1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 47 /* 48 * The time when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64-bit can do a quick check without holding the jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32-bit cannot do that because the store of 'tick_next_period' 68 * consists of two 32-bit stores, and the first store could be 69 * moved by the CPU to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on 'jiffies_lock' and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Re-evaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 118 jiffies_64 += ticks; 119 120 /* Keep the tick_next_period variable up to date */ 121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 122 123 if (IS_ENABLED(CONFIG_64BIT)) { 124 /* 125 * Pairs with smp_load_acquire() in the lockless quick 126 * check above, and ensures that the update to 'jiffies_64' is 127 * not reordered vs. the store to 'tick_next_period', neither 128 * by the compiler nor by the CPU. 129 */ 130 smp_store_release(&tick_next_period, nextp); 131 } else { 132 /* 133 * A plain store is good enough on 32-bit, as the quick check 134 * above is protected by the sequence count. 135 */ 136 tick_next_period = nextp; 137 } 138 139 /* 140 * Release the sequence count. calc_global_load() below is not 141 * protected by it, but 'jiffies_lock' needs to be held to prevent 142 * concurrent invocations. 143 */ 144 write_seqcount_end(&jiffies_seq); 145 146 calc_global_load(); 147 148 raw_spin_unlock(&jiffies_lock); 149 update_wall_time(); 150 } 151 152 /* 153 * Initialize and return retrieve the jiffies update. 154 */ 155 static ktime_t tick_init_jiffy_update(void) 156 { 157 ktime_t period; 158 159 raw_spin_lock(&jiffies_lock); 160 write_seqcount_begin(&jiffies_seq); 161 162 /* Have we started the jiffies update yet ? */ 163 if (last_jiffies_update == 0) { 164 u32 rem; 165 166 /* 167 * Ensure that the tick is aligned to a multiple of 168 * TICK_NSEC. 169 */ 170 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 171 if (rem) 172 tick_next_period += TICK_NSEC - rem; 173 174 last_jiffies_update = tick_next_period; 175 } 176 period = last_jiffies_update; 177 178 write_seqcount_end(&jiffies_seq); 179 raw_spin_unlock(&jiffies_lock); 180 181 return period; 182 } 183 184 #define MAX_STALLED_JIFFIES 5 185 186 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 187 { 188 int cpu = smp_processor_id(); 189 190 #ifdef CONFIG_NO_HZ_COMMON 191 /* 192 * Check if the do_timer duty was dropped. We don't care about 193 * concurrency: This happens only when the CPU in charge went 194 * into a long sleep. If two CPUs happen to assign themselves to 195 * this duty, then the jiffies update is still serialized by 196 * 'jiffies_lock'. 197 * 198 * If nohz_full is enabled, this should not happen because the 199 * 'tick_do_timer_cpu' CPU never relinquishes. 200 */ 201 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 202 #ifdef CONFIG_NO_HZ_FULL 203 WARN_ON_ONCE(tick_nohz_full_running); 204 #endif 205 tick_do_timer_cpu = cpu; 206 } 207 #endif 208 209 /* Check if jiffies need an update */ 210 if (tick_do_timer_cpu == cpu) 211 tick_do_update_jiffies64(now); 212 213 /* 214 * If the jiffies update stalled for too long (timekeeper in stop_machine() 215 * or VMEXIT'ed for several msecs), force an update. 216 */ 217 if (ts->last_tick_jiffies != jiffies) { 218 ts->stalled_jiffies = 0; 219 ts->last_tick_jiffies = READ_ONCE(jiffies); 220 } else { 221 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 222 tick_do_update_jiffies64(now); 223 ts->stalled_jiffies = 0; 224 ts->last_tick_jiffies = READ_ONCE(jiffies); 225 } 226 } 227 228 if (ts->inidle) 229 ts->got_idle_tick = 1; 230 } 231 232 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 233 { 234 #ifdef CONFIG_NO_HZ_COMMON 235 /* 236 * When we are idle and the tick is stopped, we have to touch 237 * the watchdog as we might not schedule for a really long 238 * time. This happens on completely idle SMP systems while 239 * waiting on the login prompt. We also increment the "start of 240 * idle" jiffy stamp so the idle accounting adjustment we do 241 * when we go busy again does not account too many ticks. 242 */ 243 if (ts->tick_stopped) { 244 touch_softlockup_watchdog_sched(); 245 if (is_idle_task(current)) 246 ts->idle_jiffies++; 247 /* 248 * In case the current tick fired too early past its expected 249 * expiration, make sure we don't bypass the next clock reprogramming 250 * to the same deadline. 251 */ 252 ts->next_tick = 0; 253 } 254 #endif 255 update_process_times(user_mode(regs)); 256 profile_tick(CPU_PROFILING); 257 } 258 #endif 259 260 #ifdef CONFIG_NO_HZ_FULL 261 cpumask_var_t tick_nohz_full_mask; 262 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 263 bool tick_nohz_full_running; 264 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 265 static atomic_t tick_dep_mask; 266 267 static bool check_tick_dependency(atomic_t *dep) 268 { 269 int val = atomic_read(dep); 270 271 if (val & TICK_DEP_MASK_POSIX_TIMER) { 272 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 273 return true; 274 } 275 276 if (val & TICK_DEP_MASK_PERF_EVENTS) { 277 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 278 return true; 279 } 280 281 if (val & TICK_DEP_MASK_SCHED) { 282 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 283 return true; 284 } 285 286 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 287 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 288 return true; 289 } 290 291 if (val & TICK_DEP_MASK_RCU) { 292 trace_tick_stop(0, TICK_DEP_MASK_RCU); 293 return true; 294 } 295 296 if (val & TICK_DEP_MASK_RCU_EXP) { 297 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 298 return true; 299 } 300 301 return false; 302 } 303 304 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 305 { 306 lockdep_assert_irqs_disabled(); 307 308 if (unlikely(!cpu_online(cpu))) 309 return false; 310 311 if (check_tick_dependency(&tick_dep_mask)) 312 return false; 313 314 if (check_tick_dependency(&ts->tick_dep_mask)) 315 return false; 316 317 if (check_tick_dependency(¤t->tick_dep_mask)) 318 return false; 319 320 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 321 return false; 322 323 return true; 324 } 325 326 static void nohz_full_kick_func(struct irq_work *work) 327 { 328 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 329 } 330 331 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 332 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 333 334 /* 335 * Kick this CPU if it's full dynticks in order to force it to 336 * re-evaluate its dependency on the tick and restart it if necessary. 337 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 338 * is NMI safe. 339 */ 340 static void tick_nohz_full_kick(void) 341 { 342 if (!tick_nohz_full_cpu(smp_processor_id())) 343 return; 344 345 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 346 } 347 348 /* 349 * Kick the CPU if it's full dynticks in order to force it to 350 * re-evaluate its dependency on the tick and restart it if necessary. 351 */ 352 void tick_nohz_full_kick_cpu(int cpu) 353 { 354 if (!tick_nohz_full_cpu(cpu)) 355 return; 356 357 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 358 } 359 360 static void tick_nohz_kick_task(struct task_struct *tsk) 361 { 362 int cpu; 363 364 /* 365 * If the task is not running, run_posix_cpu_timers() 366 * has nothing to elapse, and an IPI can then be optimized out. 367 * 368 * activate_task() STORE p->tick_dep_mask 369 * STORE p->on_rq 370 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 371 * LOCK rq->lock LOAD p->on_rq 372 * smp_mb__after_spin_lock() 373 * tick_nohz_task_switch() 374 * LOAD p->tick_dep_mask 375 */ 376 if (!sched_task_on_rq(tsk)) 377 return; 378 379 /* 380 * If the task concurrently migrates to another CPU, 381 * we guarantee it sees the new tick dependency upon 382 * schedule. 383 * 384 * set_task_cpu(p, cpu); 385 * STORE p->cpu = @cpu 386 * __schedule() (switch to task 'p') 387 * LOCK rq->lock 388 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 389 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 390 * LOAD p->tick_dep_mask LOAD p->cpu 391 */ 392 cpu = task_cpu(tsk); 393 394 preempt_disable(); 395 if (cpu_online(cpu)) 396 tick_nohz_full_kick_cpu(cpu); 397 preempt_enable(); 398 } 399 400 /* 401 * Kick all full dynticks CPUs in order to force these to re-evaluate 402 * their dependency on the tick and restart it if necessary. 403 */ 404 static void tick_nohz_full_kick_all(void) 405 { 406 int cpu; 407 408 if (!tick_nohz_full_running) 409 return; 410 411 preempt_disable(); 412 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 413 tick_nohz_full_kick_cpu(cpu); 414 preempt_enable(); 415 } 416 417 static void tick_nohz_dep_set_all(atomic_t *dep, 418 enum tick_dep_bits bit) 419 { 420 int prev; 421 422 prev = atomic_fetch_or(BIT(bit), dep); 423 if (!prev) 424 tick_nohz_full_kick_all(); 425 } 426 427 /* 428 * Set a global tick dependency. Used by perf events that rely on freq and 429 * unstable clocks. 430 */ 431 void tick_nohz_dep_set(enum tick_dep_bits bit) 432 { 433 tick_nohz_dep_set_all(&tick_dep_mask, bit); 434 } 435 436 void tick_nohz_dep_clear(enum tick_dep_bits bit) 437 { 438 atomic_andnot(BIT(bit), &tick_dep_mask); 439 } 440 441 /* 442 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 443 * manage event-throttling. 444 */ 445 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 446 { 447 int prev; 448 struct tick_sched *ts; 449 450 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 451 452 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 453 if (!prev) { 454 preempt_disable(); 455 /* Perf needs local kick that is NMI safe */ 456 if (cpu == smp_processor_id()) { 457 tick_nohz_full_kick(); 458 } else { 459 /* Remote IRQ work not NMI-safe */ 460 if (!WARN_ON_ONCE(in_nmi())) 461 tick_nohz_full_kick_cpu(cpu); 462 } 463 preempt_enable(); 464 } 465 } 466 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 467 468 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 469 { 470 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 471 472 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 473 } 474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 475 476 /* 477 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 478 * in order to elapse per task timers. 479 */ 480 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 481 { 482 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 483 tick_nohz_kick_task(tsk); 484 } 485 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 486 487 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 488 { 489 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 490 } 491 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 492 493 /* 494 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 495 * per process timers. 496 */ 497 void tick_nohz_dep_set_signal(struct task_struct *tsk, 498 enum tick_dep_bits bit) 499 { 500 int prev; 501 struct signal_struct *sig = tsk->signal; 502 503 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 504 if (!prev) { 505 struct task_struct *t; 506 507 lockdep_assert_held(&tsk->sighand->siglock); 508 __for_each_thread(sig, t) 509 tick_nohz_kick_task(t); 510 } 511 } 512 513 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 514 { 515 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 516 } 517 518 /* 519 * Re-evaluate the need for the tick as we switch the current task. 520 * It might need the tick due to per task/process properties: 521 * perf events, posix CPU timers, ... 522 */ 523 void __tick_nohz_task_switch(void) 524 { 525 struct tick_sched *ts; 526 527 if (!tick_nohz_full_cpu(smp_processor_id())) 528 return; 529 530 ts = this_cpu_ptr(&tick_cpu_sched); 531 532 if (ts->tick_stopped) { 533 if (atomic_read(¤t->tick_dep_mask) || 534 atomic_read(¤t->signal->tick_dep_mask)) 535 tick_nohz_full_kick(); 536 } 537 } 538 539 /* Get the boot-time nohz CPU list from the kernel parameters. */ 540 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 541 { 542 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 543 cpumask_copy(tick_nohz_full_mask, cpumask); 544 tick_nohz_full_running = true; 545 } 546 547 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 548 { 549 /* 550 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 551 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 552 * CPUs. It must remain online when nohz full is enabled. 553 */ 554 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 555 return false; 556 return true; 557 } 558 559 static int tick_nohz_cpu_down(unsigned int cpu) 560 { 561 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 562 } 563 564 void __init tick_nohz_init(void) 565 { 566 int cpu, ret; 567 568 if (!tick_nohz_full_running) 569 return; 570 571 /* 572 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 573 * locking contexts. But then we need IRQ work to raise its own 574 * interrupts to avoid circular dependency on the tick. 575 */ 576 if (!arch_irq_work_has_interrupt()) { 577 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 578 cpumask_clear(tick_nohz_full_mask); 579 tick_nohz_full_running = false; 580 return; 581 } 582 583 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 584 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 585 cpu = smp_processor_id(); 586 587 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 588 pr_warn("NO_HZ: Clearing %d from nohz_full range " 589 "for timekeeping\n", cpu); 590 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 591 } 592 } 593 594 for_each_cpu(cpu, tick_nohz_full_mask) 595 ct_cpu_track_user(cpu); 596 597 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 598 "kernel/nohz:predown", NULL, 599 tick_nohz_cpu_down); 600 WARN_ON(ret < 0); 601 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 602 cpumask_pr_args(tick_nohz_full_mask)); 603 } 604 #endif 605 606 /* 607 * NOHZ - aka dynamic tick functionality 608 */ 609 #ifdef CONFIG_NO_HZ_COMMON 610 /* 611 * NO HZ enabled ? 612 */ 613 bool tick_nohz_enabled __read_mostly = true; 614 unsigned long tick_nohz_active __read_mostly; 615 /* 616 * Enable / Disable tickless mode 617 */ 618 static int __init setup_tick_nohz(char *str) 619 { 620 return (kstrtobool(str, &tick_nohz_enabled) == 0); 621 } 622 623 __setup("nohz=", setup_tick_nohz); 624 625 bool tick_nohz_tick_stopped(void) 626 { 627 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 628 629 return ts->tick_stopped; 630 } 631 632 bool tick_nohz_tick_stopped_cpu(int cpu) 633 { 634 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 635 636 return ts->tick_stopped; 637 } 638 639 /** 640 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 641 * 642 * Called from interrupt entry when the CPU was idle 643 * 644 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 645 * must be updated. Otherwise an interrupt handler could use a stale jiffy 646 * value. We do this unconditionally on any CPU, as we don't know whether the 647 * CPU, which has the update task assigned, is in a long sleep. 648 */ 649 static void tick_nohz_update_jiffies(ktime_t now) 650 { 651 unsigned long flags; 652 653 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 654 655 local_irq_save(flags); 656 tick_do_update_jiffies64(now); 657 local_irq_restore(flags); 658 659 touch_softlockup_watchdog_sched(); 660 } 661 662 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 663 { 664 ktime_t delta; 665 666 if (WARN_ON_ONCE(!ts->idle_active)) 667 return; 668 669 delta = ktime_sub(now, ts->idle_entrytime); 670 671 write_seqcount_begin(&ts->idle_sleeptime_seq); 672 if (nr_iowait_cpu(smp_processor_id()) > 0) 673 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 674 else 675 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 676 677 ts->idle_entrytime = now; 678 ts->idle_active = 0; 679 write_seqcount_end(&ts->idle_sleeptime_seq); 680 681 sched_clock_idle_wakeup_event(); 682 } 683 684 static void tick_nohz_start_idle(struct tick_sched *ts) 685 { 686 write_seqcount_begin(&ts->idle_sleeptime_seq); 687 ts->idle_entrytime = ktime_get(); 688 ts->idle_active = 1; 689 write_seqcount_end(&ts->idle_sleeptime_seq); 690 691 sched_clock_idle_sleep_event(); 692 } 693 694 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 695 bool compute_delta, u64 *last_update_time) 696 { 697 ktime_t now, idle; 698 unsigned int seq; 699 700 if (!tick_nohz_active) 701 return -1; 702 703 now = ktime_get(); 704 if (last_update_time) 705 *last_update_time = ktime_to_us(now); 706 707 do { 708 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 709 710 if (ts->idle_active && compute_delta) { 711 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 712 713 idle = ktime_add(*sleeptime, delta); 714 } else { 715 idle = *sleeptime; 716 } 717 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 718 719 return ktime_to_us(idle); 720 721 } 722 723 /** 724 * get_cpu_idle_time_us - get the total idle time of a CPU 725 * @cpu: CPU number to query 726 * @last_update_time: variable to store update time in. Do not update 727 * counters if NULL. 728 * 729 * Return the cumulative idle time (since boot) for a given 730 * CPU, in microseconds. Note that this is partially broken due to 731 * the counter of iowait tasks that can be remotely updated without 732 * any synchronization. Therefore it is possible to observe backward 733 * values within two consecutive reads. 734 * 735 * This time is measured via accounting rather than sampling, 736 * and is as accurate as ktime_get() is. 737 * 738 * This function returns -1 if NOHZ is not enabled. 739 */ 740 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 741 { 742 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 743 744 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 745 !nr_iowait_cpu(cpu), last_update_time); 746 } 747 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 748 749 /** 750 * get_cpu_iowait_time_us - get the total iowait time of a CPU 751 * @cpu: CPU number to query 752 * @last_update_time: variable to store update time in. Do not update 753 * counters if NULL. 754 * 755 * Return the cumulative iowait time (since boot) for a given 756 * CPU, in microseconds. Note this is partially broken due to 757 * the counter of iowait tasks that can be remotely updated without 758 * any synchronization. Therefore it is possible to observe backward 759 * values within two consecutive reads. 760 * 761 * This time is measured via accounting rather than sampling, 762 * and is as accurate as ktime_get() is. 763 * 764 * This function returns -1 if NOHZ is not enabled. 765 */ 766 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 767 { 768 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 769 770 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 771 nr_iowait_cpu(cpu), last_update_time); 772 } 773 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 774 775 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 776 { 777 hrtimer_cancel(&ts->sched_timer); 778 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 779 780 /* Forward the time to expire in the future */ 781 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 782 783 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 784 hrtimer_start_expires(&ts->sched_timer, 785 HRTIMER_MODE_ABS_PINNED_HARD); 786 } else { 787 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 788 } 789 790 /* 791 * Reset to make sure the next tick stop doesn't get fooled by past 792 * cached clock deadline. 793 */ 794 ts->next_tick = 0; 795 } 796 797 static inline bool local_timer_softirq_pending(void) 798 { 799 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 800 } 801 802 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 803 { 804 u64 basemono, next_tick, delta, expires; 805 unsigned long basejiff; 806 unsigned int seq; 807 808 /* Read jiffies and the time when jiffies were updated last */ 809 do { 810 seq = read_seqcount_begin(&jiffies_seq); 811 basemono = last_jiffies_update; 812 basejiff = jiffies; 813 } while (read_seqcount_retry(&jiffies_seq, seq)); 814 ts->last_jiffies = basejiff; 815 ts->timer_expires_base = basemono; 816 817 /* 818 * Keep the periodic tick, when RCU, architecture or irq_work 819 * requests it. 820 * Aside of that, check whether the local timer softirq is 821 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 822 * because there is an already expired timer, so it will request 823 * immediate expiry, which rearms the hardware timer with a 824 * minimal delta, which brings us back to this place 825 * immediately. Lather, rinse and repeat... 826 */ 827 if (rcu_needs_cpu() || arch_needs_cpu() || 828 irq_work_needs_cpu() || local_timer_softirq_pending()) { 829 next_tick = basemono + TICK_NSEC; 830 } else { 831 /* 832 * Get the next pending timer. If high resolution 833 * timers are enabled this only takes the timer wheel 834 * timers into account. If high resolution timers are 835 * disabled this also looks at the next expiring 836 * hrtimer. 837 */ 838 next_tick = get_next_timer_interrupt(basejiff, basemono); 839 ts->next_timer = next_tick; 840 } 841 842 /* Make sure next_tick is never before basemono! */ 843 if (WARN_ON_ONCE(basemono > next_tick)) 844 next_tick = basemono; 845 846 /* 847 * If the tick is due in the next period, keep it ticking or 848 * force prod the timer. 849 */ 850 delta = next_tick - basemono; 851 if (delta <= (u64)TICK_NSEC) { 852 /* 853 * Tell the timer code that the base is not idle, i.e. undo 854 * the effect of get_next_timer_interrupt(): 855 */ 856 timer_clear_idle(); 857 /* 858 * We've not stopped the tick yet, and there's a timer in the 859 * next period, so no point in stopping it either, bail. 860 */ 861 if (!ts->tick_stopped) { 862 ts->timer_expires = 0; 863 goto out; 864 } 865 } 866 867 /* 868 * If this CPU is the one which had the do_timer() duty last, we limit 869 * the sleep time to the timekeeping 'max_deferment' value. 870 * Otherwise we can sleep as long as we want. 871 */ 872 delta = timekeeping_max_deferment(); 873 if (cpu != tick_do_timer_cpu && 874 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 875 delta = KTIME_MAX; 876 877 /* Calculate the next expiry time */ 878 if (delta < (KTIME_MAX - basemono)) 879 expires = basemono + delta; 880 else 881 expires = KTIME_MAX; 882 883 ts->timer_expires = min_t(u64, expires, next_tick); 884 885 out: 886 return ts->timer_expires; 887 } 888 889 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 890 { 891 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 892 u64 basemono = ts->timer_expires_base; 893 u64 expires = ts->timer_expires; 894 895 /* Make sure we won't be trying to stop it twice in a row. */ 896 ts->timer_expires_base = 0; 897 898 /* 899 * If this CPU is the one which updates jiffies, then give up 900 * the assignment and let it be taken by the CPU which runs 901 * the tick timer next, which might be this CPU as well. If we 902 * don't drop this here, the jiffies might be stale and 903 * do_timer() never gets invoked. Keep track of the fact that it 904 * was the one which had the do_timer() duty last. 905 */ 906 if (cpu == tick_do_timer_cpu) { 907 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 908 ts->do_timer_last = 1; 909 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 910 ts->do_timer_last = 0; 911 } 912 913 /* Skip reprogram of event if it's not changed */ 914 if (ts->tick_stopped && (expires == ts->next_tick)) { 915 /* Sanity check: make sure clockevent is actually programmed */ 916 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 917 return; 918 919 WARN_ON_ONCE(1); 920 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 921 basemono, ts->next_tick, dev->next_event, 922 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 923 } 924 925 /* 926 * tick_nohz_stop_tick() can be called several times before 927 * tick_nohz_restart_sched_tick() is called. This happens when 928 * interrupts arrive which do not cause a reschedule. In the first 929 * call we save the current tick time, so we can restart the 930 * scheduler tick in tick_nohz_restart_sched_tick(). 931 */ 932 if (!ts->tick_stopped) { 933 calc_load_nohz_start(); 934 quiet_vmstat(); 935 936 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 937 ts->tick_stopped = 1; 938 trace_tick_stop(1, TICK_DEP_MASK_NONE); 939 } 940 941 ts->next_tick = expires; 942 943 /* 944 * If the expiration time == KTIME_MAX, then we simply stop 945 * the tick timer. 946 */ 947 if (unlikely(expires == KTIME_MAX)) { 948 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 949 hrtimer_cancel(&ts->sched_timer); 950 else 951 tick_program_event(KTIME_MAX, 1); 952 return; 953 } 954 955 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 956 hrtimer_start(&ts->sched_timer, expires, 957 HRTIMER_MODE_ABS_PINNED_HARD); 958 } else { 959 hrtimer_set_expires(&ts->sched_timer, expires); 960 tick_program_event(expires, 1); 961 } 962 } 963 964 static void tick_nohz_retain_tick(struct tick_sched *ts) 965 { 966 ts->timer_expires_base = 0; 967 } 968 969 #ifdef CONFIG_NO_HZ_FULL 970 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 971 { 972 if (tick_nohz_next_event(ts, cpu)) 973 tick_nohz_stop_tick(ts, cpu); 974 else 975 tick_nohz_retain_tick(ts); 976 } 977 #endif /* CONFIG_NO_HZ_FULL */ 978 979 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 980 { 981 /* Update jiffies first */ 982 tick_do_update_jiffies64(now); 983 984 /* 985 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 986 * the clock forward checks in the enqueue path: 987 */ 988 timer_clear_idle(); 989 990 calc_load_nohz_stop(); 991 touch_softlockup_watchdog_sched(); 992 993 /* Cancel the scheduled timer and restore the tick: */ 994 ts->tick_stopped = 0; 995 tick_nohz_restart(ts, now); 996 } 997 998 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 999 ktime_t now) 1000 { 1001 #ifdef CONFIG_NO_HZ_FULL 1002 int cpu = smp_processor_id(); 1003 1004 if (can_stop_full_tick(cpu, ts)) 1005 tick_nohz_stop_sched_tick(ts, cpu); 1006 else if (ts->tick_stopped) 1007 tick_nohz_restart_sched_tick(ts, now); 1008 #endif 1009 } 1010 1011 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1012 { 1013 if (!tick_nohz_full_cpu(smp_processor_id())) 1014 return; 1015 1016 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 1017 return; 1018 1019 __tick_nohz_full_update_tick(ts, ktime_get()); 1020 } 1021 1022 /* 1023 * A pending softirq outside an IRQ (or softirq disabled section) context 1024 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1025 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1026 * 1027 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1028 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1029 * triggering the code below, since wakep_softirqd() is ignored. 1030 * 1031 */ 1032 static bool report_idle_softirq(void) 1033 { 1034 static int ratelimit; 1035 unsigned int pending = local_softirq_pending(); 1036 1037 if (likely(!pending)) 1038 return false; 1039 1040 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1041 if (!cpu_active(smp_processor_id())) { 1042 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1043 if (!pending) 1044 return false; 1045 } 1046 1047 if (ratelimit >= 10) 1048 return false; 1049 1050 /* On RT, softirq handling may be waiting on some lock */ 1051 if (local_bh_blocked()) 1052 return false; 1053 1054 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1055 pending); 1056 ratelimit++; 1057 1058 return true; 1059 } 1060 1061 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1062 { 1063 /* 1064 * If this CPU is offline and it is the one which updates 1065 * jiffies, then give up the assignment and let it be taken by 1066 * the CPU which runs the tick timer next. If we don't drop 1067 * this here, the jiffies might be stale and do_timer() never 1068 * gets invoked. 1069 */ 1070 if (unlikely(!cpu_online(cpu))) { 1071 if (cpu == tick_do_timer_cpu) 1072 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 1073 /* 1074 * Make sure the CPU doesn't get fooled by obsolete tick 1075 * deadline if it comes back online later. 1076 */ 1077 ts->next_tick = 0; 1078 return false; 1079 } 1080 1081 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 1082 return false; 1083 1084 if (need_resched()) 1085 return false; 1086 1087 if (unlikely(report_idle_softirq())) 1088 return false; 1089 1090 if (tick_nohz_full_enabled()) { 1091 /* 1092 * Keep the tick alive to guarantee timekeeping progression 1093 * if there are full dynticks CPUs around 1094 */ 1095 if (tick_do_timer_cpu == cpu) 1096 return false; 1097 1098 /* Should not happen for nohz-full */ 1099 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 1100 return false; 1101 } 1102 1103 return true; 1104 } 1105 1106 /** 1107 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1108 * 1109 * When the next event is more than a tick into the future, stop the idle tick 1110 */ 1111 void tick_nohz_idle_stop_tick(void) 1112 { 1113 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1114 int cpu = smp_processor_id(); 1115 ktime_t expires; 1116 1117 /* 1118 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1119 * tick timer expiration time is known already. 1120 */ 1121 if (ts->timer_expires_base) 1122 expires = ts->timer_expires; 1123 else if (can_stop_idle_tick(cpu, ts)) 1124 expires = tick_nohz_next_event(ts, cpu); 1125 else 1126 return; 1127 1128 ts->idle_calls++; 1129 1130 if (expires > 0LL) { 1131 int was_stopped = ts->tick_stopped; 1132 1133 tick_nohz_stop_tick(ts, cpu); 1134 1135 ts->idle_sleeps++; 1136 ts->idle_expires = expires; 1137 1138 if (!was_stopped && ts->tick_stopped) { 1139 ts->idle_jiffies = ts->last_jiffies; 1140 nohz_balance_enter_idle(cpu); 1141 } 1142 } else { 1143 tick_nohz_retain_tick(ts); 1144 } 1145 } 1146 1147 void tick_nohz_idle_retain_tick(void) 1148 { 1149 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1150 /* 1151 * Undo the effect of get_next_timer_interrupt() called from 1152 * tick_nohz_next_event(). 1153 */ 1154 timer_clear_idle(); 1155 } 1156 1157 /** 1158 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1159 * 1160 * Called when we start the idle loop. 1161 */ 1162 void tick_nohz_idle_enter(void) 1163 { 1164 struct tick_sched *ts; 1165 1166 lockdep_assert_irqs_enabled(); 1167 1168 local_irq_disable(); 1169 1170 ts = this_cpu_ptr(&tick_cpu_sched); 1171 1172 WARN_ON_ONCE(ts->timer_expires_base); 1173 1174 ts->inidle = 1; 1175 tick_nohz_start_idle(ts); 1176 1177 local_irq_enable(); 1178 } 1179 1180 /** 1181 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1182 * 1183 * A timer may have been added/modified/deleted either by the current IRQ, 1184 * or by another place using this IRQ as a notification. This IRQ may have 1185 * also updated the RCU callback list. These events may require a 1186 * re-evaluation of the next tick. Depending on the context: 1187 * 1188 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1189 * time accounting. The next tick will be re-evaluated on the next idle 1190 * loop iteration. 1191 * 1192 * 2) If the CPU is nohz_full: 1193 * 1194 * 2.1) If there is any tick dependency, restart the tick if stopped. 1195 * 1196 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1197 * stop/update it accordingly. 1198 */ 1199 void tick_nohz_irq_exit(void) 1200 { 1201 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1202 1203 if (ts->inidle) 1204 tick_nohz_start_idle(ts); 1205 else 1206 tick_nohz_full_update_tick(ts); 1207 } 1208 1209 /** 1210 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1211 */ 1212 bool tick_nohz_idle_got_tick(void) 1213 { 1214 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1215 1216 if (ts->got_idle_tick) { 1217 ts->got_idle_tick = 0; 1218 return true; 1219 } 1220 return false; 1221 } 1222 1223 /** 1224 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1225 * or the tick, whichever expires first. Note that, if the tick has been 1226 * stopped, it returns the next hrtimer. 1227 * 1228 * Called from power state control code with interrupts disabled 1229 */ 1230 ktime_t tick_nohz_get_next_hrtimer(void) 1231 { 1232 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1233 } 1234 1235 /** 1236 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1237 * @delta_next: duration until the next event if the tick cannot be stopped 1238 * 1239 * Called from power state control code with interrupts disabled. 1240 * 1241 * The return value of this function and/or the value returned by it through the 1242 * @delta_next pointer can be negative which must be taken into account by its 1243 * callers. 1244 */ 1245 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1246 { 1247 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1248 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1249 int cpu = smp_processor_id(); 1250 /* 1251 * The idle entry time is expected to be a sufficient approximation of 1252 * the current time at this point. 1253 */ 1254 ktime_t now = ts->idle_entrytime; 1255 ktime_t next_event; 1256 1257 WARN_ON_ONCE(!ts->inidle); 1258 1259 *delta_next = ktime_sub(dev->next_event, now); 1260 1261 if (!can_stop_idle_tick(cpu, ts)) 1262 return *delta_next; 1263 1264 next_event = tick_nohz_next_event(ts, cpu); 1265 if (!next_event) 1266 return *delta_next; 1267 1268 /* 1269 * If the next highres timer to expire is earlier than 'next_event', the 1270 * idle governor needs to know that. 1271 */ 1272 next_event = min_t(u64, next_event, 1273 hrtimer_next_event_without(&ts->sched_timer)); 1274 1275 return ktime_sub(next_event, now); 1276 } 1277 1278 /** 1279 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1280 * for a particular CPU. 1281 * 1282 * Called from the schedutil frequency scaling governor in scheduler context. 1283 */ 1284 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1285 { 1286 struct tick_sched *ts = tick_get_tick_sched(cpu); 1287 1288 return ts->idle_calls; 1289 } 1290 1291 /** 1292 * tick_nohz_get_idle_calls - return the current idle calls counter value 1293 * 1294 * Called from the schedutil frequency scaling governor in scheduler context. 1295 */ 1296 unsigned long tick_nohz_get_idle_calls(void) 1297 { 1298 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1299 1300 return ts->idle_calls; 1301 } 1302 1303 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1304 ktime_t now) 1305 { 1306 unsigned long ticks; 1307 1308 ts->idle_exittime = now; 1309 1310 if (vtime_accounting_enabled_this_cpu()) 1311 return; 1312 /* 1313 * We stopped the tick in idle. update_process_times() would miss the 1314 * time we slept, as it does only a 1 tick accounting. 1315 * Enforce that this is accounted to idle ! 1316 */ 1317 ticks = jiffies - ts->idle_jiffies; 1318 /* 1319 * We might be one off. Do not randomly account a huge number of ticks! 1320 */ 1321 if (ticks && ticks < LONG_MAX) 1322 account_idle_ticks(ticks); 1323 } 1324 1325 void tick_nohz_idle_restart_tick(void) 1326 { 1327 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1328 1329 if (ts->tick_stopped) { 1330 ktime_t now = ktime_get(); 1331 tick_nohz_restart_sched_tick(ts, now); 1332 tick_nohz_account_idle_time(ts, now); 1333 } 1334 } 1335 1336 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1337 { 1338 if (tick_nohz_full_cpu(smp_processor_id())) 1339 __tick_nohz_full_update_tick(ts, now); 1340 else 1341 tick_nohz_restart_sched_tick(ts, now); 1342 1343 tick_nohz_account_idle_time(ts, now); 1344 } 1345 1346 /** 1347 * tick_nohz_idle_exit - Update the tick upon idle task exit 1348 * 1349 * When the idle task exits, update the tick depending on the 1350 * following situations: 1351 * 1352 * 1) If the CPU is not in nohz_full mode (most cases), then 1353 * restart the tick. 1354 * 1355 * 2) If the CPU is in nohz_full mode (corner case): 1356 * 2.1) If the tick can be kept stopped (no tick dependencies) 1357 * then re-evaluate the next tick and try to keep it stopped 1358 * as long as possible. 1359 * 2.2) If the tick has dependencies, restart the tick. 1360 * 1361 */ 1362 void tick_nohz_idle_exit(void) 1363 { 1364 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1365 bool idle_active, tick_stopped; 1366 ktime_t now; 1367 1368 local_irq_disable(); 1369 1370 WARN_ON_ONCE(!ts->inidle); 1371 WARN_ON_ONCE(ts->timer_expires_base); 1372 1373 ts->inidle = 0; 1374 idle_active = ts->idle_active; 1375 tick_stopped = ts->tick_stopped; 1376 1377 if (idle_active || tick_stopped) 1378 now = ktime_get(); 1379 1380 if (idle_active) 1381 tick_nohz_stop_idle(ts, now); 1382 1383 if (tick_stopped) 1384 tick_nohz_idle_update_tick(ts, now); 1385 1386 local_irq_enable(); 1387 } 1388 1389 /* 1390 * In low-resolution mode, the tick handler must be implemented directly 1391 * at the clockevent level. hrtimer can't be used instead, because its 1392 * infrastructure actually relies on the tick itself as a backend in 1393 * low-resolution mode (see hrtimer_run_queues()). 1394 * 1395 * This low-resolution handler still makes use of some hrtimer APIs meanwhile 1396 * for convenience with expiration calculation and forwarding. 1397 */ 1398 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1399 { 1400 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1401 struct pt_regs *regs = get_irq_regs(); 1402 ktime_t now = ktime_get(); 1403 1404 dev->next_event = KTIME_MAX; 1405 1406 tick_sched_do_timer(ts, now); 1407 tick_sched_handle(ts, regs); 1408 1409 /* 1410 * In dynticks mode, tick reprogram is deferred: 1411 * - to the idle task if in dynticks-idle 1412 * - to IRQ exit if in full-dynticks. 1413 */ 1414 if (likely(!ts->tick_stopped)) { 1415 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1416 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1417 } 1418 1419 } 1420 1421 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1422 { 1423 if (!tick_nohz_enabled) 1424 return; 1425 ts->nohz_mode = mode; 1426 /* One update is enough */ 1427 if (!test_and_set_bit(0, &tick_nohz_active)) 1428 timers_update_nohz(); 1429 } 1430 1431 /** 1432 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1433 */ 1434 static void tick_nohz_switch_to_nohz(void) 1435 { 1436 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1437 ktime_t next; 1438 1439 if (!tick_nohz_enabled) 1440 return; 1441 1442 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1443 return; 1444 1445 /* 1446 * Recycle the hrtimer in 'ts', so we can share the 1447 * hrtimer_forward_now() function with the highres code. 1448 */ 1449 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1450 /* Get the next period */ 1451 next = tick_init_jiffy_update(); 1452 1453 hrtimer_set_expires(&ts->sched_timer, next); 1454 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1455 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1456 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1457 } 1458 1459 static inline void tick_nohz_irq_enter(void) 1460 { 1461 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1462 ktime_t now; 1463 1464 if (!ts->idle_active && !ts->tick_stopped) 1465 return; 1466 now = ktime_get(); 1467 if (ts->idle_active) 1468 tick_nohz_stop_idle(ts, now); 1469 /* 1470 * If all CPUs are idle we may need to update a stale jiffies value. 1471 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1472 * alive but it might be busy looping with interrupts disabled in some 1473 * rare case (typically stop machine). So we must make sure we have a 1474 * last resort. 1475 */ 1476 if (ts->tick_stopped) 1477 tick_nohz_update_jiffies(now); 1478 } 1479 1480 #else 1481 1482 static inline void tick_nohz_switch_to_nohz(void) { } 1483 static inline void tick_nohz_irq_enter(void) { } 1484 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1485 1486 #endif /* CONFIG_NO_HZ_COMMON */ 1487 1488 /* 1489 * Called from irq_enter() to notify about the possible interruption of idle() 1490 */ 1491 void tick_irq_enter(void) 1492 { 1493 tick_check_oneshot_broadcast_this_cpu(); 1494 tick_nohz_irq_enter(); 1495 } 1496 1497 /* 1498 * High resolution timer specific code 1499 */ 1500 #ifdef CONFIG_HIGH_RES_TIMERS 1501 /* 1502 * We rearm the timer until we get disabled by the idle code. 1503 * Called with interrupts disabled. 1504 */ 1505 static enum hrtimer_restart tick_nohz_highres_handler(struct hrtimer *timer) 1506 { 1507 struct tick_sched *ts = 1508 container_of(timer, struct tick_sched, sched_timer); 1509 struct pt_regs *regs = get_irq_regs(); 1510 ktime_t now = ktime_get(); 1511 1512 tick_sched_do_timer(ts, now); 1513 1514 /* 1515 * Do not call when we are not in IRQ context and have 1516 * no valid 'regs' pointer 1517 */ 1518 if (regs) 1519 tick_sched_handle(ts, regs); 1520 else 1521 ts->next_tick = 0; 1522 1523 /* 1524 * In dynticks mode, tick reprogram is deferred: 1525 * - to the idle task if in dynticks-idle 1526 * - to IRQ exit if in full-dynticks. 1527 */ 1528 if (unlikely(ts->tick_stopped)) 1529 return HRTIMER_NORESTART; 1530 1531 hrtimer_forward(timer, now, TICK_NSEC); 1532 1533 return HRTIMER_RESTART; 1534 } 1535 1536 static int sched_skew_tick; 1537 1538 static int __init skew_tick(char *str) 1539 { 1540 get_option(&str, &sched_skew_tick); 1541 1542 return 0; 1543 } 1544 early_param("skew_tick", skew_tick); 1545 1546 /** 1547 * tick_setup_sched_timer - setup the tick emulation timer 1548 */ 1549 void tick_setup_sched_timer(void) 1550 { 1551 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1552 ktime_t now = ktime_get(); 1553 1554 /* Emulate tick processing via per-CPU hrtimers: */ 1555 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1556 ts->sched_timer.function = tick_nohz_highres_handler; 1557 1558 /* Get the next period (per-CPU) */ 1559 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1560 1561 /* Offset the tick to avert 'jiffies_lock' contention. */ 1562 if (sched_skew_tick) { 1563 u64 offset = TICK_NSEC >> 1; 1564 do_div(offset, num_possible_cpus()); 1565 offset *= smp_processor_id(); 1566 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1567 } 1568 1569 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1570 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1571 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1572 } 1573 #endif /* HIGH_RES_TIMERS */ 1574 1575 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1576 void tick_cancel_sched_timer(int cpu) 1577 { 1578 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1579 ktime_t idle_sleeptime, iowait_sleeptime; 1580 1581 # ifdef CONFIG_HIGH_RES_TIMERS 1582 if (ts->sched_timer.base) 1583 hrtimer_cancel(&ts->sched_timer); 1584 # endif 1585 1586 idle_sleeptime = ts->idle_sleeptime; 1587 iowait_sleeptime = ts->iowait_sleeptime; 1588 memset(ts, 0, sizeof(*ts)); 1589 ts->idle_sleeptime = idle_sleeptime; 1590 ts->iowait_sleeptime = iowait_sleeptime; 1591 } 1592 #endif 1593 1594 /* 1595 * Async notification about clocksource changes 1596 */ 1597 void tick_clock_notify(void) 1598 { 1599 int cpu; 1600 1601 for_each_possible_cpu(cpu) 1602 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1603 } 1604 1605 /* 1606 * Async notification about clock event changes 1607 */ 1608 void tick_oneshot_notify(void) 1609 { 1610 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1611 1612 set_bit(0, &ts->check_clocks); 1613 } 1614 1615 /* 1616 * Check if a change happened, which makes oneshot possible. 1617 * 1618 * Called cyclically from the hrtimer softirq (driven by the timer 1619 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1620 * mode, because high resolution timers are disabled (either compile 1621 * or runtime). Called with interrupts disabled. 1622 */ 1623 int tick_check_oneshot_change(int allow_nohz) 1624 { 1625 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1626 1627 if (!test_and_clear_bit(0, &ts->check_clocks)) 1628 return 0; 1629 1630 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1631 return 0; 1632 1633 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1634 return 0; 1635 1636 if (!allow_nohz) 1637 return 1; 1638 1639 tick_nohz_switch_to_nohz(); 1640 return 0; 1641 } 1642