xref: /linux/kernel/time/tick-sched.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  NOHZ implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 /*
48  * The time when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64-bit can do a quick check without holding the jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32-bit cannot do that because the store of 'tick_next_period'
68 	 * consists of two 32-bit stores, and the first store could be
69 	 * moved by the CPU to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on 'jiffies_lock' and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Re-evaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the 'jiffies_seq' protected job */
118 	jiffies_64 += ticks;
119 
120 	/* Keep the tick_next_period variable up to date */
121 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122 
123 	if (IS_ENABLED(CONFIG_64BIT)) {
124 		/*
125 		 * Pairs with smp_load_acquire() in the lockless quick
126 		 * check above, and ensures that the update to 'jiffies_64' is
127 		 * not reordered vs. the store to 'tick_next_period', neither
128 		 * by the compiler nor by the CPU.
129 		 */
130 		smp_store_release(&tick_next_period, nextp);
131 	} else {
132 		/*
133 		 * A plain store is good enough on 32-bit, as the quick check
134 		 * above is protected by the sequence count.
135 		 */
136 		tick_next_period = nextp;
137 	}
138 
139 	/*
140 	 * Release the sequence count. calc_global_load() below is not
141 	 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 	 * concurrent invocations.
143 	 */
144 	write_seqcount_end(&jiffies_seq);
145 
146 	calc_global_load();
147 
148 	raw_spin_unlock(&jiffies_lock);
149 	update_wall_time();
150 }
151 
152 /*
153  * Initialize and return retrieve the jiffies update.
154  */
155 static ktime_t tick_init_jiffy_update(void)
156 {
157 	ktime_t period;
158 
159 	raw_spin_lock(&jiffies_lock);
160 	write_seqcount_begin(&jiffies_seq);
161 
162 	/* Have we started the jiffies update yet ? */
163 	if (last_jiffies_update == 0) {
164 		u32 rem;
165 
166 		/*
167 		 * Ensure that the tick is aligned to a multiple of
168 		 * TICK_NSEC.
169 		 */
170 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 		if (rem)
172 			tick_next_period += TICK_NSEC - rem;
173 
174 		last_jiffies_update = tick_next_period;
175 	}
176 	period = last_jiffies_update;
177 
178 	write_seqcount_end(&jiffies_seq);
179 	raw_spin_unlock(&jiffies_lock);
180 
181 	return period;
182 }
183 
184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 				       unsigned long flag)
186 {
187 	return !!(ts->flags & flag);
188 }
189 
190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 				       unsigned long flag)
192 {
193 	lockdep_assert_irqs_disabled();
194 	ts->flags |= flag;
195 }
196 
197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 					 unsigned long flag)
199 {
200 	lockdep_assert_irqs_disabled();
201 	ts->flags &= ~flag;
202 }
203 
204 #define MAX_STALLED_JIFFIES 5
205 
206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
207 {
208 	int tick_cpu, cpu = smp_processor_id();
209 
210 	/*
211 	 * Check if the do_timer duty was dropped. We don't care about
212 	 * concurrency: This happens only when the CPU in charge went
213 	 * into a long sleep. If two CPUs happen to assign themselves to
214 	 * this duty, then the jiffies update is still serialized by
215 	 * 'jiffies_lock'.
216 	 *
217 	 * If nohz_full is enabled, this should not happen because the
218 	 * 'tick_do_timer_cpu' CPU never relinquishes.
219 	 */
220 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
221 
222 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
223 #ifdef CONFIG_NO_HZ_FULL
224 		WARN_ON_ONCE(tick_nohz_full_running);
225 #endif
226 		WRITE_ONCE(tick_do_timer_cpu, cpu);
227 		tick_cpu = cpu;
228 	}
229 
230 	/* Check if jiffies need an update */
231 	if (tick_cpu == cpu)
232 		tick_do_update_jiffies64(now);
233 
234 	/*
235 	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
236 	 * or VMEXIT'ed for several msecs), force an update.
237 	 */
238 	if (ts->last_tick_jiffies != jiffies) {
239 		ts->stalled_jiffies = 0;
240 		ts->last_tick_jiffies = READ_ONCE(jiffies);
241 	} else {
242 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
243 			tick_do_update_jiffies64(now);
244 			ts->stalled_jiffies = 0;
245 			ts->last_tick_jiffies = READ_ONCE(jiffies);
246 		}
247 	}
248 
249 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
250 		ts->got_idle_tick = 1;
251 }
252 
253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
254 {
255 	/*
256 	 * When we are idle and the tick is stopped, we have to touch
257 	 * the watchdog as we might not schedule for a really long
258 	 * time. This happens on completely idle SMP systems while
259 	 * waiting on the login prompt. We also increment the "start of
260 	 * idle" jiffy stamp so the idle accounting adjustment we do
261 	 * when we go busy again does not account too many ticks.
262 	 */
263 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
264 	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
265 		touch_softlockup_watchdog_sched();
266 		if (is_idle_task(current))
267 			ts->idle_jiffies++;
268 		/*
269 		 * In case the current tick fired too early past its expected
270 		 * expiration, make sure we don't bypass the next clock reprogramming
271 		 * to the same deadline.
272 		 */
273 		ts->next_tick = 0;
274 	}
275 
276 	update_process_times(user_mode(regs));
277 	profile_tick(CPU_PROFILING);
278 }
279 
280 /*
281  * We rearm the timer until we get disabled by the idle code.
282  * Called with interrupts disabled.
283  */
284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
285 {
286 	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
287 	struct pt_regs *regs = get_irq_regs();
288 	ktime_t now = ktime_get();
289 
290 	tick_sched_do_timer(ts, now);
291 
292 	/*
293 	 * Do not call when we are not in IRQ context and have
294 	 * no valid 'regs' pointer
295 	 */
296 	if (regs)
297 		tick_sched_handle(ts, regs);
298 	else
299 		ts->next_tick = 0;
300 
301 	/*
302 	 * In dynticks mode, tick reprogram is deferred:
303 	 * - to the idle task if in dynticks-idle
304 	 * - to IRQ exit if in full-dynticks.
305 	 */
306 	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
307 		return HRTIMER_NORESTART;
308 
309 	hrtimer_forward(timer, now, TICK_NSEC);
310 
311 	return HRTIMER_RESTART;
312 }
313 
314 static void tick_sched_timer_cancel(struct tick_sched *ts)
315 {
316 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
317 		hrtimer_cancel(&ts->sched_timer);
318 	else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
319 		tick_program_event(KTIME_MAX, 1);
320 }
321 
322 #ifdef CONFIG_NO_HZ_FULL
323 cpumask_var_t tick_nohz_full_mask;
324 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
325 bool tick_nohz_full_running;
326 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
327 static atomic_t tick_dep_mask;
328 
329 static bool check_tick_dependency(atomic_t *dep)
330 {
331 	int val = atomic_read(dep);
332 
333 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
334 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
335 		return true;
336 	}
337 
338 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
339 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
340 		return true;
341 	}
342 
343 	if (val & TICK_DEP_MASK_SCHED) {
344 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
345 		return true;
346 	}
347 
348 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
349 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
350 		return true;
351 	}
352 
353 	if (val & TICK_DEP_MASK_RCU) {
354 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
355 		return true;
356 	}
357 
358 	if (val & TICK_DEP_MASK_RCU_EXP) {
359 		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
360 		return true;
361 	}
362 
363 	return false;
364 }
365 
366 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
367 {
368 	lockdep_assert_irqs_disabled();
369 
370 	if (unlikely(!cpu_online(cpu)))
371 		return false;
372 
373 	if (check_tick_dependency(&tick_dep_mask))
374 		return false;
375 
376 	if (check_tick_dependency(&ts->tick_dep_mask))
377 		return false;
378 
379 	if (check_tick_dependency(&current->tick_dep_mask))
380 		return false;
381 
382 	if (check_tick_dependency(&current->signal->tick_dep_mask))
383 		return false;
384 
385 	return true;
386 }
387 
388 static void nohz_full_kick_func(struct irq_work *work)
389 {
390 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
391 }
392 
393 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
394 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
395 
396 /*
397  * Kick this CPU if it's full dynticks in order to force it to
398  * re-evaluate its dependency on the tick and restart it if necessary.
399  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
400  * is NMI safe.
401  */
402 static void tick_nohz_full_kick(void)
403 {
404 	if (!tick_nohz_full_cpu(smp_processor_id()))
405 		return;
406 
407 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
408 }
409 
410 /*
411  * Kick the CPU if it's full dynticks in order to force it to
412  * re-evaluate its dependency on the tick and restart it if necessary.
413  */
414 void tick_nohz_full_kick_cpu(int cpu)
415 {
416 	if (!tick_nohz_full_cpu(cpu))
417 		return;
418 
419 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
420 }
421 
422 static void tick_nohz_kick_task(struct task_struct *tsk)
423 {
424 	int cpu;
425 
426 	/*
427 	 * If the task is not running, run_posix_cpu_timers()
428 	 * has nothing to elapse, and an IPI can then be optimized out.
429 	 *
430 	 * activate_task()                      STORE p->tick_dep_mask
431 	 *   STORE p->on_rq
432 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
433 	 *   LOCK rq->lock                      LOAD p->on_rq
434 	 *   smp_mb__after_spin_lock()
435 	 *   tick_nohz_task_switch()
436 	 *     LOAD p->tick_dep_mask
437 	 *
438 	 * XXX given a task picks up the dependency on schedule(), should we
439 	 * only care about tasks that are currently on the CPU instead of all
440 	 * that are on the runqueue?
441 	 *
442 	 * That is, does this want to be: task_on_cpu() / task_curr()?
443 	 */
444 	if (!sched_task_on_rq(tsk))
445 		return;
446 
447 	/*
448 	 * If the task concurrently migrates to another CPU,
449 	 * we guarantee it sees the new tick dependency upon
450 	 * schedule.
451 	 *
452 	 * set_task_cpu(p, cpu);
453 	 *   STORE p->cpu = @cpu
454 	 * __schedule() (switch to task 'p')
455 	 *   LOCK rq->lock
456 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
457 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
458 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
459 	 */
460 	cpu = task_cpu(tsk);
461 
462 	preempt_disable();
463 	if (cpu_online(cpu))
464 		tick_nohz_full_kick_cpu(cpu);
465 	preempt_enable();
466 }
467 
468 /*
469  * Kick all full dynticks CPUs in order to force these to re-evaluate
470  * their dependency on the tick and restart it if necessary.
471  */
472 static void tick_nohz_full_kick_all(void)
473 {
474 	int cpu;
475 
476 	if (!tick_nohz_full_running)
477 		return;
478 
479 	preempt_disable();
480 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
481 		tick_nohz_full_kick_cpu(cpu);
482 	preempt_enable();
483 }
484 
485 static void tick_nohz_dep_set_all(atomic_t *dep,
486 				  enum tick_dep_bits bit)
487 {
488 	int prev;
489 
490 	prev = atomic_fetch_or(BIT(bit), dep);
491 	if (!prev)
492 		tick_nohz_full_kick_all();
493 }
494 
495 /*
496  * Set a global tick dependency. Used by perf events that rely on freq and
497  * unstable clocks.
498  */
499 void tick_nohz_dep_set(enum tick_dep_bits bit)
500 {
501 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
502 }
503 
504 void tick_nohz_dep_clear(enum tick_dep_bits bit)
505 {
506 	atomic_andnot(BIT(bit), &tick_dep_mask);
507 }
508 
509 /*
510  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
511  * manage event-throttling.
512  */
513 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
514 {
515 	int prev;
516 	struct tick_sched *ts;
517 
518 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
519 
520 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
521 	if (!prev) {
522 		preempt_disable();
523 		/* Perf needs local kick that is NMI safe */
524 		if (cpu == smp_processor_id()) {
525 			tick_nohz_full_kick();
526 		} else {
527 			/* Remote IRQ work not NMI-safe */
528 			if (!WARN_ON_ONCE(in_nmi()))
529 				tick_nohz_full_kick_cpu(cpu);
530 		}
531 		preempt_enable();
532 	}
533 }
534 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
535 
536 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
537 {
538 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
539 
540 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
541 }
542 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
543 
544 /*
545  * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
546  * in order to elapse per task timers.
547  */
548 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
549 {
550 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
551 		tick_nohz_kick_task(tsk);
552 }
553 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
554 
555 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
556 {
557 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
558 }
559 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
560 
561 /*
562  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
563  * per process timers.
564  */
565 void tick_nohz_dep_set_signal(struct task_struct *tsk,
566 			      enum tick_dep_bits bit)
567 {
568 	int prev;
569 	struct signal_struct *sig = tsk->signal;
570 
571 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
572 	if (!prev) {
573 		struct task_struct *t;
574 
575 		lockdep_assert_held(&tsk->sighand->siglock);
576 		__for_each_thread(sig, t)
577 			tick_nohz_kick_task(t);
578 	}
579 }
580 
581 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
582 {
583 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
584 }
585 
586 /*
587  * Re-evaluate the need for the tick as we switch the current task.
588  * It might need the tick due to per task/process properties:
589  * perf events, posix CPU timers, ...
590  */
591 void __tick_nohz_task_switch(void)
592 {
593 	struct tick_sched *ts;
594 
595 	if (!tick_nohz_full_cpu(smp_processor_id()))
596 		return;
597 
598 	ts = this_cpu_ptr(&tick_cpu_sched);
599 
600 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
601 		if (atomic_read(&current->tick_dep_mask) ||
602 		    atomic_read(&current->signal->tick_dep_mask))
603 			tick_nohz_full_kick();
604 	}
605 }
606 
607 /* Get the boot-time nohz CPU list from the kernel parameters. */
608 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
609 {
610 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
611 	cpumask_copy(tick_nohz_full_mask, cpumask);
612 	tick_nohz_full_running = true;
613 }
614 
615 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
616 {
617 	/*
618 	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
619 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
620 	 * CPUs. It must remain online when nohz full is enabled.
621 	 */
622 	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
623 		return false;
624 	return true;
625 }
626 
627 static int tick_nohz_cpu_down(unsigned int cpu)
628 {
629 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
630 }
631 
632 void __init tick_nohz_init(void)
633 {
634 	int cpu, ret;
635 
636 	if (!tick_nohz_full_running)
637 		return;
638 
639 	/*
640 	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
641 	 * locking contexts. But then we need IRQ work to raise its own
642 	 * interrupts to avoid circular dependency on the tick.
643 	 */
644 	if (!arch_irq_work_has_interrupt()) {
645 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
646 		cpumask_clear(tick_nohz_full_mask);
647 		tick_nohz_full_running = false;
648 		return;
649 	}
650 
651 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
652 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
653 		cpu = smp_processor_id();
654 
655 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
656 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
657 				"for timekeeping\n", cpu);
658 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
659 		}
660 	}
661 
662 	for_each_cpu(cpu, tick_nohz_full_mask)
663 		ct_cpu_track_user(cpu);
664 
665 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
666 					"kernel/nohz:predown", NULL,
667 					tick_nohz_cpu_down);
668 	WARN_ON(ret < 0);
669 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
670 		cpumask_pr_args(tick_nohz_full_mask));
671 }
672 #endif /* #ifdef CONFIG_NO_HZ_FULL */
673 
674 /*
675  * NOHZ - aka dynamic tick functionality
676  */
677 #ifdef CONFIG_NO_HZ_COMMON
678 /*
679  * NO HZ enabled ?
680  */
681 bool tick_nohz_enabled __read_mostly  = true;
682 unsigned long tick_nohz_active  __read_mostly;
683 /*
684  * Enable / Disable tickless mode
685  */
686 static int __init setup_tick_nohz(char *str)
687 {
688 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
689 }
690 
691 __setup("nohz=", setup_tick_nohz);
692 
693 bool tick_nohz_tick_stopped(void)
694 {
695 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
696 
697 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
698 }
699 
700 bool tick_nohz_tick_stopped_cpu(int cpu)
701 {
702 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
703 
704 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
705 }
706 
707 /**
708  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
709  * @now: current ktime_t
710  *
711  * Called from interrupt entry when the CPU was idle
712  *
713  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
714  * must be updated. Otherwise an interrupt handler could use a stale jiffy
715  * value. We do this unconditionally on any CPU, as we don't know whether the
716  * CPU, which has the update task assigned, is in a long sleep.
717  */
718 static void tick_nohz_update_jiffies(ktime_t now)
719 {
720 	unsigned long flags;
721 
722 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
723 
724 	local_irq_save(flags);
725 	tick_do_update_jiffies64(now);
726 	local_irq_restore(flags);
727 
728 	touch_softlockup_watchdog_sched();
729 }
730 
731 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
732 {
733 	ktime_t delta;
734 
735 	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
736 		return;
737 
738 	delta = ktime_sub(now, ts->idle_entrytime);
739 
740 	write_seqcount_begin(&ts->idle_sleeptime_seq);
741 	if (nr_iowait_cpu(smp_processor_id()) > 0)
742 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
743 	else
744 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
745 
746 	ts->idle_entrytime = now;
747 	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
748 	write_seqcount_end(&ts->idle_sleeptime_seq);
749 
750 	sched_clock_idle_wakeup_event();
751 }
752 
753 static void tick_nohz_start_idle(struct tick_sched *ts)
754 {
755 	write_seqcount_begin(&ts->idle_sleeptime_seq);
756 	ts->idle_entrytime = ktime_get();
757 	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
758 	write_seqcount_end(&ts->idle_sleeptime_seq);
759 
760 	sched_clock_idle_sleep_event();
761 }
762 
763 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
764 				 bool compute_delta, u64 *last_update_time)
765 {
766 	ktime_t now, idle;
767 	unsigned int seq;
768 
769 	if (!tick_nohz_active)
770 		return -1;
771 
772 	now = ktime_get();
773 	if (last_update_time)
774 		*last_update_time = ktime_to_us(now);
775 
776 	do {
777 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
778 
779 		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
780 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
781 
782 			idle = ktime_add(*sleeptime, delta);
783 		} else {
784 			idle = *sleeptime;
785 		}
786 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
787 
788 	return ktime_to_us(idle);
789 
790 }
791 
792 /**
793  * get_cpu_idle_time_us - get the total idle time of a CPU
794  * @cpu: CPU number to query
795  * @last_update_time: variable to store update time in. Do not update
796  * counters if NULL.
797  *
798  * Return the cumulative idle time (since boot) for a given
799  * CPU, in microseconds. Note that this is partially broken due to
800  * the counter of iowait tasks that can be remotely updated without
801  * any synchronization. Therefore it is possible to observe backward
802  * values within two consecutive reads.
803  *
804  * This time is measured via accounting rather than sampling,
805  * and is as accurate as ktime_get() is.
806  *
807  * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
808  */
809 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
810 {
811 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
812 
813 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
814 				     !nr_iowait_cpu(cpu), last_update_time);
815 }
816 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
817 
818 /**
819  * get_cpu_iowait_time_us - get the total iowait time of a CPU
820  * @cpu: CPU number to query
821  * @last_update_time: variable to store update time in. Do not update
822  * counters if NULL.
823  *
824  * Return the cumulative iowait time (since boot) for a given
825  * CPU, in microseconds. Note this is partially broken due to
826  * the counter of iowait tasks that can be remotely updated without
827  * any synchronization. Therefore it is possible to observe backward
828  * values within two consecutive reads.
829  *
830  * This time is measured via accounting rather than sampling,
831  * and is as accurate as ktime_get() is.
832  *
833  * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
834  */
835 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
836 {
837 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
838 
839 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
840 				     nr_iowait_cpu(cpu), last_update_time);
841 }
842 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
843 
844 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
845 {
846 	hrtimer_cancel(&ts->sched_timer);
847 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
848 
849 	/* Forward the time to expire in the future */
850 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
851 
852 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
853 		hrtimer_start_expires(&ts->sched_timer,
854 				      HRTIMER_MODE_ABS_PINNED_HARD);
855 	} else {
856 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
857 	}
858 
859 	/*
860 	 * Reset to make sure the next tick stop doesn't get fooled by past
861 	 * cached clock deadline.
862 	 */
863 	ts->next_tick = 0;
864 }
865 
866 static inline bool local_timer_softirq_pending(void)
867 {
868 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
869 }
870 
871 /*
872  * Read jiffies and the time when jiffies were updated last
873  */
874 u64 get_jiffies_update(unsigned long *basej)
875 {
876 	unsigned long basejiff;
877 	unsigned int seq;
878 	u64 basemono;
879 
880 	do {
881 		seq = read_seqcount_begin(&jiffies_seq);
882 		basemono = last_jiffies_update;
883 		basejiff = jiffies;
884 	} while (read_seqcount_retry(&jiffies_seq, seq));
885 	*basej = basejiff;
886 	return basemono;
887 }
888 
889 /**
890  * tick_nohz_next_event() - return the clock monotonic based next event
891  * @ts:		pointer to tick_sched struct
892  * @cpu:	CPU number
893  *
894  * Return:
895  * *%0		- When the next event is a maximum of TICK_NSEC in the future
896  *		  and the tick is not stopped yet
897  * *%next_event	- Next event based on clock monotonic
898  */
899 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
900 {
901 	u64 basemono, next_tick, delta, expires;
902 	unsigned long basejiff;
903 	int tick_cpu;
904 
905 	basemono = get_jiffies_update(&basejiff);
906 	ts->last_jiffies = basejiff;
907 	ts->timer_expires_base = basemono;
908 
909 	/*
910 	 * Keep the periodic tick, when RCU, architecture or irq_work
911 	 * requests it.
912 	 * Aside of that, check whether the local timer softirq is
913 	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
914 	 * because there is an already expired timer, so it will request
915 	 * immediate expiry, which rearms the hardware timer with a
916 	 * minimal delta, which brings us back to this place
917 	 * immediately. Lather, rinse and repeat...
918 	 */
919 	if (rcu_needs_cpu() || arch_needs_cpu() ||
920 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
921 		next_tick = basemono + TICK_NSEC;
922 	} else {
923 		/*
924 		 * Get the next pending timer. If high resolution
925 		 * timers are enabled this only takes the timer wheel
926 		 * timers into account. If high resolution timers are
927 		 * disabled this also looks at the next expiring
928 		 * hrtimer.
929 		 */
930 		next_tick = get_next_timer_interrupt(basejiff, basemono);
931 		ts->next_timer = next_tick;
932 	}
933 
934 	/* Make sure next_tick is never before basemono! */
935 	if (WARN_ON_ONCE(basemono > next_tick))
936 		next_tick = basemono;
937 
938 	/*
939 	 * If the tick is due in the next period, keep it ticking or
940 	 * force prod the timer.
941 	 */
942 	delta = next_tick - basemono;
943 	if (delta <= (u64)TICK_NSEC) {
944 		/*
945 		 * We've not stopped the tick yet, and there's a timer in the
946 		 * next period, so no point in stopping it either, bail.
947 		 */
948 		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
949 			ts->timer_expires = 0;
950 			goto out;
951 		}
952 	}
953 
954 	/*
955 	 * If this CPU is the one which had the do_timer() duty last, we limit
956 	 * the sleep time to the timekeeping 'max_deferment' value.
957 	 * Otherwise we can sleep as long as we want.
958 	 */
959 	delta = timekeeping_max_deferment();
960 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
961 	if (tick_cpu != cpu &&
962 	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
963 		delta = KTIME_MAX;
964 
965 	/* Calculate the next expiry time */
966 	if (delta < (KTIME_MAX - basemono))
967 		expires = basemono + delta;
968 	else
969 		expires = KTIME_MAX;
970 
971 	ts->timer_expires = min_t(u64, expires, next_tick);
972 
973 out:
974 	return ts->timer_expires;
975 }
976 
977 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
978 {
979 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
980 	unsigned long basejiff = ts->last_jiffies;
981 	u64 basemono = ts->timer_expires_base;
982 	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
983 	int tick_cpu;
984 	u64 expires;
985 
986 	/* Make sure we won't be trying to stop it twice in a row. */
987 	ts->timer_expires_base = 0;
988 
989 	/*
990 	 * Now the tick should be stopped definitely - so the timer base needs
991 	 * to be marked idle as well to not miss a newly queued timer.
992 	 */
993 	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
994 	if (expires > ts->timer_expires) {
995 		/*
996 		 * This path could only happen when the first timer was removed
997 		 * between calculating the possible sleep length and now (when
998 		 * high resolution mode is not active, timer could also be a
999 		 * hrtimer).
1000 		 *
1001 		 * We have to stick to the original calculated expiry value to
1002 		 * not stop the tick for too long with a shallow C-state (which
1003 		 * was programmed by cpuidle because of an early next expiration
1004 		 * value).
1005 		 */
1006 		expires = ts->timer_expires;
1007 	}
1008 
1009 	/* If the timer base is not idle, retain the not yet stopped tick. */
1010 	if (!timer_idle)
1011 		return;
1012 
1013 	/*
1014 	 * If this CPU is the one which updates jiffies, then give up
1015 	 * the assignment and let it be taken by the CPU which runs
1016 	 * the tick timer next, which might be this CPU as well. If we
1017 	 * don't drop this here, the jiffies might be stale and
1018 	 * do_timer() never gets invoked. Keep track of the fact that it
1019 	 * was the one which had the do_timer() duty last.
1020 	 */
1021 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1022 	if (tick_cpu == cpu) {
1023 		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1024 		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1025 	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1026 		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1027 	}
1028 
1029 	/* Skip reprogram of event if it's not changed */
1030 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1031 		/* Sanity check: make sure clockevent is actually programmed */
1032 		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1033 			return;
1034 
1035 		WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1036 			  "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1037 			  dev->next_event, hrtimer_active(&ts->sched_timer),
1038 			  hrtimer_get_expires(&ts->sched_timer));
1039 	}
1040 
1041 	/*
1042 	 * tick_nohz_stop_tick() can be called several times before
1043 	 * tick_nohz_restart_sched_tick() is called. This happens when
1044 	 * interrupts arrive which do not cause a reschedule. In the first
1045 	 * call we save the current tick time, so we can restart the
1046 	 * scheduler tick in tick_nohz_restart_sched_tick().
1047 	 */
1048 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1049 		calc_load_nohz_start();
1050 		quiet_vmstat();
1051 
1052 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1053 		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1054 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1055 	}
1056 
1057 	ts->next_tick = expires;
1058 
1059 	/*
1060 	 * If the expiration time == KTIME_MAX, then we simply stop
1061 	 * the tick timer.
1062 	 */
1063 	if (unlikely(expires == KTIME_MAX)) {
1064 		tick_sched_timer_cancel(ts);
1065 		return;
1066 	}
1067 
1068 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1069 		hrtimer_start(&ts->sched_timer, expires,
1070 			      HRTIMER_MODE_ABS_PINNED_HARD);
1071 	} else {
1072 		hrtimer_set_expires(&ts->sched_timer, expires);
1073 		tick_program_event(expires, 1);
1074 	}
1075 }
1076 
1077 static void tick_nohz_retain_tick(struct tick_sched *ts)
1078 {
1079 	ts->timer_expires_base = 0;
1080 }
1081 
1082 #ifdef CONFIG_NO_HZ_FULL
1083 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1084 {
1085 	if (tick_nohz_next_event(ts, cpu))
1086 		tick_nohz_stop_tick(ts, cpu);
1087 	else
1088 		tick_nohz_retain_tick(ts);
1089 }
1090 #endif /* CONFIG_NO_HZ_FULL */
1091 
1092 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1093 {
1094 	/* Update jiffies first */
1095 	tick_do_update_jiffies64(now);
1096 
1097 	/*
1098 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1099 	 * the clock forward checks in the enqueue path:
1100 	 */
1101 	timer_clear_idle();
1102 
1103 	calc_load_nohz_stop();
1104 	touch_softlockup_watchdog_sched();
1105 
1106 	/* Cancel the scheduled timer and restore the tick: */
1107 	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1108 	tick_nohz_restart(ts, now);
1109 }
1110 
1111 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1112 					 ktime_t now)
1113 {
1114 #ifdef CONFIG_NO_HZ_FULL
1115 	int cpu = smp_processor_id();
1116 
1117 	if (can_stop_full_tick(cpu, ts))
1118 		tick_nohz_full_stop_tick(ts, cpu);
1119 	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1120 		tick_nohz_restart_sched_tick(ts, now);
1121 #endif
1122 }
1123 
1124 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1125 {
1126 	if (!tick_nohz_full_cpu(smp_processor_id()))
1127 		return;
1128 
1129 	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1130 		return;
1131 
1132 	__tick_nohz_full_update_tick(ts, ktime_get());
1133 }
1134 
1135 /*
1136  * A pending softirq outside an IRQ (or softirq disabled section) context
1137  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1138  * reach this code due to the need_resched() early check in can_stop_idle_tick().
1139  *
1140  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1141  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1142  * triggering the code below, since wakep_softirqd() is ignored.
1143  *
1144  */
1145 static bool report_idle_softirq(void)
1146 {
1147 	static int ratelimit;
1148 	unsigned int pending = local_softirq_pending();
1149 
1150 	if (likely(!pending))
1151 		return false;
1152 
1153 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1154 	if (!cpu_active(smp_processor_id())) {
1155 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1156 		if (!pending)
1157 			return false;
1158 	}
1159 
1160 	if (ratelimit >= 10)
1161 		return false;
1162 
1163 	/* On RT, softirq handling may be waiting on some lock */
1164 	if (local_bh_blocked())
1165 		return false;
1166 
1167 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1168 		pending);
1169 	ratelimit++;
1170 
1171 	return true;
1172 }
1173 
1174 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1175 {
1176 	WARN_ON_ONCE(cpu_is_offline(cpu));
1177 
1178 	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1179 		return false;
1180 
1181 	if (need_resched())
1182 		return false;
1183 
1184 	if (unlikely(report_idle_softirq()))
1185 		return false;
1186 
1187 	if (tick_nohz_full_enabled()) {
1188 		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1189 
1190 		/*
1191 		 * Keep the tick alive to guarantee timekeeping progression
1192 		 * if there are full dynticks CPUs around
1193 		 */
1194 		if (tick_cpu == cpu)
1195 			return false;
1196 
1197 		/* Should not happen for nohz-full */
1198 		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1199 			return false;
1200 	}
1201 
1202 	return true;
1203 }
1204 
1205 /**
1206  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1207  *
1208  * When the next event is more than a tick into the future, stop the idle tick
1209  */
1210 void tick_nohz_idle_stop_tick(void)
1211 {
1212 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1213 	int cpu = smp_processor_id();
1214 	ktime_t expires;
1215 
1216 	/*
1217 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1218 	 * tick timer expiration time is known already.
1219 	 */
1220 	if (ts->timer_expires_base)
1221 		expires = ts->timer_expires;
1222 	else if (can_stop_idle_tick(cpu, ts))
1223 		expires = tick_nohz_next_event(ts, cpu);
1224 	else
1225 		return;
1226 
1227 	ts->idle_calls++;
1228 
1229 	if (expires > 0LL) {
1230 		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1231 
1232 		tick_nohz_stop_tick(ts, cpu);
1233 
1234 		ts->idle_sleeps++;
1235 		ts->idle_expires = expires;
1236 
1237 		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1238 			ts->idle_jiffies = ts->last_jiffies;
1239 			nohz_balance_enter_idle(cpu);
1240 		}
1241 	} else {
1242 		tick_nohz_retain_tick(ts);
1243 	}
1244 }
1245 
1246 void tick_nohz_idle_retain_tick(void)
1247 {
1248 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1249 }
1250 
1251 /**
1252  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1253  *
1254  * Called when we start the idle loop.
1255  */
1256 void tick_nohz_idle_enter(void)
1257 {
1258 	struct tick_sched *ts;
1259 
1260 	lockdep_assert_irqs_enabled();
1261 
1262 	local_irq_disable();
1263 
1264 	ts = this_cpu_ptr(&tick_cpu_sched);
1265 
1266 	WARN_ON_ONCE(ts->timer_expires_base);
1267 
1268 	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1269 	tick_nohz_start_idle(ts);
1270 
1271 	local_irq_enable();
1272 }
1273 
1274 /**
1275  * tick_nohz_irq_exit - Notify the tick about IRQ exit
1276  *
1277  * A timer may have been added/modified/deleted either by the current IRQ,
1278  * or by another place using this IRQ as a notification. This IRQ may have
1279  * also updated the RCU callback list. These events may require a
1280  * re-evaluation of the next tick. Depending on the context:
1281  *
1282  * 1) If the CPU is idle and no resched is pending, just proceed with idle
1283  *    time accounting. The next tick will be re-evaluated on the next idle
1284  *    loop iteration.
1285  *
1286  * 2) If the CPU is nohz_full:
1287  *
1288  *    2.1) If there is any tick dependency, restart the tick if stopped.
1289  *
1290  *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1291  *         stop/update it accordingly.
1292  */
1293 void tick_nohz_irq_exit(void)
1294 {
1295 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1296 
1297 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1298 		tick_nohz_start_idle(ts);
1299 	else
1300 		tick_nohz_full_update_tick(ts);
1301 }
1302 
1303 /**
1304  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1305  *
1306  * Return: %true if the tick handler has run, otherwise %false
1307  */
1308 bool tick_nohz_idle_got_tick(void)
1309 {
1310 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1311 
1312 	if (ts->got_idle_tick) {
1313 		ts->got_idle_tick = 0;
1314 		return true;
1315 	}
1316 	return false;
1317 }
1318 
1319 /**
1320  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1321  * or the tick, whichever expires first. Note that, if the tick has been
1322  * stopped, it returns the next hrtimer.
1323  *
1324  * Called from power state control code with interrupts disabled
1325  *
1326  * Return: the next expiration time
1327  */
1328 ktime_t tick_nohz_get_next_hrtimer(void)
1329 {
1330 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1331 }
1332 
1333 /**
1334  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1335  * @delta_next: duration until the next event if the tick cannot be stopped
1336  *
1337  * Called from power state control code with interrupts disabled.
1338  *
1339  * The return value of this function and/or the value returned by it through the
1340  * @delta_next pointer can be negative which must be taken into account by its
1341  * callers.
1342  *
1343  * Return: the expected length of the current sleep
1344  */
1345 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1346 {
1347 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1348 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1349 	int cpu = smp_processor_id();
1350 	/*
1351 	 * The idle entry time is expected to be a sufficient approximation of
1352 	 * the current time at this point.
1353 	 */
1354 	ktime_t now = ts->idle_entrytime;
1355 	ktime_t next_event;
1356 
1357 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1358 
1359 	*delta_next = ktime_sub(dev->next_event, now);
1360 
1361 	if (!can_stop_idle_tick(cpu, ts))
1362 		return *delta_next;
1363 
1364 	next_event = tick_nohz_next_event(ts, cpu);
1365 	if (!next_event)
1366 		return *delta_next;
1367 
1368 	/*
1369 	 * If the next highres timer to expire is earlier than 'next_event', the
1370 	 * idle governor needs to know that.
1371 	 */
1372 	next_event = min_t(u64, next_event,
1373 			   hrtimer_next_event_without(&ts->sched_timer));
1374 
1375 	return ktime_sub(next_event, now);
1376 }
1377 
1378 /**
1379  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1380  * for a particular CPU.
1381  * @cpu: target CPU number
1382  *
1383  * Called from the schedutil frequency scaling governor in scheduler context.
1384  *
1385  * Return: the current idle calls counter value for @cpu
1386  */
1387 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1388 {
1389 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1390 
1391 	return ts->idle_calls;
1392 }
1393 
1394 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1395 					ktime_t now)
1396 {
1397 	unsigned long ticks;
1398 
1399 	ts->idle_exittime = now;
1400 
1401 	if (vtime_accounting_enabled_this_cpu())
1402 		return;
1403 	/*
1404 	 * We stopped the tick in idle. update_process_times() would miss the
1405 	 * time we slept, as it does only a 1 tick accounting.
1406 	 * Enforce that this is accounted to idle !
1407 	 */
1408 	ticks = jiffies - ts->idle_jiffies;
1409 	/*
1410 	 * We might be one off. Do not randomly account a huge number of ticks!
1411 	 */
1412 	if (ticks && ticks < LONG_MAX)
1413 		account_idle_ticks(ticks);
1414 }
1415 
1416 void tick_nohz_idle_restart_tick(void)
1417 {
1418 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1419 
1420 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1421 		ktime_t now = ktime_get();
1422 		tick_nohz_restart_sched_tick(ts, now);
1423 		tick_nohz_account_idle_time(ts, now);
1424 	}
1425 }
1426 
1427 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1428 {
1429 	if (tick_nohz_full_cpu(smp_processor_id()))
1430 		__tick_nohz_full_update_tick(ts, now);
1431 	else
1432 		tick_nohz_restart_sched_tick(ts, now);
1433 
1434 	tick_nohz_account_idle_time(ts, now);
1435 }
1436 
1437 /**
1438  * tick_nohz_idle_exit - Update the tick upon idle task exit
1439  *
1440  * When the idle task exits, update the tick depending on the
1441  * following situations:
1442  *
1443  * 1) If the CPU is not in nohz_full mode (most cases), then
1444  *    restart the tick.
1445  *
1446  * 2) If the CPU is in nohz_full mode (corner case):
1447  *   2.1) If the tick can be kept stopped (no tick dependencies)
1448  *        then re-evaluate the next tick and try to keep it stopped
1449  *        as long as possible.
1450  *   2.2) If the tick has dependencies, restart the tick.
1451  *
1452  */
1453 void tick_nohz_idle_exit(void)
1454 {
1455 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1456 	bool idle_active, tick_stopped;
1457 	ktime_t now;
1458 
1459 	local_irq_disable();
1460 
1461 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1462 	WARN_ON_ONCE(ts->timer_expires_base);
1463 
1464 	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1465 	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1466 	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1467 
1468 	if (idle_active || tick_stopped)
1469 		now = ktime_get();
1470 
1471 	if (idle_active)
1472 		tick_nohz_stop_idle(ts, now);
1473 
1474 	if (tick_stopped)
1475 		tick_nohz_idle_update_tick(ts, now);
1476 
1477 	local_irq_enable();
1478 }
1479 
1480 /*
1481  * In low-resolution mode, the tick handler must be implemented directly
1482  * at the clockevent level. hrtimer can't be used instead, because its
1483  * infrastructure actually relies on the tick itself as a backend in
1484  * low-resolution mode (see hrtimer_run_queues()).
1485  */
1486 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1487 {
1488 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1489 
1490 	dev->next_event = KTIME_MAX;
1491 
1492 	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1493 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1494 }
1495 
1496 static inline void tick_nohz_activate(struct tick_sched *ts)
1497 {
1498 	if (!tick_nohz_enabled)
1499 		return;
1500 	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1501 	/* One update is enough */
1502 	if (!test_and_set_bit(0, &tick_nohz_active))
1503 		timers_update_nohz();
1504 }
1505 
1506 /**
1507  * tick_nohz_switch_to_nohz - switch to NOHZ mode
1508  */
1509 static void tick_nohz_switch_to_nohz(void)
1510 {
1511 	if (!tick_nohz_enabled)
1512 		return;
1513 
1514 	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1515 		return;
1516 
1517 	/*
1518 	 * Recycle the hrtimer in 'ts', so we can share the
1519 	 * highres code.
1520 	 */
1521 	tick_setup_sched_timer(false);
1522 }
1523 
1524 static inline void tick_nohz_irq_enter(void)
1525 {
1526 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1527 	ktime_t now;
1528 
1529 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1530 		return;
1531 	now = ktime_get();
1532 	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1533 		tick_nohz_stop_idle(ts, now);
1534 	/*
1535 	 * If all CPUs are idle we may need to update a stale jiffies value.
1536 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1537 	 * alive but it might be busy looping with interrupts disabled in some
1538 	 * rare case (typically stop machine). So we must make sure we have a
1539 	 * last resort.
1540 	 */
1541 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1542 		tick_nohz_update_jiffies(now);
1543 }
1544 
1545 #else
1546 
1547 static inline void tick_nohz_switch_to_nohz(void) { }
1548 static inline void tick_nohz_irq_enter(void) { }
1549 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1550 
1551 #endif /* CONFIG_NO_HZ_COMMON */
1552 
1553 /*
1554  * Called from irq_enter() to notify about the possible interruption of idle()
1555  */
1556 void tick_irq_enter(void)
1557 {
1558 	tick_check_oneshot_broadcast_this_cpu();
1559 	tick_nohz_irq_enter();
1560 }
1561 
1562 static int sched_skew_tick;
1563 
1564 static int __init skew_tick(char *str)
1565 {
1566 	get_option(&str, &sched_skew_tick);
1567 
1568 	return 0;
1569 }
1570 early_param("skew_tick", skew_tick);
1571 
1572 /**
1573  * tick_setup_sched_timer - setup the tick emulation timer
1574  * @hrtimer: whether to use the hrtimer or not
1575  */
1576 void tick_setup_sched_timer(bool hrtimer)
1577 {
1578 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1579 
1580 	/* Emulate tick processing via per-CPU hrtimers: */
1581 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1582 
1583 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1584 		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1585 		ts->sched_timer.function = tick_nohz_handler;
1586 	}
1587 
1588 	/* Get the next period (per-CPU) */
1589 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1590 
1591 	/* Offset the tick to avert 'jiffies_lock' contention. */
1592 	if (sched_skew_tick) {
1593 		u64 offset = TICK_NSEC >> 1;
1594 		do_div(offset, num_possible_cpus());
1595 		offset *= smp_processor_id();
1596 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1597 	}
1598 
1599 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1600 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1601 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1602 	else
1603 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1604 	tick_nohz_activate(ts);
1605 }
1606 
1607 /*
1608  * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1609  * duty before disabling IRQs in idle for the last time.
1610  */
1611 void tick_sched_timer_dying(int cpu)
1612 {
1613 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1614 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1615 	struct clock_event_device *dev = td->evtdev;
1616 	ktime_t idle_sleeptime, iowait_sleeptime;
1617 	unsigned long idle_calls, idle_sleeps;
1618 
1619 	/* This must happen before hrtimers are migrated! */
1620 	tick_sched_timer_cancel(ts);
1621 
1622 	/*
1623 	 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1624 	 * make sure not to call low-res tick handler.
1625 	 */
1626 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1627 		dev->event_handler = clockevents_handle_noop;
1628 
1629 	idle_sleeptime = ts->idle_sleeptime;
1630 	iowait_sleeptime = ts->iowait_sleeptime;
1631 	idle_calls = ts->idle_calls;
1632 	idle_sleeps = ts->idle_sleeps;
1633 	memset(ts, 0, sizeof(*ts));
1634 	ts->idle_sleeptime = idle_sleeptime;
1635 	ts->iowait_sleeptime = iowait_sleeptime;
1636 	ts->idle_calls = idle_calls;
1637 	ts->idle_sleeps = idle_sleeps;
1638 }
1639 
1640 /*
1641  * Async notification about clocksource changes
1642  */
1643 void tick_clock_notify(void)
1644 {
1645 	int cpu;
1646 
1647 	for_each_possible_cpu(cpu)
1648 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1649 }
1650 
1651 /*
1652  * Async notification about clock event changes
1653  */
1654 void tick_oneshot_notify(void)
1655 {
1656 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1657 
1658 	set_bit(0, &ts->check_clocks);
1659 }
1660 
1661 /*
1662  * Check if a change happened, which makes oneshot possible.
1663  *
1664  * Called cyclically from the hrtimer softirq (driven by the timer
1665  * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1666  * mode, because high resolution timers are disabled (either compile
1667  * or runtime). Called with interrupts disabled.
1668  */
1669 int tick_check_oneshot_change(int allow_nohz)
1670 {
1671 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1672 
1673 	if (!test_and_clear_bit(0, &ts->check_clocks))
1674 		return 0;
1675 
1676 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1677 		return 0;
1678 
1679 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1680 		return 0;
1681 
1682 	if (!allow_nohz)
1683 		return 1;
1684 
1685 	tick_nohz_switch_to_nohz();
1686 	return 0;
1687 }
1688