xref: /linux/kernel/time/tick-sched.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  NOHZ implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 /*
48  * The time when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64-bit can do a quick check without holding the jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32-bit cannot do that because the store of 'tick_next_period'
68 	 * consists of two 32-bit stores, and the first store could be
69 	 * moved by the CPU to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on 'jiffies_lock' and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Re-evaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the 'jiffies_seq' protected job */
118 	jiffies_64 += ticks;
119 
120 	/* Keep the tick_next_period variable up to date */
121 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122 
123 	if (IS_ENABLED(CONFIG_64BIT)) {
124 		/*
125 		 * Pairs with smp_load_acquire() in the lockless quick
126 		 * check above, and ensures that the update to 'jiffies_64' is
127 		 * not reordered vs. the store to 'tick_next_period', neither
128 		 * by the compiler nor by the CPU.
129 		 */
130 		smp_store_release(&tick_next_period, nextp);
131 	} else {
132 		/*
133 		 * A plain store is good enough on 32-bit, as the quick check
134 		 * above is protected by the sequence count.
135 		 */
136 		tick_next_period = nextp;
137 	}
138 
139 	/*
140 	 * Release the sequence count. calc_global_load() below is not
141 	 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 	 * concurrent invocations.
143 	 */
144 	write_seqcount_end(&jiffies_seq);
145 
146 	calc_global_load();
147 
148 	raw_spin_unlock(&jiffies_lock);
149 	update_wall_time();
150 }
151 
152 /*
153  * Initialize and return retrieve the jiffies update.
154  */
155 static ktime_t tick_init_jiffy_update(void)
156 {
157 	ktime_t period;
158 
159 	raw_spin_lock(&jiffies_lock);
160 	write_seqcount_begin(&jiffies_seq);
161 
162 	/* Have we started the jiffies update yet ? */
163 	if (last_jiffies_update == 0) {
164 		u32 rem;
165 
166 		/*
167 		 * Ensure that the tick is aligned to a multiple of
168 		 * TICK_NSEC.
169 		 */
170 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 		if (rem)
172 			tick_next_period += TICK_NSEC - rem;
173 
174 		last_jiffies_update = tick_next_period;
175 	}
176 	period = last_jiffies_update;
177 
178 	write_seqcount_end(&jiffies_seq);
179 	raw_spin_unlock(&jiffies_lock);
180 
181 	return period;
182 }
183 
184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 				       unsigned long flag)
186 {
187 	return !!(ts->flags & flag);
188 }
189 
190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 				       unsigned long flag)
192 {
193 	lockdep_assert_irqs_disabled();
194 	ts->flags |= flag;
195 }
196 
197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 					 unsigned long flag)
199 {
200 	lockdep_assert_irqs_disabled();
201 	ts->flags &= ~flag;
202 }
203 
204 #define MAX_STALLED_JIFFIES 5
205 
206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
207 {
208 	int tick_cpu, cpu = smp_processor_id();
209 
210 	/*
211 	 * Check if the do_timer duty was dropped. We don't care about
212 	 * concurrency: This happens only when the CPU in charge went
213 	 * into a long sleep. If two CPUs happen to assign themselves to
214 	 * this duty, then the jiffies update is still serialized by
215 	 * 'jiffies_lock'.
216 	 *
217 	 * If nohz_full is enabled, this should not happen because the
218 	 * 'tick_do_timer_cpu' CPU never relinquishes.
219 	 */
220 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
221 
222 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
223 #ifdef CONFIG_NO_HZ_FULL
224 		WARN_ON_ONCE(tick_nohz_full_running);
225 #endif
226 		WRITE_ONCE(tick_do_timer_cpu, cpu);
227 		tick_cpu = cpu;
228 	}
229 
230 	/* Check if jiffies need an update */
231 	if (tick_cpu == cpu)
232 		tick_do_update_jiffies64(now);
233 
234 	/*
235 	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
236 	 * or VMEXIT'ed for several msecs), force an update.
237 	 */
238 	if (ts->last_tick_jiffies != jiffies) {
239 		ts->stalled_jiffies = 0;
240 		ts->last_tick_jiffies = READ_ONCE(jiffies);
241 	} else {
242 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
243 			tick_do_update_jiffies64(now);
244 			ts->stalled_jiffies = 0;
245 			ts->last_tick_jiffies = READ_ONCE(jiffies);
246 		}
247 	}
248 
249 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
250 		ts->got_idle_tick = 1;
251 }
252 
253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
254 {
255 	/*
256 	 * When we are idle and the tick is stopped, we have to touch
257 	 * the watchdog as we might not schedule for a really long
258 	 * time. This happens on completely idle SMP systems while
259 	 * waiting on the login prompt. We also increment the "start of
260 	 * idle" jiffy stamp so the idle accounting adjustment we do
261 	 * when we go busy again does not account too many ticks.
262 	 */
263 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
264 	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
265 		touch_softlockup_watchdog_sched();
266 		if (is_idle_task(current))
267 			ts->idle_jiffies++;
268 		/*
269 		 * In case the current tick fired too early past its expected
270 		 * expiration, make sure we don't bypass the next clock reprogramming
271 		 * to the same deadline.
272 		 */
273 		ts->next_tick = 0;
274 	}
275 
276 	update_process_times(user_mode(regs));
277 	profile_tick(CPU_PROFILING);
278 }
279 
280 /*
281  * We rearm the timer until we get disabled by the idle code.
282  * Called with interrupts disabled.
283  */
284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
285 {
286 	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
287 	struct pt_regs *regs = get_irq_regs();
288 	ktime_t now = ktime_get();
289 
290 	tick_sched_do_timer(ts, now);
291 
292 	/*
293 	 * Do not call when we are not in IRQ context and have
294 	 * no valid 'regs' pointer
295 	 */
296 	if (regs)
297 		tick_sched_handle(ts, regs);
298 	else
299 		ts->next_tick = 0;
300 
301 	/*
302 	 * In dynticks mode, tick reprogram is deferred:
303 	 * - to the idle task if in dynticks-idle
304 	 * - to IRQ exit if in full-dynticks.
305 	 */
306 	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
307 		return HRTIMER_NORESTART;
308 
309 	hrtimer_forward(timer, now, TICK_NSEC);
310 
311 	return HRTIMER_RESTART;
312 }
313 
314 static void tick_sched_timer_cancel(struct tick_sched *ts)
315 {
316 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
317 		hrtimer_cancel(&ts->sched_timer);
318 	else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
319 		tick_program_event(KTIME_MAX, 1);
320 }
321 
322 #ifdef CONFIG_NO_HZ_FULL
323 cpumask_var_t tick_nohz_full_mask;
324 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
325 bool tick_nohz_full_running;
326 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
327 static atomic_t tick_dep_mask;
328 
329 static bool check_tick_dependency(atomic_t *dep)
330 {
331 	int val = atomic_read(dep);
332 
333 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
334 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
335 		return true;
336 	}
337 
338 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
339 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
340 		return true;
341 	}
342 
343 	if (val & TICK_DEP_MASK_SCHED) {
344 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
345 		return true;
346 	}
347 
348 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
349 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
350 		return true;
351 	}
352 
353 	if (val & TICK_DEP_MASK_RCU) {
354 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
355 		return true;
356 	}
357 
358 	if (val & TICK_DEP_MASK_RCU_EXP) {
359 		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
360 		return true;
361 	}
362 
363 	return false;
364 }
365 
366 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
367 {
368 	lockdep_assert_irqs_disabled();
369 
370 	if (unlikely(!cpu_online(cpu)))
371 		return false;
372 
373 	if (check_tick_dependency(&tick_dep_mask))
374 		return false;
375 
376 	if (check_tick_dependency(&ts->tick_dep_mask))
377 		return false;
378 
379 	if (check_tick_dependency(&current->tick_dep_mask))
380 		return false;
381 
382 	if (check_tick_dependency(&current->signal->tick_dep_mask))
383 		return false;
384 
385 	return true;
386 }
387 
388 static void nohz_full_kick_func(struct irq_work *work)
389 {
390 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
391 }
392 
393 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
394 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
395 
396 /*
397  * Kick this CPU if it's full dynticks in order to force it to
398  * re-evaluate its dependency on the tick and restart it if necessary.
399  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
400  * is NMI safe.
401  */
402 static void tick_nohz_full_kick(void)
403 {
404 	if (!tick_nohz_full_cpu(smp_processor_id()))
405 		return;
406 
407 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
408 }
409 
410 /*
411  * Kick the CPU if it's full dynticks in order to force it to
412  * re-evaluate its dependency on the tick and restart it if necessary.
413  */
414 void tick_nohz_full_kick_cpu(int cpu)
415 {
416 	if (!tick_nohz_full_cpu(cpu))
417 		return;
418 
419 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
420 }
421 
422 static void tick_nohz_kick_task(struct task_struct *tsk)
423 {
424 	int cpu;
425 
426 	/*
427 	 * If the task is not running, run_posix_cpu_timers()
428 	 * has nothing to elapse, and an IPI can then be optimized out.
429 	 *
430 	 * activate_task()                      STORE p->tick_dep_mask
431 	 *   STORE p->on_rq
432 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
433 	 *   LOCK rq->lock                      LOAD p->on_rq
434 	 *   smp_mb__after_spin_lock()
435 	 *   tick_nohz_task_switch()
436 	 *     LOAD p->tick_dep_mask
437 	 */
438 	if (!sched_task_on_rq(tsk))
439 		return;
440 
441 	/*
442 	 * If the task concurrently migrates to another CPU,
443 	 * we guarantee it sees the new tick dependency upon
444 	 * schedule.
445 	 *
446 	 * set_task_cpu(p, cpu);
447 	 *   STORE p->cpu = @cpu
448 	 * __schedule() (switch to task 'p')
449 	 *   LOCK rq->lock
450 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
451 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
452 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
453 	 */
454 	cpu = task_cpu(tsk);
455 
456 	preempt_disable();
457 	if (cpu_online(cpu))
458 		tick_nohz_full_kick_cpu(cpu);
459 	preempt_enable();
460 }
461 
462 /*
463  * Kick all full dynticks CPUs in order to force these to re-evaluate
464  * their dependency on the tick and restart it if necessary.
465  */
466 static void tick_nohz_full_kick_all(void)
467 {
468 	int cpu;
469 
470 	if (!tick_nohz_full_running)
471 		return;
472 
473 	preempt_disable();
474 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
475 		tick_nohz_full_kick_cpu(cpu);
476 	preempt_enable();
477 }
478 
479 static void tick_nohz_dep_set_all(atomic_t *dep,
480 				  enum tick_dep_bits bit)
481 {
482 	int prev;
483 
484 	prev = atomic_fetch_or(BIT(bit), dep);
485 	if (!prev)
486 		tick_nohz_full_kick_all();
487 }
488 
489 /*
490  * Set a global tick dependency. Used by perf events that rely on freq and
491  * unstable clocks.
492  */
493 void tick_nohz_dep_set(enum tick_dep_bits bit)
494 {
495 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
496 }
497 
498 void tick_nohz_dep_clear(enum tick_dep_bits bit)
499 {
500 	atomic_andnot(BIT(bit), &tick_dep_mask);
501 }
502 
503 /*
504  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
505  * manage event-throttling.
506  */
507 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
508 {
509 	int prev;
510 	struct tick_sched *ts;
511 
512 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
513 
514 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
515 	if (!prev) {
516 		preempt_disable();
517 		/* Perf needs local kick that is NMI safe */
518 		if (cpu == smp_processor_id()) {
519 			tick_nohz_full_kick();
520 		} else {
521 			/* Remote IRQ work not NMI-safe */
522 			if (!WARN_ON_ONCE(in_nmi()))
523 				tick_nohz_full_kick_cpu(cpu);
524 		}
525 		preempt_enable();
526 	}
527 }
528 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
529 
530 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
531 {
532 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
533 
534 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
535 }
536 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
537 
538 /*
539  * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
540  * in order to elapse per task timers.
541  */
542 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
543 {
544 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
545 		tick_nohz_kick_task(tsk);
546 }
547 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
548 
549 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
550 {
551 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
552 }
553 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
554 
555 /*
556  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
557  * per process timers.
558  */
559 void tick_nohz_dep_set_signal(struct task_struct *tsk,
560 			      enum tick_dep_bits bit)
561 {
562 	int prev;
563 	struct signal_struct *sig = tsk->signal;
564 
565 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
566 	if (!prev) {
567 		struct task_struct *t;
568 
569 		lockdep_assert_held(&tsk->sighand->siglock);
570 		__for_each_thread(sig, t)
571 			tick_nohz_kick_task(t);
572 	}
573 }
574 
575 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
576 {
577 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
578 }
579 
580 /*
581  * Re-evaluate the need for the tick as we switch the current task.
582  * It might need the tick due to per task/process properties:
583  * perf events, posix CPU timers, ...
584  */
585 void __tick_nohz_task_switch(void)
586 {
587 	struct tick_sched *ts;
588 
589 	if (!tick_nohz_full_cpu(smp_processor_id()))
590 		return;
591 
592 	ts = this_cpu_ptr(&tick_cpu_sched);
593 
594 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
595 		if (atomic_read(&current->tick_dep_mask) ||
596 		    atomic_read(&current->signal->tick_dep_mask))
597 			tick_nohz_full_kick();
598 	}
599 }
600 
601 /* Get the boot-time nohz CPU list from the kernel parameters. */
602 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
603 {
604 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
605 	cpumask_copy(tick_nohz_full_mask, cpumask);
606 	tick_nohz_full_running = true;
607 }
608 
609 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
610 {
611 	/*
612 	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
613 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
614 	 * CPUs. It must remain online when nohz full is enabled.
615 	 */
616 	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
617 		return false;
618 	return true;
619 }
620 
621 static int tick_nohz_cpu_down(unsigned int cpu)
622 {
623 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
624 }
625 
626 void __init tick_nohz_init(void)
627 {
628 	int cpu, ret;
629 
630 	if (!tick_nohz_full_running)
631 		return;
632 
633 	/*
634 	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
635 	 * locking contexts. But then we need IRQ work to raise its own
636 	 * interrupts to avoid circular dependency on the tick.
637 	 */
638 	if (!arch_irq_work_has_interrupt()) {
639 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
640 		cpumask_clear(tick_nohz_full_mask);
641 		tick_nohz_full_running = false;
642 		return;
643 	}
644 
645 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
646 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
647 		cpu = smp_processor_id();
648 
649 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
650 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
651 				"for timekeeping\n", cpu);
652 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
653 		}
654 	}
655 
656 	for_each_cpu(cpu, tick_nohz_full_mask)
657 		ct_cpu_track_user(cpu);
658 
659 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
660 					"kernel/nohz:predown", NULL,
661 					tick_nohz_cpu_down);
662 	WARN_ON(ret < 0);
663 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
664 		cpumask_pr_args(tick_nohz_full_mask));
665 }
666 #endif /* #ifdef CONFIG_NO_HZ_FULL */
667 
668 /*
669  * NOHZ - aka dynamic tick functionality
670  */
671 #ifdef CONFIG_NO_HZ_COMMON
672 /*
673  * NO HZ enabled ?
674  */
675 bool tick_nohz_enabled __read_mostly  = true;
676 unsigned long tick_nohz_active  __read_mostly;
677 /*
678  * Enable / Disable tickless mode
679  */
680 static int __init setup_tick_nohz(char *str)
681 {
682 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
683 }
684 
685 __setup("nohz=", setup_tick_nohz);
686 
687 bool tick_nohz_tick_stopped(void)
688 {
689 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
690 
691 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
692 }
693 
694 bool tick_nohz_tick_stopped_cpu(int cpu)
695 {
696 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
697 
698 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
699 }
700 
701 /**
702  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
703  * @now: current ktime_t
704  *
705  * Called from interrupt entry when the CPU was idle
706  *
707  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
708  * must be updated. Otherwise an interrupt handler could use a stale jiffy
709  * value. We do this unconditionally on any CPU, as we don't know whether the
710  * CPU, which has the update task assigned, is in a long sleep.
711  */
712 static void tick_nohz_update_jiffies(ktime_t now)
713 {
714 	unsigned long flags;
715 
716 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
717 
718 	local_irq_save(flags);
719 	tick_do_update_jiffies64(now);
720 	local_irq_restore(flags);
721 
722 	touch_softlockup_watchdog_sched();
723 }
724 
725 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
726 {
727 	ktime_t delta;
728 
729 	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
730 		return;
731 
732 	delta = ktime_sub(now, ts->idle_entrytime);
733 
734 	write_seqcount_begin(&ts->idle_sleeptime_seq);
735 	if (nr_iowait_cpu(smp_processor_id()) > 0)
736 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
737 	else
738 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
739 
740 	ts->idle_entrytime = now;
741 	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
742 	write_seqcount_end(&ts->idle_sleeptime_seq);
743 
744 	sched_clock_idle_wakeup_event();
745 }
746 
747 static void tick_nohz_start_idle(struct tick_sched *ts)
748 {
749 	write_seqcount_begin(&ts->idle_sleeptime_seq);
750 	ts->idle_entrytime = ktime_get();
751 	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
752 	write_seqcount_end(&ts->idle_sleeptime_seq);
753 
754 	sched_clock_idle_sleep_event();
755 }
756 
757 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
758 				 bool compute_delta, u64 *last_update_time)
759 {
760 	ktime_t now, idle;
761 	unsigned int seq;
762 
763 	if (!tick_nohz_active)
764 		return -1;
765 
766 	now = ktime_get();
767 	if (last_update_time)
768 		*last_update_time = ktime_to_us(now);
769 
770 	do {
771 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
772 
773 		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
774 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
775 
776 			idle = ktime_add(*sleeptime, delta);
777 		} else {
778 			idle = *sleeptime;
779 		}
780 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
781 
782 	return ktime_to_us(idle);
783 
784 }
785 
786 /**
787  * get_cpu_idle_time_us - get the total idle time of a CPU
788  * @cpu: CPU number to query
789  * @last_update_time: variable to store update time in. Do not update
790  * counters if NULL.
791  *
792  * Return the cumulative idle time (since boot) for a given
793  * CPU, in microseconds. Note that this is partially broken due to
794  * the counter of iowait tasks that can be remotely updated without
795  * any synchronization. Therefore it is possible to observe backward
796  * values within two consecutive reads.
797  *
798  * This time is measured via accounting rather than sampling,
799  * and is as accurate as ktime_get() is.
800  *
801  * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
802  */
803 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
804 {
805 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
806 
807 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
808 				     !nr_iowait_cpu(cpu), last_update_time);
809 }
810 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
811 
812 /**
813  * get_cpu_iowait_time_us - get the total iowait time of a CPU
814  * @cpu: CPU number to query
815  * @last_update_time: variable to store update time in. Do not update
816  * counters if NULL.
817  *
818  * Return the cumulative iowait time (since boot) for a given
819  * CPU, in microseconds. Note this is partially broken due to
820  * the counter of iowait tasks that can be remotely updated without
821  * any synchronization. Therefore it is possible to observe backward
822  * values within two consecutive reads.
823  *
824  * This time is measured via accounting rather than sampling,
825  * and is as accurate as ktime_get() is.
826  *
827  * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
828  */
829 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
830 {
831 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
832 
833 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
834 				     nr_iowait_cpu(cpu), last_update_time);
835 }
836 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
837 
838 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
839 {
840 	hrtimer_cancel(&ts->sched_timer);
841 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
842 
843 	/* Forward the time to expire in the future */
844 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
845 
846 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
847 		hrtimer_start_expires(&ts->sched_timer,
848 				      HRTIMER_MODE_ABS_PINNED_HARD);
849 	} else {
850 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
851 	}
852 
853 	/*
854 	 * Reset to make sure the next tick stop doesn't get fooled by past
855 	 * cached clock deadline.
856 	 */
857 	ts->next_tick = 0;
858 }
859 
860 static inline bool local_timer_softirq_pending(void)
861 {
862 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
863 }
864 
865 /*
866  * Read jiffies and the time when jiffies were updated last
867  */
868 u64 get_jiffies_update(unsigned long *basej)
869 {
870 	unsigned long basejiff;
871 	unsigned int seq;
872 	u64 basemono;
873 
874 	do {
875 		seq = read_seqcount_begin(&jiffies_seq);
876 		basemono = last_jiffies_update;
877 		basejiff = jiffies;
878 	} while (read_seqcount_retry(&jiffies_seq, seq));
879 	*basej = basejiff;
880 	return basemono;
881 }
882 
883 /**
884  * tick_nohz_next_event() - return the clock monotonic based next event
885  * @ts:		pointer to tick_sched struct
886  * @cpu:	CPU number
887  *
888  * Return:
889  * *%0		- When the next event is a maximum of TICK_NSEC in the future
890  *		  and the tick is not stopped yet
891  * *%next_event	- Next event based on clock monotonic
892  */
893 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
894 {
895 	u64 basemono, next_tick, delta, expires;
896 	unsigned long basejiff;
897 	int tick_cpu;
898 
899 	basemono = get_jiffies_update(&basejiff);
900 	ts->last_jiffies = basejiff;
901 	ts->timer_expires_base = basemono;
902 
903 	/*
904 	 * Keep the periodic tick, when RCU, architecture or irq_work
905 	 * requests it.
906 	 * Aside of that, check whether the local timer softirq is
907 	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
908 	 * because there is an already expired timer, so it will request
909 	 * immediate expiry, which rearms the hardware timer with a
910 	 * minimal delta, which brings us back to this place
911 	 * immediately. Lather, rinse and repeat...
912 	 */
913 	if (rcu_needs_cpu() || arch_needs_cpu() ||
914 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
915 		next_tick = basemono + TICK_NSEC;
916 	} else {
917 		/*
918 		 * Get the next pending timer. If high resolution
919 		 * timers are enabled this only takes the timer wheel
920 		 * timers into account. If high resolution timers are
921 		 * disabled this also looks at the next expiring
922 		 * hrtimer.
923 		 */
924 		next_tick = get_next_timer_interrupt(basejiff, basemono);
925 		ts->next_timer = next_tick;
926 	}
927 
928 	/* Make sure next_tick is never before basemono! */
929 	if (WARN_ON_ONCE(basemono > next_tick))
930 		next_tick = basemono;
931 
932 	/*
933 	 * If the tick is due in the next period, keep it ticking or
934 	 * force prod the timer.
935 	 */
936 	delta = next_tick - basemono;
937 	if (delta <= (u64)TICK_NSEC) {
938 		/*
939 		 * We've not stopped the tick yet, and there's a timer in the
940 		 * next period, so no point in stopping it either, bail.
941 		 */
942 		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
943 			ts->timer_expires = 0;
944 			goto out;
945 		}
946 	}
947 
948 	/*
949 	 * If this CPU is the one which had the do_timer() duty last, we limit
950 	 * the sleep time to the timekeeping 'max_deferment' value.
951 	 * Otherwise we can sleep as long as we want.
952 	 */
953 	delta = timekeeping_max_deferment();
954 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
955 	if (tick_cpu != cpu &&
956 	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
957 		delta = KTIME_MAX;
958 
959 	/* Calculate the next expiry time */
960 	if (delta < (KTIME_MAX - basemono))
961 		expires = basemono + delta;
962 	else
963 		expires = KTIME_MAX;
964 
965 	ts->timer_expires = min_t(u64, expires, next_tick);
966 
967 out:
968 	return ts->timer_expires;
969 }
970 
971 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
972 {
973 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
974 	unsigned long basejiff = ts->last_jiffies;
975 	u64 basemono = ts->timer_expires_base;
976 	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
977 	int tick_cpu;
978 	u64 expires;
979 
980 	/* Make sure we won't be trying to stop it twice in a row. */
981 	ts->timer_expires_base = 0;
982 
983 	/*
984 	 * Now the tick should be stopped definitely - so the timer base needs
985 	 * to be marked idle as well to not miss a newly queued timer.
986 	 */
987 	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
988 	if (expires > ts->timer_expires) {
989 		/*
990 		 * This path could only happen when the first timer was removed
991 		 * between calculating the possible sleep length and now (when
992 		 * high resolution mode is not active, timer could also be a
993 		 * hrtimer).
994 		 *
995 		 * We have to stick to the original calculated expiry value to
996 		 * not stop the tick for too long with a shallow C-state (which
997 		 * was programmed by cpuidle because of an early next expiration
998 		 * value).
999 		 */
1000 		expires = ts->timer_expires;
1001 	}
1002 
1003 	/* If the timer base is not idle, retain the not yet stopped tick. */
1004 	if (!timer_idle)
1005 		return;
1006 
1007 	/*
1008 	 * If this CPU is the one which updates jiffies, then give up
1009 	 * the assignment and let it be taken by the CPU which runs
1010 	 * the tick timer next, which might be this CPU as well. If we
1011 	 * don't drop this here, the jiffies might be stale and
1012 	 * do_timer() never gets invoked. Keep track of the fact that it
1013 	 * was the one which had the do_timer() duty last.
1014 	 */
1015 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1016 	if (tick_cpu == cpu) {
1017 		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1018 		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1019 	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1020 		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1021 	}
1022 
1023 	/* Skip reprogram of event if it's not changed */
1024 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1025 		/* Sanity check: make sure clockevent is actually programmed */
1026 		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1027 			return;
1028 
1029 		WARN_ON_ONCE(1);
1030 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
1031 			    basemono, ts->next_tick, dev->next_event,
1032 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
1033 	}
1034 
1035 	/*
1036 	 * tick_nohz_stop_tick() can be called several times before
1037 	 * tick_nohz_restart_sched_tick() is called. This happens when
1038 	 * interrupts arrive which do not cause a reschedule. In the first
1039 	 * call we save the current tick time, so we can restart the
1040 	 * scheduler tick in tick_nohz_restart_sched_tick().
1041 	 */
1042 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1043 		calc_load_nohz_start();
1044 		quiet_vmstat();
1045 
1046 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1047 		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1048 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1049 	}
1050 
1051 	ts->next_tick = expires;
1052 
1053 	/*
1054 	 * If the expiration time == KTIME_MAX, then we simply stop
1055 	 * the tick timer.
1056 	 */
1057 	if (unlikely(expires == KTIME_MAX)) {
1058 		tick_sched_timer_cancel(ts);
1059 		return;
1060 	}
1061 
1062 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1063 		hrtimer_start(&ts->sched_timer, expires,
1064 			      HRTIMER_MODE_ABS_PINNED_HARD);
1065 	} else {
1066 		hrtimer_set_expires(&ts->sched_timer, expires);
1067 		tick_program_event(expires, 1);
1068 	}
1069 }
1070 
1071 static void tick_nohz_retain_tick(struct tick_sched *ts)
1072 {
1073 	ts->timer_expires_base = 0;
1074 }
1075 
1076 #ifdef CONFIG_NO_HZ_FULL
1077 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1078 {
1079 	if (tick_nohz_next_event(ts, cpu))
1080 		tick_nohz_stop_tick(ts, cpu);
1081 	else
1082 		tick_nohz_retain_tick(ts);
1083 }
1084 #endif /* CONFIG_NO_HZ_FULL */
1085 
1086 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1087 {
1088 	/* Update jiffies first */
1089 	tick_do_update_jiffies64(now);
1090 
1091 	/*
1092 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1093 	 * the clock forward checks in the enqueue path:
1094 	 */
1095 	timer_clear_idle();
1096 
1097 	calc_load_nohz_stop();
1098 	touch_softlockup_watchdog_sched();
1099 
1100 	/* Cancel the scheduled timer and restore the tick: */
1101 	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1102 	tick_nohz_restart(ts, now);
1103 }
1104 
1105 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1106 					 ktime_t now)
1107 {
1108 #ifdef CONFIG_NO_HZ_FULL
1109 	int cpu = smp_processor_id();
1110 
1111 	if (can_stop_full_tick(cpu, ts))
1112 		tick_nohz_full_stop_tick(ts, cpu);
1113 	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1114 		tick_nohz_restart_sched_tick(ts, now);
1115 #endif
1116 }
1117 
1118 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1119 {
1120 	if (!tick_nohz_full_cpu(smp_processor_id()))
1121 		return;
1122 
1123 	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1124 		return;
1125 
1126 	__tick_nohz_full_update_tick(ts, ktime_get());
1127 }
1128 
1129 /*
1130  * A pending softirq outside an IRQ (or softirq disabled section) context
1131  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1132  * reach this code due to the need_resched() early check in can_stop_idle_tick().
1133  *
1134  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1135  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1136  * triggering the code below, since wakep_softirqd() is ignored.
1137  *
1138  */
1139 static bool report_idle_softirq(void)
1140 {
1141 	static int ratelimit;
1142 	unsigned int pending = local_softirq_pending();
1143 
1144 	if (likely(!pending))
1145 		return false;
1146 
1147 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1148 	if (!cpu_active(smp_processor_id())) {
1149 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1150 		if (!pending)
1151 			return false;
1152 	}
1153 
1154 	if (ratelimit >= 10)
1155 		return false;
1156 
1157 	/* On RT, softirq handling may be waiting on some lock */
1158 	if (local_bh_blocked())
1159 		return false;
1160 
1161 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1162 		pending);
1163 	ratelimit++;
1164 
1165 	return true;
1166 }
1167 
1168 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1169 {
1170 	WARN_ON_ONCE(cpu_is_offline(cpu));
1171 
1172 	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1173 		return false;
1174 
1175 	if (need_resched())
1176 		return false;
1177 
1178 	if (unlikely(report_idle_softirq()))
1179 		return false;
1180 
1181 	if (tick_nohz_full_enabled()) {
1182 		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1183 
1184 		/*
1185 		 * Keep the tick alive to guarantee timekeeping progression
1186 		 * if there are full dynticks CPUs around
1187 		 */
1188 		if (tick_cpu == cpu)
1189 			return false;
1190 
1191 		/* Should not happen for nohz-full */
1192 		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1193 			return false;
1194 	}
1195 
1196 	return true;
1197 }
1198 
1199 /**
1200  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1201  *
1202  * When the next event is more than a tick into the future, stop the idle tick
1203  */
1204 void tick_nohz_idle_stop_tick(void)
1205 {
1206 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207 	int cpu = smp_processor_id();
1208 	ktime_t expires;
1209 
1210 	/*
1211 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1212 	 * tick timer expiration time is known already.
1213 	 */
1214 	if (ts->timer_expires_base)
1215 		expires = ts->timer_expires;
1216 	else if (can_stop_idle_tick(cpu, ts))
1217 		expires = tick_nohz_next_event(ts, cpu);
1218 	else
1219 		return;
1220 
1221 	ts->idle_calls++;
1222 
1223 	if (expires > 0LL) {
1224 		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1225 
1226 		tick_nohz_stop_tick(ts, cpu);
1227 
1228 		ts->idle_sleeps++;
1229 		ts->idle_expires = expires;
1230 
1231 		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1232 			ts->idle_jiffies = ts->last_jiffies;
1233 			nohz_balance_enter_idle(cpu);
1234 		}
1235 	} else {
1236 		tick_nohz_retain_tick(ts);
1237 	}
1238 }
1239 
1240 void tick_nohz_idle_retain_tick(void)
1241 {
1242 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1243 }
1244 
1245 /**
1246  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1247  *
1248  * Called when we start the idle loop.
1249  */
1250 void tick_nohz_idle_enter(void)
1251 {
1252 	struct tick_sched *ts;
1253 
1254 	lockdep_assert_irqs_enabled();
1255 
1256 	local_irq_disable();
1257 
1258 	ts = this_cpu_ptr(&tick_cpu_sched);
1259 
1260 	WARN_ON_ONCE(ts->timer_expires_base);
1261 
1262 	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1263 	tick_nohz_start_idle(ts);
1264 
1265 	local_irq_enable();
1266 }
1267 
1268 /**
1269  * tick_nohz_irq_exit - Notify the tick about IRQ exit
1270  *
1271  * A timer may have been added/modified/deleted either by the current IRQ,
1272  * or by another place using this IRQ as a notification. This IRQ may have
1273  * also updated the RCU callback list. These events may require a
1274  * re-evaluation of the next tick. Depending on the context:
1275  *
1276  * 1) If the CPU is idle and no resched is pending, just proceed with idle
1277  *    time accounting. The next tick will be re-evaluated on the next idle
1278  *    loop iteration.
1279  *
1280  * 2) If the CPU is nohz_full:
1281  *
1282  *    2.1) If there is any tick dependency, restart the tick if stopped.
1283  *
1284  *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1285  *         stop/update it accordingly.
1286  */
1287 void tick_nohz_irq_exit(void)
1288 {
1289 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290 
1291 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1292 		tick_nohz_start_idle(ts);
1293 	else
1294 		tick_nohz_full_update_tick(ts);
1295 }
1296 
1297 /**
1298  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1299  *
1300  * Return: %true if the tick handler has run, otherwise %false
1301  */
1302 bool tick_nohz_idle_got_tick(void)
1303 {
1304 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1305 
1306 	if (ts->got_idle_tick) {
1307 		ts->got_idle_tick = 0;
1308 		return true;
1309 	}
1310 	return false;
1311 }
1312 
1313 /**
1314  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1315  * or the tick, whichever expires first. Note that, if the tick has been
1316  * stopped, it returns the next hrtimer.
1317  *
1318  * Called from power state control code with interrupts disabled
1319  *
1320  * Return: the next expiration time
1321  */
1322 ktime_t tick_nohz_get_next_hrtimer(void)
1323 {
1324 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1325 }
1326 
1327 /**
1328  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1329  * @delta_next: duration until the next event if the tick cannot be stopped
1330  *
1331  * Called from power state control code with interrupts disabled.
1332  *
1333  * The return value of this function and/or the value returned by it through the
1334  * @delta_next pointer can be negative which must be taken into account by its
1335  * callers.
1336  *
1337  * Return: the expected length of the current sleep
1338  */
1339 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1340 {
1341 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1342 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343 	int cpu = smp_processor_id();
1344 	/*
1345 	 * The idle entry time is expected to be a sufficient approximation of
1346 	 * the current time at this point.
1347 	 */
1348 	ktime_t now = ts->idle_entrytime;
1349 	ktime_t next_event;
1350 
1351 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1352 
1353 	*delta_next = ktime_sub(dev->next_event, now);
1354 
1355 	if (!can_stop_idle_tick(cpu, ts))
1356 		return *delta_next;
1357 
1358 	next_event = tick_nohz_next_event(ts, cpu);
1359 	if (!next_event)
1360 		return *delta_next;
1361 
1362 	/*
1363 	 * If the next highres timer to expire is earlier than 'next_event', the
1364 	 * idle governor needs to know that.
1365 	 */
1366 	next_event = min_t(u64, next_event,
1367 			   hrtimer_next_event_without(&ts->sched_timer));
1368 
1369 	return ktime_sub(next_event, now);
1370 }
1371 
1372 /**
1373  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1374  * for a particular CPU.
1375  * @cpu: target CPU number
1376  *
1377  * Called from the schedutil frequency scaling governor in scheduler context.
1378  *
1379  * Return: the current idle calls counter value for @cpu
1380  */
1381 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1382 {
1383 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1384 
1385 	return ts->idle_calls;
1386 }
1387 
1388 /**
1389  * tick_nohz_get_idle_calls - return the current idle calls counter value
1390  *
1391  * Called from the schedutil frequency scaling governor in scheduler context.
1392  *
1393  * Return: the current idle calls counter value for the current CPU
1394  */
1395 unsigned long tick_nohz_get_idle_calls(void)
1396 {
1397 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398 
1399 	return ts->idle_calls;
1400 }
1401 
1402 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1403 					ktime_t now)
1404 {
1405 	unsigned long ticks;
1406 
1407 	ts->idle_exittime = now;
1408 
1409 	if (vtime_accounting_enabled_this_cpu())
1410 		return;
1411 	/*
1412 	 * We stopped the tick in idle. update_process_times() would miss the
1413 	 * time we slept, as it does only a 1 tick accounting.
1414 	 * Enforce that this is accounted to idle !
1415 	 */
1416 	ticks = jiffies - ts->idle_jiffies;
1417 	/*
1418 	 * We might be one off. Do not randomly account a huge number of ticks!
1419 	 */
1420 	if (ticks && ticks < LONG_MAX)
1421 		account_idle_ticks(ticks);
1422 }
1423 
1424 void tick_nohz_idle_restart_tick(void)
1425 {
1426 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1427 
1428 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1429 		ktime_t now = ktime_get();
1430 		tick_nohz_restart_sched_tick(ts, now);
1431 		tick_nohz_account_idle_time(ts, now);
1432 	}
1433 }
1434 
1435 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1436 {
1437 	if (tick_nohz_full_cpu(smp_processor_id()))
1438 		__tick_nohz_full_update_tick(ts, now);
1439 	else
1440 		tick_nohz_restart_sched_tick(ts, now);
1441 
1442 	tick_nohz_account_idle_time(ts, now);
1443 }
1444 
1445 /**
1446  * tick_nohz_idle_exit - Update the tick upon idle task exit
1447  *
1448  * When the idle task exits, update the tick depending on the
1449  * following situations:
1450  *
1451  * 1) If the CPU is not in nohz_full mode (most cases), then
1452  *    restart the tick.
1453  *
1454  * 2) If the CPU is in nohz_full mode (corner case):
1455  *   2.1) If the tick can be kept stopped (no tick dependencies)
1456  *        then re-evaluate the next tick and try to keep it stopped
1457  *        as long as possible.
1458  *   2.2) If the tick has dependencies, restart the tick.
1459  *
1460  */
1461 void tick_nohz_idle_exit(void)
1462 {
1463 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1464 	bool idle_active, tick_stopped;
1465 	ktime_t now;
1466 
1467 	local_irq_disable();
1468 
1469 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1470 	WARN_ON_ONCE(ts->timer_expires_base);
1471 
1472 	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1473 	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1474 	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1475 
1476 	if (idle_active || tick_stopped)
1477 		now = ktime_get();
1478 
1479 	if (idle_active)
1480 		tick_nohz_stop_idle(ts, now);
1481 
1482 	if (tick_stopped)
1483 		tick_nohz_idle_update_tick(ts, now);
1484 
1485 	local_irq_enable();
1486 }
1487 
1488 /*
1489  * In low-resolution mode, the tick handler must be implemented directly
1490  * at the clockevent level. hrtimer can't be used instead, because its
1491  * infrastructure actually relies on the tick itself as a backend in
1492  * low-resolution mode (see hrtimer_run_queues()).
1493  */
1494 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1495 {
1496 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1497 
1498 	dev->next_event = KTIME_MAX;
1499 
1500 	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1501 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1502 }
1503 
1504 static inline void tick_nohz_activate(struct tick_sched *ts)
1505 {
1506 	if (!tick_nohz_enabled)
1507 		return;
1508 	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1509 	/* One update is enough */
1510 	if (!test_and_set_bit(0, &tick_nohz_active))
1511 		timers_update_nohz();
1512 }
1513 
1514 /**
1515  * tick_nohz_switch_to_nohz - switch to NOHZ mode
1516  */
1517 static void tick_nohz_switch_to_nohz(void)
1518 {
1519 	if (!tick_nohz_enabled)
1520 		return;
1521 
1522 	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1523 		return;
1524 
1525 	/*
1526 	 * Recycle the hrtimer in 'ts', so we can share the
1527 	 * highres code.
1528 	 */
1529 	tick_setup_sched_timer(false);
1530 }
1531 
1532 static inline void tick_nohz_irq_enter(void)
1533 {
1534 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1535 	ktime_t now;
1536 
1537 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1538 		return;
1539 	now = ktime_get();
1540 	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1541 		tick_nohz_stop_idle(ts, now);
1542 	/*
1543 	 * If all CPUs are idle we may need to update a stale jiffies value.
1544 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1545 	 * alive but it might be busy looping with interrupts disabled in some
1546 	 * rare case (typically stop machine). So we must make sure we have a
1547 	 * last resort.
1548 	 */
1549 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1550 		tick_nohz_update_jiffies(now);
1551 }
1552 
1553 #else
1554 
1555 static inline void tick_nohz_switch_to_nohz(void) { }
1556 static inline void tick_nohz_irq_enter(void) { }
1557 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1558 
1559 #endif /* CONFIG_NO_HZ_COMMON */
1560 
1561 /*
1562  * Called from irq_enter() to notify about the possible interruption of idle()
1563  */
1564 void tick_irq_enter(void)
1565 {
1566 	tick_check_oneshot_broadcast_this_cpu();
1567 	tick_nohz_irq_enter();
1568 }
1569 
1570 static int sched_skew_tick;
1571 
1572 static int __init skew_tick(char *str)
1573 {
1574 	get_option(&str, &sched_skew_tick);
1575 
1576 	return 0;
1577 }
1578 early_param("skew_tick", skew_tick);
1579 
1580 /**
1581  * tick_setup_sched_timer - setup the tick emulation timer
1582  * @hrtimer: whether to use the hrtimer or not
1583  */
1584 void tick_setup_sched_timer(bool hrtimer)
1585 {
1586 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1587 
1588 	/* Emulate tick processing via per-CPU hrtimers: */
1589 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1590 
1591 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1592 		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1593 		ts->sched_timer.function = tick_nohz_handler;
1594 	}
1595 
1596 	/* Get the next period (per-CPU) */
1597 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1598 
1599 	/* Offset the tick to avert 'jiffies_lock' contention. */
1600 	if (sched_skew_tick) {
1601 		u64 offset = TICK_NSEC >> 1;
1602 		do_div(offset, num_possible_cpus());
1603 		offset *= smp_processor_id();
1604 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1605 	}
1606 
1607 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1608 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1609 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1610 	else
1611 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1612 	tick_nohz_activate(ts);
1613 }
1614 
1615 /*
1616  * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1617  * duty before disabling IRQs in idle for the last time.
1618  */
1619 void tick_sched_timer_dying(int cpu)
1620 {
1621 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1622 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1623 	struct clock_event_device *dev = td->evtdev;
1624 	ktime_t idle_sleeptime, iowait_sleeptime;
1625 	unsigned long idle_calls, idle_sleeps;
1626 
1627 	/* This must happen before hrtimers are migrated! */
1628 	tick_sched_timer_cancel(ts);
1629 
1630 	/*
1631 	 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1632 	 * make sure not to call low-res tick handler.
1633 	 */
1634 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1635 		dev->event_handler = clockevents_handle_noop;
1636 
1637 	idle_sleeptime = ts->idle_sleeptime;
1638 	iowait_sleeptime = ts->iowait_sleeptime;
1639 	idle_calls = ts->idle_calls;
1640 	idle_sleeps = ts->idle_sleeps;
1641 	memset(ts, 0, sizeof(*ts));
1642 	ts->idle_sleeptime = idle_sleeptime;
1643 	ts->iowait_sleeptime = iowait_sleeptime;
1644 	ts->idle_calls = idle_calls;
1645 	ts->idle_sleeps = idle_sleeps;
1646 }
1647 
1648 /*
1649  * Async notification about clocksource changes
1650  */
1651 void tick_clock_notify(void)
1652 {
1653 	int cpu;
1654 
1655 	for_each_possible_cpu(cpu)
1656 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1657 }
1658 
1659 /*
1660  * Async notification about clock event changes
1661  */
1662 void tick_oneshot_notify(void)
1663 {
1664 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1665 
1666 	set_bit(0, &ts->check_clocks);
1667 }
1668 
1669 /*
1670  * Check if a change happened, which makes oneshot possible.
1671  *
1672  * Called cyclically from the hrtimer softirq (driven by the timer
1673  * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1674  * mode, because high resolution timers are disabled (either compile
1675  * or runtime). Called with interrupts disabled.
1676  */
1677 int tick_check_oneshot_change(int allow_nohz)
1678 {
1679 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1680 
1681 	if (!test_and_clear_bit(0, &ts->check_clocks))
1682 		return 0;
1683 
1684 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1685 		return 0;
1686 
1687 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1688 		return 0;
1689 
1690 	if (!allow_nohz)
1691 		return 1;
1692 
1693 	tick_nohz_switch_to_nohz();
1694 	return 0;
1695 }
1696