jiffies >= 1) {
348 
349 		/*
350 		 * If this cpu is the one which updates jiffies, then
351 		 * give up the assignment and let it be taken by the
352 		 * cpu which runs the tick timer next, which might be
353 		 * this cpu as well. If we don't drop this here the
354 		 * jiffies might be stale and do_timer() never
355 		 * invoked. Keep track of the fact that it was the one
356 		 * which had the do_timer() duty last. If this cpu is
357 		 * the one which had the do_timer() duty last, we
358 		 * limit the sleep time to the timekeeping
359 		 * max_deferement value which we retrieved
360 		 * above. Otherwise we can sleep as long as we want.
361 		 */
362 		if (cpu == tick_do_timer_cpu) {
363 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
364 			ts->do_timer_last = 1;
365 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
366 			time_delta = KTIME_MAX;
367 			ts->do_timer_last = 0;
368 		} else if (!ts->do_timer_last) {
369 			time_delta = KTIME_MAX;
370 		}
371 
372 		/*
373 		 * calculate the expiry time for the next timer wheel
374 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
375 		 * that there is no timer pending or at least extremely
376 		 * far into the future (12 days for HZ=1000). In this
377 		 * case we set the expiry to the end of time.
378 		 */
379 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
380 			/*
381 			 * Calculate the time delta for the next timer event.
382 			 * If the time delta exceeds the maximum time delta
383 			 * permitted by the current clocksource then adjust
384 			 * the time delta accordingly to ensure the
385 			 * clocksource does not wrap.
386 			 */
387 			time_delta = min_t(u64, time_delta,
388 					   tick_period.tv64 * delta_jiffies);
389 		}
390 
391 		if (time_delta < KTIME_MAX)
392 			expires = ktime_add_ns(last_update, time_delta);
393 		else
394 			expires.tv64 = KTIME_MAX;
395 
396 		/* Skip reprogram of event if its not changed */
397 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
398 			goto out;
399 
400 		/*
401 		 * nohz_stop_sched_tick can be called several times before
402 		 * the nohz_restart_sched_tick is called. This happens when
403 		 * interrupts arrive which do not cause a reschedule. In the
404 		 * first call we save the current tick time, so we can restart
405 		 * the scheduler tick in nohz_restart_sched_tick.
406 		 */
407 		if (!ts->tick_stopped) {
408 			select_nohz_load_balancer(1);
409 
410 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
411 			ts->tick_stopped = 1;
412 			ts->idle_jiffies = last_jiffies;
413 		}
414 
415 		ts->idle_sleeps++;
416 
417 		/* Mark expires */
418 		ts->idle_expires = expires;
419 
420 		/*
421 		 * If the expiration time == KTIME_MAX, then
422 		 * in this case we simply stop the tick timer.
423 		 */
424 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
425 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
426 				hrtimer_cancel(&ts->sched_timer);
427 			goto out;
428 		}
429 
430 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431 			hrtimer_start(&ts->sched_timer, expires,
432 				      HRTIMER_MODE_ABS_PINNED);
433 			/* Check, if the timer was already in the past */
434 			if (hrtimer_active(&ts->sched_timer))
435 				goto out;
436 		} else if (!tick_program_event(expires, 0))
437 				goto out;
438 		/*
439 		 * We are past the event already. So we crossed a
440 		 * jiffie boundary. Update jiffies and raise the
441 		 * softirq.
442 		 */
443 		tick_do_update_jiffies64(ktime_get());
444 	}
445 	raise_softirq_irqoff(TIMER_SOFTIRQ);
446 out:
447 	ts->next_jiffies = next_jiffies;
448 	ts->last_jiffies = last_jiffies;
449 	ts->sleep_length = ktime_sub(dev->next_event, now);
450 }
451 
452 /**
453  * tick_nohz_idle_enter - stop the idle tick from the idle task
454  *
455  * When the next event is more than a tick into the future, stop the idle tick
456  * Called when we start the idle loop.
457  *
458  * The arch is responsible of calling:
459  *
460  * - rcu_idle_enter() after its last use of RCU before the CPU is put
461  *  to sleep.
462  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
463  */
464 void tick_nohz_idle_enter(void)
465 {
466 	struct tick_sched *ts;
467 
468 	WARN_ON_ONCE(irqs_disabled());
469 
470 	/*
471  	 * Update the idle state in the scheduler domain hierarchy
472  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
473  	 * State will be updated to busy during the first busy tick after
474  	 * exiting idle.
475  	 */
476 	set_cpu_sd_state_idle();
477 
478 	local_irq_disable();
479 
480 	ts = &__get_cpu_var(tick_cpu_sched);
481 	/*
482 	 * set ts->inidle unconditionally. even if the system did not
483 	 * switch to nohz mode the cpu frequency governers rely on the
484 	 * update of the idle time accounting in tick_nohz_start_idle().
485 	 */
486 	ts->inidle = 1;
487 	tick_nohz_stop_sched_tick(ts);
488 
489 	local_irq_enable();
490 }
491 
492 /**
493  * tick_nohz_irq_exit - update next tick event from interrupt exit
494  *
495  * When an interrupt fires while we are idle and it doesn't cause
496  * a reschedule, it may still add, modify or delete a timer, enqueue
497  * an RCU callback, etc...
498  * So we need to re-calculate and reprogram the next tick event.
499  */
500 void tick_nohz_irq_exit(void)
501 {
502 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
503 
504 	if (!ts->inidle)
505 		return;
506 
507 	tick_nohz_stop_sched_tick(ts);
508 }
509 
510 /**
511  * tick_nohz_get_sleep_length - return the length of the current sleep
512  *
513  * Called from power state control code with interrupts disabled
514  */
515 ktime_t tick_nohz_get_sleep_length(void)
516 {
517 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
518 
519 	return ts->sleep_length;
520 }
521 
522 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
523 {
524 	hrtimer_cancel(&ts->sched_timer);
525 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
526 
527 	while (1) {
528 		/* Forward the time to expire in the future */
529 		hrtimer_forward(&ts->sched_timer, now, tick_period);
530 
531 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
532 			hrtimer_start_expires(&ts->sched_timer,
533 					      HRTIMER_MODE_ABS_PINNED);
534 			/* Check, if the timer was already in the past */
535 			if (hrtimer_active(&ts->sched_timer))
536 				break;
537 		} else {
538 			if (!tick_program_event(
539 				hrtimer_get_expires(&ts->sched_timer), 0))
540 				break;
541 		}
542 		/* Reread time and update jiffies */
543 		now = ktime_get();
544 		tick_do_update_jiffies64(now);
545 	}
546 }
547 
548 /**
549  * tick_nohz_idle_exit - restart the idle tick from the idle task
550  *
551  * Restart the idle tick when the CPU is woken up from idle
552  * This also exit the RCU extended quiescent state. The CPU
553  * can use RCU again after this function is called.
554  */
555 void tick_nohz_idle_exit(void)
556 {
557 	int cpu = smp_processor_id();
558 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
560 	unsigned long ticks;
561 #endif
562 	ktime_t now;
563 
564 	local_irq_disable();
565 
566 	WARN_ON_ONCE(!ts->inidle);
567 
568 	ts->inidle = 0;
569 
570 	if (ts->idle_active || ts->tick_stopped)
571 		now = ktime_get();
572 
573 	if (ts->idle_active)
574 		tick_nohz_stop_idle(cpu, now);
575 
576 	if (!ts->tick_stopped) {
577 		local_irq_enable();
578 		return;
579 	}
580 
581 	/* Update jiffies first */
582 	select_nohz_load_balancer(0);
583 	tick_do_update_jiffies64(now);
584 	update_cpu_load_nohz();
585 
586 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
587 	/*
588 	 * We stopped the tick in idle. Update process times would miss the
589 	 * time we slept as update_process_times does only a 1 tick
590 	 * accounting. Enforce that this is accounted to idle !
591 	 */
592 	ticks = jiffies - ts->idle_jiffies;
593 	/*
594 	 * We might be one off. Do not randomly account a huge number of ticks!
595 	 */
596 	if (ticks && ticks < LONG_MAX)
597 		account_idle_ticks(ticks);
598 #endif
599 
600 	touch_softlockup_watchdog();
601 	/*
602 	 * Cancel the scheduled timer and restore the tick
603 	 */
604 	ts->tick_stopped  = 0;
605 	ts->idle_exittime = now;
606 
607 	tick_nohz_restart(ts, now);
608 
609 	local_irq_enable();
610 }
611 
612 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
613 {
614 	hrtimer_forward(&ts->sched_timer, now, tick_period);
615 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
616 }
617 
618 /*
619  * The nohz low res interrupt handler
620  */
621 static void tick_nohz_handler(struct clock_event_device *dev)
622 {
623 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
624 	struct pt_regs *regs = get_irq_regs();
625 	int cpu = smp_processor_id();
626 	ktime_t now = ktime_get();
627 
628 	dev->next_event.tv64 = KTIME_MAX;
629 
630 	/*
631 	 * Check if the do_timer duty was dropped. We don't care about
632 	 * concurrency: This happens only when the cpu in charge went
633 	 * into a long sleep. If two cpus happen to assign themself to
634 	 * this duty, then the jiffies update is still serialized by
635 	 * xtime_lock.
636 	 */
637 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
638 		tick_do_timer_cpu = cpu;
639 
640 	/* Check, if the jiffies need an update */
641 	if (tick_do_timer_cpu == cpu)
642 		tick_do_update_jiffies64(now);
643 
644 	/*
645 	 * When we are idle and the tick is stopped, we have to touch
646 	 * the watchdog as we might not schedule for a really long
647 	 * time. This happens on complete idle SMP systems while
648 	 * waiting on the login prompt. We also increment the "start
649 	 * of idle" jiffy stamp so the idle accounting adjustment we
650 	 * do when we go busy again does not account too much ticks.
651 	 */
652 	if (ts->tick_stopped) {
653 		touch_softlockup_watchdog();
654 		ts->idle_jiffies++;
655 	}
656 
657 	update_process_times(user_mode(regs));
658 	profile_tick(CPU_PROFILING);
659 
660 	while (tick_nohz_reprogram(ts, now)) {
661 		now = ktime_get();
662 		tick_do_update_jiffies64(now);
663 	}
664 }
665 
666 /**
667  * tick_nohz_switch_to_nohz - switch to nohz mode
668  */
669 static void tick_nohz_switch_to_nohz(void)
670 {
671 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
672 	ktime_t next;
673 
674 	if (!tick_nohz_enabled)
675 		return;
676 
677 	local_irq_disable();
678 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
679 		local_irq_enable();
680 		return;
681 	}
682 
683 	ts->nohz_mode = NOHZ_MODE_LOWRES;
684 
685 	/*
686 	 * Recycle the hrtimer in ts, so we can share the
687 	 * hrtimer_forward with the highres code.
688 	 */
689 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
690 	/* Get the next period */
691 	next = tick_init_jiffy_update();
692 
693 	for (;;) {
694 		hrtimer_set_expires(&ts->sched_timer, next);
695 		if (!tick_program_event(next, 0))
696 			break;
697 		next = ktime_add(next, tick_period);
698 	}
699 	local_irq_enable();
700 }
701 
702 /*
703  * When NOHZ is enabled and the tick is stopped, we need to kick the
704  * tick timer from irq_enter() so that the jiffies update is kept
705  * alive during long running softirqs. That's ugly as hell, but
706  * correctness is key even if we need to fix the offending softirq in
707  * the first place.
708  *
709  * Note, this is different to tick_nohz_restart. We just kick the
710  * timer and do not touch the other magic bits which need to be done
711  * when idle is left.
712  */
713 static void tick_nohz_kick_tick(int cpu, ktime_t now)
714 {
715 #if 0
716 	/* Switch back to 2.6.27 behaviour */
717 
718 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
719 	ktime_t delta;
720 
721 	/*
722 	 * Do not touch the tick device, when the next expiry is either
723 	 * already reached or less/equal than the tick period.
724 	 */
725 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
726 	if (delta.tv64 <= tick_period.tv64)
727 		return;
728 
729 	tick_nohz_restart(ts, now);
730 #endif
731 }
732 
733 static inline void tick_check_nohz(int cpu)
734 {
735 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
736 	ktime_t now;
737 
738 	if (!ts->idle_active && !ts->tick_stopped)
739 		return;
740 	now = ktime_get();
741 	if (ts->idle_active)
742 		tick_nohz_stop_idle(cpu, now);
743 	if (ts->tick_stopped) {
744 		tick_nohz_update_jiffies(now);
745 		tick_nohz_kick_tick(cpu, now);
746 	}
747 }
748 
749 #else
750 
751 static inline void tick_nohz_switch_to_nohz(void) { }
752 static inline void tick_check_nohz(int cpu) { }
753 
754 #endif /* NO_HZ */
755 
756 /*
757  * Called from irq_enter to notify about the possible interruption of idle()
758  */
759 void tick_check_idle(int cpu)
760 {
761 	tick_check_oneshot_broadcast(cpu);
762 	tick_check_nohz(cpu);
763 }
764 
765 /*
766  * High resolution timer specific code
767  */
768 #ifdef CONFIG_HIGH_RES_TIMERS
769 /*
770  * We rearm the timer until we get disabled by the idle code.
771  * Called with interrupts disabled and timer->base->cpu_base->lock held.
772  */
773 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
774 {
775 	struct tick_sched *ts =
776 		container_of(timer, struct tick_sched, sched_timer);
777 	struct pt_regs *regs = get_irq_regs();
778 	ktime_t now = ktime_get();
779 	int cpu = smp_processor_id();
780 
781 #ifdef CONFIG_NO_HZ
782 	/*
783 	 * Check if the do_timer duty was dropped. We don't care about
784 	 * concurrency: This happens only when the cpu in charge went
785 	 * into a long sleep. If two cpus happen to assign themself to
786 	 * this duty, then the jiffies update is still serialized by
787 	 * xtime_lock.
788 	 */
789 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
790 		tick_do_timer_cpu = cpu;
791 #endif
792 
793 	/* Check, if the jiffies need an update */
794 	if (tick_do_timer_cpu == cpu)
795 		tick_do_update_jiffies64(now);
796 
797 	/*
798 	 * Do not call, when we are not in irq context and have
799 	 * no valid regs pointer
800 	 */
801 	if (regs) {
802 		/*
803 		 * When we are idle and the tick is stopped, we have to touch
804 		 * the watchdog as we might not schedule for a really long
805 		 * time. This happens on complete idle SMP systems while
806 		 * waiting on the login prompt. We also increment the "start of
807 		 * idle" jiffy stamp so the idle accounting adjustment we do
808 		 * when we go busy again does not account too much ticks.
809 		 */
810 		if (ts->tick_stopped) {
811 			touch_softlockup_watchdog();
812 			ts->idle_jiffies++;
813 		}
814 		update_process_times(user_mode(regs));
815 		profile_tick(CPU_PROFILING);
816 	}
817 
818 	hrtimer_forward(timer, now, tick_period);
819 
820 	return HRTIMER_RESTART;
821 }
822 
823 static int sched_skew_tick;
824 
825 static int __init skew_tick(char *str)
826 {
827 	get_option(&str, &sched_skew_tick);
828 
829 	return 0;
830 }
831 early_param("skew_tick", skew_tick);
832 
833 /**
834  * tick_setup_sched_timer - setup the tick emulation timer
835  */
836 void tick_setup_sched_timer(void)
837 {
838 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
839 	ktime_t now = ktime_get();
840 
841 	/*
842 	 * Emulate tick processing via per-CPU hrtimers:
843 	 */
844 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
845 	ts->sched_timer.function = tick_sched_timer;
846 
847 	/* Get the next period (per cpu) */
848 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
849 
850 	/* Offset the tick to avert xtime_lock contention. */
851 	if (sched_skew_tick) {
852 		u64 offset = ktime_to_ns(tick_period) >> 1;
853 		do_div(offset, num_possible_cpus());
854 		offset *= smp_processor_id();
855 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
856 	}
857 
858 	for (;;) {
859 		hrtimer_forward(&ts->sched_timer, now, tick_period);
860 		hrtimer_start_expires(&ts->sched_timer,
861 				      HRTIMER_MODE_ABS_PINNED);
862 		/* Check, if the timer was already in the past */
863 		if (hrtimer_active(&ts->sched_timer))
864 			break;
865 		now = ktime_get();
866 	}
867 
868 #ifdef CONFIG_NO_HZ
869 	if (tick_nohz_enabled)
870 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
871 #endif
872 }
873 #endif /* HIGH_RES_TIMERS */
874 
875 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
876 void tick_cancel_sched_timer(int cpu)
877 {
878 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
879 
880 # ifdef CONFIG_HIGH_RES_TIMERS
881 	if (ts->sched_timer.base)
882 		hrtimer_cancel(&ts->sched_timer);
883 # endif
884 
885 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
886 }
887 #endif
888 
889 /**
890  * Async notification about clocksource changes
891  */
892 void tick_clock_notify(void)
893 {
894 	int cpu;
895 
896 	for_each_possible_cpu(cpu)
897 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
898 }
899 
900 /*
901  * Async notification about clock event changes
902  */
903 void tick_oneshot_notify(void)
904 {
905 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
906 
907 	set_bit(0, &ts->check_clocks);
908 }
909 
910 /**
911  * Check, if a change happened, which makes oneshot possible.
912  *
913  * Called cyclic from the hrtimer softirq (driven by the timer
914  * softirq) allow_nohz signals, that we can switch into low-res nohz
915  * mode, because high resolution timers are disabled (either compile
916  * or runtime).
917  */
918 int tick_check_oneshot_change(int allow_nohz)
919 {
920 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
921 
922 	if (!test_and_clear_bit(0, &ts->check_clocks))
923 		return 0;
924 
925 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
926 		return 0;
927 
928 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
929 		return 0;
930 
931 	if (!allow_nohz)
932 		return 1;
933 
934 	tick_nohz_switch_to_nohz();
935 	return 0;
936 }
937