xref: /linux/kernel/time/tick-sched.c (revision 1268fbc746ea1cd279886a740dcbad4ba5232225)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 static int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	ts->idle_waketime = now;
143 
144 	local_irq_save(flags);
145 	tick_do_update_jiffies64(now);
146 	local_irq_restore(flags);
147 
148 	touch_softlockup_watchdog();
149 }
150 
151 /*
152  * Updates the per cpu time idle statistics counters
153  */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 	ktime_t delta;
158 
159 	if (ts->idle_active) {
160 		delta = ktime_sub(now, ts->idle_entrytime);
161 		if (nr_iowait_cpu(cpu) > 0)
162 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 		else
164 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now;
186 
187 	now = ktime_get();
188 
189 	update_ts_time_stats(cpu, ts, now, NULL);
190 
191 	ts->idle_entrytime = now;
192 	ts->idle_active = 1;
193 	sched_clock_idle_sleep_event();
194 	return now;
195 }
196 
197 /**
198  * get_cpu_idle_time_us - get the total idle time of a cpu
199  * @cpu: CPU number to query
200  * @last_update_time: variable to store update time in. Do not update
201  * counters if NULL.
202  *
203  * Return the cummulative idle time (since boot) for a given
204  * CPU, in microseconds.
205  *
206  * This time is measured via accounting rather than sampling,
207  * and is as accurate as ktime_get() is.
208  *
209  * This function returns -1 if NOHZ is not enabled.
210  */
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212 {
213 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214 	ktime_t now, idle;
215 
216 	if (!tick_nohz_enabled)
217 		return -1;
218 
219 	now = ktime_get();
220 	if (last_update_time) {
221 		update_ts_time_stats(cpu, ts, now, last_update_time);
222 		idle = ts->idle_sleeptime;
223 	} else {
224 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
225 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
226 
227 			idle = ktime_add(ts->idle_sleeptime, delta);
228 		} else {
229 			idle = ts->idle_sleeptime;
230 		}
231 	}
232 
233 	return ktime_to_us(idle);
234 
235 }
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
237 
238 /**
239  * get_cpu_iowait_time_us - get the total iowait time of a cpu
240  * @cpu: CPU number to query
241  * @last_update_time: variable to store update time in. Do not update
242  * counters if NULL.
243  *
244  * Return the cummulative iowait time (since boot) for a given
245  * CPU, in microseconds.
246  *
247  * This time is measured via accounting rather than sampling,
248  * and is as accurate as ktime_get() is.
249  *
250  * This function returns -1 if NOHZ is not enabled.
251  */
252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
253 {
254 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255 	ktime_t now, iowait;
256 
257 	if (!tick_nohz_enabled)
258 		return -1;
259 
260 	now = ktime_get();
261 	if (last_update_time) {
262 		update_ts_time_stats(cpu, ts, now, last_update_time);
263 		iowait = ts->iowait_sleeptime;
264 	} else {
265 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
266 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267 
268 			iowait = ktime_add(ts->iowait_sleeptime, delta);
269 		} else {
270 			iowait = ts->iowait_sleeptime;
271 		}
272 	}
273 
274 	return ktime_to_us(iowait);
275 }
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
277 
278 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
279 {
280 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
281 	ktime_t last_update, expires, now;
282 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
283 	u64 time_delta;
284 	int cpu;
285 
286 	cpu = smp_processor_id();
287 	ts = &per_cpu(tick_cpu_sched, cpu);
288 
289 	now = tick_nohz_start_idle(cpu, ts);
290 
291 	/*
292 	 * If this cpu is offline and it is the one which updates
293 	 * jiffies, then give up the assignment and let it be taken by
294 	 * the cpu which runs the tick timer next. If we don't drop
295 	 * this here the jiffies might be stale and do_timer() never
296 	 * invoked.
297 	 */
298 	if (unlikely(!cpu_online(cpu))) {
299 		if (cpu == tick_do_timer_cpu)
300 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
301 	}
302 
303 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
304 		return;
305 
306 	if (need_resched())
307 		return;
308 
309 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
310 		static int ratelimit;
311 
312 		if (ratelimit < 10) {
313 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
314 			       (unsigned int) local_softirq_pending());
315 			ratelimit++;
316 		}
317 		return;
318 	}
319 
320 	ts->idle_calls++;
321 	/* Read jiffies and the time when jiffies were updated last */
322 	do {
323 		seq = read_seqbegin(&xtime_lock);
324 		last_update = last_jiffies_update;
325 		last_jiffies = jiffies;
326 		time_delta = timekeeping_max_deferment();
327 	} while (read_seqretry(&xtime_lock, seq));
328 
329 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
330 	    arch_needs_cpu(cpu)) {
331 		next_jiffies = last_jiffies + 1;
332 		delta_jiffies = 1;
333 	} else {
334 		/* Get the next timer wheel timer */
335 		next_jiffies = get_next_timer_interrupt(last_jiffies);
336 		delta_jiffies = next_jiffies - last_jiffies;
337 	}
338 	/*
339 	 * Do not stop the tick, if we are only one off
340 	 * or if the cpu is required for rcu
341 	 */
342 	if (!ts->tick_stopped && delta_jiffies == 1)
343 		goto out;
344 
345 	/* Schedule the tick, if we are at least one jiffie off */
346 	if ((long)delta_jiffies >= 1) {
347 
348 		/*
349 		 * If this cpu is the one which updates jiffies, then
350 		 * give up the assignment and let it be taken by the
351 		 * cpu which runs the tick timer next, which might be
352 		 * this cpu as well. If we don't drop this here the
353 		 * jiffies might be stale and do_timer() never
354 		 * invoked. Keep track of the fact that it was the one
355 		 * which had the do_timer() duty last. If this cpu is
356 		 * the one which had the do_timer() duty last, we
357 		 * limit the sleep time to the timekeeping
358 		 * max_deferement value which we retrieved
359 		 * above. Otherwise we can sleep as long as we want.
360 		 */
361 		if (cpu == tick_do_timer_cpu) {
362 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
363 			ts->do_timer_last = 1;
364 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
365 			time_delta = KTIME_MAX;
366 			ts->do_timer_last = 0;
367 		} else if (!ts->do_timer_last) {
368 			time_delta = KTIME_MAX;
369 		}
370 
371 		/*
372 		 * calculate the expiry time for the next timer wheel
373 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
374 		 * that there is no timer pending or at least extremely
375 		 * far into the future (12 days for HZ=1000). In this
376 		 * case we set the expiry to the end of time.
377 		 */
378 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
379 			/*
380 			 * Calculate the time delta for the next timer event.
381 			 * If the time delta exceeds the maximum time delta
382 			 * permitted by the current clocksource then adjust
383 			 * the time delta accordingly to ensure the
384 			 * clocksource does not wrap.
385 			 */
386 			time_delta = min_t(u64, time_delta,
387 					   tick_period.tv64 * delta_jiffies);
388 		}
389 
390 		if (time_delta < KTIME_MAX)
391 			expires = ktime_add_ns(last_update, time_delta);
392 		else
393 			expires.tv64 = KTIME_MAX;
394 
395 		/* Skip reprogram of event if its not changed */
396 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397 			goto out;
398 
399 		/*
400 		 * nohz_stop_sched_tick can be called several times before
401 		 * the nohz_restart_sched_tick is called. This happens when
402 		 * interrupts arrive which do not cause a reschedule. In the
403 		 * first call we save the current tick time, so we can restart
404 		 * the scheduler tick in nohz_restart_sched_tick.
405 		 */
406 		if (!ts->tick_stopped) {
407 			select_nohz_load_balancer(1);
408 
409 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410 			ts->tick_stopped = 1;
411 			ts->idle_jiffies = last_jiffies;
412 		}
413 
414 		ts->idle_sleeps++;
415 
416 		/* Mark expires */
417 		ts->idle_expires = expires;
418 
419 		/*
420 		 * If the expiration time == KTIME_MAX, then
421 		 * in this case we simply stop the tick timer.
422 		 */
423 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
424 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
425 				hrtimer_cancel(&ts->sched_timer);
426 			goto out;
427 		}
428 
429 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
430 			hrtimer_start(&ts->sched_timer, expires,
431 				      HRTIMER_MODE_ABS_PINNED);
432 			/* Check, if the timer was already in the past */
433 			if (hrtimer_active(&ts->sched_timer))
434 				goto out;
435 		} else if (!tick_program_event(expires, 0))
436 				goto out;
437 		/*
438 		 * We are past the event already. So we crossed a
439 		 * jiffie boundary. Update jiffies and raise the
440 		 * softirq.
441 		 */
442 		tick_do_update_jiffies64(ktime_get());
443 	}
444 	raise_softirq_irqoff(TIMER_SOFTIRQ);
445 out:
446 	ts->next_jiffies = next_jiffies;
447 	ts->last_jiffies = last_jiffies;
448 	ts->sleep_length = ktime_sub(dev->next_event, now);
449 }
450 
451 /**
452  * tick_nohz_idle_enter - stop the idle tick from the idle task
453  *
454  * When the next event is more than a tick into the future, stop the idle tick
455  * Called when we start the idle loop.
456  *
457  * The arch is responsible of calling:
458  *
459  * - rcu_idle_enter() after its last use of RCU before the CPU is put
460  *  to sleep.
461  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
462  */
463 void tick_nohz_idle_enter(void)
464 {
465 	struct tick_sched *ts;
466 
467 	WARN_ON_ONCE(irqs_disabled());
468 
469 	local_irq_disable();
470 
471 	ts = &__get_cpu_var(tick_cpu_sched);
472 	/*
473 	 * set ts->inidle unconditionally. even if the system did not
474 	 * switch to nohz mode the cpu frequency governers rely on the
475 	 * update of the idle time accounting in tick_nohz_start_idle().
476 	 */
477 	ts->inidle = 1;
478 	tick_nohz_stop_sched_tick(ts);
479 
480 	local_irq_enable();
481 }
482 
483 /**
484  * tick_nohz_irq_exit - update next tick event from interrupt exit
485  *
486  * When an interrupt fires while we are idle and it doesn't cause
487  * a reschedule, it may still add, modify or delete a timer, enqueue
488  * an RCU callback, etc...
489  * So we need to re-calculate and reprogram the next tick event.
490  */
491 void tick_nohz_irq_exit(void)
492 {
493 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
494 
495 	if (!ts->inidle)
496 		return;
497 
498 	tick_nohz_stop_sched_tick(ts);
499 }
500 
501 /**
502  * tick_nohz_get_sleep_length - return the length of the current sleep
503  *
504  * Called from power state control code with interrupts disabled
505  */
506 ktime_t tick_nohz_get_sleep_length(void)
507 {
508 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
509 
510 	return ts->sleep_length;
511 }
512 
513 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
514 {
515 	hrtimer_cancel(&ts->sched_timer);
516 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
517 
518 	while (1) {
519 		/* Forward the time to expire in the future */
520 		hrtimer_forward(&ts->sched_timer, now, tick_period);
521 
522 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
523 			hrtimer_start_expires(&ts->sched_timer,
524 					      HRTIMER_MODE_ABS_PINNED);
525 			/* Check, if the timer was already in the past */
526 			if (hrtimer_active(&ts->sched_timer))
527 				break;
528 		} else {
529 			if (!tick_program_event(
530 				hrtimer_get_expires(&ts->sched_timer), 0))
531 				break;
532 		}
533 		/* Update jiffies and reread time */
534 		tick_do_update_jiffies64(now);
535 		now = ktime_get();
536 	}
537 }
538 
539 /**
540  * tick_nohz_idle_exit - restart the idle tick from the idle task
541  *
542  * Restart the idle tick when the CPU is woken up from idle
543  * This also exit the RCU extended quiescent state. The CPU
544  * can use RCU again after this function is called.
545  */
546 void tick_nohz_idle_exit(void)
547 {
548 	int cpu = smp_processor_id();
549 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
550 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
551 	unsigned long ticks;
552 #endif
553 	ktime_t now;
554 
555 	local_irq_disable();
556 
557 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
558 		now = ktime_get();
559 
560 	if (ts->idle_active)
561 		tick_nohz_stop_idle(cpu, now);
562 
563 	if (!ts->inidle || !ts->tick_stopped) {
564 		ts->inidle = 0;
565 		local_irq_enable();
566 		return;
567 	}
568 
569 	ts->inidle = 0;
570 
571 	/* Update jiffies first */
572 	select_nohz_load_balancer(0);
573 	tick_do_update_jiffies64(now);
574 
575 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
576 	/*
577 	 * We stopped the tick in idle. Update process times would miss the
578 	 * time we slept as update_process_times does only a 1 tick
579 	 * accounting. Enforce that this is accounted to idle !
580 	 */
581 	ticks = jiffies - ts->idle_jiffies;
582 	/*
583 	 * We might be one off. Do not randomly account a huge number of ticks!
584 	 */
585 	if (ticks && ticks < LONG_MAX)
586 		account_idle_ticks(ticks);
587 #endif
588 
589 	touch_softlockup_watchdog();
590 	/*
591 	 * Cancel the scheduled timer and restore the tick
592 	 */
593 	ts->tick_stopped  = 0;
594 	ts->idle_exittime = now;
595 
596 	tick_nohz_restart(ts, now);
597 
598 	local_irq_enable();
599 }
600 
601 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
602 {
603 	hrtimer_forward(&ts->sched_timer, now, tick_period);
604 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
605 }
606 
607 /*
608  * The nohz low res interrupt handler
609  */
610 static void tick_nohz_handler(struct clock_event_device *dev)
611 {
612 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
613 	struct pt_regs *regs = get_irq_regs();
614 	int cpu = smp_processor_id();
615 	ktime_t now = ktime_get();
616 
617 	dev->next_event.tv64 = KTIME_MAX;
618 
619 	/*
620 	 * Check if the do_timer duty was dropped. We don't care about
621 	 * concurrency: This happens only when the cpu in charge went
622 	 * into a long sleep. If two cpus happen to assign themself to
623 	 * this duty, then the jiffies update is still serialized by
624 	 * xtime_lock.
625 	 */
626 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
627 		tick_do_timer_cpu = cpu;
628 
629 	/* Check, if the jiffies need an update */
630 	if (tick_do_timer_cpu == cpu)
631 		tick_do_update_jiffies64(now);
632 
633 	/*
634 	 * When we are idle and the tick is stopped, we have to touch
635 	 * the watchdog as we might not schedule for a really long
636 	 * time. This happens on complete idle SMP systems while
637 	 * waiting on the login prompt. We also increment the "start
638 	 * of idle" jiffy stamp so the idle accounting adjustment we
639 	 * do when we go busy again does not account too much ticks.
640 	 */
641 	if (ts->tick_stopped) {
642 		touch_softlockup_watchdog();
643 		ts->idle_jiffies++;
644 	}
645 
646 	update_process_times(user_mode(regs));
647 	profile_tick(CPU_PROFILING);
648 
649 	while (tick_nohz_reprogram(ts, now)) {
650 		now = ktime_get();
651 		tick_do_update_jiffies64(now);
652 	}
653 }
654 
655 /**
656  * tick_nohz_switch_to_nohz - switch to nohz mode
657  */
658 static void tick_nohz_switch_to_nohz(void)
659 {
660 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
661 	ktime_t next;
662 
663 	if (!tick_nohz_enabled)
664 		return;
665 
666 	local_irq_disable();
667 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
668 		local_irq_enable();
669 		return;
670 	}
671 
672 	ts->nohz_mode = NOHZ_MODE_LOWRES;
673 
674 	/*
675 	 * Recycle the hrtimer in ts, so we can share the
676 	 * hrtimer_forward with the highres code.
677 	 */
678 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
679 	/* Get the next period */
680 	next = tick_init_jiffy_update();
681 
682 	for (;;) {
683 		hrtimer_set_expires(&ts->sched_timer, next);
684 		if (!tick_program_event(next, 0))
685 			break;
686 		next = ktime_add(next, tick_period);
687 	}
688 	local_irq_enable();
689 }
690 
691 /*
692  * When NOHZ is enabled and the tick is stopped, we need to kick the
693  * tick timer from irq_enter() so that the jiffies update is kept
694  * alive during long running softirqs. That's ugly as hell, but
695  * correctness is key even if we need to fix the offending softirq in
696  * the first place.
697  *
698  * Note, this is different to tick_nohz_restart. We just kick the
699  * timer and do not touch the other magic bits which need to be done
700  * when idle is left.
701  */
702 static void tick_nohz_kick_tick(int cpu, ktime_t now)
703 {
704 #if 0
705 	/* Switch back to 2.6.27 behaviour */
706 
707 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
708 	ktime_t delta;
709 
710 	/*
711 	 * Do not touch the tick device, when the next expiry is either
712 	 * already reached or less/equal than the tick period.
713 	 */
714 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
715 	if (delta.tv64 <= tick_period.tv64)
716 		return;
717 
718 	tick_nohz_restart(ts, now);
719 #endif
720 }
721 
722 static inline void tick_check_nohz(int cpu)
723 {
724 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
725 	ktime_t now;
726 
727 	if (!ts->idle_active && !ts->tick_stopped)
728 		return;
729 	now = ktime_get();
730 	if (ts->idle_active)
731 		tick_nohz_stop_idle(cpu, now);
732 	if (ts->tick_stopped) {
733 		tick_nohz_update_jiffies(now);
734 		tick_nohz_kick_tick(cpu, now);
735 	}
736 }
737 
738 #else
739 
740 static inline void tick_nohz_switch_to_nohz(void) { }
741 static inline void tick_check_nohz(int cpu) { }
742 
743 #endif /* NO_HZ */
744 
745 /*
746  * Called from irq_enter to notify about the possible interruption of idle()
747  */
748 void tick_check_idle(int cpu)
749 {
750 	tick_check_oneshot_broadcast(cpu);
751 	tick_check_nohz(cpu);
752 }
753 
754 /*
755  * High resolution timer specific code
756  */
757 #ifdef CONFIG_HIGH_RES_TIMERS
758 /*
759  * We rearm the timer until we get disabled by the idle code.
760  * Called with interrupts disabled and timer->base->cpu_base->lock held.
761  */
762 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
763 {
764 	struct tick_sched *ts =
765 		container_of(timer, struct tick_sched, sched_timer);
766 	struct pt_regs *regs = get_irq_regs();
767 	ktime_t now = ktime_get();
768 	int cpu = smp_processor_id();
769 
770 #ifdef CONFIG_NO_HZ
771 	/*
772 	 * Check if the do_timer duty was dropped. We don't care about
773 	 * concurrency: This happens only when the cpu in charge went
774 	 * into a long sleep. If two cpus happen to assign themself to
775 	 * this duty, then the jiffies update is still serialized by
776 	 * xtime_lock.
777 	 */
778 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
779 		tick_do_timer_cpu = cpu;
780 #endif
781 
782 	/* Check, if the jiffies need an update */
783 	if (tick_do_timer_cpu == cpu)
784 		tick_do_update_jiffies64(now);
785 
786 	/*
787 	 * Do not call, when we are not in irq context and have
788 	 * no valid regs pointer
789 	 */
790 	if (regs) {
791 		/*
792 		 * When we are idle and the tick is stopped, we have to touch
793 		 * the watchdog as we might not schedule for a really long
794 		 * time. This happens on complete idle SMP systems while
795 		 * waiting on the login prompt. We also increment the "start of
796 		 * idle" jiffy stamp so the idle accounting adjustment we do
797 		 * when we go busy again does not account too much ticks.
798 		 */
799 		if (ts->tick_stopped) {
800 			touch_softlockup_watchdog();
801 			ts->idle_jiffies++;
802 		}
803 		update_process_times(user_mode(regs));
804 		profile_tick(CPU_PROFILING);
805 	}
806 
807 	hrtimer_forward(timer, now, tick_period);
808 
809 	return HRTIMER_RESTART;
810 }
811 
812 /**
813  * tick_setup_sched_timer - setup the tick emulation timer
814  */
815 void tick_setup_sched_timer(void)
816 {
817 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
818 	ktime_t now = ktime_get();
819 
820 	/*
821 	 * Emulate tick processing via per-CPU hrtimers:
822 	 */
823 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
824 	ts->sched_timer.function = tick_sched_timer;
825 
826 	/* Get the next period (per cpu) */
827 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
828 
829 	for (;;) {
830 		hrtimer_forward(&ts->sched_timer, now, tick_period);
831 		hrtimer_start_expires(&ts->sched_timer,
832 				      HRTIMER_MODE_ABS_PINNED);
833 		/* Check, if the timer was already in the past */
834 		if (hrtimer_active(&ts->sched_timer))
835 			break;
836 		now = ktime_get();
837 	}
838 
839 #ifdef CONFIG_NO_HZ
840 	if (tick_nohz_enabled)
841 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
842 #endif
843 }
844 #endif /* HIGH_RES_TIMERS */
845 
846 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
847 void tick_cancel_sched_timer(int cpu)
848 {
849 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
850 
851 # ifdef CONFIG_HIGH_RES_TIMERS
852 	if (ts->sched_timer.base)
853 		hrtimer_cancel(&ts->sched_timer);
854 # endif
855 
856 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
857 }
858 #endif
859 
860 /**
861  * Async notification about clocksource changes
862  */
863 void tick_clock_notify(void)
864 {
865 	int cpu;
866 
867 	for_each_possible_cpu(cpu)
868 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
869 }
870 
871 /*
872  * Async notification about clock event changes
873  */
874 void tick_oneshot_notify(void)
875 {
876 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
877 
878 	set_bit(0, &ts->check_clocks);
879 }
880 
881 /**
882  * Check, if a change happened, which makes oneshot possible.
883  *
884  * Called cyclic from the hrtimer softirq (driven by the timer
885  * softirq) allow_nohz signals, that we can switch into low-res nohz
886  * mode, because high resolution timers are disabled (either compile
887  * or runtime).
888  */
889 int tick_check_oneshot_change(int allow_nohz)
890 {
891 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
892 
893 	if (!test_and_clear_bit(0, &ts->check_clocks))
894 		return 0;
895 
896 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
897 		return 0;
898 
899 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
900 		return 0;
901 
902 	if (!allow_nohz)
903 		return 1;
904 
905 	tick_nohz_switch_to_nohz();
906 	return 0;
907 }
908