xref: /linux/kernel/time/tick-sched.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 /*
39  * The time, when the last jiffy update happened. Protected by jiffies_lock.
40  */
41 static ktime_t last_jiffies_update;
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 /*
49  * Must be called with interrupts disabled !
50  */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 	unsigned long ticks = 0;
54 	ktime_t delta;
55 
56 	/*
57 	 * Do a quick check without holding jiffies_lock:
58 	 */
59 	delta = ktime_sub(now, last_jiffies_update);
60 	if (delta.tv64 < tick_period.tv64)
61 		return;
62 
63 	/* Reevalute with jiffies_lock held */
64 	write_seqlock(&jiffies_lock);
65 
66 	delta = ktime_sub(now, last_jiffies_update);
67 	if (delta.tv64 >= tick_period.tv64) {
68 
69 		delta = ktime_sub(delta, tick_period);
70 		last_jiffies_update = ktime_add(last_jiffies_update,
71 						tick_period);
72 
73 		/* Slow path for long timeouts */
74 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 			s64 incr = ktime_to_ns(tick_period);
76 
77 			ticks = ktime_divns(delta, incr);
78 
79 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 							   incr * ticks);
81 		}
82 		do_timer(++ticks);
83 
84 		/* Keep the tick_next_period variable up to date */
85 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 	}
87 	write_sequnlock(&jiffies_lock);
88 }
89 
90 /*
91  * Initialize and return retrieve the jiffies update.
92  */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 	ktime_t period;
96 
97 	write_seqlock(&jiffies_lock);
98 	/* Did we start the jiffies update yet ? */
99 	if (last_jiffies_update.tv64 == 0)
100 		last_jiffies_update = tick_next_period;
101 	period = last_jiffies_update;
102 	write_sequnlock(&jiffies_lock);
103 	return period;
104 }
105 
106 
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 	int cpu = smp_processor_id();
110 
111 #ifdef CONFIG_NO_HZ_COMMON
112 	/*
113 	 * Check if the do_timer duty was dropped. We don't care about
114 	 * concurrency: This happens only when the cpu in charge went
115 	 * into a long sleep. If two cpus happen to assign themself to
116 	 * this duty, then the jiffies update is still serialized by
117 	 * jiffies_lock.
118 	 */
119 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 	    && !tick_nohz_full_cpu(cpu))
121 		tick_do_timer_cpu = cpu;
122 #endif
123 
124 	/* Check, if the jiffies need an update */
125 	if (tick_do_timer_cpu == cpu)
126 		tick_do_update_jiffies64(now);
127 }
128 
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 	/*
133 	 * When we are idle and the tick is stopped, we have to touch
134 	 * the watchdog as we might not schedule for a really long
135 	 * time. This happens on complete idle SMP systems while
136 	 * waiting on the login prompt. We also increment the "start of
137 	 * idle" jiffy stamp so the idle accounting adjustment we do
138 	 * when we go busy again does not account too much ticks.
139 	 */
140 	if (ts->tick_stopped) {
141 		touch_softlockup_watchdog();
142 		if (is_idle_task(current))
143 			ts->idle_jiffies++;
144 	}
145 #endif
146 	update_process_times(user_mode(regs));
147 	profile_tick(CPU_PROFILING);
148 }
149 
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153 
154 static bool can_stop_full_tick(void)
155 {
156 	WARN_ON_ONCE(!irqs_disabled());
157 
158 	if (!sched_can_stop_tick()) {
159 		trace_tick_stop(0, "more than 1 task in runqueue\n");
160 		return false;
161 	}
162 
163 	if (!posix_cpu_timers_can_stop_tick(current)) {
164 		trace_tick_stop(0, "posix timers running\n");
165 		return false;
166 	}
167 
168 	if (!perf_event_can_stop_tick()) {
169 		trace_tick_stop(0, "perf events running\n");
170 		return false;
171 	}
172 
173 	/* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 	/*
176 	 * TODO: kick full dynticks CPUs when
177 	 * sched_clock_stable is set.
178 	 */
179 	if (!sched_clock_stable) {
180 		trace_tick_stop(0, "unstable sched clock\n");
181 		/*
182 		 * Don't allow the user to think they can get
183 		 * full NO_HZ with this machine.
184 		 */
185 		WARN_ONCE(1, "NO_HZ FULL will not work with unstable sched clock");
186 		return false;
187 	}
188 #endif
189 
190 	return true;
191 }
192 
193 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
194 
195 /*
196  * Re-evaluate the need for the tick on the current CPU
197  * and restart it if necessary.
198  */
199 void tick_nohz_full_check(void)
200 {
201 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
202 
203 	if (tick_nohz_full_cpu(smp_processor_id())) {
204 		if (ts->tick_stopped && !is_idle_task(current)) {
205 			if (!can_stop_full_tick())
206 				tick_nohz_restart_sched_tick(ts, ktime_get());
207 		}
208 	}
209 }
210 
211 static void nohz_full_kick_work_func(struct irq_work *work)
212 {
213 	tick_nohz_full_check();
214 }
215 
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 	.func = nohz_full_kick_work_func,
218 };
219 
220 /*
221  * Kick the current CPU if it's full dynticks in order to force it to
222  * re-evaluate its dependency on the tick and restart it if necessary.
223  */
224 void tick_nohz_full_kick(void)
225 {
226 	if (tick_nohz_full_cpu(smp_processor_id()))
227 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
228 }
229 
230 static void nohz_full_kick_ipi(void *info)
231 {
232 	tick_nohz_full_check();
233 }
234 
235 /*
236  * Kick all full dynticks CPUs in order to force these to re-evaluate
237  * their dependency on the tick and restart it if necessary.
238  */
239 void tick_nohz_full_kick_all(void)
240 {
241 	if (!have_nohz_full_mask)
242 		return;
243 
244 	preempt_disable();
245 	smp_call_function_many(nohz_full_mask,
246 			       nohz_full_kick_ipi, NULL, false);
247 	preempt_enable();
248 }
249 
250 /*
251  * Re-evaluate the need for the tick as we switch the current task.
252  * It might need the tick due to per task/process properties:
253  * perf events, posix cpu timers, ...
254  */
255 void tick_nohz_task_switch(struct task_struct *tsk)
256 {
257 	unsigned long flags;
258 
259 	local_irq_save(flags);
260 
261 	if (!tick_nohz_full_cpu(smp_processor_id()))
262 		goto out;
263 
264 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
265 		tick_nohz_full_kick();
266 
267 out:
268 	local_irq_restore(flags);
269 }
270 
271 int tick_nohz_full_cpu(int cpu)
272 {
273 	if (!have_nohz_full_mask)
274 		return 0;
275 
276 	return cpumask_test_cpu(cpu, nohz_full_mask);
277 }
278 
279 /* Parse the boot-time nohz CPU list from the kernel parameters. */
280 static int __init tick_nohz_full_setup(char *str)
281 {
282 	int cpu;
283 
284 	alloc_bootmem_cpumask_var(&nohz_full_mask);
285 	if (cpulist_parse(str, nohz_full_mask) < 0) {
286 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
287 		return 1;
288 	}
289 
290 	cpu = smp_processor_id();
291 	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
292 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
293 		cpumask_clear_cpu(cpu, nohz_full_mask);
294 	}
295 	have_nohz_full_mask = true;
296 
297 	return 1;
298 }
299 __setup("nohz_full=", tick_nohz_full_setup);
300 
301 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
302 						 unsigned long action,
303 						 void *hcpu)
304 {
305 	unsigned int cpu = (unsigned long)hcpu;
306 
307 	switch (action & ~CPU_TASKS_FROZEN) {
308 	case CPU_DOWN_PREPARE:
309 		/*
310 		 * If we handle the timekeeping duty for full dynticks CPUs,
311 		 * we can't safely shutdown that CPU.
312 		 */
313 		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
314 			return NOTIFY_BAD;
315 		break;
316 	}
317 	return NOTIFY_OK;
318 }
319 
320 /*
321  * Worst case string length in chunks of CPU range seems 2 steps
322  * separations: 0,2,4,6,...
323  * This is NR_CPUS + sizeof('\0')
324  */
325 static char __initdata nohz_full_buf[NR_CPUS + 1];
326 
327 static int tick_nohz_init_all(void)
328 {
329 	int err = -1;
330 
331 #ifdef CONFIG_NO_HZ_FULL_ALL
332 	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
333 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
334 		return err;
335 	}
336 	err = 0;
337 	cpumask_setall(nohz_full_mask);
338 	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
339 	have_nohz_full_mask = true;
340 #endif
341 	return err;
342 }
343 
344 void __init tick_nohz_init(void)
345 {
346 	int cpu;
347 
348 	if (!have_nohz_full_mask) {
349 		if (tick_nohz_init_all() < 0)
350 			return;
351 	}
352 
353 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
354 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
355 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
356 }
357 #else
358 #define have_nohz_full_mask (0)
359 #endif
360 
361 /*
362  * NOHZ - aka dynamic tick functionality
363  */
364 #ifdef CONFIG_NO_HZ_COMMON
365 /*
366  * NO HZ enabled ?
367  */
368 int tick_nohz_enabled __read_mostly  = 1;
369 
370 /*
371  * Enable / Disable tickless mode
372  */
373 static int __init setup_tick_nohz(char *str)
374 {
375 	if (!strcmp(str, "off"))
376 		tick_nohz_enabled = 0;
377 	else if (!strcmp(str, "on"))
378 		tick_nohz_enabled = 1;
379 	else
380 		return 0;
381 	return 1;
382 }
383 
384 __setup("nohz=", setup_tick_nohz);
385 
386 /**
387  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
388  *
389  * Called from interrupt entry when the CPU was idle
390  *
391  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
392  * must be updated. Otherwise an interrupt handler could use a stale jiffy
393  * value. We do this unconditionally on any cpu, as we don't know whether the
394  * cpu, which has the update task assigned is in a long sleep.
395  */
396 static void tick_nohz_update_jiffies(ktime_t now)
397 {
398 	int cpu = smp_processor_id();
399 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
400 	unsigned long flags;
401 
402 	ts->idle_waketime = now;
403 
404 	local_irq_save(flags);
405 	tick_do_update_jiffies64(now);
406 	local_irq_restore(flags);
407 
408 	touch_softlockup_watchdog();
409 }
410 
411 /*
412  * Updates the per cpu time idle statistics counters
413  */
414 static void
415 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
416 {
417 	ktime_t delta;
418 
419 	if (ts->idle_active) {
420 		delta = ktime_sub(now, ts->idle_entrytime);
421 		if (nr_iowait_cpu(cpu) > 0)
422 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
423 		else
424 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
425 		ts->idle_entrytime = now;
426 	}
427 
428 	if (last_update_time)
429 		*last_update_time = ktime_to_us(now);
430 
431 }
432 
433 static void tick_nohz_stop_idle(int cpu, ktime_t now)
434 {
435 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
436 
437 	update_ts_time_stats(cpu, ts, now, NULL);
438 	ts->idle_active = 0;
439 
440 	sched_clock_idle_wakeup_event(0);
441 }
442 
443 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
444 {
445 	ktime_t now = ktime_get();
446 
447 	ts->idle_entrytime = now;
448 	ts->idle_active = 1;
449 	sched_clock_idle_sleep_event();
450 	return now;
451 }
452 
453 /**
454  * get_cpu_idle_time_us - get the total idle time of a cpu
455  * @cpu: CPU number to query
456  * @last_update_time: variable to store update time in. Do not update
457  * counters if NULL.
458  *
459  * Return the cummulative idle time (since boot) for a given
460  * CPU, in microseconds.
461  *
462  * This time is measured via accounting rather than sampling,
463  * and is as accurate as ktime_get() is.
464  *
465  * This function returns -1 if NOHZ is not enabled.
466  */
467 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
468 {
469 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
470 	ktime_t now, idle;
471 
472 	if (!tick_nohz_enabled)
473 		return -1;
474 
475 	now = ktime_get();
476 	if (last_update_time) {
477 		update_ts_time_stats(cpu, ts, now, last_update_time);
478 		idle = ts->idle_sleeptime;
479 	} else {
480 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
481 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
482 
483 			idle = ktime_add(ts->idle_sleeptime, delta);
484 		} else {
485 			idle = ts->idle_sleeptime;
486 		}
487 	}
488 
489 	return ktime_to_us(idle);
490 
491 }
492 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
493 
494 /**
495  * get_cpu_iowait_time_us - get the total iowait time of a cpu
496  * @cpu: CPU number to query
497  * @last_update_time: variable to store update time in. Do not update
498  * counters if NULL.
499  *
500  * Return the cummulative iowait time (since boot) for a given
501  * CPU, in microseconds.
502  *
503  * This time is measured via accounting rather than sampling,
504  * and is as accurate as ktime_get() is.
505  *
506  * This function returns -1 if NOHZ is not enabled.
507  */
508 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
509 {
510 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
511 	ktime_t now, iowait;
512 
513 	if (!tick_nohz_enabled)
514 		return -1;
515 
516 	now = ktime_get();
517 	if (last_update_time) {
518 		update_ts_time_stats(cpu, ts, now, last_update_time);
519 		iowait = ts->iowait_sleeptime;
520 	} else {
521 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
522 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
523 
524 			iowait = ktime_add(ts->iowait_sleeptime, delta);
525 		} else {
526 			iowait = ts->iowait_sleeptime;
527 		}
528 	}
529 
530 	return ktime_to_us(iowait);
531 }
532 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
533 
534 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
535 					 ktime_t now, int cpu)
536 {
537 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
538 	ktime_t last_update, expires, ret = { .tv64 = 0 };
539 	unsigned long rcu_delta_jiffies;
540 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
541 	u64 time_delta;
542 
543 	/* Read jiffies and the time when jiffies were updated last */
544 	do {
545 		seq = read_seqbegin(&jiffies_lock);
546 		last_update = last_jiffies_update;
547 		last_jiffies = jiffies;
548 		time_delta = timekeeping_max_deferment();
549 	} while (read_seqretry(&jiffies_lock, seq));
550 
551 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
552 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
553 		next_jiffies = last_jiffies + 1;
554 		delta_jiffies = 1;
555 	} else {
556 		/* Get the next timer wheel timer */
557 		next_jiffies = get_next_timer_interrupt(last_jiffies);
558 		delta_jiffies = next_jiffies - last_jiffies;
559 		if (rcu_delta_jiffies < delta_jiffies) {
560 			next_jiffies = last_jiffies + rcu_delta_jiffies;
561 			delta_jiffies = rcu_delta_jiffies;
562 		}
563 	}
564 
565 	/*
566 	 * Do not stop the tick, if we are only one off (or less)
567 	 * or if the cpu is required for RCU:
568 	 */
569 	if (!ts->tick_stopped && delta_jiffies <= 1)
570 		goto out;
571 
572 	/* Schedule the tick, if we are at least one jiffie off */
573 	if ((long)delta_jiffies >= 1) {
574 
575 		/*
576 		 * If this cpu is the one which updates jiffies, then
577 		 * give up the assignment and let it be taken by the
578 		 * cpu which runs the tick timer next, which might be
579 		 * this cpu as well. If we don't drop this here the
580 		 * jiffies might be stale and do_timer() never
581 		 * invoked. Keep track of the fact that it was the one
582 		 * which had the do_timer() duty last. If this cpu is
583 		 * the one which had the do_timer() duty last, we
584 		 * limit the sleep time to the timekeeping
585 		 * max_deferement value which we retrieved
586 		 * above. Otherwise we can sleep as long as we want.
587 		 */
588 		if (cpu == tick_do_timer_cpu) {
589 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
590 			ts->do_timer_last = 1;
591 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
592 			time_delta = KTIME_MAX;
593 			ts->do_timer_last = 0;
594 		} else if (!ts->do_timer_last) {
595 			time_delta = KTIME_MAX;
596 		}
597 
598 #ifdef CONFIG_NO_HZ_FULL
599 		if (!ts->inidle) {
600 			time_delta = min(time_delta,
601 					 scheduler_tick_max_deferment());
602 		}
603 #endif
604 
605 		/*
606 		 * calculate the expiry time for the next timer wheel
607 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
608 		 * that there is no timer pending or at least extremely
609 		 * far into the future (12 days for HZ=1000). In this
610 		 * case we set the expiry to the end of time.
611 		 */
612 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
613 			/*
614 			 * Calculate the time delta for the next timer event.
615 			 * If the time delta exceeds the maximum time delta
616 			 * permitted by the current clocksource then adjust
617 			 * the time delta accordingly to ensure the
618 			 * clocksource does not wrap.
619 			 */
620 			time_delta = min_t(u64, time_delta,
621 					   tick_period.tv64 * delta_jiffies);
622 		}
623 
624 		if (time_delta < KTIME_MAX)
625 			expires = ktime_add_ns(last_update, time_delta);
626 		else
627 			expires.tv64 = KTIME_MAX;
628 
629 		/* Skip reprogram of event if its not changed */
630 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
631 			goto out;
632 
633 		ret = expires;
634 
635 		/*
636 		 * nohz_stop_sched_tick can be called several times before
637 		 * the nohz_restart_sched_tick is called. This happens when
638 		 * interrupts arrive which do not cause a reschedule. In the
639 		 * first call we save the current tick time, so we can restart
640 		 * the scheduler tick in nohz_restart_sched_tick.
641 		 */
642 		if (!ts->tick_stopped) {
643 			nohz_balance_enter_idle(cpu);
644 			calc_load_enter_idle();
645 
646 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
647 			ts->tick_stopped = 1;
648 			trace_tick_stop(1, " ");
649 		}
650 
651 		/*
652 		 * If the expiration time == KTIME_MAX, then
653 		 * in this case we simply stop the tick timer.
654 		 */
655 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
656 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
657 				hrtimer_cancel(&ts->sched_timer);
658 			goto out;
659 		}
660 
661 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
662 			hrtimer_start(&ts->sched_timer, expires,
663 				      HRTIMER_MODE_ABS_PINNED);
664 			/* Check, if the timer was already in the past */
665 			if (hrtimer_active(&ts->sched_timer))
666 				goto out;
667 		} else if (!tick_program_event(expires, 0))
668 				goto out;
669 		/*
670 		 * We are past the event already. So we crossed a
671 		 * jiffie boundary. Update jiffies and raise the
672 		 * softirq.
673 		 */
674 		tick_do_update_jiffies64(ktime_get());
675 	}
676 	raise_softirq_irqoff(TIMER_SOFTIRQ);
677 out:
678 	ts->next_jiffies = next_jiffies;
679 	ts->last_jiffies = last_jiffies;
680 	ts->sleep_length = ktime_sub(dev->next_event, now);
681 
682 	return ret;
683 }
684 
685 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
686 {
687 #ifdef CONFIG_NO_HZ_FULL
688        int cpu = smp_processor_id();
689 
690        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
691                return;
692 
693        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
694 	       return;
695 
696        if (!can_stop_full_tick())
697                return;
698 
699        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
700 #endif
701 }
702 
703 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
704 {
705 	/*
706 	 * If this cpu is offline and it is the one which updates
707 	 * jiffies, then give up the assignment and let it be taken by
708 	 * the cpu which runs the tick timer next. If we don't drop
709 	 * this here the jiffies might be stale and do_timer() never
710 	 * invoked.
711 	 */
712 	if (unlikely(!cpu_online(cpu))) {
713 		if (cpu == tick_do_timer_cpu)
714 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
715 		return false;
716 	}
717 
718 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
719 		return false;
720 
721 	if (need_resched())
722 		return false;
723 
724 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
725 		static int ratelimit;
726 
727 		if (ratelimit < 10 &&
728 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
729 			pr_warn("NOHZ: local_softirq_pending %02x\n",
730 				(unsigned int) local_softirq_pending());
731 			ratelimit++;
732 		}
733 		return false;
734 	}
735 
736 	if (have_nohz_full_mask) {
737 		/*
738 		 * Keep the tick alive to guarantee timekeeping progression
739 		 * if there are full dynticks CPUs around
740 		 */
741 		if (tick_do_timer_cpu == cpu)
742 			return false;
743 		/*
744 		 * Boot safety: make sure the timekeeping duty has been
745 		 * assigned before entering dyntick-idle mode,
746 		 */
747 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
748 			return false;
749 	}
750 
751 	return true;
752 }
753 
754 static void __tick_nohz_idle_enter(struct tick_sched *ts)
755 {
756 	ktime_t now, expires;
757 	int cpu = smp_processor_id();
758 
759 	now = tick_nohz_start_idle(cpu, ts);
760 
761 	if (can_stop_idle_tick(cpu, ts)) {
762 		int was_stopped = ts->tick_stopped;
763 
764 		ts->idle_calls++;
765 
766 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
767 		if (expires.tv64 > 0LL) {
768 			ts->idle_sleeps++;
769 			ts->idle_expires = expires;
770 		}
771 
772 		if (!was_stopped && ts->tick_stopped)
773 			ts->idle_jiffies = ts->last_jiffies;
774 	}
775 }
776 
777 /**
778  * tick_nohz_idle_enter - stop the idle tick from the idle task
779  *
780  * When the next event is more than a tick into the future, stop the idle tick
781  * Called when we start the idle loop.
782  *
783  * The arch is responsible of calling:
784  *
785  * - rcu_idle_enter() after its last use of RCU before the CPU is put
786  *  to sleep.
787  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
788  */
789 void tick_nohz_idle_enter(void)
790 {
791 	struct tick_sched *ts;
792 
793 	WARN_ON_ONCE(irqs_disabled());
794 
795 	/*
796  	 * Update the idle state in the scheduler domain hierarchy
797  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
798  	 * State will be updated to busy during the first busy tick after
799  	 * exiting idle.
800  	 */
801 	set_cpu_sd_state_idle();
802 
803 	local_irq_disable();
804 
805 	ts = &__get_cpu_var(tick_cpu_sched);
806 	/*
807 	 * set ts->inidle unconditionally. even if the system did not
808 	 * switch to nohz mode the cpu frequency governers rely on the
809 	 * update of the idle time accounting in tick_nohz_start_idle().
810 	 */
811 	ts->inidle = 1;
812 	__tick_nohz_idle_enter(ts);
813 
814 	local_irq_enable();
815 }
816 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
817 
818 /**
819  * tick_nohz_irq_exit - update next tick event from interrupt exit
820  *
821  * When an interrupt fires while we are idle and it doesn't cause
822  * a reschedule, it may still add, modify or delete a timer, enqueue
823  * an RCU callback, etc...
824  * So we need to re-calculate and reprogram the next tick event.
825  */
826 void tick_nohz_irq_exit(void)
827 {
828 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
829 
830 	if (ts->inidle) {
831 		/* Cancel the timer because CPU already waken up from the C-states*/
832 		menu_hrtimer_cancel();
833 		__tick_nohz_idle_enter(ts);
834 	} else {
835 		tick_nohz_full_stop_tick(ts);
836 	}
837 }
838 
839 /**
840  * tick_nohz_get_sleep_length - return the length of the current sleep
841  *
842  * Called from power state control code with interrupts disabled
843  */
844 ktime_t tick_nohz_get_sleep_length(void)
845 {
846 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
847 
848 	return ts->sleep_length;
849 }
850 
851 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
852 {
853 	hrtimer_cancel(&ts->sched_timer);
854 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
855 
856 	while (1) {
857 		/* Forward the time to expire in the future */
858 		hrtimer_forward(&ts->sched_timer, now, tick_period);
859 
860 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
861 			hrtimer_start_expires(&ts->sched_timer,
862 					      HRTIMER_MODE_ABS_PINNED);
863 			/* Check, if the timer was already in the past */
864 			if (hrtimer_active(&ts->sched_timer))
865 				break;
866 		} else {
867 			if (!tick_program_event(
868 				hrtimer_get_expires(&ts->sched_timer), 0))
869 				break;
870 		}
871 		/* Reread time and update jiffies */
872 		now = ktime_get();
873 		tick_do_update_jiffies64(now);
874 	}
875 }
876 
877 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
878 {
879 	/* Update jiffies first */
880 	tick_do_update_jiffies64(now);
881 	update_cpu_load_nohz();
882 
883 	calc_load_exit_idle();
884 	touch_softlockup_watchdog();
885 	/*
886 	 * Cancel the scheduled timer and restore the tick
887 	 */
888 	ts->tick_stopped  = 0;
889 	ts->idle_exittime = now;
890 
891 	tick_nohz_restart(ts, now);
892 }
893 
894 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
895 {
896 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
897 	unsigned long ticks;
898 
899 	if (vtime_accounting_enabled())
900 		return;
901 	/*
902 	 * We stopped the tick in idle. Update process times would miss the
903 	 * time we slept as update_process_times does only a 1 tick
904 	 * accounting. Enforce that this is accounted to idle !
905 	 */
906 	ticks = jiffies - ts->idle_jiffies;
907 	/*
908 	 * We might be one off. Do not randomly account a huge number of ticks!
909 	 */
910 	if (ticks && ticks < LONG_MAX)
911 		account_idle_ticks(ticks);
912 #endif
913 }
914 
915 /**
916  * tick_nohz_idle_exit - restart the idle tick from the idle task
917  *
918  * Restart the idle tick when the CPU is woken up from idle
919  * This also exit the RCU extended quiescent state. The CPU
920  * can use RCU again after this function is called.
921  */
922 void tick_nohz_idle_exit(void)
923 {
924 	int cpu = smp_processor_id();
925 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
926 	ktime_t now;
927 
928 	local_irq_disable();
929 
930 	WARN_ON_ONCE(!ts->inidle);
931 
932 	ts->inidle = 0;
933 
934 	/* Cancel the timer because CPU already waken up from the C-states*/
935 	menu_hrtimer_cancel();
936 	if (ts->idle_active || ts->tick_stopped)
937 		now = ktime_get();
938 
939 	if (ts->idle_active)
940 		tick_nohz_stop_idle(cpu, now);
941 
942 	if (ts->tick_stopped) {
943 		tick_nohz_restart_sched_tick(ts, now);
944 		tick_nohz_account_idle_ticks(ts);
945 	}
946 
947 	local_irq_enable();
948 }
949 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
950 
951 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
952 {
953 	hrtimer_forward(&ts->sched_timer, now, tick_period);
954 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
955 }
956 
957 /*
958  * The nohz low res interrupt handler
959  */
960 static void tick_nohz_handler(struct clock_event_device *dev)
961 {
962 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
963 	struct pt_regs *regs = get_irq_regs();
964 	ktime_t now = ktime_get();
965 
966 	dev->next_event.tv64 = KTIME_MAX;
967 
968 	tick_sched_do_timer(now);
969 	tick_sched_handle(ts, regs);
970 
971 	while (tick_nohz_reprogram(ts, now)) {
972 		now = ktime_get();
973 		tick_do_update_jiffies64(now);
974 	}
975 }
976 
977 /**
978  * tick_nohz_switch_to_nohz - switch to nohz mode
979  */
980 static void tick_nohz_switch_to_nohz(void)
981 {
982 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
983 	ktime_t next;
984 
985 	if (!tick_nohz_enabled)
986 		return;
987 
988 	local_irq_disable();
989 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
990 		local_irq_enable();
991 		return;
992 	}
993 
994 	ts->nohz_mode = NOHZ_MODE_LOWRES;
995 
996 	/*
997 	 * Recycle the hrtimer in ts, so we can share the
998 	 * hrtimer_forward with the highres code.
999 	 */
1000 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1001 	/* Get the next period */
1002 	next = tick_init_jiffy_update();
1003 
1004 	for (;;) {
1005 		hrtimer_set_expires(&ts->sched_timer, next);
1006 		if (!tick_program_event(next, 0))
1007 			break;
1008 		next = ktime_add(next, tick_period);
1009 	}
1010 	local_irq_enable();
1011 }
1012 
1013 /*
1014  * When NOHZ is enabled and the tick is stopped, we need to kick the
1015  * tick timer from irq_enter() so that the jiffies update is kept
1016  * alive during long running softirqs. That's ugly as hell, but
1017  * correctness is key even if we need to fix the offending softirq in
1018  * the first place.
1019  *
1020  * Note, this is different to tick_nohz_restart. We just kick the
1021  * timer and do not touch the other magic bits which need to be done
1022  * when idle is left.
1023  */
1024 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1025 {
1026 #if 0
1027 	/* Switch back to 2.6.27 behaviour */
1028 
1029 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1030 	ktime_t delta;
1031 
1032 	/*
1033 	 * Do not touch the tick device, when the next expiry is either
1034 	 * already reached or less/equal than the tick period.
1035 	 */
1036 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1037 	if (delta.tv64 <= tick_period.tv64)
1038 		return;
1039 
1040 	tick_nohz_restart(ts, now);
1041 #endif
1042 }
1043 
1044 static inline void tick_check_nohz(int cpu)
1045 {
1046 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1047 	ktime_t now;
1048 
1049 	if (!ts->idle_active && !ts->tick_stopped)
1050 		return;
1051 	now = ktime_get();
1052 	if (ts->idle_active)
1053 		tick_nohz_stop_idle(cpu, now);
1054 	if (ts->tick_stopped) {
1055 		tick_nohz_update_jiffies(now);
1056 		tick_nohz_kick_tick(cpu, now);
1057 	}
1058 }
1059 
1060 #else
1061 
1062 static inline void tick_nohz_switch_to_nohz(void) { }
1063 static inline void tick_check_nohz(int cpu) { }
1064 
1065 #endif /* CONFIG_NO_HZ_COMMON */
1066 
1067 /*
1068  * Called from irq_enter to notify about the possible interruption of idle()
1069  */
1070 void tick_check_idle(int cpu)
1071 {
1072 	tick_check_oneshot_broadcast(cpu);
1073 	tick_check_nohz(cpu);
1074 }
1075 
1076 /*
1077  * High resolution timer specific code
1078  */
1079 #ifdef CONFIG_HIGH_RES_TIMERS
1080 /*
1081  * We rearm the timer until we get disabled by the idle code.
1082  * Called with interrupts disabled.
1083  */
1084 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1085 {
1086 	struct tick_sched *ts =
1087 		container_of(timer, struct tick_sched, sched_timer);
1088 	struct pt_regs *regs = get_irq_regs();
1089 	ktime_t now = ktime_get();
1090 
1091 	tick_sched_do_timer(now);
1092 
1093 	/*
1094 	 * Do not call, when we are not in irq context and have
1095 	 * no valid regs pointer
1096 	 */
1097 	if (regs)
1098 		tick_sched_handle(ts, regs);
1099 
1100 	hrtimer_forward(timer, now, tick_period);
1101 
1102 	return HRTIMER_RESTART;
1103 }
1104 
1105 static int sched_skew_tick;
1106 
1107 static int __init skew_tick(char *str)
1108 {
1109 	get_option(&str, &sched_skew_tick);
1110 
1111 	return 0;
1112 }
1113 early_param("skew_tick", skew_tick);
1114 
1115 /**
1116  * tick_setup_sched_timer - setup the tick emulation timer
1117  */
1118 void tick_setup_sched_timer(void)
1119 {
1120 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1121 	ktime_t now = ktime_get();
1122 
1123 	/*
1124 	 * Emulate tick processing via per-CPU hrtimers:
1125 	 */
1126 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1127 	ts->sched_timer.function = tick_sched_timer;
1128 
1129 	/* Get the next period (per cpu) */
1130 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1131 
1132 	/* Offset the tick to avert jiffies_lock contention. */
1133 	if (sched_skew_tick) {
1134 		u64 offset = ktime_to_ns(tick_period) >> 1;
1135 		do_div(offset, num_possible_cpus());
1136 		offset *= smp_processor_id();
1137 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1138 	}
1139 
1140 	for (;;) {
1141 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1142 		hrtimer_start_expires(&ts->sched_timer,
1143 				      HRTIMER_MODE_ABS_PINNED);
1144 		/* Check, if the timer was already in the past */
1145 		if (hrtimer_active(&ts->sched_timer))
1146 			break;
1147 		now = ktime_get();
1148 	}
1149 
1150 #ifdef CONFIG_NO_HZ_COMMON
1151 	if (tick_nohz_enabled)
1152 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1153 #endif
1154 }
1155 #endif /* HIGH_RES_TIMERS */
1156 
1157 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1158 void tick_cancel_sched_timer(int cpu)
1159 {
1160 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1161 
1162 # ifdef CONFIG_HIGH_RES_TIMERS
1163 	if (ts->sched_timer.base)
1164 		hrtimer_cancel(&ts->sched_timer);
1165 # endif
1166 
1167 	memset(ts, 0, sizeof(*ts));
1168 }
1169 #endif
1170 
1171 /**
1172  * Async notification about clocksource changes
1173  */
1174 void tick_clock_notify(void)
1175 {
1176 	int cpu;
1177 
1178 	for_each_possible_cpu(cpu)
1179 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1180 }
1181 
1182 /*
1183  * Async notification about clock event changes
1184  */
1185 void tick_oneshot_notify(void)
1186 {
1187 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1188 
1189 	set_bit(0, &ts->check_clocks);
1190 }
1191 
1192 /**
1193  * Check, if a change happened, which makes oneshot possible.
1194  *
1195  * Called cyclic from the hrtimer softirq (driven by the timer
1196  * softirq) allow_nohz signals, that we can switch into low-res nohz
1197  * mode, because high resolution timers are disabled (either compile
1198  * or runtime).
1199  */
1200 int tick_check_oneshot_change(int allow_nohz)
1201 {
1202 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1203 
1204 	if (!test_and_clear_bit(0, &ts->check_clocks))
1205 		return 0;
1206 
1207 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1208 		return 0;
1209 
1210 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1211 		return 0;
1212 
1213 	if (!allow_nohz)
1214 		return 1;
1215 
1216 	tick_nohz_switch_to_nohz();
1217 	return 0;
1218 }
1219