1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 47 /* 48 * The time when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64-bit can do a quick check without holding the jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32-bit cannot do that because the store of 'tick_next_period' 68 * consists of two 32-bit stores, and the first store could be 69 * moved by the CPU to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on 'jiffies_lock' and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Re-evaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 118 jiffies_64 += ticks; 119 120 /* Keep the tick_next_period variable up to date */ 121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 122 123 if (IS_ENABLED(CONFIG_64BIT)) { 124 /* 125 * Pairs with smp_load_acquire() in the lockless quick 126 * check above, and ensures that the update to 'jiffies_64' is 127 * not reordered vs. the store to 'tick_next_period', neither 128 * by the compiler nor by the CPU. 129 */ 130 smp_store_release(&tick_next_period, nextp); 131 } else { 132 /* 133 * A plain store is good enough on 32-bit, as the quick check 134 * above is protected by the sequence count. 135 */ 136 tick_next_period = nextp; 137 } 138 139 /* 140 * Release the sequence count. calc_global_load() below is not 141 * protected by it, but 'jiffies_lock' needs to be held to prevent 142 * concurrent invocations. 143 */ 144 write_seqcount_end(&jiffies_seq); 145 146 calc_global_load(); 147 148 raw_spin_unlock(&jiffies_lock); 149 update_wall_time(); 150 } 151 152 /* 153 * Initialize and return retrieve the jiffies update. 154 */ 155 static ktime_t tick_init_jiffy_update(void) 156 { 157 ktime_t period; 158 159 raw_spin_lock(&jiffies_lock); 160 write_seqcount_begin(&jiffies_seq); 161 162 /* Have we started the jiffies update yet ? */ 163 if (last_jiffies_update == 0) { 164 u32 rem; 165 166 /* 167 * Ensure that the tick is aligned to a multiple of 168 * TICK_NSEC. 169 */ 170 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 171 if (rem) 172 tick_next_period += TICK_NSEC - rem; 173 174 last_jiffies_update = tick_next_period; 175 } 176 period = last_jiffies_update; 177 178 write_seqcount_end(&jiffies_seq); 179 raw_spin_unlock(&jiffies_lock); 180 181 return period; 182 } 183 184 #define MAX_STALLED_JIFFIES 5 185 186 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 187 { 188 int cpu = smp_processor_id(); 189 190 #ifdef CONFIG_NO_HZ_COMMON 191 /* 192 * Check if the do_timer duty was dropped. We don't care about 193 * concurrency: This happens only when the CPU in charge went 194 * into a long sleep. If two CPUs happen to assign themselves to 195 * this duty, then the jiffies update is still serialized by 196 * 'jiffies_lock'. 197 * 198 * If nohz_full is enabled, this should not happen because the 199 * 'tick_do_timer_cpu' CPU never relinquishes. 200 */ 201 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 202 #ifdef CONFIG_NO_HZ_FULL 203 WARN_ON_ONCE(tick_nohz_full_running); 204 #endif 205 tick_do_timer_cpu = cpu; 206 } 207 #endif 208 209 /* Check if jiffies need an update */ 210 if (tick_do_timer_cpu == cpu) 211 tick_do_update_jiffies64(now); 212 213 /* 214 * If the jiffies update stalled for too long (timekeeper in stop_machine() 215 * or VMEXIT'ed for several msecs), force an update. 216 */ 217 if (ts->last_tick_jiffies != jiffies) { 218 ts->stalled_jiffies = 0; 219 ts->last_tick_jiffies = READ_ONCE(jiffies); 220 } else { 221 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 222 tick_do_update_jiffies64(now); 223 ts->stalled_jiffies = 0; 224 ts->last_tick_jiffies = READ_ONCE(jiffies); 225 } 226 } 227 228 if (ts->inidle) 229 ts->got_idle_tick = 1; 230 } 231 232 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 233 { 234 #ifdef CONFIG_NO_HZ_COMMON 235 /* 236 * When we are idle and the tick is stopped, we have to touch 237 * the watchdog as we might not schedule for a really long 238 * time. This happens on completely idle SMP systems while 239 * waiting on the login prompt. We also increment the "start of 240 * idle" jiffy stamp so the idle accounting adjustment we do 241 * when we go busy again does not account too many ticks. 242 */ 243 if (ts->tick_stopped) { 244 touch_softlockup_watchdog_sched(); 245 if (is_idle_task(current)) 246 ts->idle_jiffies++; 247 /* 248 * In case the current tick fired too early past its expected 249 * expiration, make sure we don't bypass the next clock reprogramming 250 * to the same deadline. 251 */ 252 ts->next_tick = 0; 253 } 254 #endif 255 update_process_times(user_mode(regs)); 256 profile_tick(CPU_PROFILING); 257 } 258 #endif 259 260 #ifdef CONFIG_NO_HZ_FULL 261 cpumask_var_t tick_nohz_full_mask; 262 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 263 bool tick_nohz_full_running; 264 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 265 static atomic_t tick_dep_mask; 266 267 static bool check_tick_dependency(atomic_t *dep) 268 { 269 int val = atomic_read(dep); 270 271 if (val & TICK_DEP_MASK_POSIX_TIMER) { 272 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 273 return true; 274 } 275 276 if (val & TICK_DEP_MASK_PERF_EVENTS) { 277 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 278 return true; 279 } 280 281 if (val & TICK_DEP_MASK_SCHED) { 282 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 283 return true; 284 } 285 286 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 287 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 288 return true; 289 } 290 291 if (val & TICK_DEP_MASK_RCU) { 292 trace_tick_stop(0, TICK_DEP_MASK_RCU); 293 return true; 294 } 295 296 if (val & TICK_DEP_MASK_RCU_EXP) { 297 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 298 return true; 299 } 300 301 return false; 302 } 303 304 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 305 { 306 lockdep_assert_irqs_disabled(); 307 308 if (unlikely(!cpu_online(cpu))) 309 return false; 310 311 if (check_tick_dependency(&tick_dep_mask)) 312 return false; 313 314 if (check_tick_dependency(&ts->tick_dep_mask)) 315 return false; 316 317 if (check_tick_dependency(¤t->tick_dep_mask)) 318 return false; 319 320 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 321 return false; 322 323 return true; 324 } 325 326 static void nohz_full_kick_func(struct irq_work *work) 327 { 328 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 329 } 330 331 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 332 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 333 334 /* 335 * Kick this CPU if it's full dynticks in order to force it to 336 * re-evaluate its dependency on the tick and restart it if necessary. 337 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 338 * is NMI safe. 339 */ 340 static void tick_nohz_full_kick(void) 341 { 342 if (!tick_nohz_full_cpu(smp_processor_id())) 343 return; 344 345 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 346 } 347 348 /* 349 * Kick the CPU if it's full dynticks in order to force it to 350 * re-evaluate its dependency on the tick and restart it if necessary. 351 */ 352 void tick_nohz_full_kick_cpu(int cpu) 353 { 354 if (!tick_nohz_full_cpu(cpu)) 355 return; 356 357 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 358 } 359 360 static void tick_nohz_kick_task(struct task_struct *tsk) 361 { 362 int cpu; 363 364 /* 365 * If the task is not running, run_posix_cpu_timers() 366 * has nothing to elapse, and an IPI can then be optimized out. 367 * 368 * activate_task() STORE p->tick_dep_mask 369 * STORE p->on_rq 370 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 371 * LOCK rq->lock LOAD p->on_rq 372 * smp_mb__after_spin_lock() 373 * tick_nohz_task_switch() 374 * LOAD p->tick_dep_mask 375 */ 376 if (!sched_task_on_rq(tsk)) 377 return; 378 379 /* 380 * If the task concurrently migrates to another CPU, 381 * we guarantee it sees the new tick dependency upon 382 * schedule. 383 * 384 * set_task_cpu(p, cpu); 385 * STORE p->cpu = @cpu 386 * __schedule() (switch to task 'p') 387 * LOCK rq->lock 388 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 389 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 390 * LOAD p->tick_dep_mask LOAD p->cpu 391 */ 392 cpu = task_cpu(tsk); 393 394 preempt_disable(); 395 if (cpu_online(cpu)) 396 tick_nohz_full_kick_cpu(cpu); 397 preempt_enable(); 398 } 399 400 /* 401 * Kick all full dynticks CPUs in order to force these to re-evaluate 402 * their dependency on the tick and restart it if necessary. 403 */ 404 static void tick_nohz_full_kick_all(void) 405 { 406 int cpu; 407 408 if (!tick_nohz_full_running) 409 return; 410 411 preempt_disable(); 412 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 413 tick_nohz_full_kick_cpu(cpu); 414 preempt_enable(); 415 } 416 417 static void tick_nohz_dep_set_all(atomic_t *dep, 418 enum tick_dep_bits bit) 419 { 420 int prev; 421 422 prev = atomic_fetch_or(BIT(bit), dep); 423 if (!prev) 424 tick_nohz_full_kick_all(); 425 } 426 427 /* 428 * Set a global tick dependency. Used by perf events that rely on freq and 429 * unstable clocks. 430 */ 431 void tick_nohz_dep_set(enum tick_dep_bits bit) 432 { 433 tick_nohz_dep_set_all(&tick_dep_mask, bit); 434 } 435 436 void tick_nohz_dep_clear(enum tick_dep_bits bit) 437 { 438 atomic_andnot(BIT(bit), &tick_dep_mask); 439 } 440 441 /* 442 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 443 * manage event-throttling. 444 */ 445 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 446 { 447 int prev; 448 struct tick_sched *ts; 449 450 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 451 452 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 453 if (!prev) { 454 preempt_disable(); 455 /* Perf needs local kick that is NMI safe */ 456 if (cpu == smp_processor_id()) { 457 tick_nohz_full_kick(); 458 } else { 459 /* Remote IRQ work not NMI-safe */ 460 if (!WARN_ON_ONCE(in_nmi())) 461 tick_nohz_full_kick_cpu(cpu); 462 } 463 preempt_enable(); 464 } 465 } 466 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 467 468 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 469 { 470 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 471 472 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 473 } 474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 475 476 /* 477 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 478 * in order to elapse per task timers. 479 */ 480 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 481 { 482 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 483 tick_nohz_kick_task(tsk); 484 } 485 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 486 487 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 488 { 489 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 490 } 491 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 492 493 /* 494 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 495 * per process timers. 496 */ 497 void tick_nohz_dep_set_signal(struct task_struct *tsk, 498 enum tick_dep_bits bit) 499 { 500 int prev; 501 struct signal_struct *sig = tsk->signal; 502 503 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 504 if (!prev) { 505 struct task_struct *t; 506 507 lockdep_assert_held(&tsk->sighand->siglock); 508 __for_each_thread(sig, t) 509 tick_nohz_kick_task(t); 510 } 511 } 512 513 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 514 { 515 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 516 } 517 518 /* 519 * Re-evaluate the need for the tick as we switch the current task. 520 * It might need the tick due to per task/process properties: 521 * perf events, posix CPU timers, ... 522 */ 523 void __tick_nohz_task_switch(void) 524 { 525 struct tick_sched *ts; 526 527 if (!tick_nohz_full_cpu(smp_processor_id())) 528 return; 529 530 ts = this_cpu_ptr(&tick_cpu_sched); 531 532 if (ts->tick_stopped) { 533 if (atomic_read(¤t->tick_dep_mask) || 534 atomic_read(¤t->signal->tick_dep_mask)) 535 tick_nohz_full_kick(); 536 } 537 } 538 539 /* Get the boot-time nohz CPU list from the kernel parameters. */ 540 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 541 { 542 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 543 cpumask_copy(tick_nohz_full_mask, cpumask); 544 tick_nohz_full_running = true; 545 } 546 547 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 548 { 549 /* 550 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 551 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 552 * CPUs. It must remain online when nohz full is enabled. 553 */ 554 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 555 return false; 556 return true; 557 } 558 559 static int tick_nohz_cpu_down(unsigned int cpu) 560 { 561 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 562 } 563 564 void __init tick_nohz_init(void) 565 { 566 int cpu, ret; 567 568 if (!tick_nohz_full_running) 569 return; 570 571 /* 572 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 573 * locking contexts. But then we need IRQ work to raise its own 574 * interrupts to avoid circular dependency on the tick. 575 */ 576 if (!arch_irq_work_has_interrupt()) { 577 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 578 cpumask_clear(tick_nohz_full_mask); 579 tick_nohz_full_running = false; 580 return; 581 } 582 583 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 584 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 585 cpu = smp_processor_id(); 586 587 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 588 pr_warn("NO_HZ: Clearing %d from nohz_full range " 589 "for timekeeping\n", cpu); 590 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 591 } 592 } 593 594 for_each_cpu(cpu, tick_nohz_full_mask) 595 ct_cpu_track_user(cpu); 596 597 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 598 "kernel/nohz:predown", NULL, 599 tick_nohz_cpu_down); 600 WARN_ON(ret < 0); 601 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 602 cpumask_pr_args(tick_nohz_full_mask)); 603 } 604 #endif 605 606 /* 607 * NOHZ - aka dynamic tick functionality 608 */ 609 #ifdef CONFIG_NO_HZ_COMMON 610 /* 611 * NO HZ enabled ? 612 */ 613 bool tick_nohz_enabled __read_mostly = true; 614 unsigned long tick_nohz_active __read_mostly; 615 /* 616 * Enable / Disable tickless mode 617 */ 618 static int __init setup_tick_nohz(char *str) 619 { 620 return (kstrtobool(str, &tick_nohz_enabled) == 0); 621 } 622 623 __setup("nohz=", setup_tick_nohz); 624 625 bool tick_nohz_tick_stopped(void) 626 { 627 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 628 629 return ts->tick_stopped; 630 } 631 632 bool tick_nohz_tick_stopped_cpu(int cpu) 633 { 634 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 635 636 return ts->tick_stopped; 637 } 638 639 /** 640 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 641 * 642 * Called from interrupt entry when the CPU was idle 643 * 644 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 645 * must be updated. Otherwise an interrupt handler could use a stale jiffy 646 * value. We do this unconditionally on any CPU, as we don't know whether the 647 * CPU, which has the update task assigned, is in a long sleep. 648 */ 649 static void tick_nohz_update_jiffies(ktime_t now) 650 { 651 unsigned long flags; 652 653 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 654 655 local_irq_save(flags); 656 tick_do_update_jiffies64(now); 657 local_irq_restore(flags); 658 659 touch_softlockup_watchdog_sched(); 660 } 661 662 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 663 { 664 ktime_t delta; 665 666 if (WARN_ON_ONCE(!ts->idle_active)) 667 return; 668 669 delta = ktime_sub(now, ts->idle_entrytime); 670 671 write_seqcount_begin(&ts->idle_sleeptime_seq); 672 if (nr_iowait_cpu(smp_processor_id()) > 0) 673 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 674 else 675 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 676 677 ts->idle_entrytime = now; 678 ts->idle_active = 0; 679 write_seqcount_end(&ts->idle_sleeptime_seq); 680 681 sched_clock_idle_wakeup_event(); 682 } 683 684 static void tick_nohz_start_idle(struct tick_sched *ts) 685 { 686 write_seqcount_begin(&ts->idle_sleeptime_seq); 687 ts->idle_entrytime = ktime_get(); 688 ts->idle_active = 1; 689 write_seqcount_end(&ts->idle_sleeptime_seq); 690 691 sched_clock_idle_sleep_event(); 692 } 693 694 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 695 bool compute_delta, u64 *last_update_time) 696 { 697 ktime_t now, idle; 698 unsigned int seq; 699 700 if (!tick_nohz_active) 701 return -1; 702 703 now = ktime_get(); 704 if (last_update_time) 705 *last_update_time = ktime_to_us(now); 706 707 do { 708 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 709 710 if (ts->idle_active && compute_delta) { 711 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 712 713 idle = ktime_add(*sleeptime, delta); 714 } else { 715 idle = *sleeptime; 716 } 717 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 718 719 return ktime_to_us(idle); 720 721 } 722 723 /** 724 * get_cpu_idle_time_us - get the total idle time of a CPU 725 * @cpu: CPU number to query 726 * @last_update_time: variable to store update time in. Do not update 727 * counters if NULL. 728 * 729 * Return the cumulative idle time (since boot) for a given 730 * CPU, in microseconds. Note that this is partially broken due to 731 * the counter of iowait tasks that can be remotely updated without 732 * any synchronization. Therefore it is possible to observe backward 733 * values within two consecutive reads. 734 * 735 * This time is measured via accounting rather than sampling, 736 * and is as accurate as ktime_get() is. 737 * 738 * This function returns -1 if NOHZ is not enabled. 739 */ 740 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 741 { 742 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 743 744 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 745 !nr_iowait_cpu(cpu), last_update_time); 746 } 747 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 748 749 /** 750 * get_cpu_iowait_time_us - get the total iowait time of a CPU 751 * @cpu: CPU number to query 752 * @last_update_time: variable to store update time in. Do not update 753 * counters if NULL. 754 * 755 * Return the cumulative iowait time (since boot) for a given 756 * CPU, in microseconds. Note this is partially broken due to 757 * the counter of iowait tasks that can be remotely updated without 758 * any synchronization. Therefore it is possible to observe backward 759 * values within two consecutive reads. 760 * 761 * This time is measured via accounting rather than sampling, 762 * and is as accurate as ktime_get() is. 763 * 764 * This function returns -1 if NOHZ is not enabled. 765 */ 766 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 767 { 768 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 769 770 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 771 nr_iowait_cpu(cpu), last_update_time); 772 } 773 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 774 775 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 776 { 777 hrtimer_cancel(&ts->sched_timer); 778 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 779 780 /* Forward the time to expire in the future */ 781 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 782 783 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 784 hrtimer_start_expires(&ts->sched_timer, 785 HRTIMER_MODE_ABS_PINNED_HARD); 786 } else { 787 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 788 } 789 790 /* 791 * Reset to make sure the next tick stop doesn't get fooled by past 792 * cached clock deadline. 793 */ 794 ts->next_tick = 0; 795 } 796 797 static inline bool local_timer_softirq_pending(void) 798 { 799 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 800 } 801 802 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 803 { 804 u64 basemono, next_tick, delta, expires; 805 unsigned long basejiff; 806 unsigned int seq; 807 808 /* Read jiffies and the time when jiffies were updated last */ 809 do { 810 seq = read_seqcount_begin(&jiffies_seq); 811 basemono = last_jiffies_update; 812 basejiff = jiffies; 813 } while (read_seqcount_retry(&jiffies_seq, seq)); 814 ts->last_jiffies = basejiff; 815 ts->timer_expires_base = basemono; 816 817 /* 818 * Keep the periodic tick, when RCU, architecture or irq_work 819 * requests it. 820 * Aside of that, check whether the local timer softirq is 821 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 822 * because there is an already expired timer, so it will request 823 * immediate expiry, which rearms the hardware timer with a 824 * minimal delta, which brings us back to this place 825 * immediately. Lather, rinse and repeat... 826 */ 827 if (rcu_needs_cpu() || arch_needs_cpu() || 828 irq_work_needs_cpu() || local_timer_softirq_pending()) { 829 next_tick = basemono + TICK_NSEC; 830 } else { 831 /* 832 * Get the next pending timer. If high resolution 833 * timers are enabled this only takes the timer wheel 834 * timers into account. If high resolution timers are 835 * disabled this also looks at the next expiring 836 * hrtimer. 837 */ 838 next_tick = get_next_timer_interrupt(basejiff, basemono); 839 ts->next_timer = next_tick; 840 } 841 842 /* 843 * If the tick is due in the next period, keep it ticking or 844 * force prod the timer. 845 */ 846 delta = next_tick - basemono; 847 if (delta <= (u64)TICK_NSEC) { 848 /* 849 * Tell the timer code that the base is not idle, i.e. undo 850 * the effect of get_next_timer_interrupt(): 851 */ 852 timer_clear_idle(); 853 /* 854 * We've not stopped the tick yet, and there's a timer in the 855 * next period, so no point in stopping it either, bail. 856 */ 857 if (!ts->tick_stopped) { 858 ts->timer_expires = 0; 859 goto out; 860 } 861 } 862 863 /* 864 * If this CPU is the one which had the do_timer() duty last, we limit 865 * the sleep time to the timekeeping 'max_deferment' value. 866 * Otherwise we can sleep as long as we want. 867 */ 868 delta = timekeeping_max_deferment(); 869 if (cpu != tick_do_timer_cpu && 870 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 871 delta = KTIME_MAX; 872 873 /* Calculate the next expiry time */ 874 if (delta < (KTIME_MAX - basemono)) 875 expires = basemono + delta; 876 else 877 expires = KTIME_MAX; 878 879 ts->timer_expires = min_t(u64, expires, next_tick); 880 881 out: 882 return ts->timer_expires; 883 } 884 885 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 886 { 887 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 888 u64 basemono = ts->timer_expires_base; 889 u64 expires = ts->timer_expires; 890 ktime_t tick = expires; 891 892 /* Make sure we won't be trying to stop it twice in a row. */ 893 ts->timer_expires_base = 0; 894 895 /* 896 * If this CPU is the one which updates jiffies, then give up 897 * the assignment and let it be taken by the CPU which runs 898 * the tick timer next, which might be this CPU as well. If we 899 * don't drop this here, the jiffies might be stale and 900 * do_timer() never gets invoked. Keep track of the fact that it 901 * was the one which had the do_timer() duty last. 902 */ 903 if (cpu == tick_do_timer_cpu) { 904 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 905 ts->do_timer_last = 1; 906 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 907 ts->do_timer_last = 0; 908 } 909 910 /* Skip reprogram of event if it's not changed */ 911 if (ts->tick_stopped && (expires == ts->next_tick)) { 912 /* Sanity check: make sure clockevent is actually programmed */ 913 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 914 return; 915 916 WARN_ON_ONCE(1); 917 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 918 basemono, ts->next_tick, dev->next_event, 919 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 920 } 921 922 /* 923 * nohz_stop_sched_tick() can be called several times before 924 * nohz_restart_sched_tick() is called. This happens when 925 * interrupts arrive which do not cause a reschedule. In the 926 * first call we save the current tick time, so we can restart 927 * the scheduler tick in nohz_restart_sched_tick(). 928 */ 929 if (!ts->tick_stopped) { 930 calc_load_nohz_start(); 931 quiet_vmstat(); 932 933 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 934 ts->tick_stopped = 1; 935 trace_tick_stop(1, TICK_DEP_MASK_NONE); 936 } 937 938 ts->next_tick = tick; 939 940 /* 941 * If the expiration time == KTIME_MAX, then we simply stop 942 * the tick timer. 943 */ 944 if (unlikely(expires == KTIME_MAX)) { 945 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 946 hrtimer_cancel(&ts->sched_timer); 947 else 948 tick_program_event(KTIME_MAX, 1); 949 return; 950 } 951 952 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 953 hrtimer_start(&ts->sched_timer, tick, 954 HRTIMER_MODE_ABS_PINNED_HARD); 955 } else { 956 hrtimer_set_expires(&ts->sched_timer, tick); 957 tick_program_event(tick, 1); 958 } 959 } 960 961 static void tick_nohz_retain_tick(struct tick_sched *ts) 962 { 963 ts->timer_expires_base = 0; 964 } 965 966 #ifdef CONFIG_NO_HZ_FULL 967 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 968 { 969 if (tick_nohz_next_event(ts, cpu)) 970 tick_nohz_stop_tick(ts, cpu); 971 else 972 tick_nohz_retain_tick(ts); 973 } 974 #endif /* CONFIG_NO_HZ_FULL */ 975 976 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 977 { 978 /* Update jiffies first */ 979 tick_do_update_jiffies64(now); 980 981 /* 982 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 983 * the clock forward checks in the enqueue path: 984 */ 985 timer_clear_idle(); 986 987 calc_load_nohz_stop(); 988 touch_softlockup_watchdog_sched(); 989 990 /* Cancel the scheduled timer and restore the tick: */ 991 ts->tick_stopped = 0; 992 tick_nohz_restart(ts, now); 993 } 994 995 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 996 ktime_t now) 997 { 998 #ifdef CONFIG_NO_HZ_FULL 999 int cpu = smp_processor_id(); 1000 1001 if (can_stop_full_tick(cpu, ts)) 1002 tick_nohz_stop_sched_tick(ts, cpu); 1003 else if (ts->tick_stopped) 1004 tick_nohz_restart_sched_tick(ts, now); 1005 #endif 1006 } 1007 1008 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1009 { 1010 if (!tick_nohz_full_cpu(smp_processor_id())) 1011 return; 1012 1013 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 1014 return; 1015 1016 __tick_nohz_full_update_tick(ts, ktime_get()); 1017 } 1018 1019 /* 1020 * A pending softirq outside an IRQ (or softirq disabled section) context 1021 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1022 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1023 * 1024 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1025 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1026 * triggering the code below, since wakep_softirqd() is ignored. 1027 * 1028 */ 1029 static bool report_idle_softirq(void) 1030 { 1031 static int ratelimit; 1032 unsigned int pending = local_softirq_pending(); 1033 1034 if (likely(!pending)) 1035 return false; 1036 1037 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1038 if (!cpu_active(smp_processor_id())) { 1039 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1040 if (!pending) 1041 return false; 1042 } 1043 1044 if (ratelimit >= 10) 1045 return false; 1046 1047 /* On RT, softirq handling may be waiting on some lock */ 1048 if (local_bh_blocked()) 1049 return false; 1050 1051 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1052 pending); 1053 ratelimit++; 1054 1055 return true; 1056 } 1057 1058 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1059 { 1060 /* 1061 * If this CPU is offline and it is the one which updates 1062 * jiffies, then give up the assignment and let it be taken by 1063 * the CPU which runs the tick timer next. If we don't drop 1064 * this here, the jiffies might be stale and do_timer() never 1065 * gets invoked. 1066 */ 1067 if (unlikely(!cpu_online(cpu))) { 1068 if (cpu == tick_do_timer_cpu) 1069 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 1070 /* 1071 * Make sure the CPU doesn't get fooled by obsolete tick 1072 * deadline if it comes back online later. 1073 */ 1074 ts->next_tick = 0; 1075 return false; 1076 } 1077 1078 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 1079 return false; 1080 1081 if (need_resched()) 1082 return false; 1083 1084 if (unlikely(report_idle_softirq())) 1085 return false; 1086 1087 if (tick_nohz_full_enabled()) { 1088 /* 1089 * Keep the tick alive to guarantee timekeeping progression 1090 * if there are full dynticks CPUs around 1091 */ 1092 if (tick_do_timer_cpu == cpu) 1093 return false; 1094 1095 /* Should not happen for nohz-full */ 1096 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 1097 return false; 1098 } 1099 1100 return true; 1101 } 1102 1103 /** 1104 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1105 * 1106 * When the next event is more than a tick into the future, stop the idle tick 1107 */ 1108 void tick_nohz_idle_stop_tick(void) 1109 { 1110 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1111 int cpu = smp_processor_id(); 1112 ktime_t expires; 1113 1114 /* 1115 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1116 * tick timer expiration time is known already. 1117 */ 1118 if (ts->timer_expires_base) 1119 expires = ts->timer_expires; 1120 else if (can_stop_idle_tick(cpu, ts)) 1121 expires = tick_nohz_next_event(ts, cpu); 1122 else 1123 return; 1124 1125 ts->idle_calls++; 1126 1127 if (expires > 0LL) { 1128 int was_stopped = ts->tick_stopped; 1129 1130 tick_nohz_stop_tick(ts, cpu); 1131 1132 ts->idle_sleeps++; 1133 ts->idle_expires = expires; 1134 1135 if (!was_stopped && ts->tick_stopped) { 1136 ts->idle_jiffies = ts->last_jiffies; 1137 nohz_balance_enter_idle(cpu); 1138 } 1139 } else { 1140 tick_nohz_retain_tick(ts); 1141 } 1142 } 1143 1144 void tick_nohz_idle_retain_tick(void) 1145 { 1146 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1147 /* 1148 * Undo the effect of get_next_timer_interrupt() called from 1149 * tick_nohz_next_event(). 1150 */ 1151 timer_clear_idle(); 1152 } 1153 1154 /** 1155 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1156 * 1157 * Called when we start the idle loop. 1158 */ 1159 void tick_nohz_idle_enter(void) 1160 { 1161 struct tick_sched *ts; 1162 1163 lockdep_assert_irqs_enabled(); 1164 1165 local_irq_disable(); 1166 1167 ts = this_cpu_ptr(&tick_cpu_sched); 1168 1169 WARN_ON_ONCE(ts->timer_expires_base); 1170 1171 ts->inidle = 1; 1172 tick_nohz_start_idle(ts); 1173 1174 local_irq_enable(); 1175 } 1176 1177 /** 1178 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1179 * 1180 * A timer may have been added/modified/deleted either by the current IRQ, 1181 * or by another place using this IRQ as a notification. This IRQ may have 1182 * also updated the RCU callback list. These events may require a 1183 * re-evaluation of the next tick. Depending on the context: 1184 * 1185 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1186 * time accounting. The next tick will be re-evaluated on the next idle 1187 * loop iteration. 1188 * 1189 * 2) If the CPU is nohz_full: 1190 * 1191 * 2.1) If there is any tick dependency, restart the tick if stopped. 1192 * 1193 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1194 * stop/update it accordingly. 1195 */ 1196 void tick_nohz_irq_exit(void) 1197 { 1198 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1199 1200 if (ts->inidle) 1201 tick_nohz_start_idle(ts); 1202 else 1203 tick_nohz_full_update_tick(ts); 1204 } 1205 1206 /** 1207 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1208 */ 1209 bool tick_nohz_idle_got_tick(void) 1210 { 1211 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1212 1213 if (ts->got_idle_tick) { 1214 ts->got_idle_tick = 0; 1215 return true; 1216 } 1217 return false; 1218 } 1219 1220 /** 1221 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1222 * or the tick, whichever expires first. Note that, if the tick has been 1223 * stopped, it returns the next hrtimer. 1224 * 1225 * Called from power state control code with interrupts disabled 1226 */ 1227 ktime_t tick_nohz_get_next_hrtimer(void) 1228 { 1229 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1230 } 1231 1232 /** 1233 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1234 * @delta_next: duration until the next event if the tick cannot be stopped 1235 * 1236 * Called from power state control code with interrupts disabled. 1237 * 1238 * The return value of this function and/or the value returned by it through the 1239 * @delta_next pointer can be negative which must be taken into account by its 1240 * callers. 1241 */ 1242 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1243 { 1244 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1246 int cpu = smp_processor_id(); 1247 /* 1248 * The idle entry time is expected to be a sufficient approximation of 1249 * the current time at this point. 1250 */ 1251 ktime_t now = ts->idle_entrytime; 1252 ktime_t next_event; 1253 1254 WARN_ON_ONCE(!ts->inidle); 1255 1256 *delta_next = ktime_sub(dev->next_event, now); 1257 1258 if (!can_stop_idle_tick(cpu, ts)) 1259 return *delta_next; 1260 1261 next_event = tick_nohz_next_event(ts, cpu); 1262 if (!next_event) 1263 return *delta_next; 1264 1265 /* 1266 * If the next highres timer to expire is earlier than 'next_event', the 1267 * idle governor needs to know that. 1268 */ 1269 next_event = min_t(u64, next_event, 1270 hrtimer_next_event_without(&ts->sched_timer)); 1271 1272 return ktime_sub(next_event, now); 1273 } 1274 1275 /** 1276 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1277 * for a particular CPU. 1278 * 1279 * Called from the schedutil frequency scaling governor in scheduler context. 1280 */ 1281 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1282 { 1283 struct tick_sched *ts = tick_get_tick_sched(cpu); 1284 1285 return ts->idle_calls; 1286 } 1287 1288 /** 1289 * tick_nohz_get_idle_calls - return the current idle calls counter value 1290 * 1291 * Called from the schedutil frequency scaling governor in scheduler context. 1292 */ 1293 unsigned long tick_nohz_get_idle_calls(void) 1294 { 1295 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1296 1297 return ts->idle_calls; 1298 } 1299 1300 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1301 ktime_t now) 1302 { 1303 unsigned long ticks; 1304 1305 ts->idle_exittime = now; 1306 1307 if (vtime_accounting_enabled_this_cpu()) 1308 return; 1309 /* 1310 * We stopped the tick in idle. update_process_times() would miss the 1311 * time we slept, as it does only a 1 tick accounting. 1312 * Enforce that this is accounted to idle ! 1313 */ 1314 ticks = jiffies - ts->idle_jiffies; 1315 /* 1316 * We might be one off. Do not randomly account a huge number of ticks! 1317 */ 1318 if (ticks && ticks < LONG_MAX) 1319 account_idle_ticks(ticks); 1320 } 1321 1322 void tick_nohz_idle_restart_tick(void) 1323 { 1324 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1325 1326 if (ts->tick_stopped) { 1327 ktime_t now = ktime_get(); 1328 tick_nohz_restart_sched_tick(ts, now); 1329 tick_nohz_account_idle_time(ts, now); 1330 } 1331 } 1332 1333 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1334 { 1335 if (tick_nohz_full_cpu(smp_processor_id())) 1336 __tick_nohz_full_update_tick(ts, now); 1337 else 1338 tick_nohz_restart_sched_tick(ts, now); 1339 1340 tick_nohz_account_idle_time(ts, now); 1341 } 1342 1343 /** 1344 * tick_nohz_idle_exit - Update the tick upon idle task exit 1345 * 1346 * When the idle task exits, update the tick depending on the 1347 * following situations: 1348 * 1349 * 1) If the CPU is not in nohz_full mode (most cases), then 1350 * restart the tick. 1351 * 1352 * 2) If the CPU is in nohz_full mode (corner case): 1353 * 2.1) If the tick can be kept stopped (no tick dependencies) 1354 * then re-evaluate the next tick and try to keep it stopped 1355 * as long as possible. 1356 * 2.2) If the tick has dependencies, restart the tick. 1357 * 1358 */ 1359 void tick_nohz_idle_exit(void) 1360 { 1361 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1362 bool idle_active, tick_stopped; 1363 ktime_t now; 1364 1365 local_irq_disable(); 1366 1367 WARN_ON_ONCE(!ts->inidle); 1368 WARN_ON_ONCE(ts->timer_expires_base); 1369 1370 ts->inidle = 0; 1371 idle_active = ts->idle_active; 1372 tick_stopped = ts->tick_stopped; 1373 1374 if (idle_active || tick_stopped) 1375 now = ktime_get(); 1376 1377 if (idle_active) 1378 tick_nohz_stop_idle(ts, now); 1379 1380 if (tick_stopped) 1381 tick_nohz_idle_update_tick(ts, now); 1382 1383 local_irq_enable(); 1384 } 1385 1386 /* 1387 * In low-resolution mode, the tick handler must be implemented directly 1388 * at the clockevent level. hrtimer can't be used instead, because its 1389 * infrastructure actually relies on the tick itself as a backend in 1390 * low-resolution mode (see hrtimer_run_queues()). 1391 * 1392 * This low-resolution handler still makes use of some hrtimer APIs meanwhile 1393 * for convenience with expiration calculation and forwarding. 1394 */ 1395 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1396 { 1397 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1398 struct pt_regs *regs = get_irq_regs(); 1399 ktime_t now = ktime_get(); 1400 1401 dev->next_event = KTIME_MAX; 1402 1403 tick_sched_do_timer(ts, now); 1404 tick_sched_handle(ts, regs); 1405 1406 /* 1407 * In dynticks mode, tick reprogram is deferred: 1408 * - to the idle task if in dynticks-idle 1409 * - to IRQ exit if in full-dynticks. 1410 */ 1411 if (likely(!ts->tick_stopped)) { 1412 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1413 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1414 } 1415 1416 } 1417 1418 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1419 { 1420 if (!tick_nohz_enabled) 1421 return; 1422 ts->nohz_mode = mode; 1423 /* One update is enough */ 1424 if (!test_and_set_bit(0, &tick_nohz_active)) 1425 timers_update_nohz(); 1426 } 1427 1428 /** 1429 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1430 */ 1431 static void tick_nohz_switch_to_nohz(void) 1432 { 1433 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1434 ktime_t next; 1435 1436 if (!tick_nohz_enabled) 1437 return; 1438 1439 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1440 return; 1441 1442 /* 1443 * Recycle the hrtimer in 'ts', so we can share the 1444 * hrtimer_forward_now() function with the highres code. 1445 */ 1446 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1447 /* Get the next period */ 1448 next = tick_init_jiffy_update(); 1449 1450 hrtimer_set_expires(&ts->sched_timer, next); 1451 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1452 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1453 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1454 } 1455 1456 static inline void tick_nohz_irq_enter(void) 1457 { 1458 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1459 ktime_t now; 1460 1461 if (!ts->idle_active && !ts->tick_stopped) 1462 return; 1463 now = ktime_get(); 1464 if (ts->idle_active) 1465 tick_nohz_stop_idle(ts, now); 1466 /* 1467 * If all CPUs are idle we may need to update a stale jiffies value. 1468 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1469 * alive but it might be busy looping with interrupts disabled in some 1470 * rare case (typically stop machine). So we must make sure we have a 1471 * last resort. 1472 */ 1473 if (ts->tick_stopped) 1474 tick_nohz_update_jiffies(now); 1475 } 1476 1477 #else 1478 1479 static inline void tick_nohz_switch_to_nohz(void) { } 1480 static inline void tick_nohz_irq_enter(void) { } 1481 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1482 1483 #endif /* CONFIG_NO_HZ_COMMON */ 1484 1485 /* 1486 * Called from irq_enter() to notify about the possible interruption of idle() 1487 */ 1488 void tick_irq_enter(void) 1489 { 1490 tick_check_oneshot_broadcast_this_cpu(); 1491 tick_nohz_irq_enter(); 1492 } 1493 1494 /* 1495 * High resolution timer specific code 1496 */ 1497 #ifdef CONFIG_HIGH_RES_TIMERS 1498 /* 1499 * We rearm the timer until we get disabled by the idle code. 1500 * Called with interrupts disabled. 1501 */ 1502 static enum hrtimer_restart tick_nohz_highres_handler(struct hrtimer *timer) 1503 { 1504 struct tick_sched *ts = 1505 container_of(timer, struct tick_sched, sched_timer); 1506 struct pt_regs *regs = get_irq_regs(); 1507 ktime_t now = ktime_get(); 1508 1509 tick_sched_do_timer(ts, now); 1510 1511 /* 1512 * Do not call when we are not in IRQ context and have 1513 * no valid 'regs' pointer 1514 */ 1515 if (regs) 1516 tick_sched_handle(ts, regs); 1517 else 1518 ts->next_tick = 0; 1519 1520 /* 1521 * In dynticks mode, tick reprogram is deferred: 1522 * - to the idle task if in dynticks-idle 1523 * - to IRQ exit if in full-dynticks. 1524 */ 1525 if (unlikely(ts->tick_stopped)) 1526 return HRTIMER_NORESTART; 1527 1528 hrtimer_forward(timer, now, TICK_NSEC); 1529 1530 return HRTIMER_RESTART; 1531 } 1532 1533 static int sched_skew_tick; 1534 1535 static int __init skew_tick(char *str) 1536 { 1537 get_option(&str, &sched_skew_tick); 1538 1539 return 0; 1540 } 1541 early_param("skew_tick", skew_tick); 1542 1543 /** 1544 * tick_setup_sched_timer - setup the tick emulation timer 1545 */ 1546 void tick_setup_sched_timer(void) 1547 { 1548 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1549 ktime_t now = ktime_get(); 1550 1551 /* Emulate tick processing via per-CPU hrtimers: */ 1552 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1553 ts->sched_timer.function = tick_nohz_highres_handler; 1554 1555 /* Get the next period (per-CPU) */ 1556 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1557 1558 /* Offset the tick to avert 'jiffies_lock' contention. */ 1559 if (sched_skew_tick) { 1560 u64 offset = TICK_NSEC >> 1; 1561 do_div(offset, num_possible_cpus()); 1562 offset *= smp_processor_id(); 1563 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1564 } 1565 1566 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1567 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1568 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1569 } 1570 #endif /* HIGH_RES_TIMERS */ 1571 1572 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1573 void tick_cancel_sched_timer(int cpu) 1574 { 1575 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1576 1577 # ifdef CONFIG_HIGH_RES_TIMERS 1578 if (ts->sched_timer.base) 1579 hrtimer_cancel(&ts->sched_timer); 1580 # endif 1581 1582 memset(ts, 0, sizeof(*ts)); 1583 } 1584 #endif 1585 1586 /* 1587 * Async notification about clocksource changes 1588 */ 1589 void tick_clock_notify(void) 1590 { 1591 int cpu; 1592 1593 for_each_possible_cpu(cpu) 1594 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1595 } 1596 1597 /* 1598 * Async notification about clock event changes 1599 */ 1600 void tick_oneshot_notify(void) 1601 { 1602 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1603 1604 set_bit(0, &ts->check_clocks); 1605 } 1606 1607 /* 1608 * Check if a change happened, which makes oneshot possible. 1609 * 1610 * Called cyclically from the hrtimer softirq (driven by the timer 1611 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1612 * mode, because high resolution timers are disabled (either compile 1613 * or runtime). Called with interrupts disabled. 1614 */ 1615 int tick_check_oneshot_change(int allow_nohz) 1616 { 1617 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1618 1619 if (!test_and_clear_bit(0, &ts->check_clocks)) 1620 return 0; 1621 1622 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1623 return 0; 1624 1625 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1626 return 0; 1627 1628 if (!allow_nohz) 1629 return 1; 1630 1631 tick_nohz_switch_to_nohz(); 1632 return 0; 1633 } 1634