1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 ts->idle_waketime = now; 143 144 local_irq_save(flags); 145 tick_do_update_jiffies64(now); 146 local_irq_restore(flags); 147 148 touch_softlockup_watchdog(); 149 } 150 151 /* 152 * Updates the per cpu time idle statistics counters 153 */ 154 static void 155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 156 { 157 ktime_t delta; 158 159 if (ts->idle_active) { 160 delta = ktime_sub(now, ts->idle_entrytime); 161 if (nr_iowait_cpu(cpu) > 0) 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 163 else 164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now = ktime_get(); 186 187 ts->idle_entrytime = now; 188 ts->idle_active = 1; 189 sched_clock_idle_sleep_event(); 190 return now; 191 } 192 193 /** 194 * get_cpu_idle_time_us - get the total idle time of a cpu 195 * @cpu: CPU number to query 196 * @last_update_time: variable to store update time in. Do not update 197 * counters if NULL. 198 * 199 * Return the cummulative idle time (since boot) for a given 200 * CPU, in microseconds. 201 * 202 * This time is measured via accounting rather than sampling, 203 * and is as accurate as ktime_get() is. 204 * 205 * This function returns -1 if NOHZ is not enabled. 206 */ 207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 208 { 209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 210 ktime_t now, idle; 211 212 if (!tick_nohz_enabled) 213 return -1; 214 215 now = ktime_get(); 216 if (last_update_time) { 217 update_ts_time_stats(cpu, ts, now, last_update_time); 218 idle = ts->idle_sleeptime; 219 } else { 220 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 221 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 222 223 idle = ktime_add(ts->idle_sleeptime, delta); 224 } else { 225 idle = ts->idle_sleeptime; 226 } 227 } 228 229 return ktime_to_us(idle); 230 231 } 232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 233 234 /** 235 * get_cpu_iowait_time_us - get the total iowait time of a cpu 236 * @cpu: CPU number to query 237 * @last_update_time: variable to store update time in. Do not update 238 * counters if NULL. 239 * 240 * Return the cummulative iowait time (since boot) for a given 241 * CPU, in microseconds. 242 * 243 * This time is measured via accounting rather than sampling, 244 * and is as accurate as ktime_get() is. 245 * 246 * This function returns -1 if NOHZ is not enabled. 247 */ 248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 249 { 250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 251 ktime_t now, iowait; 252 253 if (!tick_nohz_enabled) 254 return -1; 255 256 now = ktime_get(); 257 if (last_update_time) { 258 update_ts_time_stats(cpu, ts, now, last_update_time); 259 iowait = ts->iowait_sleeptime; 260 } else { 261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 262 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 263 264 iowait = ktime_add(ts->iowait_sleeptime, delta); 265 } else { 266 iowait = ts->iowait_sleeptime; 267 } 268 } 269 270 return ktime_to_us(iowait); 271 } 272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 273 274 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 275 ktime_t now, int cpu) 276 { 277 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 278 ktime_t last_update, expires, ret = { .tv64 = 0 }; 279 unsigned long rcu_delta_jiffies; 280 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 281 u64 time_delta; 282 283 /* Read jiffies and the time when jiffies were updated last */ 284 do { 285 seq = read_seqbegin(&xtime_lock); 286 last_update = last_jiffies_update; 287 last_jiffies = jiffies; 288 time_delta = timekeeping_max_deferment(); 289 } while (read_seqretry(&xtime_lock, seq)); 290 291 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) || 292 arch_needs_cpu(cpu)) { 293 next_jiffies = last_jiffies + 1; 294 delta_jiffies = 1; 295 } else { 296 /* Get the next timer wheel timer */ 297 next_jiffies = get_next_timer_interrupt(last_jiffies); 298 delta_jiffies = next_jiffies - last_jiffies; 299 if (rcu_delta_jiffies < delta_jiffies) { 300 next_jiffies = last_jiffies + rcu_delta_jiffies; 301 delta_jiffies = rcu_delta_jiffies; 302 } 303 } 304 /* 305 * Do not stop the tick, if we are only one off 306 * or if the cpu is required for rcu 307 */ 308 if (!ts->tick_stopped && delta_jiffies == 1) 309 goto out; 310 311 /* Schedule the tick, if we are at least one jiffie off */ 312 if ((long)delta_jiffies >= 1) { 313 314 /* 315 * If this cpu is the one which updates jiffies, then 316 * give up the assignment and let it be taken by the 317 * cpu which runs the tick timer next, which might be 318 * this cpu as well. If we don't drop this here the 319 * jiffies might be stale and do_timer() never 320 * invoked. Keep track of the fact that it was the one 321 * which had the do_timer() duty last. If this cpu is 322 * the one which had the do_timer() duty last, we 323 * limit the sleep time to the timekeeping 324 * max_deferement value which we retrieved 325 * above. Otherwise we can sleep as long as we want. 326 */ 327 if (cpu == tick_do_timer_cpu) { 328 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 329 ts->do_timer_last = 1; 330 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 331 time_delta = KTIME_MAX; 332 ts->do_timer_last = 0; 333 } else if (!ts->do_timer_last) { 334 time_delta = KTIME_MAX; 335 } 336 337 /* 338 * calculate the expiry time for the next timer wheel 339 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 340 * that there is no timer pending or at least extremely 341 * far into the future (12 days for HZ=1000). In this 342 * case we set the expiry to the end of time. 343 */ 344 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 345 /* 346 * Calculate the time delta for the next timer event. 347 * If the time delta exceeds the maximum time delta 348 * permitted by the current clocksource then adjust 349 * the time delta accordingly to ensure the 350 * clocksource does not wrap. 351 */ 352 time_delta = min_t(u64, time_delta, 353 tick_period.tv64 * delta_jiffies); 354 } 355 356 if (time_delta < KTIME_MAX) 357 expires = ktime_add_ns(last_update, time_delta); 358 else 359 expires.tv64 = KTIME_MAX; 360 361 /* Skip reprogram of event if its not changed */ 362 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 363 goto out; 364 365 ret = expires; 366 367 /* 368 * nohz_stop_sched_tick can be called several times before 369 * the nohz_restart_sched_tick is called. This happens when 370 * interrupts arrive which do not cause a reschedule. In the 371 * first call we save the current tick time, so we can restart 372 * the scheduler tick in nohz_restart_sched_tick. 373 */ 374 if (!ts->tick_stopped) { 375 nohz_balance_enter_idle(cpu); 376 calc_load_enter_idle(); 377 378 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 379 ts->tick_stopped = 1; 380 } 381 382 /* 383 * If the expiration time == KTIME_MAX, then 384 * in this case we simply stop the tick timer. 385 */ 386 if (unlikely(expires.tv64 == KTIME_MAX)) { 387 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 388 hrtimer_cancel(&ts->sched_timer); 389 goto out; 390 } 391 392 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 393 hrtimer_start(&ts->sched_timer, expires, 394 HRTIMER_MODE_ABS_PINNED); 395 /* Check, if the timer was already in the past */ 396 if (hrtimer_active(&ts->sched_timer)) 397 goto out; 398 } else if (!tick_program_event(expires, 0)) 399 goto out; 400 /* 401 * We are past the event already. So we crossed a 402 * jiffie boundary. Update jiffies and raise the 403 * softirq. 404 */ 405 tick_do_update_jiffies64(ktime_get()); 406 } 407 raise_softirq_irqoff(TIMER_SOFTIRQ); 408 out: 409 ts->next_jiffies = next_jiffies; 410 ts->last_jiffies = last_jiffies; 411 ts->sleep_length = ktime_sub(dev->next_event, now); 412 413 return ret; 414 } 415 416 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 417 { 418 /* 419 * If this cpu is offline and it is the one which updates 420 * jiffies, then give up the assignment and let it be taken by 421 * the cpu which runs the tick timer next. If we don't drop 422 * this here the jiffies might be stale and do_timer() never 423 * invoked. 424 */ 425 if (unlikely(!cpu_online(cpu))) { 426 if (cpu == tick_do_timer_cpu) 427 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 428 } 429 430 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 431 return false; 432 433 if (need_resched()) 434 return false; 435 436 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 437 static int ratelimit; 438 439 if (ratelimit < 10 && 440 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 441 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 442 (unsigned int) local_softirq_pending()); 443 ratelimit++; 444 } 445 return false; 446 } 447 448 return true; 449 } 450 451 static void __tick_nohz_idle_enter(struct tick_sched *ts) 452 { 453 ktime_t now, expires; 454 int cpu = smp_processor_id(); 455 456 now = tick_nohz_start_idle(cpu, ts); 457 458 if (can_stop_idle_tick(cpu, ts)) { 459 int was_stopped = ts->tick_stopped; 460 461 ts->idle_calls++; 462 463 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 464 if (expires.tv64 > 0LL) { 465 ts->idle_sleeps++; 466 ts->idle_expires = expires; 467 } 468 469 if (!was_stopped && ts->tick_stopped) 470 ts->idle_jiffies = ts->last_jiffies; 471 } 472 } 473 474 /** 475 * tick_nohz_idle_enter - stop the idle tick from the idle task 476 * 477 * When the next event is more than a tick into the future, stop the idle tick 478 * Called when we start the idle loop. 479 * 480 * The arch is responsible of calling: 481 * 482 * - rcu_idle_enter() after its last use of RCU before the CPU is put 483 * to sleep. 484 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 485 */ 486 void tick_nohz_idle_enter(void) 487 { 488 struct tick_sched *ts; 489 490 WARN_ON_ONCE(irqs_disabled()); 491 492 /* 493 * Update the idle state in the scheduler domain hierarchy 494 * when tick_nohz_stop_sched_tick() is called from the idle loop. 495 * State will be updated to busy during the first busy tick after 496 * exiting idle. 497 */ 498 set_cpu_sd_state_idle(); 499 500 local_irq_disable(); 501 502 ts = &__get_cpu_var(tick_cpu_sched); 503 /* 504 * set ts->inidle unconditionally. even if the system did not 505 * switch to nohz mode the cpu frequency governers rely on the 506 * update of the idle time accounting in tick_nohz_start_idle(). 507 */ 508 ts->inidle = 1; 509 __tick_nohz_idle_enter(ts); 510 511 local_irq_enable(); 512 } 513 514 /** 515 * tick_nohz_irq_exit - update next tick event from interrupt exit 516 * 517 * When an interrupt fires while we are idle and it doesn't cause 518 * a reschedule, it may still add, modify or delete a timer, enqueue 519 * an RCU callback, etc... 520 * So we need to re-calculate and reprogram the next tick event. 521 */ 522 void tick_nohz_irq_exit(void) 523 { 524 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 525 526 if (!ts->inidle) 527 return; 528 529 __tick_nohz_idle_enter(ts); 530 } 531 532 /** 533 * tick_nohz_get_sleep_length - return the length of the current sleep 534 * 535 * Called from power state control code with interrupts disabled 536 */ 537 ktime_t tick_nohz_get_sleep_length(void) 538 { 539 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 540 541 return ts->sleep_length; 542 } 543 544 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 545 { 546 hrtimer_cancel(&ts->sched_timer); 547 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 548 549 while (1) { 550 /* Forward the time to expire in the future */ 551 hrtimer_forward(&ts->sched_timer, now, tick_period); 552 553 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 554 hrtimer_start_expires(&ts->sched_timer, 555 HRTIMER_MODE_ABS_PINNED); 556 /* Check, if the timer was already in the past */ 557 if (hrtimer_active(&ts->sched_timer)) 558 break; 559 } else { 560 if (!tick_program_event( 561 hrtimer_get_expires(&ts->sched_timer), 0)) 562 break; 563 } 564 /* Reread time and update jiffies */ 565 now = ktime_get(); 566 tick_do_update_jiffies64(now); 567 } 568 } 569 570 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 571 { 572 /* Update jiffies first */ 573 tick_do_update_jiffies64(now); 574 update_cpu_load_nohz(); 575 576 calc_load_exit_idle(); 577 touch_softlockup_watchdog(); 578 /* 579 * Cancel the scheduled timer and restore the tick 580 */ 581 ts->tick_stopped = 0; 582 ts->idle_exittime = now; 583 584 tick_nohz_restart(ts, now); 585 } 586 587 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 588 { 589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 590 unsigned long ticks; 591 /* 592 * We stopped the tick in idle. Update process times would miss the 593 * time we slept as update_process_times does only a 1 tick 594 * accounting. Enforce that this is accounted to idle ! 595 */ 596 ticks = jiffies - ts->idle_jiffies; 597 /* 598 * We might be one off. Do not randomly account a huge number of ticks! 599 */ 600 if (ticks && ticks < LONG_MAX) 601 account_idle_ticks(ticks); 602 #endif 603 } 604 605 /** 606 * tick_nohz_idle_exit - restart the idle tick from the idle task 607 * 608 * Restart the idle tick when the CPU is woken up from idle 609 * This also exit the RCU extended quiescent state. The CPU 610 * can use RCU again after this function is called. 611 */ 612 void tick_nohz_idle_exit(void) 613 { 614 int cpu = smp_processor_id(); 615 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 616 ktime_t now; 617 618 local_irq_disable(); 619 620 WARN_ON_ONCE(!ts->inidle); 621 622 ts->inidle = 0; 623 624 if (ts->idle_active || ts->tick_stopped) 625 now = ktime_get(); 626 627 if (ts->idle_active) 628 tick_nohz_stop_idle(cpu, now); 629 630 if (ts->tick_stopped) { 631 tick_nohz_restart_sched_tick(ts, now); 632 tick_nohz_account_idle_ticks(ts); 633 } 634 635 local_irq_enable(); 636 } 637 638 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 639 { 640 hrtimer_forward(&ts->sched_timer, now, tick_period); 641 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 642 } 643 644 /* 645 * The nohz low res interrupt handler 646 */ 647 static void tick_nohz_handler(struct clock_event_device *dev) 648 { 649 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 650 struct pt_regs *regs = get_irq_regs(); 651 int cpu = smp_processor_id(); 652 ktime_t now = ktime_get(); 653 654 dev->next_event.tv64 = KTIME_MAX; 655 656 /* 657 * Check if the do_timer duty was dropped. We don't care about 658 * concurrency: This happens only when the cpu in charge went 659 * into a long sleep. If two cpus happen to assign themself to 660 * this duty, then the jiffies update is still serialized by 661 * xtime_lock. 662 */ 663 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 664 tick_do_timer_cpu = cpu; 665 666 /* Check, if the jiffies need an update */ 667 if (tick_do_timer_cpu == cpu) 668 tick_do_update_jiffies64(now); 669 670 /* 671 * When we are idle and the tick is stopped, we have to touch 672 * the watchdog as we might not schedule for a really long 673 * time. This happens on complete idle SMP systems while 674 * waiting on the login prompt. We also increment the "start 675 * of idle" jiffy stamp so the idle accounting adjustment we 676 * do when we go busy again does not account too much ticks. 677 */ 678 if (ts->tick_stopped) { 679 touch_softlockup_watchdog(); 680 ts->idle_jiffies++; 681 } 682 683 update_process_times(user_mode(regs)); 684 profile_tick(CPU_PROFILING); 685 686 while (tick_nohz_reprogram(ts, now)) { 687 now = ktime_get(); 688 tick_do_update_jiffies64(now); 689 } 690 } 691 692 /** 693 * tick_nohz_switch_to_nohz - switch to nohz mode 694 */ 695 static void tick_nohz_switch_to_nohz(void) 696 { 697 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 698 ktime_t next; 699 700 if (!tick_nohz_enabled) 701 return; 702 703 local_irq_disable(); 704 if (tick_switch_to_oneshot(tick_nohz_handler)) { 705 local_irq_enable(); 706 return; 707 } 708 709 ts->nohz_mode = NOHZ_MODE_LOWRES; 710 711 /* 712 * Recycle the hrtimer in ts, so we can share the 713 * hrtimer_forward with the highres code. 714 */ 715 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 716 /* Get the next period */ 717 next = tick_init_jiffy_update(); 718 719 for (;;) { 720 hrtimer_set_expires(&ts->sched_timer, next); 721 if (!tick_program_event(next, 0)) 722 break; 723 next = ktime_add(next, tick_period); 724 } 725 local_irq_enable(); 726 } 727 728 /* 729 * When NOHZ is enabled and the tick is stopped, we need to kick the 730 * tick timer from irq_enter() so that the jiffies update is kept 731 * alive during long running softirqs. That's ugly as hell, but 732 * correctness is key even if we need to fix the offending softirq in 733 * the first place. 734 * 735 * Note, this is different to tick_nohz_restart. We just kick the 736 * timer and do not touch the other magic bits which need to be done 737 * when idle is left. 738 */ 739 static void tick_nohz_kick_tick(int cpu, ktime_t now) 740 { 741 #if 0 742 /* Switch back to 2.6.27 behaviour */ 743 744 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 745 ktime_t delta; 746 747 /* 748 * Do not touch the tick device, when the next expiry is either 749 * already reached or less/equal than the tick period. 750 */ 751 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 752 if (delta.tv64 <= tick_period.tv64) 753 return; 754 755 tick_nohz_restart(ts, now); 756 #endif 757 } 758 759 static inline void tick_check_nohz(int cpu) 760 { 761 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 762 ktime_t now; 763 764 if (!ts->idle_active && !ts->tick_stopped) 765 return; 766 now = ktime_get(); 767 if (ts->idle_active) 768 tick_nohz_stop_idle(cpu, now); 769 if (ts->tick_stopped) { 770 tick_nohz_update_jiffies(now); 771 tick_nohz_kick_tick(cpu, now); 772 } 773 } 774 775 #else 776 777 static inline void tick_nohz_switch_to_nohz(void) { } 778 static inline void tick_check_nohz(int cpu) { } 779 780 #endif /* NO_HZ */ 781 782 /* 783 * Called from irq_enter to notify about the possible interruption of idle() 784 */ 785 void tick_check_idle(int cpu) 786 { 787 tick_check_oneshot_broadcast(cpu); 788 tick_check_nohz(cpu); 789 } 790 791 /* 792 * High resolution timer specific code 793 */ 794 #ifdef CONFIG_HIGH_RES_TIMERS 795 /* 796 * We rearm the timer until we get disabled by the idle code. 797 * Called with interrupts disabled and timer->base->cpu_base->lock held. 798 */ 799 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 800 { 801 struct tick_sched *ts = 802 container_of(timer, struct tick_sched, sched_timer); 803 struct pt_regs *regs = get_irq_regs(); 804 ktime_t now = ktime_get(); 805 int cpu = smp_processor_id(); 806 807 #ifdef CONFIG_NO_HZ 808 /* 809 * Check if the do_timer duty was dropped. We don't care about 810 * concurrency: This happens only when the cpu in charge went 811 * into a long sleep. If two cpus happen to assign themself to 812 * this duty, then the jiffies update is still serialized by 813 * xtime_lock. 814 */ 815 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 816 tick_do_timer_cpu = cpu; 817 #endif 818 819 /* Check, if the jiffies need an update */ 820 if (tick_do_timer_cpu == cpu) 821 tick_do_update_jiffies64(now); 822 823 /* 824 * Do not call, when we are not in irq context and have 825 * no valid regs pointer 826 */ 827 if (regs) { 828 /* 829 * When we are idle and the tick is stopped, we have to touch 830 * the watchdog as we might not schedule for a really long 831 * time. This happens on complete idle SMP systems while 832 * waiting on the login prompt. We also increment the "start of 833 * idle" jiffy stamp so the idle accounting adjustment we do 834 * when we go busy again does not account too much ticks. 835 */ 836 if (ts->tick_stopped) { 837 touch_softlockup_watchdog(); 838 if (is_idle_task(current)) 839 ts->idle_jiffies++; 840 } 841 update_process_times(user_mode(regs)); 842 profile_tick(CPU_PROFILING); 843 } 844 845 hrtimer_forward(timer, now, tick_period); 846 847 return HRTIMER_RESTART; 848 } 849 850 static int sched_skew_tick; 851 852 static int __init skew_tick(char *str) 853 { 854 get_option(&str, &sched_skew_tick); 855 856 return 0; 857 } 858 early_param("skew_tick", skew_tick); 859 860 /** 861 * tick_setup_sched_timer - setup the tick emulation timer 862 */ 863 void tick_setup_sched_timer(void) 864 { 865 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 866 ktime_t now = ktime_get(); 867 868 /* 869 * Emulate tick processing via per-CPU hrtimers: 870 */ 871 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 872 ts->sched_timer.function = tick_sched_timer; 873 874 /* Get the next period (per cpu) */ 875 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 876 877 /* Offset the tick to avert xtime_lock contention. */ 878 if (sched_skew_tick) { 879 u64 offset = ktime_to_ns(tick_period) >> 1; 880 do_div(offset, num_possible_cpus()); 881 offset *= smp_processor_id(); 882 hrtimer_add_expires_ns(&ts->sched_timer, offset); 883 } 884 885 for (;;) { 886 hrtimer_forward(&ts->sched_timer, now, tick_period); 887 hrtimer_start_expires(&ts->sched_timer, 888 HRTIMER_MODE_ABS_PINNED); 889 /* Check, if the timer was already in the past */ 890 if (hrtimer_active(&ts->sched_timer)) 891 break; 892 now = ktime_get(); 893 } 894 895 #ifdef CONFIG_NO_HZ 896 if (tick_nohz_enabled) 897 ts->nohz_mode = NOHZ_MODE_HIGHRES; 898 #endif 899 } 900 #endif /* HIGH_RES_TIMERS */ 901 902 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 903 void tick_cancel_sched_timer(int cpu) 904 { 905 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 906 907 # ifdef CONFIG_HIGH_RES_TIMERS 908 if (ts->sched_timer.base) 909 hrtimer_cancel(&ts->sched_timer); 910 # endif 911 912 ts->nohz_mode = NOHZ_MODE_INACTIVE; 913 } 914 #endif 915 916 /** 917 * Async notification about clocksource changes 918 */ 919 void tick_clock_notify(void) 920 { 921 int cpu; 922 923 for_each_possible_cpu(cpu) 924 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 925 } 926 927 /* 928 * Async notification about clock event changes 929 */ 930 void tick_oneshot_notify(void) 931 { 932 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 933 934 set_bit(0, &ts->check_clocks); 935 } 936 937 /** 938 * Check, if a change happened, which makes oneshot possible. 939 * 940 * Called cyclic from the hrtimer softirq (driven by the timer 941 * softirq) allow_nohz signals, that we can switch into low-res nohz 942 * mode, because high resolution timers are disabled (either compile 943 * or runtime). 944 */ 945 int tick_check_oneshot_change(int allow_nohz) 946 { 947 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 948 949 if (!test_and_clear_bit(0, &ts->check_clocks)) 950 return 0; 951 952 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 953 return 0; 954 955 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 956 return 0; 957 958 if (!allow_nohz) 959 return 1; 960 961 tick_nohz_switch_to_nohz(); 962 return 0; 963 } 964