1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 static int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 ts->idle_waketime = now; 143 144 local_irq_save(flags); 145 tick_do_update_jiffies64(now); 146 local_irq_restore(flags); 147 148 touch_softlockup_watchdog(); 149 } 150 151 /* 152 * Updates the per cpu time idle statistics counters 153 */ 154 static void 155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 156 { 157 ktime_t delta; 158 159 if (ts->idle_active) { 160 delta = ktime_sub(now, ts->idle_entrytime); 161 if (nr_iowait_cpu(cpu) > 0) 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 163 else 164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now; 186 187 now = ktime_get(); 188 189 update_ts_time_stats(cpu, ts, now, NULL); 190 191 ts->idle_entrytime = now; 192 ts->idle_active = 1; 193 sched_clock_idle_sleep_event(); 194 return now; 195 } 196 197 /** 198 * get_cpu_idle_time_us - get the total idle time of a cpu 199 * @cpu: CPU number to query 200 * @last_update_time: variable to store update time in. Do not update 201 * counters if NULL. 202 * 203 * Return the cummulative idle time (since boot) for a given 204 * CPU, in microseconds. 205 * 206 * This time is measured via accounting rather than sampling, 207 * and is as accurate as ktime_get() is. 208 * 209 * This function returns -1 if NOHZ is not enabled. 210 */ 211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 212 { 213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 214 ktime_t now, idle; 215 216 if (!tick_nohz_enabled) 217 return -1; 218 219 now = ktime_get(); 220 if (last_update_time) { 221 update_ts_time_stats(cpu, ts, now, last_update_time); 222 idle = ts->idle_sleeptime; 223 } else { 224 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 225 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 226 227 idle = ktime_add(ts->idle_sleeptime, delta); 228 } else { 229 idle = ts->idle_sleeptime; 230 } 231 } 232 233 return ktime_to_us(idle); 234 235 } 236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 237 238 /** 239 * get_cpu_iowait_time_us - get the total iowait time of a cpu 240 * @cpu: CPU number to query 241 * @last_update_time: variable to store update time in. Do not update 242 * counters if NULL. 243 * 244 * Return the cummulative iowait time (since boot) for a given 245 * CPU, in microseconds. 246 * 247 * This time is measured via accounting rather than sampling, 248 * and is as accurate as ktime_get() is. 249 * 250 * This function returns -1 if NOHZ is not enabled. 251 */ 252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 253 { 254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 255 ktime_t now, iowait; 256 257 if (!tick_nohz_enabled) 258 return -1; 259 260 now = ktime_get(); 261 if (last_update_time) { 262 update_ts_time_stats(cpu, ts, now, last_update_time); 263 iowait = ts->iowait_sleeptime; 264 } else { 265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 266 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 267 268 iowait = ktime_add(ts->iowait_sleeptime, delta); 269 } else { 270 iowait = ts->iowait_sleeptime; 271 } 272 } 273 274 return ktime_to_us(iowait); 275 } 276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 277 278 static void tick_nohz_stop_sched_tick(struct tick_sched *ts) 279 { 280 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 281 ktime_t last_update, expires, now; 282 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 283 u64 time_delta; 284 int cpu; 285 286 cpu = smp_processor_id(); 287 ts = &per_cpu(tick_cpu_sched, cpu); 288 289 now = tick_nohz_start_idle(cpu, ts); 290 291 /* 292 * If this cpu is offline and it is the one which updates 293 * jiffies, then give up the assignment and let it be taken by 294 * the cpu which runs the tick timer next. If we don't drop 295 * this here the jiffies might be stale and do_timer() never 296 * invoked. 297 */ 298 if (unlikely(!cpu_online(cpu))) { 299 if (cpu == tick_do_timer_cpu) 300 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 301 } 302 303 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 304 return; 305 306 if (need_resched()) 307 return; 308 309 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 310 static int ratelimit; 311 312 if (ratelimit < 10) { 313 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 314 (unsigned int) local_softirq_pending()); 315 ratelimit++; 316 } 317 return; 318 } 319 320 ts->idle_calls++; 321 /* Read jiffies and the time when jiffies were updated last */ 322 do { 323 seq = read_seqbegin(&xtime_lock); 324 last_update = last_jiffies_update; 325 last_jiffies = jiffies; 326 time_delta = timekeeping_max_deferment(); 327 } while (read_seqretry(&xtime_lock, seq)); 328 329 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || 330 arch_needs_cpu(cpu)) { 331 next_jiffies = last_jiffies + 1; 332 delta_jiffies = 1; 333 } else { 334 /* Get the next timer wheel timer */ 335 next_jiffies = get_next_timer_interrupt(last_jiffies); 336 delta_jiffies = next_jiffies - last_jiffies; 337 } 338 /* 339 * Do not stop the tick, if we are only one off 340 * or if the cpu is required for rcu 341 */ 342 if (!ts->tick_stopped && delta_jiffies == 1) 343 goto out; 344 345 /* Schedule the tick, if we are at least one jiffie off */ 346 if ((long)delta_jiffies >= 1) { 347 348 /* 349 * If this cpu is the one which updates jiffies, then 350 * give up the assignment and let it be taken by the 351 * cpu which runs the tick timer next, which might be 352 * this cpu as well. If we don't drop this here the 353 * jiffies might be stale and do_timer() never 354 * invoked. Keep track of the fact that it was the one 355 * which had the do_timer() duty last. If this cpu is 356 * the one which had the do_timer() duty last, we 357 * limit the sleep time to the timekeeping 358 * max_deferement value which we retrieved 359 * above. Otherwise we can sleep as long as we want. 360 */ 361 if (cpu == tick_do_timer_cpu) { 362 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 363 ts->do_timer_last = 1; 364 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 365 time_delta = KTIME_MAX; 366 ts->do_timer_last = 0; 367 } else if (!ts->do_timer_last) { 368 time_delta = KTIME_MAX; 369 } 370 371 /* 372 * calculate the expiry time for the next timer wheel 373 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 374 * that there is no timer pending or at least extremely 375 * far into the future (12 days for HZ=1000). In this 376 * case we set the expiry to the end of time. 377 */ 378 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 379 /* 380 * Calculate the time delta for the next timer event. 381 * If the time delta exceeds the maximum time delta 382 * permitted by the current clocksource then adjust 383 * the time delta accordingly to ensure the 384 * clocksource does not wrap. 385 */ 386 time_delta = min_t(u64, time_delta, 387 tick_period.tv64 * delta_jiffies); 388 } 389 390 if (time_delta < KTIME_MAX) 391 expires = ktime_add_ns(last_update, time_delta); 392 else 393 expires.tv64 = KTIME_MAX; 394 395 /* Skip reprogram of event if its not changed */ 396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 397 goto out; 398 399 /* 400 * nohz_stop_sched_tick can be called several times before 401 * the nohz_restart_sched_tick is called. This happens when 402 * interrupts arrive which do not cause a reschedule. In the 403 * first call we save the current tick time, so we can restart 404 * the scheduler tick in nohz_restart_sched_tick. 405 */ 406 if (!ts->tick_stopped) { 407 select_nohz_load_balancer(1); 408 409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 410 ts->tick_stopped = 1; 411 ts->idle_jiffies = last_jiffies; 412 } 413 414 ts->idle_sleeps++; 415 416 /* Mark expires */ 417 ts->idle_expires = expires; 418 419 /* 420 * If the expiration time == KTIME_MAX, then 421 * in this case we simply stop the tick timer. 422 */ 423 if (unlikely(expires.tv64 == KTIME_MAX)) { 424 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 425 hrtimer_cancel(&ts->sched_timer); 426 goto out; 427 } 428 429 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 430 hrtimer_start(&ts->sched_timer, expires, 431 HRTIMER_MODE_ABS_PINNED); 432 /* Check, if the timer was already in the past */ 433 if (hrtimer_active(&ts->sched_timer)) 434 goto out; 435 } else if (!tick_program_event(expires, 0)) 436 goto out; 437 /* 438 * We are past the event already. So we crossed a 439 * jiffie boundary. Update jiffies and raise the 440 * softirq. 441 */ 442 tick_do_update_jiffies64(ktime_get()); 443 } 444 raise_softirq_irqoff(TIMER_SOFTIRQ); 445 out: 446 ts->next_jiffies = next_jiffies; 447 ts->last_jiffies = last_jiffies; 448 ts->sleep_length = ktime_sub(dev->next_event, now); 449 } 450 451 /** 452 * tick_nohz_idle_enter - stop the idle tick from the idle task 453 * 454 * When the next event is more than a tick into the future, stop the idle tick 455 * Called when we start the idle loop. 456 * 457 * The arch is responsible of calling: 458 * 459 * - rcu_idle_enter() after its last use of RCU before the CPU is put 460 * to sleep. 461 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 462 */ 463 void tick_nohz_idle_enter(void) 464 { 465 struct tick_sched *ts; 466 467 WARN_ON_ONCE(irqs_disabled()); 468 469 local_irq_disable(); 470 471 ts = &__get_cpu_var(tick_cpu_sched); 472 /* 473 * set ts->inidle unconditionally. even if the system did not 474 * switch to nohz mode the cpu frequency governers rely on the 475 * update of the idle time accounting in tick_nohz_start_idle(). 476 */ 477 ts->inidle = 1; 478 tick_nohz_stop_sched_tick(ts); 479 480 local_irq_enable(); 481 } 482 483 /** 484 * tick_nohz_irq_exit - update next tick event from interrupt exit 485 * 486 * When an interrupt fires while we are idle and it doesn't cause 487 * a reschedule, it may still add, modify or delete a timer, enqueue 488 * an RCU callback, etc... 489 * So we need to re-calculate and reprogram the next tick event. 490 */ 491 void tick_nohz_irq_exit(void) 492 { 493 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 494 495 if (!ts->inidle) 496 return; 497 498 tick_nohz_stop_sched_tick(ts); 499 } 500 501 /** 502 * tick_nohz_get_sleep_length - return the length of the current sleep 503 * 504 * Called from power state control code with interrupts disabled 505 */ 506 ktime_t tick_nohz_get_sleep_length(void) 507 { 508 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 509 510 return ts->sleep_length; 511 } 512 513 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 514 { 515 hrtimer_cancel(&ts->sched_timer); 516 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 517 518 while (1) { 519 /* Forward the time to expire in the future */ 520 hrtimer_forward(&ts->sched_timer, now, tick_period); 521 522 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 523 hrtimer_start_expires(&ts->sched_timer, 524 HRTIMER_MODE_ABS_PINNED); 525 /* Check, if the timer was already in the past */ 526 if (hrtimer_active(&ts->sched_timer)) 527 break; 528 } else { 529 if (!tick_program_event( 530 hrtimer_get_expires(&ts->sched_timer), 0)) 531 break; 532 } 533 /* Update jiffies and reread time */ 534 tick_do_update_jiffies64(now); 535 now = ktime_get(); 536 } 537 } 538 539 /** 540 * tick_nohz_idle_exit - restart the idle tick from the idle task 541 * 542 * Restart the idle tick when the CPU is woken up from idle 543 * This also exit the RCU extended quiescent state. The CPU 544 * can use RCU again after this function is called. 545 */ 546 void tick_nohz_idle_exit(void) 547 { 548 int cpu = smp_processor_id(); 549 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 550 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 551 unsigned long ticks; 552 #endif 553 ktime_t now; 554 555 local_irq_disable(); 556 557 if (ts->idle_active || (ts->inidle && ts->tick_stopped)) 558 now = ktime_get(); 559 560 if (ts->idle_active) 561 tick_nohz_stop_idle(cpu, now); 562 563 if (!ts->inidle || !ts->tick_stopped) { 564 ts->inidle = 0; 565 local_irq_enable(); 566 return; 567 } 568 569 ts->inidle = 0; 570 571 /* Update jiffies first */ 572 select_nohz_load_balancer(0); 573 tick_do_update_jiffies64(now); 574 575 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 576 /* 577 * We stopped the tick in idle. Update process times would miss the 578 * time we slept as update_process_times does only a 1 tick 579 * accounting. Enforce that this is accounted to idle ! 580 */ 581 ticks = jiffies - ts->idle_jiffies; 582 /* 583 * We might be one off. Do not randomly account a huge number of ticks! 584 */ 585 if (ticks && ticks < LONG_MAX) 586 account_idle_ticks(ticks); 587 #endif 588 589 touch_softlockup_watchdog(); 590 /* 591 * Cancel the scheduled timer and restore the tick 592 */ 593 ts->tick_stopped = 0; 594 ts->idle_exittime = now; 595 596 tick_nohz_restart(ts, now); 597 598 local_irq_enable(); 599 } 600 601 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 602 { 603 hrtimer_forward(&ts->sched_timer, now, tick_period); 604 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 605 } 606 607 /* 608 * The nohz low res interrupt handler 609 */ 610 static void tick_nohz_handler(struct clock_event_device *dev) 611 { 612 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 613 struct pt_regs *regs = get_irq_regs(); 614 int cpu = smp_processor_id(); 615 ktime_t now = ktime_get(); 616 617 dev->next_event.tv64 = KTIME_MAX; 618 619 /* 620 * Check if the do_timer duty was dropped. We don't care about 621 * concurrency: This happens only when the cpu in charge went 622 * into a long sleep. If two cpus happen to assign themself to 623 * this duty, then the jiffies update is still serialized by 624 * xtime_lock. 625 */ 626 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 627 tick_do_timer_cpu = cpu; 628 629 /* Check, if the jiffies need an update */ 630 if (tick_do_timer_cpu == cpu) 631 tick_do_update_jiffies64(now); 632 633 /* 634 * When we are idle and the tick is stopped, we have to touch 635 * the watchdog as we might not schedule for a really long 636 * time. This happens on complete idle SMP systems while 637 * waiting on the login prompt. We also increment the "start 638 * of idle" jiffy stamp so the idle accounting adjustment we 639 * do when we go busy again does not account too much ticks. 640 */ 641 if (ts->tick_stopped) { 642 touch_softlockup_watchdog(); 643 ts->idle_jiffies++; 644 } 645 646 update_process_times(user_mode(regs)); 647 profile_tick(CPU_PROFILING); 648 649 while (tick_nohz_reprogram(ts, now)) { 650 now = ktime_get(); 651 tick_do_update_jiffies64(now); 652 } 653 } 654 655 /** 656 * tick_nohz_switch_to_nohz - switch to nohz mode 657 */ 658 static void tick_nohz_switch_to_nohz(void) 659 { 660 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 661 ktime_t next; 662 663 if (!tick_nohz_enabled) 664 return; 665 666 local_irq_disable(); 667 if (tick_switch_to_oneshot(tick_nohz_handler)) { 668 local_irq_enable(); 669 return; 670 } 671 672 ts->nohz_mode = NOHZ_MODE_LOWRES; 673 674 /* 675 * Recycle the hrtimer in ts, so we can share the 676 * hrtimer_forward with the highres code. 677 */ 678 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 679 /* Get the next period */ 680 next = tick_init_jiffy_update(); 681 682 for (;;) { 683 hrtimer_set_expires(&ts->sched_timer, next); 684 if (!tick_program_event(next, 0)) 685 break; 686 next = ktime_add(next, tick_period); 687 } 688 local_irq_enable(); 689 } 690 691 /* 692 * When NOHZ is enabled and the tick is stopped, we need to kick the 693 * tick timer from irq_enter() so that the jiffies update is kept 694 * alive during long running softirqs. That's ugly as hell, but 695 * correctness is key even if we need to fix the offending softirq in 696 * the first place. 697 * 698 * Note, this is different to tick_nohz_restart. We just kick the 699 * timer and do not touch the other magic bits which need to be done 700 * when idle is left. 701 */ 702 static void tick_nohz_kick_tick(int cpu, ktime_t now) 703 { 704 #if 0 705 /* Switch back to 2.6.27 behaviour */ 706 707 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 708 ktime_t delta; 709 710 /* 711 * Do not touch the tick device, when the next expiry is either 712 * already reached or less/equal than the tick period. 713 */ 714 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 715 if (delta.tv64 <= tick_period.tv64) 716 return; 717 718 tick_nohz_restart(ts, now); 719 #endif 720 } 721 722 static inline void tick_check_nohz(int cpu) 723 { 724 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 725 ktime_t now; 726 727 if (!ts->idle_active && !ts->tick_stopped) 728 return; 729 now = ktime_get(); 730 if (ts->idle_active) 731 tick_nohz_stop_idle(cpu, now); 732 if (ts->tick_stopped) { 733 tick_nohz_update_jiffies(now); 734 tick_nohz_kick_tick(cpu, now); 735 } 736 } 737 738 #else 739 740 static inline void tick_nohz_switch_to_nohz(void) { } 741 static inline void tick_check_nohz(int cpu) { } 742 743 #endif /* NO_HZ */ 744 745 /* 746 * Called from irq_enter to notify about the possible interruption of idle() 747 */ 748 void tick_check_idle(int cpu) 749 { 750 tick_check_oneshot_broadcast(cpu); 751 tick_check_nohz(cpu); 752 } 753 754 /* 755 * High resolution timer specific code 756 */ 757 #ifdef CONFIG_HIGH_RES_TIMERS 758 /* 759 * We rearm the timer until we get disabled by the idle code. 760 * Called with interrupts disabled and timer->base->cpu_base->lock held. 761 */ 762 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 763 { 764 struct tick_sched *ts = 765 container_of(timer, struct tick_sched, sched_timer); 766 struct pt_regs *regs = get_irq_regs(); 767 ktime_t now = ktime_get(); 768 int cpu = smp_processor_id(); 769 770 #ifdef CONFIG_NO_HZ 771 /* 772 * Check if the do_timer duty was dropped. We don't care about 773 * concurrency: This happens only when the cpu in charge went 774 * into a long sleep. If two cpus happen to assign themself to 775 * this duty, then the jiffies update is still serialized by 776 * xtime_lock. 777 */ 778 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 779 tick_do_timer_cpu = cpu; 780 #endif 781 782 /* Check, if the jiffies need an update */ 783 if (tick_do_timer_cpu == cpu) 784 tick_do_update_jiffies64(now); 785 786 /* 787 * Do not call, when we are not in irq context and have 788 * no valid regs pointer 789 */ 790 if (regs) { 791 /* 792 * When we are idle and the tick is stopped, we have to touch 793 * the watchdog as we might not schedule for a really long 794 * time. This happens on complete idle SMP systems while 795 * waiting on the login prompt. We also increment the "start of 796 * idle" jiffy stamp so the idle accounting adjustment we do 797 * when we go busy again does not account too much ticks. 798 */ 799 if (ts->tick_stopped) { 800 touch_softlockup_watchdog(); 801 ts->idle_jiffies++; 802 } 803 update_process_times(user_mode(regs)); 804 profile_tick(CPU_PROFILING); 805 } 806 807 hrtimer_forward(timer, now, tick_period); 808 809 return HRTIMER_RESTART; 810 } 811 812 /** 813 * tick_setup_sched_timer - setup the tick emulation timer 814 */ 815 void tick_setup_sched_timer(void) 816 { 817 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 818 ktime_t now = ktime_get(); 819 820 /* 821 * Emulate tick processing via per-CPU hrtimers: 822 */ 823 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 824 ts->sched_timer.function = tick_sched_timer; 825 826 /* Get the next period (per cpu) */ 827 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 828 829 for (;;) { 830 hrtimer_forward(&ts->sched_timer, now, tick_period); 831 hrtimer_start_expires(&ts->sched_timer, 832 HRTIMER_MODE_ABS_PINNED); 833 /* Check, if the timer was already in the past */ 834 if (hrtimer_active(&ts->sched_timer)) 835 break; 836 now = ktime_get(); 837 } 838 839 #ifdef CONFIG_NO_HZ 840 if (tick_nohz_enabled) 841 ts->nohz_mode = NOHZ_MODE_HIGHRES; 842 #endif 843 } 844 #endif /* HIGH_RES_TIMERS */ 845 846 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 847 void tick_cancel_sched_timer(int cpu) 848 { 849 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 850 851 # ifdef CONFIG_HIGH_RES_TIMERS 852 if (ts->sched_timer.base) 853 hrtimer_cancel(&ts->sched_timer); 854 # endif 855 856 ts->nohz_mode = NOHZ_MODE_INACTIVE; 857 } 858 #endif 859 860 /** 861 * Async notification about clocksource changes 862 */ 863 void tick_clock_notify(void) 864 { 865 int cpu; 866 867 for_each_possible_cpu(cpu) 868 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 869 } 870 871 /* 872 * Async notification about clock event changes 873 */ 874 void tick_oneshot_notify(void) 875 { 876 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 877 878 set_bit(0, &ts->check_clocks); 879 } 880 881 /** 882 * Check, if a change happened, which makes oneshot possible. 883 * 884 * Called cyclic from the hrtimer softirq (driven by the timer 885 * softirq) allow_nohz signals, that we can switch into low-res nohz 886 * mode, because high resolution timers are disabled (either compile 887 * or runtime). 888 */ 889 int tick_check_oneshot_change(int allow_nohz) 890 { 891 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 892 893 if (!test_and_clear_bit(0, &ts->check_clocks)) 894 return 0; 895 896 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 897 return 0; 898 899 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 900 return 0; 901 902 if (!allow_nohz) 903 return 1; 904 905 tick_nohz_switch_to_nohz(); 906 return 0; 907 } 908