xref: /linux/kernel/time/tick-sched.c (revision ec8c17e5ecb4a5a74069687ccb6d2cfe1851302e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  NOHZ implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
tick_get_tick_sched(int cpu)42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 /*
48  * The time when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
tick_do_update_jiffies64(ktime_t now)57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64-bit can do a quick check without holding the jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32-bit cannot do that because the store of 'tick_next_period'
68 	 * consists of two 32-bit stores, and the first store could be
69 	 * moved by the CPU to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on 'jiffies_lock' and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Re-evaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the 'jiffies_seq' protected job */
118 	jiffies_64 += ticks;
119 
120 	/* Keep the tick_next_period variable up to date */
121 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122 
123 	if (IS_ENABLED(CONFIG_64BIT)) {
124 		/*
125 		 * Pairs with smp_load_acquire() in the lockless quick
126 		 * check above, and ensures that the update to 'jiffies_64' is
127 		 * not reordered vs. the store to 'tick_next_period', neither
128 		 * by the compiler nor by the CPU.
129 		 */
130 		smp_store_release(&tick_next_period, nextp);
131 	} else {
132 		/*
133 		 * A plain store is good enough on 32-bit, as the quick check
134 		 * above is protected by the sequence count.
135 		 */
136 		tick_next_period = nextp;
137 	}
138 
139 	/*
140 	 * Release the sequence count. calc_global_load() below is not
141 	 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 	 * concurrent invocations.
143 	 */
144 	write_seqcount_end(&jiffies_seq);
145 
146 	calc_global_load();
147 
148 	raw_spin_unlock(&jiffies_lock);
149 	update_wall_time();
150 }
151 
152 /*
153  * Initialize and return retrieve the jiffies update.
154  */
tick_init_jiffy_update(void)155 static ktime_t tick_init_jiffy_update(void)
156 {
157 	ktime_t period;
158 
159 	raw_spin_lock(&jiffies_lock);
160 	write_seqcount_begin(&jiffies_seq);
161 
162 	/* Have we started the jiffies update yet ? */
163 	if (last_jiffies_update == 0) {
164 		u32 rem;
165 
166 		/*
167 		 * Ensure that the tick is aligned to a multiple of
168 		 * TICK_NSEC.
169 		 */
170 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 		if (rem)
172 			tick_next_period += TICK_NSEC - rem;
173 
174 		last_jiffies_update = tick_next_period;
175 	}
176 	period = last_jiffies_update;
177 
178 	write_seqcount_end(&jiffies_seq);
179 	raw_spin_unlock(&jiffies_lock);
180 
181 	return period;
182 }
183 
tick_sched_flag_test(struct tick_sched * ts,unsigned long flag)184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 				       unsigned long flag)
186 {
187 	return !!(ts->flags & flag);
188 }
189 
tick_sched_flag_set(struct tick_sched * ts,unsigned long flag)190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 				       unsigned long flag)
192 {
193 	lockdep_assert_irqs_disabled();
194 	ts->flags |= flag;
195 }
196 
tick_sched_flag_clear(struct tick_sched * ts,unsigned long flag)197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 					 unsigned long flag)
199 {
200 	lockdep_assert_irqs_disabled();
201 	ts->flags &= ~flag;
202 }
203 
204 #define MAX_STALLED_JIFFIES 5
205 
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
207 {
208 	int tick_cpu, cpu = smp_processor_id();
209 
210 	/*
211 	 * Check if the do_timer duty was dropped. We don't care about
212 	 * concurrency: This happens only when the CPU in charge went
213 	 * into a long sleep. If two CPUs happen to assign themselves to
214 	 * this duty, then the jiffies update is still serialized by
215 	 * 'jiffies_lock'.
216 	 *
217 	 * If nohz_full is enabled, this should not happen because the
218 	 * 'tick_do_timer_cpu' CPU never relinquishes.
219 	 */
220 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
221 
222 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
223 #ifdef CONFIG_NO_HZ_FULL
224 		WARN_ON_ONCE(tick_nohz_full_running);
225 #endif
226 		WRITE_ONCE(tick_do_timer_cpu, cpu);
227 		tick_cpu = cpu;
228 	}
229 
230 	/* Check if jiffies need an update */
231 	if (tick_cpu == cpu)
232 		tick_do_update_jiffies64(now);
233 
234 	/*
235 	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
236 	 * or VMEXIT'ed for several msecs), force an update.
237 	 */
238 	if (ts->last_tick_jiffies != jiffies) {
239 		ts->stalled_jiffies = 0;
240 		ts->last_tick_jiffies = READ_ONCE(jiffies);
241 	} else {
242 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
243 			tick_do_update_jiffies64(now);
244 			ts->stalled_jiffies = 0;
245 			ts->last_tick_jiffies = READ_ONCE(jiffies);
246 		}
247 	}
248 
249 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
250 		ts->got_idle_tick = 1;
251 }
252 
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
254 {
255 	/*
256 	 * When we are idle and the tick is stopped, we have to touch
257 	 * the watchdog as we might not schedule for a really long
258 	 * time. This happens on completely idle SMP systems while
259 	 * waiting on the login prompt. We also increment the "start of
260 	 * idle" jiffy stamp so the idle accounting adjustment we do
261 	 * when we go busy again does not account too many ticks.
262 	 */
263 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
264 	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
265 		touch_softlockup_watchdog_sched();
266 		if (is_idle_task(current))
267 			ts->idle_jiffies++;
268 		/*
269 		 * In case the current tick fired too early past its expected
270 		 * expiration, make sure we don't bypass the next clock reprogramming
271 		 * to the same deadline.
272 		 */
273 		ts->next_tick = 0;
274 	}
275 
276 	update_process_times(user_mode(regs));
277 	profile_tick(CPU_PROFILING);
278 }
279 
280 /*
281  * We rearm the timer until we get disabled by the idle code.
282  * Called with interrupts disabled.
283  */
tick_nohz_handler(struct hrtimer * timer)284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
285 {
286 	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
287 	struct pt_regs *regs = get_irq_regs();
288 	ktime_t now = ktime_get();
289 
290 	tick_sched_do_timer(ts, now);
291 
292 	/*
293 	 * Do not call when we are not in IRQ context and have
294 	 * no valid 'regs' pointer
295 	 */
296 	if (regs)
297 		tick_sched_handle(ts, regs);
298 	else
299 		ts->next_tick = 0;
300 
301 	/*
302 	 * In dynticks mode, tick reprogram is deferred:
303 	 * - to the idle task if in dynticks-idle
304 	 * - to IRQ exit if in full-dynticks.
305 	 */
306 	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
307 		return HRTIMER_NORESTART;
308 
309 	hrtimer_forward(timer, now, TICK_NSEC);
310 
311 	return HRTIMER_RESTART;
312 }
313 
314 #ifdef CONFIG_NO_HZ_FULL
315 cpumask_var_t tick_nohz_full_mask;
316 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
317 bool tick_nohz_full_running;
318 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
319 static atomic_t tick_dep_mask;
320 
check_tick_dependency(atomic_t * dep)321 static bool check_tick_dependency(atomic_t *dep)
322 {
323 	int val = atomic_read(dep);
324 
325 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
326 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
327 		return true;
328 	}
329 
330 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
331 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
332 		return true;
333 	}
334 
335 	if (val & TICK_DEP_MASK_SCHED) {
336 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
337 		return true;
338 	}
339 
340 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
341 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
342 		return true;
343 	}
344 
345 	if (val & TICK_DEP_MASK_RCU) {
346 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
347 		return true;
348 	}
349 
350 	if (val & TICK_DEP_MASK_RCU_EXP) {
351 		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
352 		return true;
353 	}
354 
355 	return false;
356 }
357 
can_stop_full_tick(int cpu,struct tick_sched * ts)358 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
359 {
360 	lockdep_assert_irqs_disabled();
361 
362 	if (unlikely(!cpu_online(cpu)))
363 		return false;
364 
365 	if (check_tick_dependency(&tick_dep_mask))
366 		return false;
367 
368 	if (check_tick_dependency(&ts->tick_dep_mask))
369 		return false;
370 
371 	if (check_tick_dependency(&current->tick_dep_mask))
372 		return false;
373 
374 	if (check_tick_dependency(&current->signal->tick_dep_mask))
375 		return false;
376 
377 	return true;
378 }
379 
nohz_full_kick_func(struct irq_work * work)380 static void nohz_full_kick_func(struct irq_work *work)
381 {
382 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
383 }
384 
385 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
386 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
387 
388 /*
389  * Kick this CPU if it's full dynticks in order to force it to
390  * re-evaluate its dependency on the tick and restart it if necessary.
391  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
392  * is NMI safe.
393  */
tick_nohz_full_kick(void)394 static void tick_nohz_full_kick(void)
395 {
396 	if (!tick_nohz_full_cpu(smp_processor_id()))
397 		return;
398 
399 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
400 }
401 
402 /*
403  * Kick the CPU if it's full dynticks in order to force it to
404  * re-evaluate its dependency on the tick and restart it if necessary.
405  */
tick_nohz_full_kick_cpu(int cpu)406 void tick_nohz_full_kick_cpu(int cpu)
407 {
408 	if (!tick_nohz_full_cpu(cpu))
409 		return;
410 
411 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
412 }
413 
tick_nohz_kick_task(struct task_struct * tsk)414 static void tick_nohz_kick_task(struct task_struct *tsk)
415 {
416 	int cpu;
417 
418 	/*
419 	 * If the task is not running, run_posix_cpu_timers()
420 	 * has nothing to elapse, and an IPI can then be optimized out.
421 	 *
422 	 * activate_task()                      STORE p->tick_dep_mask
423 	 *   STORE p->on_rq
424 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
425 	 *   LOCK rq->lock                      LOAD p->on_rq
426 	 *   smp_mb__after_spin_lock()
427 	 *   tick_nohz_task_switch()
428 	 *     LOAD p->tick_dep_mask
429 	 *
430 	 * XXX given a task picks up the dependency on schedule(), should we
431 	 * only care about tasks that are currently on the CPU instead of all
432 	 * that are on the runqueue?
433 	 *
434 	 * That is, does this want to be: task_on_cpu() / task_curr()?
435 	 */
436 	if (!sched_task_on_rq(tsk))
437 		return;
438 
439 	/*
440 	 * If the task concurrently migrates to another CPU,
441 	 * we guarantee it sees the new tick dependency upon
442 	 * schedule.
443 	 *
444 	 * set_task_cpu(p, cpu);
445 	 *   STORE p->cpu = @cpu
446 	 * __schedule() (switch to task 'p')
447 	 *   LOCK rq->lock
448 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
449 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
450 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
451 	 */
452 	cpu = task_cpu(tsk);
453 
454 	preempt_disable();
455 	if (cpu_online(cpu))
456 		tick_nohz_full_kick_cpu(cpu);
457 	preempt_enable();
458 }
459 
460 /*
461  * Kick all full dynticks CPUs in order to force these to re-evaluate
462  * their dependency on the tick and restart it if necessary.
463  */
tick_nohz_full_kick_all(void)464 static void tick_nohz_full_kick_all(void)
465 {
466 	int cpu;
467 
468 	if (!tick_nohz_full_running)
469 		return;
470 
471 	preempt_disable();
472 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
473 		tick_nohz_full_kick_cpu(cpu);
474 	preempt_enable();
475 }
476 
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)477 static void tick_nohz_dep_set_all(atomic_t *dep,
478 				  enum tick_dep_bits bit)
479 {
480 	int prev;
481 
482 	prev = atomic_fetch_or(BIT(bit), dep);
483 	if (!prev)
484 		tick_nohz_full_kick_all();
485 }
486 
487 /*
488  * Set a global tick dependency. Used by perf events that rely on freq and
489  * unstable clocks.
490  */
tick_nohz_dep_set(enum tick_dep_bits bit)491 void tick_nohz_dep_set(enum tick_dep_bits bit)
492 {
493 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
494 }
495 
tick_nohz_dep_clear(enum tick_dep_bits bit)496 void tick_nohz_dep_clear(enum tick_dep_bits bit)
497 {
498 	atomic_andnot(BIT(bit), &tick_dep_mask);
499 }
500 
501 /*
502  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
503  * manage event-throttling.
504  */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)505 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
506 {
507 	int prev;
508 	struct tick_sched *ts;
509 
510 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
511 
512 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
513 	if (!prev) {
514 		preempt_disable();
515 		/* Perf needs local kick that is NMI safe */
516 		if (cpu == smp_processor_id()) {
517 			tick_nohz_full_kick();
518 		} else {
519 			/* Remote IRQ work not NMI-safe */
520 			if (!WARN_ON_ONCE(in_nmi()))
521 				tick_nohz_full_kick_cpu(cpu);
522 		}
523 		preempt_enable();
524 	}
525 }
526 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
527 
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)528 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
529 {
530 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
531 
532 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
533 }
534 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
535 
536 /*
537  * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
538  * in order to elapse per task timers.
539  */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)540 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
541 {
542 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
543 		tick_nohz_kick_task(tsk);
544 }
545 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
546 
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)547 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
548 {
549 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
550 }
551 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
552 
553 /*
554  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
555  * per process timers.
556  */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)557 void tick_nohz_dep_set_signal(struct task_struct *tsk,
558 			      enum tick_dep_bits bit)
559 {
560 	int prev;
561 	struct signal_struct *sig = tsk->signal;
562 
563 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
564 	if (!prev) {
565 		struct task_struct *t;
566 
567 		lockdep_assert_held(&tsk->sighand->siglock);
568 		__for_each_thread(sig, t)
569 			tick_nohz_kick_task(t);
570 	}
571 }
572 
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)573 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
574 {
575 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
576 }
577 
578 /*
579  * Re-evaluate the need for the tick as we switch the current task.
580  * It might need the tick due to per task/process properties:
581  * perf events, posix CPU timers, ...
582  */
__tick_nohz_task_switch(void)583 void __tick_nohz_task_switch(void)
584 {
585 	struct tick_sched *ts;
586 
587 	if (!tick_nohz_full_cpu(smp_processor_id()))
588 		return;
589 
590 	ts = this_cpu_ptr(&tick_cpu_sched);
591 
592 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
593 		if (atomic_read(&current->tick_dep_mask) ||
594 		    atomic_read(&current->signal->tick_dep_mask))
595 			tick_nohz_full_kick();
596 	}
597 }
598 
599 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)600 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
601 {
602 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
603 	cpumask_copy(tick_nohz_full_mask, cpumask);
604 	tick_nohz_full_running = true;
605 }
606 
tick_nohz_cpu_hotpluggable(unsigned int cpu)607 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
608 {
609 	/*
610 	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
611 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
612 	 * CPUs. It must remain online when nohz full is enabled.
613 	 */
614 	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
615 		return false;
616 	return true;
617 }
618 
tick_nohz_cpu_down(unsigned int cpu)619 static int tick_nohz_cpu_down(unsigned int cpu)
620 {
621 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
622 }
623 
tick_nohz_init(void)624 void __init tick_nohz_init(void)
625 {
626 	int cpu, ret;
627 
628 	if (!tick_nohz_full_running)
629 		return;
630 
631 	/*
632 	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
633 	 * locking contexts. But then we need IRQ work to raise its own
634 	 * interrupts to avoid circular dependency on the tick.
635 	 */
636 	if (!arch_irq_work_has_interrupt()) {
637 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
638 		cpumask_clear(tick_nohz_full_mask);
639 		tick_nohz_full_running = false;
640 		return;
641 	}
642 
643 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
644 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
645 		cpu = smp_processor_id();
646 
647 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
648 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
649 				"for timekeeping\n", cpu);
650 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
651 		}
652 	}
653 
654 	for_each_cpu(cpu, tick_nohz_full_mask)
655 		ct_cpu_track_user(cpu);
656 
657 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
658 					"kernel/nohz:predown", NULL,
659 					tick_nohz_cpu_down);
660 	WARN_ON(ret < 0);
661 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
662 		cpumask_pr_args(tick_nohz_full_mask));
663 }
664 #endif /* #ifdef CONFIG_NO_HZ_FULL */
665 
666 /*
667  * NOHZ - aka dynamic tick functionality
668  */
669 #ifdef CONFIG_NO_HZ_COMMON
670 /*
671  * NO HZ enabled ?
672  */
673 bool tick_nohz_enabled __read_mostly  = true;
674 unsigned long tick_nohz_active  __read_mostly;
675 /*
676  * Enable / Disable tickless mode
677  */
setup_tick_nohz(char * str)678 static int __init setup_tick_nohz(char *str)
679 {
680 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
681 }
682 
683 __setup("nohz=", setup_tick_nohz);
684 
tick_nohz_tick_stopped(void)685 bool tick_nohz_tick_stopped(void)
686 {
687 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
688 
689 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
690 }
691 
tick_nohz_tick_stopped_cpu(int cpu)692 bool tick_nohz_tick_stopped_cpu(int cpu)
693 {
694 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
695 
696 	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
697 }
698 
699 /**
700  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
701  * @now: current ktime_t
702  *
703  * Called from interrupt entry when the CPU was idle
704  *
705  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
706  * must be updated. Otherwise an interrupt handler could use a stale jiffy
707  * value. We do this unconditionally on any CPU, as we don't know whether the
708  * CPU, which has the update task assigned, is in a long sleep.
709  */
tick_nohz_update_jiffies(ktime_t now)710 static void tick_nohz_update_jiffies(ktime_t now)
711 {
712 	unsigned long flags;
713 
714 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
715 
716 	local_irq_save(flags);
717 	tick_do_update_jiffies64(now);
718 	local_irq_restore(flags);
719 
720 	touch_softlockup_watchdog_sched();
721 }
722 
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)723 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
724 {
725 	ktime_t delta;
726 
727 	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
728 		return;
729 
730 	delta = ktime_sub(now, ts->idle_entrytime);
731 
732 	write_seqcount_begin(&ts->idle_sleeptime_seq);
733 	if (nr_iowait_cpu(smp_processor_id()) > 0)
734 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
735 	else
736 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
737 
738 	ts->idle_entrytime = now;
739 	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
740 	write_seqcount_end(&ts->idle_sleeptime_seq);
741 
742 	sched_clock_idle_wakeup_event();
743 }
744 
tick_nohz_start_idle(struct tick_sched * ts)745 static void tick_nohz_start_idle(struct tick_sched *ts)
746 {
747 	write_seqcount_begin(&ts->idle_sleeptime_seq);
748 	ts->idle_entrytime = ktime_get();
749 	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
750 	write_seqcount_end(&ts->idle_sleeptime_seq);
751 
752 	sched_clock_idle_sleep_event();
753 }
754 
get_cpu_sleep_time_us(struct tick_sched * ts,ktime_t * sleeptime,bool compute_delta,u64 * last_update_time)755 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
756 				 bool compute_delta, u64 *last_update_time)
757 {
758 	ktime_t now, idle;
759 	unsigned int seq;
760 
761 	if (!tick_nohz_active)
762 		return -1;
763 
764 	now = ktime_get();
765 	if (last_update_time)
766 		*last_update_time = ktime_to_us(now);
767 
768 	do {
769 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
770 
771 		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
772 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
773 
774 			idle = ktime_add(*sleeptime, delta);
775 		} else {
776 			idle = *sleeptime;
777 		}
778 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
779 
780 	return ktime_to_us(idle);
781 
782 }
783 
784 /**
785  * get_cpu_idle_time_us - get the total idle time of a CPU
786  * @cpu: CPU number to query
787  * @last_update_time: variable to store update time in. Do not update
788  * counters if NULL.
789  *
790  * Return the cumulative idle time (since boot) for a given
791  * CPU, in microseconds. Note that this is partially broken due to
792  * the counter of iowait tasks that can be remotely updated without
793  * any synchronization. Therefore it is possible to observe backward
794  * values within two consecutive reads.
795  *
796  * This time is measured via accounting rather than sampling,
797  * and is as accurate as ktime_get() is.
798  *
799  * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
800  */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)801 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
802 {
803 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
804 
805 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
806 				     !nr_iowait_cpu(cpu), last_update_time);
807 }
808 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
809 
810 /**
811  * get_cpu_iowait_time_us - get the total iowait time of a CPU
812  * @cpu: CPU number to query
813  * @last_update_time: variable to store update time in. Do not update
814  * counters if NULL.
815  *
816  * Return the cumulative iowait time (since boot) for a given
817  * CPU, in microseconds. Note this is partially broken due to
818  * the counter of iowait tasks that can be remotely updated without
819  * any synchronization. Therefore it is possible to observe backward
820  * values within two consecutive reads.
821  *
822  * This time is measured via accounting rather than sampling,
823  * and is as accurate as ktime_get() is.
824  *
825  * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
826  */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)827 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
828 {
829 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
830 
831 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
832 				     nr_iowait_cpu(cpu), last_update_time);
833 }
834 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
835 
tick_nohz_restart(struct tick_sched * ts,ktime_t now)836 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
837 {
838 	hrtimer_cancel(&ts->sched_timer);
839 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
840 
841 	/* Forward the time to expire in the future */
842 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
843 
844 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
845 		hrtimer_start_expires(&ts->sched_timer,
846 				      HRTIMER_MODE_ABS_PINNED_HARD);
847 	} else {
848 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
849 	}
850 
851 	/*
852 	 * Reset to make sure the next tick stop doesn't get fooled by past
853 	 * cached clock deadline.
854 	 */
855 	ts->next_tick = 0;
856 }
857 
local_timer_softirq_pending(void)858 static inline bool local_timer_softirq_pending(void)
859 {
860 	return local_timers_pending() & BIT(TIMER_SOFTIRQ);
861 }
862 
863 /*
864  * Read jiffies and the time when jiffies were updated last
865  */
get_jiffies_update(unsigned long * basej)866 u64 get_jiffies_update(unsigned long *basej)
867 {
868 	unsigned long basejiff;
869 	unsigned int seq;
870 	u64 basemono;
871 
872 	do {
873 		seq = read_seqcount_begin(&jiffies_seq);
874 		basemono = last_jiffies_update;
875 		basejiff = jiffies;
876 	} while (read_seqcount_retry(&jiffies_seq, seq));
877 	*basej = basejiff;
878 	return basemono;
879 }
880 
881 /**
882  * tick_nohz_next_event() - return the clock monotonic based next event
883  * @ts:		pointer to tick_sched struct
884  * @cpu:	CPU number
885  *
886  * Return:
887  * *%0		- When the next event is a maximum of TICK_NSEC in the future
888  *		  and the tick is not stopped yet
889  * *%next_event	- Next event based on clock monotonic
890  */
tick_nohz_next_event(struct tick_sched * ts,int cpu)891 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
892 {
893 	u64 basemono, next_tick, delta, expires;
894 	unsigned long basejiff;
895 	int tick_cpu;
896 
897 	basemono = get_jiffies_update(&basejiff);
898 	ts->last_jiffies = basejiff;
899 	ts->timer_expires_base = basemono;
900 
901 	/*
902 	 * Keep the periodic tick, when RCU, architecture or irq_work
903 	 * requests it.
904 	 * Aside of that, check whether the local timer softirq is
905 	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
906 	 * because there is an already expired timer, so it will request
907 	 * immediate expiry, which rearms the hardware timer with a
908 	 * minimal delta, which brings us back to this place
909 	 * immediately. Lather, rinse and repeat...
910 	 */
911 	if (rcu_needs_cpu() || arch_needs_cpu() ||
912 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
913 		next_tick = basemono + TICK_NSEC;
914 	} else {
915 		/*
916 		 * Get the next pending timer. If high resolution
917 		 * timers are enabled this only takes the timer wheel
918 		 * timers into account. If high resolution timers are
919 		 * disabled this also looks at the next expiring
920 		 * hrtimer.
921 		 */
922 		next_tick = get_next_timer_interrupt(basejiff, basemono);
923 		ts->next_timer = next_tick;
924 	}
925 
926 	/* Make sure next_tick is never before basemono! */
927 	if (WARN_ON_ONCE(basemono > next_tick))
928 		next_tick = basemono;
929 
930 	/*
931 	 * If the tick is due in the next period, keep it ticking or
932 	 * force prod the timer.
933 	 */
934 	delta = next_tick - basemono;
935 	if (delta <= (u64)TICK_NSEC) {
936 		/*
937 		 * We've not stopped the tick yet, and there's a timer in the
938 		 * next period, so no point in stopping it either, bail.
939 		 */
940 		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
941 			ts->timer_expires = 0;
942 			goto out;
943 		}
944 	}
945 
946 	/*
947 	 * If this CPU is the one which had the do_timer() duty last, we limit
948 	 * the sleep time to the timekeeping 'max_deferment' value.
949 	 * Otherwise we can sleep as long as we want.
950 	 */
951 	delta = timekeeping_max_deferment();
952 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
953 	if (tick_cpu != cpu &&
954 	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
955 		delta = KTIME_MAX;
956 
957 	/* Calculate the next expiry time */
958 	if (delta < (KTIME_MAX - basemono))
959 		expires = basemono + delta;
960 	else
961 		expires = KTIME_MAX;
962 
963 	ts->timer_expires = min_t(u64, expires, next_tick);
964 
965 out:
966 	return ts->timer_expires;
967 }
968 
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)969 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
970 {
971 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
972 	unsigned long basejiff = ts->last_jiffies;
973 	u64 basemono = ts->timer_expires_base;
974 	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
975 	int tick_cpu;
976 	u64 expires;
977 
978 	/* Make sure we won't be trying to stop it twice in a row. */
979 	ts->timer_expires_base = 0;
980 
981 	/*
982 	 * Now the tick should be stopped definitely - so the timer base needs
983 	 * to be marked idle as well to not miss a newly queued timer.
984 	 */
985 	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
986 	if (expires > ts->timer_expires) {
987 		/*
988 		 * This path could only happen when the first timer was removed
989 		 * between calculating the possible sleep length and now (when
990 		 * high resolution mode is not active, timer could also be a
991 		 * hrtimer).
992 		 *
993 		 * We have to stick to the original calculated expiry value to
994 		 * not stop the tick for too long with a shallow C-state (which
995 		 * was programmed by cpuidle because of an early next expiration
996 		 * value).
997 		 */
998 		expires = ts->timer_expires;
999 	}
1000 
1001 	/* If the timer base is not idle, retain the not yet stopped tick. */
1002 	if (!timer_idle)
1003 		return;
1004 
1005 	/*
1006 	 * If this CPU is the one which updates jiffies, then give up
1007 	 * the assignment and let it be taken by the CPU which runs
1008 	 * the tick timer next, which might be this CPU as well. If we
1009 	 * don't drop this here, the jiffies might be stale and
1010 	 * do_timer() never gets invoked. Keep track of the fact that it
1011 	 * was the one which had the do_timer() duty last.
1012 	 */
1013 	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1014 	if (tick_cpu == cpu) {
1015 		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1016 		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1017 	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1018 		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1019 	}
1020 
1021 	/* Skip reprogram of event if it's not changed */
1022 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1023 		/* Sanity check: make sure clockevent is actually programmed */
1024 		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1025 			return;
1026 
1027 		WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1028 			  "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1029 			  dev->next_event, hrtimer_active(&ts->sched_timer),
1030 			  hrtimer_get_expires(&ts->sched_timer));
1031 	}
1032 
1033 	/*
1034 	 * tick_nohz_stop_tick() can be called several times before
1035 	 * tick_nohz_restart_sched_tick() is called. This happens when
1036 	 * interrupts arrive which do not cause a reschedule. In the first
1037 	 * call we save the current tick time, so we can restart the
1038 	 * scheduler tick in tick_nohz_restart_sched_tick().
1039 	 */
1040 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1041 		calc_load_nohz_start();
1042 		quiet_vmstat();
1043 
1044 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1045 		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1046 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1047 	}
1048 
1049 	ts->next_tick = expires;
1050 
1051 	/*
1052 	 * If the expiration time == KTIME_MAX, then we simply stop
1053 	 * the tick timer.
1054 	 */
1055 	if (unlikely(expires == KTIME_MAX)) {
1056 		if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1057 			hrtimer_cancel(&ts->sched_timer);
1058 		else
1059 			tick_program_event(KTIME_MAX, 1);
1060 		return;
1061 	}
1062 
1063 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1064 		hrtimer_start(&ts->sched_timer, expires,
1065 			      HRTIMER_MODE_ABS_PINNED_HARD);
1066 	} else {
1067 		hrtimer_set_expires(&ts->sched_timer, expires);
1068 		tick_program_event(expires, 1);
1069 	}
1070 }
1071 
tick_nohz_retain_tick(struct tick_sched * ts)1072 static void tick_nohz_retain_tick(struct tick_sched *ts)
1073 {
1074 	ts->timer_expires_base = 0;
1075 }
1076 
1077 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_full_stop_tick(struct tick_sched * ts,int cpu)1078 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1079 {
1080 	if (tick_nohz_next_event(ts, cpu))
1081 		tick_nohz_stop_tick(ts, cpu);
1082 	else
1083 		tick_nohz_retain_tick(ts);
1084 }
1085 #endif /* CONFIG_NO_HZ_FULL */
1086 
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)1087 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1088 {
1089 	/* Update jiffies first */
1090 	tick_do_update_jiffies64(now);
1091 
1092 	/*
1093 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1094 	 * the clock forward checks in the enqueue path:
1095 	 */
1096 	timer_clear_idle();
1097 
1098 	calc_load_nohz_stop();
1099 	touch_softlockup_watchdog_sched();
1100 
1101 	/* Cancel the scheduled timer and restore the tick: */
1102 	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1103 	tick_nohz_restart(ts, now);
1104 }
1105 
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)1106 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1107 					 ktime_t now)
1108 {
1109 #ifdef CONFIG_NO_HZ_FULL
1110 	int cpu = smp_processor_id();
1111 
1112 	if (can_stop_full_tick(cpu, ts))
1113 		tick_nohz_full_stop_tick(ts, cpu);
1114 	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1115 		tick_nohz_restart_sched_tick(ts, now);
1116 #endif
1117 }
1118 
tick_nohz_full_update_tick(struct tick_sched * ts)1119 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1120 {
1121 	if (!tick_nohz_full_cpu(smp_processor_id()))
1122 		return;
1123 
1124 	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1125 		return;
1126 
1127 	__tick_nohz_full_update_tick(ts, ktime_get());
1128 }
1129 
1130 /*
1131  * A pending softirq outside an IRQ (or softirq disabled section) context
1132  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1133  * reach this code due to the need_resched() early check in can_stop_idle_tick().
1134  *
1135  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1136  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1137  * triggering the code below, since wakep_softirqd() is ignored.
1138  *
1139  */
report_idle_softirq(void)1140 static bool report_idle_softirq(void)
1141 {
1142 	static int ratelimit;
1143 	unsigned int pending = local_softirq_pending();
1144 
1145 	if (likely(!pending))
1146 		return false;
1147 
1148 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1149 	if (!cpu_active(smp_processor_id())) {
1150 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1151 		if (!pending)
1152 			return false;
1153 	}
1154 
1155 	if (ratelimit >= 10)
1156 		return false;
1157 
1158 	/* On RT, softirq handling may be waiting on some lock */
1159 	if (local_bh_blocked())
1160 		return false;
1161 
1162 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1163 		pending);
1164 	ratelimit++;
1165 
1166 	return true;
1167 }
1168 
can_stop_idle_tick(int cpu,struct tick_sched * ts)1169 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1170 {
1171 	WARN_ON_ONCE(cpu_is_offline(cpu));
1172 
1173 	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1174 		return false;
1175 
1176 	if (need_resched())
1177 		return false;
1178 
1179 	if (unlikely(report_idle_softirq()))
1180 		return false;
1181 
1182 	if (tick_nohz_full_enabled()) {
1183 		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1184 
1185 		/*
1186 		 * Keep the tick alive to guarantee timekeeping progression
1187 		 * if there are full dynticks CPUs around
1188 		 */
1189 		if (tick_cpu == cpu)
1190 			return false;
1191 
1192 		/* Should not happen for nohz-full */
1193 		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1194 			return false;
1195 	}
1196 
1197 	return true;
1198 }
1199 
1200 /**
1201  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1202  *
1203  * When the next event is more than a tick into the future, stop the idle tick
1204  */
tick_nohz_idle_stop_tick(void)1205 void tick_nohz_idle_stop_tick(void)
1206 {
1207 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1208 	int cpu = smp_processor_id();
1209 	ktime_t expires;
1210 
1211 	/*
1212 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1213 	 * tick timer expiration time is known already.
1214 	 */
1215 	if (ts->timer_expires_base)
1216 		expires = ts->timer_expires;
1217 	else if (can_stop_idle_tick(cpu, ts))
1218 		expires = tick_nohz_next_event(ts, cpu);
1219 	else
1220 		return;
1221 
1222 	ts->idle_calls++;
1223 
1224 	if (expires > 0LL) {
1225 		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1226 
1227 		tick_nohz_stop_tick(ts, cpu);
1228 
1229 		ts->idle_sleeps++;
1230 		ts->idle_expires = expires;
1231 
1232 		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1233 			ts->idle_jiffies = ts->last_jiffies;
1234 			nohz_balance_enter_idle(cpu);
1235 		}
1236 	} else {
1237 		tick_nohz_retain_tick(ts);
1238 	}
1239 }
1240 
tick_nohz_idle_retain_tick(void)1241 void tick_nohz_idle_retain_tick(void)
1242 {
1243 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1244 }
1245 
1246 /**
1247  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1248  *
1249  * Called when we start the idle loop.
1250  */
tick_nohz_idle_enter(void)1251 void tick_nohz_idle_enter(void)
1252 {
1253 	struct tick_sched *ts;
1254 
1255 	lockdep_assert_irqs_enabled();
1256 
1257 	local_irq_disable();
1258 
1259 	ts = this_cpu_ptr(&tick_cpu_sched);
1260 
1261 	WARN_ON_ONCE(ts->timer_expires_base);
1262 
1263 	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1264 	tick_nohz_start_idle(ts);
1265 
1266 	local_irq_enable();
1267 }
1268 
1269 /**
1270  * tick_nohz_irq_exit - Notify the tick about IRQ exit
1271  *
1272  * A timer may have been added/modified/deleted either by the current IRQ,
1273  * or by another place using this IRQ as a notification. This IRQ may have
1274  * also updated the RCU callback list. These events may require a
1275  * re-evaluation of the next tick. Depending on the context:
1276  *
1277  * 1) If the CPU is idle and no resched is pending, just proceed with idle
1278  *    time accounting. The next tick will be re-evaluated on the next idle
1279  *    loop iteration.
1280  *
1281  * 2) If the CPU is nohz_full:
1282  *
1283  *    2.1) If there is any tick dependency, restart the tick if stopped.
1284  *
1285  *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1286  *         stop/update it accordingly.
1287  */
tick_nohz_irq_exit(void)1288 void tick_nohz_irq_exit(void)
1289 {
1290 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1291 
1292 	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1293 		tick_nohz_start_idle(ts);
1294 	else
1295 		tick_nohz_full_update_tick(ts);
1296 }
1297 
1298 /**
1299  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1300  *
1301  * Return: %true if the tick handler has run, otherwise %false
1302  */
tick_nohz_idle_got_tick(void)1303 bool tick_nohz_idle_got_tick(void)
1304 {
1305 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1306 
1307 	if (ts->got_idle_tick) {
1308 		ts->got_idle_tick = 0;
1309 		return true;
1310 	}
1311 	return false;
1312 }
1313 
1314 /**
1315  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1316  * or the tick, whichever expires first. Note that, if the tick has been
1317  * stopped, it returns the next hrtimer.
1318  *
1319  * Called from power state control code with interrupts disabled
1320  *
1321  * Return: the next expiration time
1322  */
tick_nohz_get_next_hrtimer(void)1323 ktime_t tick_nohz_get_next_hrtimer(void)
1324 {
1325 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1326 }
1327 
1328 /**
1329  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1330  * @delta_next: duration until the next event if the tick cannot be stopped
1331  *
1332  * Called from power state control code with interrupts disabled.
1333  *
1334  * The return value of this function and/or the value returned by it through the
1335  * @delta_next pointer can be negative which must be taken into account by its
1336  * callers.
1337  *
1338  * Return: the expected length of the current sleep
1339  */
tick_nohz_get_sleep_length(ktime_t * delta_next)1340 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1341 {
1342 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1343 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1344 	int cpu = smp_processor_id();
1345 	/*
1346 	 * The idle entry time is expected to be a sufficient approximation of
1347 	 * the current time at this point.
1348 	 */
1349 	ktime_t now = ts->idle_entrytime;
1350 	ktime_t next_event;
1351 
1352 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1353 
1354 	*delta_next = ktime_sub(dev->next_event, now);
1355 
1356 	if (!can_stop_idle_tick(cpu, ts))
1357 		return *delta_next;
1358 
1359 	next_event = tick_nohz_next_event(ts, cpu);
1360 	if (!next_event)
1361 		return *delta_next;
1362 
1363 	/*
1364 	 * If the next highres timer to expire is earlier than 'next_event', the
1365 	 * idle governor needs to know that.
1366 	 */
1367 	next_event = min_t(u64, next_event,
1368 			   hrtimer_next_event_without(&ts->sched_timer));
1369 
1370 	return ktime_sub(next_event, now);
1371 }
1372 
1373 /**
1374  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1375  * for a particular CPU.
1376  * @cpu: target CPU number
1377  *
1378  * Called from the schedutil frequency scaling governor in scheduler context.
1379  *
1380  * Return: the current idle calls counter value for @cpu
1381  */
tick_nohz_get_idle_calls_cpu(int cpu)1382 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1383 {
1384 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1385 
1386 	return ts->idle_calls;
1387 }
1388 
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1389 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1390 					ktime_t now)
1391 {
1392 	unsigned long ticks;
1393 
1394 	ts->idle_exittime = now;
1395 
1396 	if (vtime_accounting_enabled_this_cpu())
1397 		return;
1398 	/*
1399 	 * We stopped the tick in idle. update_process_times() would miss the
1400 	 * time we slept, as it does only a 1 tick accounting.
1401 	 * Enforce that this is accounted to idle !
1402 	 */
1403 	ticks = jiffies - ts->idle_jiffies;
1404 	/*
1405 	 * We might be one off. Do not randomly account a huge number of ticks!
1406 	 */
1407 	if (ticks && ticks < LONG_MAX)
1408 		account_idle_ticks(ticks);
1409 }
1410 
tick_nohz_idle_restart_tick(void)1411 void tick_nohz_idle_restart_tick(void)
1412 {
1413 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1414 
1415 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1416 		ktime_t now = ktime_get();
1417 		tick_nohz_restart_sched_tick(ts, now);
1418 		tick_nohz_account_idle_time(ts, now);
1419 	}
1420 }
1421 
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1422 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1423 {
1424 	if (tick_nohz_full_cpu(smp_processor_id()))
1425 		__tick_nohz_full_update_tick(ts, now);
1426 	else
1427 		tick_nohz_restart_sched_tick(ts, now);
1428 
1429 	tick_nohz_account_idle_time(ts, now);
1430 }
1431 
1432 /**
1433  * tick_nohz_idle_exit - Update the tick upon idle task exit
1434  *
1435  * When the idle task exits, update the tick depending on the
1436  * following situations:
1437  *
1438  * 1) If the CPU is not in nohz_full mode (most cases), then
1439  *    restart the tick.
1440  *
1441  * 2) If the CPU is in nohz_full mode (corner case):
1442  *   2.1) If the tick can be kept stopped (no tick dependencies)
1443  *        then re-evaluate the next tick and try to keep it stopped
1444  *        as long as possible.
1445  *   2.2) If the tick has dependencies, restart the tick.
1446  *
1447  */
tick_nohz_idle_exit(void)1448 void tick_nohz_idle_exit(void)
1449 {
1450 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1451 	bool idle_active, tick_stopped;
1452 	ktime_t now;
1453 
1454 	local_irq_disable();
1455 
1456 	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1457 	WARN_ON_ONCE(ts->timer_expires_base);
1458 
1459 	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1460 	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1461 	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1462 
1463 	if (idle_active || tick_stopped)
1464 		now = ktime_get();
1465 
1466 	if (idle_active)
1467 		tick_nohz_stop_idle(ts, now);
1468 
1469 	if (tick_stopped)
1470 		tick_nohz_idle_update_tick(ts, now);
1471 
1472 	local_irq_enable();
1473 }
1474 
1475 /*
1476  * In low-resolution mode, the tick handler must be implemented directly
1477  * at the clockevent level. hrtimer can't be used instead, because its
1478  * infrastructure actually relies on the tick itself as a backend in
1479  * low-resolution mode (see hrtimer_run_queues()).
1480  */
tick_nohz_lowres_handler(struct clock_event_device * dev)1481 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1482 {
1483 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1484 
1485 	dev->next_event = KTIME_MAX;
1486 
1487 	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1488 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1489 }
1490 
tick_nohz_activate(struct tick_sched * ts)1491 static inline void tick_nohz_activate(struct tick_sched *ts)
1492 {
1493 	if (!tick_nohz_enabled)
1494 		return;
1495 	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1496 	/* One update is enough */
1497 	if (!test_and_set_bit(0, &tick_nohz_active))
1498 		timers_update_nohz();
1499 }
1500 
1501 /**
1502  * tick_nohz_switch_to_nohz - switch to NOHZ mode
1503  */
tick_nohz_switch_to_nohz(void)1504 static void tick_nohz_switch_to_nohz(void)
1505 {
1506 	if (!tick_nohz_enabled)
1507 		return;
1508 
1509 	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1510 		return;
1511 
1512 	/*
1513 	 * Recycle the hrtimer in 'ts', so we can share the
1514 	 * highres code.
1515 	 */
1516 	tick_setup_sched_timer(false);
1517 }
1518 
tick_nohz_irq_enter(void)1519 static inline void tick_nohz_irq_enter(void)
1520 {
1521 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1522 	ktime_t now;
1523 
1524 	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1525 		return;
1526 	now = ktime_get();
1527 	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1528 		tick_nohz_stop_idle(ts, now);
1529 	/*
1530 	 * If all CPUs are idle we may need to update a stale jiffies value.
1531 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1532 	 * alive but it might be busy looping with interrupts disabled in some
1533 	 * rare case (typically stop machine). So we must make sure we have a
1534 	 * last resort.
1535 	 */
1536 	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1537 		tick_nohz_update_jiffies(now);
1538 }
1539 
1540 #else
1541 
tick_nohz_switch_to_nohz(void)1542 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1543 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts)1544 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1545 
1546 #endif /* CONFIG_NO_HZ_COMMON */
1547 
1548 /*
1549  * Called from irq_enter() to notify about the possible interruption of idle()
1550  */
tick_irq_enter(void)1551 void tick_irq_enter(void)
1552 {
1553 	tick_check_oneshot_broadcast_this_cpu();
1554 	tick_nohz_irq_enter();
1555 }
1556 
1557 static int sched_skew_tick;
1558 
skew_tick(char * str)1559 static int __init skew_tick(char *str)
1560 {
1561 	get_option(&str, &sched_skew_tick);
1562 
1563 	return 0;
1564 }
1565 early_param("skew_tick", skew_tick);
1566 
1567 /**
1568  * tick_setup_sched_timer - setup the tick emulation timer
1569  * @hrtimer: whether to use the hrtimer or not
1570  */
tick_setup_sched_timer(bool hrtimer)1571 void tick_setup_sched_timer(bool hrtimer)
1572 {
1573 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1574 
1575 	/* Emulate tick processing via per-CPU hrtimers: */
1576 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1577 
1578 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1579 		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1580 		ts->sched_timer.function = tick_nohz_handler;
1581 	}
1582 
1583 	/* Get the next period (per-CPU) */
1584 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1585 
1586 	/* Offset the tick to avert 'jiffies_lock' contention. */
1587 	if (sched_skew_tick) {
1588 		u64 offset = TICK_NSEC >> 1;
1589 		do_div(offset, num_possible_cpus());
1590 		offset *= smp_processor_id();
1591 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1592 	}
1593 
1594 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1595 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1596 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1597 	else
1598 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1599 	tick_nohz_activate(ts);
1600 }
1601 
1602 /*
1603  * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1604  * duty before disabling IRQs in idle for the last time.
1605  */
tick_sched_timer_dying(int cpu)1606 void tick_sched_timer_dying(int cpu)
1607 {
1608 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1609 	ktime_t idle_sleeptime, iowait_sleeptime;
1610 	unsigned long idle_calls, idle_sleeps;
1611 
1612 	/* This must happen before hrtimers are migrated! */
1613 	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1614 		hrtimer_cancel(&ts->sched_timer);
1615 
1616 	idle_sleeptime = ts->idle_sleeptime;
1617 	iowait_sleeptime = ts->iowait_sleeptime;
1618 	idle_calls = ts->idle_calls;
1619 	idle_sleeps = ts->idle_sleeps;
1620 	memset(ts, 0, sizeof(*ts));
1621 	ts->idle_sleeptime = idle_sleeptime;
1622 	ts->iowait_sleeptime = iowait_sleeptime;
1623 	ts->idle_calls = idle_calls;
1624 	ts->idle_sleeps = idle_sleeps;
1625 }
1626 
1627 /*
1628  * Async notification about clocksource changes
1629  */
tick_clock_notify(void)1630 void tick_clock_notify(void)
1631 {
1632 	int cpu;
1633 
1634 	for_each_possible_cpu(cpu)
1635 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1636 }
1637 
1638 /*
1639  * Async notification about clock event changes
1640  */
tick_oneshot_notify(void)1641 void tick_oneshot_notify(void)
1642 {
1643 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1644 
1645 	set_bit(0, &ts->check_clocks);
1646 }
1647 
1648 /*
1649  * Check if a change happened, which makes oneshot possible.
1650  *
1651  * Called cyclically from the hrtimer softirq (driven by the timer
1652  * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1653  * mode, because high resolution timers are disabled (either compile
1654  * or runtime). Called with interrupts disabled.
1655  */
tick_check_oneshot_change(int allow_nohz)1656 int tick_check_oneshot_change(int allow_nohz)
1657 {
1658 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1659 
1660 	if (!test_and_clear_bit(0, &ts->check_clocks))
1661 		return 0;
1662 
1663 	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1664 		return 0;
1665 
1666 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1667 		return 0;
1668 
1669 	if (!allow_nohz)
1670 		return 1;
1671 
1672 	tick_nohz_switch_to_nohz();
1673 	return 0;
1674 }
1675