xref: /linux/kernel/time/tick-sched.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per-CPU nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevaluate with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the CPU in charge went
120 	 * into a long sleep. If two CPUs happen to assign themselves to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
161 
162 static bool check_tick_dependency(atomic_t *dep)
163 {
164 	int val = atomic_read(dep);
165 
166 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 		return true;
169 	}
170 
171 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 		return true;
174 	}
175 
176 	if (val & TICK_DEP_MASK_SCHED) {
177 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 		return true;
184 	}
185 
186 	return false;
187 }
188 
189 static bool can_stop_full_tick(struct tick_sched *ts)
190 {
191 	WARN_ON_ONCE(!irqs_disabled());
192 
193 	if (check_tick_dependency(&tick_dep_mask))
194 		return false;
195 
196 	if (check_tick_dependency(&ts->tick_dep_mask))
197 		return false;
198 
199 	if (check_tick_dependency(&current->tick_dep_mask))
200 		return false;
201 
202 	if (check_tick_dependency(&current->signal->tick_dep_mask))
203 		return false;
204 
205 	return true;
206 }
207 
208 static void nohz_full_kick_func(struct irq_work *work)
209 {
210 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
211 }
212 
213 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
214 	.func = nohz_full_kick_func,
215 };
216 
217 /*
218  * Kick this CPU if it's full dynticks in order to force it to
219  * re-evaluate its dependency on the tick and restart it if necessary.
220  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
221  * is NMI safe.
222  */
223 static void tick_nohz_full_kick(void)
224 {
225 	if (!tick_nohz_full_cpu(smp_processor_id()))
226 		return;
227 
228 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
229 }
230 
231 /*
232  * Kick the CPU if it's full dynticks in order to force it to
233  * re-evaluate its dependency on the tick and restart it if necessary.
234  */
235 void tick_nohz_full_kick_cpu(int cpu)
236 {
237 	if (!tick_nohz_full_cpu(cpu))
238 		return;
239 
240 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
241 }
242 
243 /*
244  * Kick all full dynticks CPUs in order to force these to re-evaluate
245  * their dependency on the tick and restart it if necessary.
246  */
247 static void tick_nohz_full_kick_all(void)
248 {
249 	int cpu;
250 
251 	if (!tick_nohz_full_running)
252 		return;
253 
254 	preempt_disable();
255 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
256 		tick_nohz_full_kick_cpu(cpu);
257 	preempt_enable();
258 }
259 
260 static void tick_nohz_dep_set_all(atomic_t *dep,
261 				  enum tick_dep_bits bit)
262 {
263 	int prev;
264 
265 	prev = atomic_fetch_or(BIT(bit), dep);
266 	if (!prev)
267 		tick_nohz_full_kick_all();
268 }
269 
270 /*
271  * Set a global tick dependency. Used by perf events that rely on freq and
272  * by unstable clock.
273  */
274 void tick_nohz_dep_set(enum tick_dep_bits bit)
275 {
276 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
277 }
278 
279 void tick_nohz_dep_clear(enum tick_dep_bits bit)
280 {
281 	atomic_andnot(BIT(bit), &tick_dep_mask);
282 }
283 
284 /*
285  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
286  * manage events throttling.
287  */
288 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
289 {
290 	int prev;
291 	struct tick_sched *ts;
292 
293 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
294 
295 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
296 	if (!prev) {
297 		preempt_disable();
298 		/* Perf needs local kick that is NMI safe */
299 		if (cpu == smp_processor_id()) {
300 			tick_nohz_full_kick();
301 		} else {
302 			/* Remote irq work not NMI-safe */
303 			if (!WARN_ON_ONCE(in_nmi()))
304 				tick_nohz_full_kick_cpu(cpu);
305 		}
306 		preempt_enable();
307 	}
308 }
309 
310 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
311 {
312 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
313 
314 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
315 }
316 
317 /*
318  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
319  * per task timers.
320  */
321 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
322 {
323 	/*
324 	 * We could optimize this with just kicking the target running the task
325 	 * if that noise matters for nohz full users.
326 	 */
327 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
328 }
329 
330 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
331 {
332 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
333 }
334 
335 /*
336  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
337  * per process timers.
338  */
339 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
340 {
341 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
342 }
343 
344 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
345 {
346 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
347 }
348 
349 /*
350  * Re-evaluate the need for the tick as we switch the current task.
351  * It might need the tick due to per task/process properties:
352  * perf events, posix CPU timers, ...
353  */
354 void __tick_nohz_task_switch(void)
355 {
356 	unsigned long flags;
357 	struct tick_sched *ts;
358 
359 	local_irq_save(flags);
360 
361 	if (!tick_nohz_full_cpu(smp_processor_id()))
362 		goto out;
363 
364 	ts = this_cpu_ptr(&tick_cpu_sched);
365 
366 	if (ts->tick_stopped) {
367 		if (atomic_read(&current->tick_dep_mask) ||
368 		    atomic_read(&current->signal->tick_dep_mask))
369 			tick_nohz_full_kick();
370 	}
371 out:
372 	local_irq_restore(flags);
373 }
374 
375 /* Parse the boot-time nohz CPU list from the kernel parameters. */
376 static int __init tick_nohz_full_setup(char *str)
377 {
378 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
379 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
380 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
381 		free_bootmem_cpumask_var(tick_nohz_full_mask);
382 		return 1;
383 	}
384 	tick_nohz_full_running = true;
385 
386 	return 1;
387 }
388 __setup("nohz_full=", tick_nohz_full_setup);
389 
390 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
391 				       unsigned long action,
392 				       void *hcpu)
393 {
394 	unsigned int cpu = (unsigned long)hcpu;
395 
396 	switch (action & ~CPU_TASKS_FROZEN) {
397 	case CPU_DOWN_PREPARE:
398 		/*
399 		 * The boot CPU handles housekeeping duty (unbound timers,
400 		 * workqueues, timekeeping, ...) on behalf of full dynticks
401 		 * CPUs. It must remain online when nohz full is enabled.
402 		 */
403 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 			return NOTIFY_BAD;
405 		break;
406 	}
407 	return NOTIFY_OK;
408 }
409 
410 static int tick_nohz_init_all(void)
411 {
412 	int err = -1;
413 
414 #ifdef CONFIG_NO_HZ_FULL_ALL
415 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
416 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
417 		return err;
418 	}
419 	err = 0;
420 	cpumask_setall(tick_nohz_full_mask);
421 	tick_nohz_full_running = true;
422 #endif
423 	return err;
424 }
425 
426 void __init tick_nohz_init(void)
427 {
428 	int cpu;
429 
430 	if (!tick_nohz_full_running) {
431 		if (tick_nohz_init_all() < 0)
432 			return;
433 	}
434 
435 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
436 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
437 		cpumask_clear(tick_nohz_full_mask);
438 		tick_nohz_full_running = false;
439 		return;
440 	}
441 
442 	/*
443 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
444 	 * locking contexts. But then we need irq work to raise its own
445 	 * interrupts to avoid circular dependency on the tick
446 	 */
447 	if (!arch_irq_work_has_interrupt()) {
448 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
449 		cpumask_clear(tick_nohz_full_mask);
450 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
451 		tick_nohz_full_running = false;
452 		return;
453 	}
454 
455 	cpu = smp_processor_id();
456 
457 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
458 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
459 			cpu);
460 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
461 	}
462 
463 	cpumask_andnot(housekeeping_mask,
464 		       cpu_possible_mask, tick_nohz_full_mask);
465 
466 	for_each_cpu(cpu, tick_nohz_full_mask)
467 		context_tracking_cpu_set(cpu);
468 
469 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
470 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 		cpumask_pr_args(tick_nohz_full_mask));
472 
473 	/*
474 	 * We need at least one CPU to handle housekeeping work such
475 	 * as timekeeping, unbound timers, workqueues, ...
476 	 */
477 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
478 }
479 #endif
480 
481 /*
482  * NOHZ - aka dynamic tick functionality
483  */
484 #ifdef CONFIG_NO_HZ_COMMON
485 /*
486  * NO HZ enabled ?
487  */
488 bool tick_nohz_enabled __read_mostly  = true;
489 unsigned long tick_nohz_active  __read_mostly;
490 /*
491  * Enable / Disable tickless mode
492  */
493 static int __init setup_tick_nohz(char *str)
494 {
495 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
496 }
497 
498 __setup("nohz=", setup_tick_nohz);
499 
500 int tick_nohz_tick_stopped(void)
501 {
502 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
503 }
504 
505 /**
506  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
507  *
508  * Called from interrupt entry when the CPU was idle
509  *
510  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
511  * must be updated. Otherwise an interrupt handler could use a stale jiffy
512  * value. We do this unconditionally on any CPU, as we don't know whether the
513  * CPU, which has the update task assigned is in a long sleep.
514  */
515 static void tick_nohz_update_jiffies(ktime_t now)
516 {
517 	unsigned long flags;
518 
519 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
520 
521 	local_irq_save(flags);
522 	tick_do_update_jiffies64(now);
523 	local_irq_restore(flags);
524 
525 	touch_softlockup_watchdog_sched();
526 }
527 
528 /*
529  * Updates the per-CPU time idle statistics counters
530  */
531 static void
532 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
533 {
534 	ktime_t delta;
535 
536 	if (ts->idle_active) {
537 		delta = ktime_sub(now, ts->idle_entrytime);
538 		if (nr_iowait_cpu(cpu) > 0)
539 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
540 		else
541 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
542 		ts->idle_entrytime = now;
543 	}
544 
545 	if (last_update_time)
546 		*last_update_time = ktime_to_us(now);
547 
548 }
549 
550 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
551 {
552 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
553 	ts->idle_active = 0;
554 
555 	sched_clock_idle_wakeup_event(0);
556 }
557 
558 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
559 {
560 	ktime_t now = ktime_get();
561 
562 	ts->idle_entrytime = now;
563 	ts->idle_active = 1;
564 	sched_clock_idle_sleep_event();
565 	return now;
566 }
567 
568 /**
569  * get_cpu_idle_time_us - get the total idle time of a CPU
570  * @cpu: CPU number to query
571  * @last_update_time: variable to store update time in. Do not update
572  * counters if NULL.
573  *
574  * Return the cumulative idle time (since boot) for a given
575  * CPU, in microseconds.
576  *
577  * This time is measured via accounting rather than sampling,
578  * and is as accurate as ktime_get() is.
579  *
580  * This function returns -1 if NOHZ is not enabled.
581  */
582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
583 {
584 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
585 	ktime_t now, idle;
586 
587 	if (!tick_nohz_active)
588 		return -1;
589 
590 	now = ktime_get();
591 	if (last_update_time) {
592 		update_ts_time_stats(cpu, ts, now, last_update_time);
593 		idle = ts->idle_sleeptime;
594 	} else {
595 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
596 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
597 
598 			idle = ktime_add(ts->idle_sleeptime, delta);
599 		} else {
600 			idle = ts->idle_sleeptime;
601 		}
602 	}
603 
604 	return ktime_to_us(idle);
605 
606 }
607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608 
609 /**
610  * get_cpu_iowait_time_us - get the total iowait time of a CPU
611  * @cpu: CPU number to query
612  * @last_update_time: variable to store update time in. Do not update
613  * counters if NULL.
614  *
615  * Return the cumulative iowait time (since boot) for a given
616  * CPU, in microseconds.
617  *
618  * This time is measured via accounting rather than sampling,
619  * and is as accurate as ktime_get() is.
620  *
621  * This function returns -1 if NOHZ is not enabled.
622  */
623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
624 {
625 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
626 	ktime_t now, iowait;
627 
628 	if (!tick_nohz_active)
629 		return -1;
630 
631 	now = ktime_get();
632 	if (last_update_time) {
633 		update_ts_time_stats(cpu, ts, now, last_update_time);
634 		iowait = ts->iowait_sleeptime;
635 	} else {
636 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
637 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
638 
639 			iowait = ktime_add(ts->iowait_sleeptime, delta);
640 		} else {
641 			iowait = ts->iowait_sleeptime;
642 		}
643 	}
644 
645 	return ktime_to_us(iowait);
646 }
647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
648 
649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
650 {
651 	hrtimer_cancel(&ts->sched_timer);
652 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
653 
654 	/* Forward the time to expire in the future */
655 	hrtimer_forward(&ts->sched_timer, now, tick_period);
656 
657 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
658 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
659 	else
660 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
661 }
662 
663 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
664 					 ktime_t now, int cpu)
665 {
666 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
667 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
668 	unsigned long seq, basejiff;
669 	ktime_t	tick;
670 
671 	/* Read jiffies and the time when jiffies were updated last */
672 	do {
673 		seq = read_seqbegin(&jiffies_lock);
674 		basemono = last_jiffies_update.tv64;
675 		basejiff = jiffies;
676 	} while (read_seqretry(&jiffies_lock, seq));
677 	ts->last_jiffies = basejiff;
678 
679 	if (rcu_needs_cpu(basemono, &next_rcu) ||
680 	    arch_needs_cpu() || irq_work_needs_cpu()) {
681 		next_tick = basemono + TICK_NSEC;
682 	} else {
683 		/*
684 		 * Get the next pending timer. If high resolution
685 		 * timers are enabled this only takes the timer wheel
686 		 * timers into account. If high resolution timers are
687 		 * disabled this also looks at the next expiring
688 		 * hrtimer.
689 		 */
690 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 		ts->next_timer = next_tmr;
692 		/* Take the next rcu event into account */
693 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694 	}
695 
696 	/*
697 	 * If the tick is due in the next period, keep it ticking or
698 	 * force prod the timer.
699 	 */
700 	delta = next_tick - basemono;
701 	if (delta <= (u64)TICK_NSEC) {
702 		tick.tv64 = 0;
703 
704 		/*
705 		 * Tell the timer code that the base is not idle, i.e. undo
706 		 * the effect of get_next_timer_interrupt():
707 		 */
708 		timer_clear_idle();
709 		/*
710 		 * We've not stopped the tick yet, and there's a timer in the
711 		 * next period, so no point in stopping it either, bail.
712 		 */
713 		if (!ts->tick_stopped)
714 			goto out;
715 
716 		/*
717 		 * If, OTOH, we did stop it, but there's a pending (expired)
718 		 * timer reprogram the timer hardware to fire now.
719 		 *
720 		 * We will not restart the tick proper, just prod the timer
721 		 * hardware into firing an interrupt to process the pending
722 		 * timers. Just like tick_irq_exit() will not restart the tick
723 		 * for 'normal' interrupts.
724 		 *
725 		 * Only once we exit the idle loop will we re-enable the tick,
726 		 * see tick_nohz_idle_exit().
727 		 */
728 		if (delta == 0) {
729 			tick_nohz_restart(ts, now);
730 			goto out;
731 		}
732 	}
733 
734 	/*
735 	 * If this CPU is the one which updates jiffies, then give up
736 	 * the assignment and let it be taken by the CPU which runs
737 	 * the tick timer next, which might be this CPU as well. If we
738 	 * don't drop this here the jiffies might be stale and
739 	 * do_timer() never invoked. Keep track of the fact that it
740 	 * was the one which had the do_timer() duty last. If this CPU
741 	 * is the one which had the do_timer() duty last, we limit the
742 	 * sleep time to the timekeeping max_deferment value.
743 	 * Otherwise we can sleep as long as we want.
744 	 */
745 	delta = timekeeping_max_deferment();
746 	if (cpu == tick_do_timer_cpu) {
747 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
748 		ts->do_timer_last = 1;
749 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
750 		delta = KTIME_MAX;
751 		ts->do_timer_last = 0;
752 	} else if (!ts->do_timer_last) {
753 		delta = KTIME_MAX;
754 	}
755 
756 #ifdef CONFIG_NO_HZ_FULL
757 	/* Limit the tick delta to the maximum scheduler deferment */
758 	if (!ts->inidle)
759 		delta = min(delta, scheduler_tick_max_deferment());
760 #endif
761 
762 	/* Calculate the next expiry time */
763 	if (delta < (KTIME_MAX - basemono))
764 		expires = basemono + delta;
765 	else
766 		expires = KTIME_MAX;
767 
768 	expires = min_t(u64, expires, next_tick);
769 	tick.tv64 = expires;
770 
771 	/* Skip reprogram of event if its not changed */
772 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
773 		goto out;
774 
775 	/*
776 	 * nohz_stop_sched_tick can be called several times before
777 	 * the nohz_restart_sched_tick is called. This happens when
778 	 * interrupts arrive which do not cause a reschedule. In the
779 	 * first call we save the current tick time, so we can restart
780 	 * the scheduler tick in nohz_restart_sched_tick.
781 	 */
782 	if (!ts->tick_stopped) {
783 		nohz_balance_enter_idle(cpu);
784 		calc_load_enter_idle();
785 		cpu_load_update_nohz_start();
786 
787 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 		ts->tick_stopped = 1;
789 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
790 	}
791 
792 	/*
793 	 * If the expiration time == KTIME_MAX, then we simply stop
794 	 * the tick timer.
795 	 */
796 	if (unlikely(expires == KTIME_MAX)) {
797 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
798 			hrtimer_cancel(&ts->sched_timer);
799 		goto out;
800 	}
801 
802 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
804 	else
805 		tick_program_event(tick, 1);
806 out:
807 	/* Update the estimated sleep length */
808 	ts->sleep_length = ktime_sub(dev->next_event, now);
809 	return tick;
810 }
811 
812 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
813 {
814 	/* Update jiffies first */
815 	tick_do_update_jiffies64(now);
816 	cpu_load_update_nohz_stop();
817 
818 	/*
819 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
820 	 * the clock forward checks in the enqueue path:
821 	 */
822 	timer_clear_idle();
823 
824 	calc_load_exit_idle();
825 	touch_softlockup_watchdog_sched();
826 	/*
827 	 * Cancel the scheduled timer and restore the tick
828 	 */
829 	ts->tick_stopped  = 0;
830 	ts->idle_exittime = now;
831 
832 	tick_nohz_restart(ts, now);
833 }
834 
835 static void tick_nohz_full_update_tick(struct tick_sched *ts)
836 {
837 #ifdef CONFIG_NO_HZ_FULL
838 	int cpu = smp_processor_id();
839 
840 	if (!tick_nohz_full_cpu(cpu))
841 		return;
842 
843 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
844 		return;
845 
846 	if (can_stop_full_tick(ts))
847 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
848 	else if (ts->tick_stopped)
849 		tick_nohz_restart_sched_tick(ts, ktime_get());
850 #endif
851 }
852 
853 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
854 {
855 	/*
856 	 * If this CPU is offline and it is the one which updates
857 	 * jiffies, then give up the assignment and let it be taken by
858 	 * the CPU which runs the tick timer next. If we don't drop
859 	 * this here the jiffies might be stale and do_timer() never
860 	 * invoked.
861 	 */
862 	if (unlikely(!cpu_online(cpu))) {
863 		if (cpu == tick_do_timer_cpu)
864 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
865 		return false;
866 	}
867 
868 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
869 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
870 		return false;
871 	}
872 
873 	if (need_resched())
874 		return false;
875 
876 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
877 		static int ratelimit;
878 
879 		if (ratelimit < 10 &&
880 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
881 			pr_warn("NOHZ: local_softirq_pending %02x\n",
882 				(unsigned int) local_softirq_pending());
883 			ratelimit++;
884 		}
885 		return false;
886 	}
887 
888 	if (tick_nohz_full_enabled()) {
889 		/*
890 		 * Keep the tick alive to guarantee timekeeping progression
891 		 * if there are full dynticks CPUs around
892 		 */
893 		if (tick_do_timer_cpu == cpu)
894 			return false;
895 		/*
896 		 * Boot safety: make sure the timekeeping duty has been
897 		 * assigned before entering dyntick-idle mode,
898 		 */
899 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
900 			return false;
901 	}
902 
903 	return true;
904 }
905 
906 static void __tick_nohz_idle_enter(struct tick_sched *ts)
907 {
908 	ktime_t now, expires;
909 	int cpu = smp_processor_id();
910 
911 	if (can_stop_idle_tick(cpu, ts)) {
912 		int was_stopped = ts->tick_stopped;
913 
914 		now = tick_nohz_start_idle(ts);
915 		ts->idle_calls++;
916 
917 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
918 		if (expires.tv64 > 0LL) {
919 			ts->idle_sleeps++;
920 			ts->idle_expires = expires;
921 		}
922 
923 		if (!was_stopped && ts->tick_stopped)
924 			ts->idle_jiffies = ts->last_jiffies;
925 	}
926 }
927 
928 /**
929  * tick_nohz_idle_enter - stop the idle tick from the idle task
930  *
931  * When the next event is more than a tick into the future, stop the idle tick
932  * Called when we start the idle loop.
933  *
934  * The arch is responsible of calling:
935  *
936  * - rcu_idle_enter() after its last use of RCU before the CPU is put
937  *  to sleep.
938  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
939  */
940 void tick_nohz_idle_enter(void)
941 {
942 	struct tick_sched *ts;
943 
944 	WARN_ON_ONCE(irqs_disabled());
945 
946 	/*
947 	 * Update the idle state in the scheduler domain hierarchy
948 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
949 	 * State will be updated to busy during the first busy tick after
950 	 * exiting idle.
951 	 */
952 	set_cpu_sd_state_idle();
953 
954 	local_irq_disable();
955 
956 	ts = this_cpu_ptr(&tick_cpu_sched);
957 	ts->inidle = 1;
958 	__tick_nohz_idle_enter(ts);
959 
960 	local_irq_enable();
961 }
962 
963 /**
964  * tick_nohz_irq_exit - update next tick event from interrupt exit
965  *
966  * When an interrupt fires while we are idle and it doesn't cause
967  * a reschedule, it may still add, modify or delete a timer, enqueue
968  * an RCU callback, etc...
969  * So we need to re-calculate and reprogram the next tick event.
970  */
971 void tick_nohz_irq_exit(void)
972 {
973 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
974 
975 	if (ts->inidle)
976 		__tick_nohz_idle_enter(ts);
977 	else
978 		tick_nohz_full_update_tick(ts);
979 }
980 
981 /**
982  * tick_nohz_get_sleep_length - return the length of the current sleep
983  *
984  * Called from power state control code with interrupts disabled
985  */
986 ktime_t tick_nohz_get_sleep_length(void)
987 {
988 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
989 
990 	return ts->sleep_length;
991 }
992 
993 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
994 {
995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
996 	unsigned long ticks;
997 
998 	if (vtime_accounting_cpu_enabled())
999 		return;
1000 	/*
1001 	 * We stopped the tick in idle. Update process times would miss the
1002 	 * time we slept as update_process_times does only a 1 tick
1003 	 * accounting. Enforce that this is accounted to idle !
1004 	 */
1005 	ticks = jiffies - ts->idle_jiffies;
1006 	/*
1007 	 * We might be one off. Do not randomly account a huge number of ticks!
1008 	 */
1009 	if (ticks && ticks < LONG_MAX)
1010 		account_idle_ticks(ticks);
1011 #endif
1012 }
1013 
1014 /**
1015  * tick_nohz_idle_exit - restart the idle tick from the idle task
1016  *
1017  * Restart the idle tick when the CPU is woken up from idle
1018  * This also exit the RCU extended quiescent state. The CPU
1019  * can use RCU again after this function is called.
1020  */
1021 void tick_nohz_idle_exit(void)
1022 {
1023 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024 	ktime_t now;
1025 
1026 	local_irq_disable();
1027 
1028 	WARN_ON_ONCE(!ts->inidle);
1029 
1030 	ts->inidle = 0;
1031 
1032 	if (ts->idle_active || ts->tick_stopped)
1033 		now = ktime_get();
1034 
1035 	if (ts->idle_active)
1036 		tick_nohz_stop_idle(ts, now);
1037 
1038 	if (ts->tick_stopped) {
1039 		tick_nohz_restart_sched_tick(ts, now);
1040 		tick_nohz_account_idle_ticks(ts);
1041 	}
1042 
1043 	local_irq_enable();
1044 }
1045 
1046 /*
1047  * The nohz low res interrupt handler
1048  */
1049 static void tick_nohz_handler(struct clock_event_device *dev)
1050 {
1051 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1052 	struct pt_regs *regs = get_irq_regs();
1053 	ktime_t now = ktime_get();
1054 
1055 	dev->next_event.tv64 = KTIME_MAX;
1056 
1057 	tick_sched_do_timer(now);
1058 	tick_sched_handle(ts, regs);
1059 
1060 	/* No need to reprogram if we are running tickless  */
1061 	if (unlikely(ts->tick_stopped))
1062 		return;
1063 
1064 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1065 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1066 }
1067 
1068 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1069 {
1070 	if (!tick_nohz_enabled)
1071 		return;
1072 	ts->nohz_mode = mode;
1073 	/* One update is enough */
1074 	if (!test_and_set_bit(0, &tick_nohz_active))
1075 		timers_update_migration(true);
1076 }
1077 
1078 /**
1079  * tick_nohz_switch_to_nohz - switch to nohz mode
1080  */
1081 static void tick_nohz_switch_to_nohz(void)
1082 {
1083 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1084 	ktime_t next;
1085 
1086 	if (!tick_nohz_enabled)
1087 		return;
1088 
1089 	if (tick_switch_to_oneshot(tick_nohz_handler))
1090 		return;
1091 
1092 	/*
1093 	 * Recycle the hrtimer in ts, so we can share the
1094 	 * hrtimer_forward with the highres code.
1095 	 */
1096 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1097 	/* Get the next period */
1098 	next = tick_init_jiffy_update();
1099 
1100 	hrtimer_set_expires(&ts->sched_timer, next);
1101 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1102 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1103 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1104 }
1105 
1106 static inline void tick_nohz_irq_enter(void)
1107 {
1108 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1109 	ktime_t now;
1110 
1111 	if (!ts->idle_active && !ts->tick_stopped)
1112 		return;
1113 	now = ktime_get();
1114 	if (ts->idle_active)
1115 		tick_nohz_stop_idle(ts, now);
1116 	if (ts->tick_stopped)
1117 		tick_nohz_update_jiffies(now);
1118 }
1119 
1120 #else
1121 
1122 static inline void tick_nohz_switch_to_nohz(void) { }
1123 static inline void tick_nohz_irq_enter(void) { }
1124 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1125 
1126 #endif /* CONFIG_NO_HZ_COMMON */
1127 
1128 /*
1129  * Called from irq_enter to notify about the possible interruption of idle()
1130  */
1131 void tick_irq_enter(void)
1132 {
1133 	tick_check_oneshot_broadcast_this_cpu();
1134 	tick_nohz_irq_enter();
1135 }
1136 
1137 /*
1138  * High resolution timer specific code
1139  */
1140 #ifdef CONFIG_HIGH_RES_TIMERS
1141 /*
1142  * We rearm the timer until we get disabled by the idle code.
1143  * Called with interrupts disabled.
1144  */
1145 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1146 {
1147 	struct tick_sched *ts =
1148 		container_of(timer, struct tick_sched, sched_timer);
1149 	struct pt_regs *regs = get_irq_regs();
1150 	ktime_t now = ktime_get();
1151 
1152 	tick_sched_do_timer(now);
1153 
1154 	/*
1155 	 * Do not call, when we are not in irq context and have
1156 	 * no valid regs pointer
1157 	 */
1158 	if (regs)
1159 		tick_sched_handle(ts, regs);
1160 
1161 	/* No need to reprogram if we are in idle or full dynticks mode */
1162 	if (unlikely(ts->tick_stopped))
1163 		return HRTIMER_NORESTART;
1164 
1165 	hrtimer_forward(timer, now, tick_period);
1166 
1167 	return HRTIMER_RESTART;
1168 }
1169 
1170 static int sched_skew_tick;
1171 
1172 static int __init skew_tick(char *str)
1173 {
1174 	get_option(&str, &sched_skew_tick);
1175 
1176 	return 0;
1177 }
1178 early_param("skew_tick", skew_tick);
1179 
1180 /**
1181  * tick_setup_sched_timer - setup the tick emulation timer
1182  */
1183 void tick_setup_sched_timer(void)
1184 {
1185 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1186 	ktime_t now = ktime_get();
1187 
1188 	/*
1189 	 * Emulate tick processing via per-CPU hrtimers:
1190 	 */
1191 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1192 	ts->sched_timer.function = tick_sched_timer;
1193 
1194 	/* Get the next period (per-CPU) */
1195 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1196 
1197 	/* Offset the tick to avert jiffies_lock contention. */
1198 	if (sched_skew_tick) {
1199 		u64 offset = ktime_to_ns(tick_period) >> 1;
1200 		do_div(offset, num_possible_cpus());
1201 		offset *= smp_processor_id();
1202 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1203 	}
1204 
1205 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1206 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1207 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1208 }
1209 #endif /* HIGH_RES_TIMERS */
1210 
1211 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1212 void tick_cancel_sched_timer(int cpu)
1213 {
1214 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1215 
1216 # ifdef CONFIG_HIGH_RES_TIMERS
1217 	if (ts->sched_timer.base)
1218 		hrtimer_cancel(&ts->sched_timer);
1219 # endif
1220 
1221 	memset(ts, 0, sizeof(*ts));
1222 }
1223 #endif
1224 
1225 /**
1226  * Async notification about clocksource changes
1227  */
1228 void tick_clock_notify(void)
1229 {
1230 	int cpu;
1231 
1232 	for_each_possible_cpu(cpu)
1233 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1234 }
1235 
1236 /*
1237  * Async notification about clock event changes
1238  */
1239 void tick_oneshot_notify(void)
1240 {
1241 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1242 
1243 	set_bit(0, &ts->check_clocks);
1244 }
1245 
1246 /**
1247  * Check, if a change happened, which makes oneshot possible.
1248  *
1249  * Called cyclic from the hrtimer softirq (driven by the timer
1250  * softirq) allow_nohz signals, that we can switch into low-res nohz
1251  * mode, because high resolution timers are disabled (either compile
1252  * or runtime). Called with interrupts disabled.
1253  */
1254 int tick_check_oneshot_change(int allow_nohz)
1255 {
1256 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1257 
1258 	if (!test_and_clear_bit(0, &ts->check_clocks))
1259 		return 0;
1260 
1261 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1262 		return 0;
1263 
1264 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1265 		return 0;
1266 
1267 	if (!allow_nohz)
1268 		return 1;
1269 
1270 	tick_nohz_switch_to_nohz();
1271 	return 0;
1272 }
1273