1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * NOHZ implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30
31 #include <asm/irq_regs.h>
32
33 #include "tick-internal.h"
34
35 #include <trace/events/timer.h>
36
37 /*
38 * Per-CPU nohz control structure
39 */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41
tick_get_tick_sched(int cpu)42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 return &per_cpu(tick_cpu_sched, cpu);
45 }
46
47 /*
48 * The time when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
51 */
52 static ktime_t last_jiffies_update;
53
54 /*
55 * Must be called with interrupts disabled !
56 */
tick_do_update_jiffies64(ktime_t now)57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 unsigned long ticks = 1;
60 ktime_t delta, nextp;
61
62 /*
63 * 64-bit can do a quick check without holding the jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
65 * pairs with the update done later in this function.
66 *
67 * 32-bit cannot do that because the store of 'tick_next_period'
68 * consists of two 32-bit stores, and the first store could be
69 * moved by the CPU to a random point in the future.
70 */
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 return;
74 } else {
75 unsigned int seq;
76
77 /*
78 * Avoid contention on 'jiffies_lock' and protect the quick
79 * check with the sequence count.
80 */
81 do {
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86 if (ktime_before(now, nextp))
87 return;
88 }
89
90 /* Quick check failed, i.e. update is required. */
91 raw_spin_lock(&jiffies_lock);
92 /*
93 * Re-evaluate with the lock held. Another CPU might have done the
94 * update already.
95 */
96 if (ktime_before(now, tick_next_period)) {
97 raw_spin_unlock(&jiffies_lock);
98 return;
99 }
100
101 write_seqcount_begin(&jiffies_seq);
102
103 delta = ktime_sub(now, tick_next_period);
104 if (unlikely(delta >= TICK_NSEC)) {
105 /* Slow path for long idle sleep times */
106 s64 incr = TICK_NSEC;
107
108 ticks += ktime_divns(delta, incr);
109
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 incr * ticks);
112 } else {
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 TICK_NSEC);
115 }
116
117 /* Advance jiffies to complete the 'jiffies_seq' protected job */
118 jiffies_64 += ticks;
119
120 /* Keep the tick_next_period variable up to date */
121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122
123 if (IS_ENABLED(CONFIG_64BIT)) {
124 /*
125 * Pairs with smp_load_acquire() in the lockless quick
126 * check above, and ensures that the update to 'jiffies_64' is
127 * not reordered vs. the store to 'tick_next_period', neither
128 * by the compiler nor by the CPU.
129 */
130 smp_store_release(&tick_next_period, nextp);
131 } else {
132 /*
133 * A plain store is good enough on 32-bit, as the quick check
134 * above is protected by the sequence count.
135 */
136 tick_next_period = nextp;
137 }
138
139 /*
140 * Release the sequence count. calc_global_load() below is not
141 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 * concurrent invocations.
143 */
144 write_seqcount_end(&jiffies_seq);
145
146 calc_global_load();
147
148 raw_spin_unlock(&jiffies_lock);
149 update_wall_time();
150 }
151
152 /*
153 * Initialize and return retrieve the jiffies update.
154 */
tick_init_jiffy_update(void)155 static ktime_t tick_init_jiffy_update(void)
156 {
157 ktime_t period;
158
159 raw_spin_lock(&jiffies_lock);
160 write_seqcount_begin(&jiffies_seq);
161
162 /* Have we started the jiffies update yet ? */
163 if (last_jiffies_update == 0) {
164 u32 rem;
165
166 /*
167 * Ensure that the tick is aligned to a multiple of
168 * TICK_NSEC.
169 */
170 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 if (rem)
172 tick_next_period += TICK_NSEC - rem;
173
174 last_jiffies_update = tick_next_period;
175 }
176 period = last_jiffies_update;
177
178 write_seqcount_end(&jiffies_seq);
179 raw_spin_unlock(&jiffies_lock);
180
181 return period;
182 }
183
tick_sched_flag_test(struct tick_sched * ts,unsigned long flag)184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 unsigned long flag)
186 {
187 return !!(ts->flags & flag);
188 }
189
tick_sched_flag_set(struct tick_sched * ts,unsigned long flag)190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 unsigned long flag)
192 {
193 lockdep_assert_irqs_disabled();
194 ts->flags |= flag;
195 }
196
tick_sched_flag_clear(struct tick_sched * ts,unsigned long flag)197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 unsigned long flag)
199 {
200 lockdep_assert_irqs_disabled();
201 ts->flags &= ~flag;
202 }
203
204 #define MAX_STALLED_JIFFIES 5
205
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
207 {
208 int tick_cpu, cpu = smp_processor_id();
209
210 /*
211 * Check if the do_timer duty was dropped. We don't care about
212 * concurrency: This happens only when the CPU in charge went
213 * into a long sleep. If two CPUs happen to assign themselves to
214 * this duty, then the jiffies update is still serialized by
215 * 'jiffies_lock'.
216 *
217 * If nohz_full is enabled, this should not happen because the
218 * 'tick_do_timer_cpu' CPU never relinquishes.
219 */
220 tick_cpu = READ_ONCE(tick_do_timer_cpu);
221
222 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
223 #ifdef CONFIG_NO_HZ_FULL
224 WARN_ON_ONCE(tick_nohz_full_running);
225 #endif
226 WRITE_ONCE(tick_do_timer_cpu, cpu);
227 tick_cpu = cpu;
228 }
229
230 /* Check if jiffies need an update */
231 if (tick_cpu == cpu)
232 tick_do_update_jiffies64(now);
233
234 /*
235 * If the jiffies update stalled for too long (timekeeper in stop_machine()
236 * or VMEXIT'ed for several msecs), force an update.
237 */
238 if (ts->last_tick_jiffies != jiffies) {
239 ts->stalled_jiffies = 0;
240 ts->last_tick_jiffies = READ_ONCE(jiffies);
241 } else {
242 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
243 tick_do_update_jiffies64(now);
244 ts->stalled_jiffies = 0;
245 ts->last_tick_jiffies = READ_ONCE(jiffies);
246 }
247 }
248
249 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
250 ts->got_idle_tick = 1;
251 }
252
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
254 {
255 /*
256 * When we are idle and the tick is stopped, we have to touch
257 * the watchdog as we might not schedule for a really long
258 * time. This happens on completely idle SMP systems while
259 * waiting on the login prompt. We also increment the "start of
260 * idle" jiffy stamp so the idle accounting adjustment we do
261 * when we go busy again does not account too many ticks.
262 */
263 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
264 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
265 touch_softlockup_watchdog_sched();
266 if (is_idle_task(current))
267 ts->idle_jiffies++;
268 /*
269 * In case the current tick fired too early past its expected
270 * expiration, make sure we don't bypass the next clock reprogramming
271 * to the same deadline.
272 */
273 ts->next_tick = 0;
274 }
275
276 update_process_times(user_mode(regs));
277 profile_tick(CPU_PROFILING);
278 }
279
280 /*
281 * We rearm the timer until we get disabled by the idle code.
282 * Called with interrupts disabled.
283 */
tick_nohz_handler(struct hrtimer * timer)284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
285 {
286 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
287 struct pt_regs *regs = get_irq_regs();
288 ktime_t now = ktime_get();
289
290 tick_sched_do_timer(ts, now);
291
292 /*
293 * Do not call when we are not in IRQ context and have
294 * no valid 'regs' pointer
295 */
296 if (regs)
297 tick_sched_handle(ts, regs);
298 else
299 ts->next_tick = 0;
300
301 /*
302 * In dynticks mode, tick reprogram is deferred:
303 * - to the idle task if in dynticks-idle
304 * - to IRQ exit if in full-dynticks.
305 */
306 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
307 return HRTIMER_NORESTART;
308
309 hrtimer_forward(timer, now, TICK_NSEC);
310
311 return HRTIMER_RESTART;
312 }
313
314 #ifdef CONFIG_NO_HZ_FULL
315 cpumask_var_t tick_nohz_full_mask;
316 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
317 bool tick_nohz_full_running;
318 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
319 static atomic_t tick_dep_mask;
320
check_tick_dependency(atomic_t * dep)321 static bool check_tick_dependency(atomic_t *dep)
322 {
323 int val = atomic_read(dep);
324
325 if (val & TICK_DEP_MASK_POSIX_TIMER) {
326 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
327 return true;
328 }
329
330 if (val & TICK_DEP_MASK_PERF_EVENTS) {
331 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
332 return true;
333 }
334
335 if (val & TICK_DEP_MASK_SCHED) {
336 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
337 return true;
338 }
339
340 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
341 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
342 return true;
343 }
344
345 if (val & TICK_DEP_MASK_RCU) {
346 trace_tick_stop(0, TICK_DEP_MASK_RCU);
347 return true;
348 }
349
350 if (val & TICK_DEP_MASK_RCU_EXP) {
351 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
352 return true;
353 }
354
355 return false;
356 }
357
can_stop_full_tick(int cpu,struct tick_sched * ts)358 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
359 {
360 lockdep_assert_irqs_disabled();
361
362 if (unlikely(!cpu_online(cpu)))
363 return false;
364
365 if (check_tick_dependency(&tick_dep_mask))
366 return false;
367
368 if (check_tick_dependency(&ts->tick_dep_mask))
369 return false;
370
371 if (check_tick_dependency(¤t->tick_dep_mask))
372 return false;
373
374 if (check_tick_dependency(¤t->signal->tick_dep_mask))
375 return false;
376
377 return true;
378 }
379
nohz_full_kick_func(struct irq_work * work)380 static void nohz_full_kick_func(struct irq_work *work)
381 {
382 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
383 }
384
385 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
386 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
387
388 /*
389 * Kick this CPU if it's full dynticks in order to force it to
390 * re-evaluate its dependency on the tick and restart it if necessary.
391 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
392 * is NMI safe.
393 */
tick_nohz_full_kick(void)394 static void tick_nohz_full_kick(void)
395 {
396 if (!tick_nohz_full_cpu(smp_processor_id()))
397 return;
398
399 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
400 }
401
402 /*
403 * Kick the CPU if it's full dynticks in order to force it to
404 * re-evaluate its dependency on the tick and restart it if necessary.
405 */
tick_nohz_full_kick_cpu(int cpu)406 void tick_nohz_full_kick_cpu(int cpu)
407 {
408 if (!tick_nohz_full_cpu(cpu))
409 return;
410
411 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
412 }
413
tick_nohz_kick_task(struct task_struct * tsk)414 static void tick_nohz_kick_task(struct task_struct *tsk)
415 {
416 int cpu;
417
418 /*
419 * If the task is not running, run_posix_cpu_timers()
420 * has nothing to elapse, and an IPI can then be optimized out.
421 *
422 * activate_task() STORE p->tick_dep_mask
423 * STORE p->on_rq
424 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
425 * LOCK rq->lock LOAD p->on_rq
426 * smp_mb__after_spin_lock()
427 * tick_nohz_task_switch()
428 * LOAD p->tick_dep_mask
429 *
430 * XXX given a task picks up the dependency on schedule(), should we
431 * only care about tasks that are currently on the CPU instead of all
432 * that are on the runqueue?
433 *
434 * That is, does this want to be: task_on_cpu() / task_curr()?
435 */
436 if (!sched_task_on_rq(tsk))
437 return;
438
439 /*
440 * If the task concurrently migrates to another CPU,
441 * we guarantee it sees the new tick dependency upon
442 * schedule.
443 *
444 * set_task_cpu(p, cpu);
445 * STORE p->cpu = @cpu
446 * __schedule() (switch to task 'p')
447 * LOCK rq->lock
448 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
449 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
450 * LOAD p->tick_dep_mask LOAD p->cpu
451 */
452 cpu = task_cpu(tsk);
453
454 preempt_disable();
455 if (cpu_online(cpu))
456 tick_nohz_full_kick_cpu(cpu);
457 preempt_enable();
458 }
459
460 /*
461 * Kick all full dynticks CPUs in order to force these to re-evaluate
462 * their dependency on the tick and restart it if necessary.
463 */
tick_nohz_full_kick_all(void)464 static void tick_nohz_full_kick_all(void)
465 {
466 int cpu;
467
468 if (!tick_nohz_full_running)
469 return;
470
471 preempt_disable();
472 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
473 tick_nohz_full_kick_cpu(cpu);
474 preempt_enable();
475 }
476
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)477 static void tick_nohz_dep_set_all(atomic_t *dep,
478 enum tick_dep_bits bit)
479 {
480 int prev;
481
482 prev = atomic_fetch_or(BIT(bit), dep);
483 if (!prev)
484 tick_nohz_full_kick_all();
485 }
486
487 /*
488 * Set a global tick dependency. Used by perf events that rely on freq and
489 * unstable clocks.
490 */
tick_nohz_dep_set(enum tick_dep_bits bit)491 void tick_nohz_dep_set(enum tick_dep_bits bit)
492 {
493 tick_nohz_dep_set_all(&tick_dep_mask, bit);
494 }
495
tick_nohz_dep_clear(enum tick_dep_bits bit)496 void tick_nohz_dep_clear(enum tick_dep_bits bit)
497 {
498 atomic_andnot(BIT(bit), &tick_dep_mask);
499 }
500
501 /*
502 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
503 * manage event-throttling.
504 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)505 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
506 {
507 int prev;
508 struct tick_sched *ts;
509
510 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
511
512 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
513 if (!prev) {
514 preempt_disable();
515 /* Perf needs local kick that is NMI safe */
516 if (cpu == smp_processor_id()) {
517 tick_nohz_full_kick();
518 } else {
519 /* Remote IRQ work not NMI-safe */
520 if (!WARN_ON_ONCE(in_nmi()))
521 tick_nohz_full_kick_cpu(cpu);
522 }
523 preempt_enable();
524 }
525 }
526 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
527
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)528 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
529 {
530 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
531
532 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
533 }
534 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
535
536 /*
537 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
538 * in order to elapse per task timers.
539 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)540 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
541 {
542 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
543 tick_nohz_kick_task(tsk);
544 }
545 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
546
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)547 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
548 {
549 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
550 }
551 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
552
553 /*
554 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
555 * per process timers.
556 */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)557 void tick_nohz_dep_set_signal(struct task_struct *tsk,
558 enum tick_dep_bits bit)
559 {
560 int prev;
561 struct signal_struct *sig = tsk->signal;
562
563 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
564 if (!prev) {
565 struct task_struct *t;
566
567 lockdep_assert_held(&tsk->sighand->siglock);
568 __for_each_thread(sig, t)
569 tick_nohz_kick_task(t);
570 }
571 }
572
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)573 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
574 {
575 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
576 }
577
578 /*
579 * Re-evaluate the need for the tick as we switch the current task.
580 * It might need the tick due to per task/process properties:
581 * perf events, posix CPU timers, ...
582 */
__tick_nohz_task_switch(void)583 void __tick_nohz_task_switch(void)
584 {
585 struct tick_sched *ts;
586
587 if (!tick_nohz_full_cpu(smp_processor_id()))
588 return;
589
590 ts = this_cpu_ptr(&tick_cpu_sched);
591
592 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
593 if (atomic_read(¤t->tick_dep_mask) ||
594 atomic_read(¤t->signal->tick_dep_mask))
595 tick_nohz_full_kick();
596 }
597 }
598
599 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)600 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
601 {
602 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
603 cpumask_copy(tick_nohz_full_mask, cpumask);
604 tick_nohz_full_running = true;
605 }
606
tick_nohz_cpu_hotpluggable(unsigned int cpu)607 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
608 {
609 /*
610 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
611 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
612 * CPUs. It must remain online when nohz full is enabled.
613 */
614 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
615 return false;
616 return true;
617 }
618
tick_nohz_cpu_down(unsigned int cpu)619 static int tick_nohz_cpu_down(unsigned int cpu)
620 {
621 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
622 }
623
tick_nohz_init(void)624 void __init tick_nohz_init(void)
625 {
626 int cpu, ret;
627
628 if (!tick_nohz_full_running)
629 return;
630
631 /*
632 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
633 * locking contexts. But then we need IRQ work to raise its own
634 * interrupts to avoid circular dependency on the tick.
635 */
636 if (!arch_irq_work_has_interrupt()) {
637 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
638 cpumask_clear(tick_nohz_full_mask);
639 tick_nohz_full_running = false;
640 return;
641 }
642
643 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
644 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
645 cpu = smp_processor_id();
646
647 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
648 pr_warn("NO_HZ: Clearing %d from nohz_full range "
649 "for timekeeping\n", cpu);
650 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
651 }
652 }
653
654 for_each_cpu(cpu, tick_nohz_full_mask)
655 ct_cpu_track_user(cpu);
656
657 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
658 "kernel/nohz:predown", NULL,
659 tick_nohz_cpu_down);
660 WARN_ON(ret < 0);
661 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
662 cpumask_pr_args(tick_nohz_full_mask));
663 }
664 #endif /* #ifdef CONFIG_NO_HZ_FULL */
665
666 /*
667 * NOHZ - aka dynamic tick functionality
668 */
669 #ifdef CONFIG_NO_HZ_COMMON
670 /*
671 * NO HZ enabled ?
672 */
673 bool tick_nohz_enabled __read_mostly = true;
674 unsigned long tick_nohz_active __read_mostly;
675 /*
676 * Enable / Disable tickless mode
677 */
setup_tick_nohz(char * str)678 static int __init setup_tick_nohz(char *str)
679 {
680 return (kstrtobool(str, &tick_nohz_enabled) == 0);
681 }
682
683 __setup("nohz=", setup_tick_nohz);
684
tick_nohz_tick_stopped(void)685 bool tick_nohz_tick_stopped(void)
686 {
687 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
688
689 return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
690 }
691
tick_nohz_tick_stopped_cpu(int cpu)692 bool tick_nohz_tick_stopped_cpu(int cpu)
693 {
694 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
695
696 return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
697 }
698
699 /**
700 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
701 * @now: current ktime_t
702 *
703 * Called from interrupt entry when the CPU was idle
704 *
705 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
706 * must be updated. Otherwise an interrupt handler could use a stale jiffy
707 * value. We do this unconditionally on any CPU, as we don't know whether the
708 * CPU, which has the update task assigned, is in a long sleep.
709 */
tick_nohz_update_jiffies(ktime_t now)710 static void tick_nohz_update_jiffies(ktime_t now)
711 {
712 unsigned long flags;
713
714 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
715
716 local_irq_save(flags);
717 tick_do_update_jiffies64(now);
718 local_irq_restore(flags);
719
720 touch_softlockup_watchdog_sched();
721 }
722
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)723 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
724 {
725 ktime_t delta;
726
727 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
728 return;
729
730 delta = ktime_sub(now, ts->idle_entrytime);
731
732 write_seqcount_begin(&ts->idle_sleeptime_seq);
733 if (nr_iowait_cpu(smp_processor_id()) > 0)
734 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
735 else
736 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
737
738 ts->idle_entrytime = now;
739 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
740 write_seqcount_end(&ts->idle_sleeptime_seq);
741
742 sched_clock_idle_wakeup_event();
743 }
744
tick_nohz_start_idle(struct tick_sched * ts)745 static void tick_nohz_start_idle(struct tick_sched *ts)
746 {
747 write_seqcount_begin(&ts->idle_sleeptime_seq);
748 ts->idle_entrytime = ktime_get();
749 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
750 write_seqcount_end(&ts->idle_sleeptime_seq);
751
752 sched_clock_idle_sleep_event();
753 }
754
get_cpu_sleep_time_us(struct tick_sched * ts,ktime_t * sleeptime,bool compute_delta,u64 * last_update_time)755 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
756 bool compute_delta, u64 *last_update_time)
757 {
758 ktime_t now, idle;
759 unsigned int seq;
760
761 if (!tick_nohz_active)
762 return -1;
763
764 now = ktime_get();
765 if (last_update_time)
766 *last_update_time = ktime_to_us(now);
767
768 do {
769 seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
770
771 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
772 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
773
774 idle = ktime_add(*sleeptime, delta);
775 } else {
776 idle = *sleeptime;
777 }
778 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
779
780 return ktime_to_us(idle);
781
782 }
783
784 /**
785 * get_cpu_idle_time_us - get the total idle time of a CPU
786 * @cpu: CPU number to query
787 * @last_update_time: variable to store update time in. Do not update
788 * counters if NULL.
789 *
790 * Return the cumulative idle time (since boot) for a given
791 * CPU, in microseconds. Note that this is partially broken due to
792 * the counter of iowait tasks that can be remotely updated without
793 * any synchronization. Therefore it is possible to observe backward
794 * values within two consecutive reads.
795 *
796 * This time is measured via accounting rather than sampling,
797 * and is as accurate as ktime_get() is.
798 *
799 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
800 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)801 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
802 {
803 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
804
805 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
806 !nr_iowait_cpu(cpu), last_update_time);
807 }
808 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
809
810 /**
811 * get_cpu_iowait_time_us - get the total iowait time of a CPU
812 * @cpu: CPU number to query
813 * @last_update_time: variable to store update time in. Do not update
814 * counters if NULL.
815 *
816 * Return the cumulative iowait time (since boot) for a given
817 * CPU, in microseconds. Note this is partially broken due to
818 * the counter of iowait tasks that can be remotely updated without
819 * any synchronization. Therefore it is possible to observe backward
820 * values within two consecutive reads.
821 *
822 * This time is measured via accounting rather than sampling,
823 * and is as accurate as ktime_get() is.
824 *
825 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
826 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)827 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
828 {
829 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
830
831 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
832 nr_iowait_cpu(cpu), last_update_time);
833 }
834 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
835
tick_nohz_restart(struct tick_sched * ts,ktime_t now)836 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
837 {
838 hrtimer_cancel(&ts->sched_timer);
839 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
840
841 /* Forward the time to expire in the future */
842 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
843
844 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
845 hrtimer_start_expires(&ts->sched_timer,
846 HRTIMER_MODE_ABS_PINNED_HARD);
847 } else {
848 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
849 }
850
851 /*
852 * Reset to make sure the next tick stop doesn't get fooled by past
853 * cached clock deadline.
854 */
855 ts->next_tick = 0;
856 }
857
local_timer_softirq_pending(void)858 static inline bool local_timer_softirq_pending(void)
859 {
860 return local_timers_pending() & BIT(TIMER_SOFTIRQ);
861 }
862
863 /*
864 * Read jiffies and the time when jiffies were updated last
865 */
get_jiffies_update(unsigned long * basej)866 u64 get_jiffies_update(unsigned long *basej)
867 {
868 unsigned long basejiff;
869 unsigned int seq;
870 u64 basemono;
871
872 do {
873 seq = read_seqcount_begin(&jiffies_seq);
874 basemono = last_jiffies_update;
875 basejiff = jiffies;
876 } while (read_seqcount_retry(&jiffies_seq, seq));
877 *basej = basejiff;
878 return basemono;
879 }
880
881 /**
882 * tick_nohz_next_event() - return the clock monotonic based next event
883 * @ts: pointer to tick_sched struct
884 * @cpu: CPU number
885 *
886 * Return:
887 * *%0 - When the next event is a maximum of TICK_NSEC in the future
888 * and the tick is not stopped yet
889 * *%next_event - Next event based on clock monotonic
890 */
tick_nohz_next_event(struct tick_sched * ts,int cpu)891 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
892 {
893 u64 basemono, next_tick, delta, expires;
894 unsigned long basejiff;
895 int tick_cpu;
896
897 basemono = get_jiffies_update(&basejiff);
898 ts->last_jiffies = basejiff;
899 ts->timer_expires_base = basemono;
900
901 /*
902 * Keep the periodic tick, when RCU, architecture or irq_work
903 * requests it.
904 * Aside of that, check whether the local timer softirq is
905 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
906 * because there is an already expired timer, so it will request
907 * immediate expiry, which rearms the hardware timer with a
908 * minimal delta, which brings us back to this place
909 * immediately. Lather, rinse and repeat...
910 */
911 if (rcu_needs_cpu() || arch_needs_cpu() ||
912 irq_work_needs_cpu() || local_timer_softirq_pending()) {
913 next_tick = basemono + TICK_NSEC;
914 } else {
915 /*
916 * Get the next pending timer. If high resolution
917 * timers are enabled this only takes the timer wheel
918 * timers into account. If high resolution timers are
919 * disabled this also looks at the next expiring
920 * hrtimer.
921 */
922 next_tick = get_next_timer_interrupt(basejiff, basemono);
923 ts->next_timer = next_tick;
924 }
925
926 /* Make sure next_tick is never before basemono! */
927 if (WARN_ON_ONCE(basemono > next_tick))
928 next_tick = basemono;
929
930 /*
931 * If the tick is due in the next period, keep it ticking or
932 * force prod the timer.
933 */
934 delta = next_tick - basemono;
935 if (delta <= (u64)TICK_NSEC) {
936 /*
937 * We've not stopped the tick yet, and there's a timer in the
938 * next period, so no point in stopping it either, bail.
939 */
940 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
941 ts->timer_expires = 0;
942 goto out;
943 }
944 }
945
946 /*
947 * If this CPU is the one which had the do_timer() duty last, we limit
948 * the sleep time to the timekeeping 'max_deferment' value.
949 * Otherwise we can sleep as long as we want.
950 */
951 delta = timekeeping_max_deferment();
952 tick_cpu = READ_ONCE(tick_do_timer_cpu);
953 if (tick_cpu != cpu &&
954 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
955 delta = KTIME_MAX;
956
957 /* Calculate the next expiry time */
958 if (delta < (KTIME_MAX - basemono))
959 expires = basemono + delta;
960 else
961 expires = KTIME_MAX;
962
963 ts->timer_expires = min_t(u64, expires, next_tick);
964
965 out:
966 return ts->timer_expires;
967 }
968
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)969 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
970 {
971 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
972 unsigned long basejiff = ts->last_jiffies;
973 u64 basemono = ts->timer_expires_base;
974 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
975 int tick_cpu;
976 u64 expires;
977
978 /* Make sure we won't be trying to stop it twice in a row. */
979 ts->timer_expires_base = 0;
980
981 /*
982 * Now the tick should be stopped definitely - so the timer base needs
983 * to be marked idle as well to not miss a newly queued timer.
984 */
985 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
986 if (expires > ts->timer_expires) {
987 /*
988 * This path could only happen when the first timer was removed
989 * between calculating the possible sleep length and now (when
990 * high resolution mode is not active, timer could also be a
991 * hrtimer).
992 *
993 * We have to stick to the original calculated expiry value to
994 * not stop the tick for too long with a shallow C-state (which
995 * was programmed by cpuidle because of an early next expiration
996 * value).
997 */
998 expires = ts->timer_expires;
999 }
1000
1001 /* If the timer base is not idle, retain the not yet stopped tick. */
1002 if (!timer_idle)
1003 return;
1004
1005 /*
1006 * If this CPU is the one which updates jiffies, then give up
1007 * the assignment and let it be taken by the CPU which runs
1008 * the tick timer next, which might be this CPU as well. If we
1009 * don't drop this here, the jiffies might be stale and
1010 * do_timer() never gets invoked. Keep track of the fact that it
1011 * was the one which had the do_timer() duty last.
1012 */
1013 tick_cpu = READ_ONCE(tick_do_timer_cpu);
1014 if (tick_cpu == cpu) {
1015 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1016 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1017 } else if (tick_cpu != TICK_DO_TIMER_NONE) {
1018 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1019 }
1020
1021 /* Skip reprogram of event if it's not changed */
1022 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1023 /* Sanity check: make sure clockevent is actually programmed */
1024 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1025 return;
1026
1027 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1028 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1029 dev->next_event, hrtimer_active(&ts->sched_timer),
1030 hrtimer_get_expires(&ts->sched_timer));
1031 }
1032
1033 /*
1034 * tick_nohz_stop_tick() can be called several times before
1035 * tick_nohz_restart_sched_tick() is called. This happens when
1036 * interrupts arrive which do not cause a reschedule. In the first
1037 * call we save the current tick time, so we can restart the
1038 * scheduler tick in tick_nohz_restart_sched_tick().
1039 */
1040 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1041 calc_load_nohz_start();
1042 quiet_vmstat();
1043
1044 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1045 tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1046 trace_tick_stop(1, TICK_DEP_MASK_NONE);
1047 }
1048
1049 ts->next_tick = expires;
1050
1051 /*
1052 * If the expiration time == KTIME_MAX, then we simply stop
1053 * the tick timer.
1054 */
1055 if (unlikely(expires == KTIME_MAX)) {
1056 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1057 hrtimer_cancel(&ts->sched_timer);
1058 else
1059 tick_program_event(KTIME_MAX, 1);
1060 return;
1061 }
1062
1063 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1064 hrtimer_start(&ts->sched_timer, expires,
1065 HRTIMER_MODE_ABS_PINNED_HARD);
1066 } else {
1067 hrtimer_set_expires(&ts->sched_timer, expires);
1068 tick_program_event(expires, 1);
1069 }
1070 }
1071
tick_nohz_retain_tick(struct tick_sched * ts)1072 static void tick_nohz_retain_tick(struct tick_sched *ts)
1073 {
1074 ts->timer_expires_base = 0;
1075 }
1076
1077 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_full_stop_tick(struct tick_sched * ts,int cpu)1078 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1079 {
1080 if (tick_nohz_next_event(ts, cpu))
1081 tick_nohz_stop_tick(ts, cpu);
1082 else
1083 tick_nohz_retain_tick(ts);
1084 }
1085 #endif /* CONFIG_NO_HZ_FULL */
1086
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)1087 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1088 {
1089 /* Update jiffies first */
1090 tick_do_update_jiffies64(now);
1091
1092 /*
1093 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1094 * the clock forward checks in the enqueue path:
1095 */
1096 timer_clear_idle();
1097
1098 calc_load_nohz_stop();
1099 touch_softlockup_watchdog_sched();
1100
1101 /* Cancel the scheduled timer and restore the tick: */
1102 tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1103 tick_nohz_restart(ts, now);
1104 }
1105
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)1106 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1107 ktime_t now)
1108 {
1109 #ifdef CONFIG_NO_HZ_FULL
1110 int cpu = smp_processor_id();
1111
1112 if (can_stop_full_tick(cpu, ts))
1113 tick_nohz_full_stop_tick(ts, cpu);
1114 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1115 tick_nohz_restart_sched_tick(ts, now);
1116 #endif
1117 }
1118
tick_nohz_full_update_tick(struct tick_sched * ts)1119 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1120 {
1121 if (!tick_nohz_full_cpu(smp_processor_id()))
1122 return;
1123
1124 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1125 return;
1126
1127 __tick_nohz_full_update_tick(ts, ktime_get());
1128 }
1129
1130 /*
1131 * A pending softirq outside an IRQ (or softirq disabled section) context
1132 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1133 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1134 *
1135 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1136 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1137 * triggering the code below, since wakep_softirqd() is ignored.
1138 *
1139 */
report_idle_softirq(void)1140 static bool report_idle_softirq(void)
1141 {
1142 static int ratelimit;
1143 unsigned int pending = local_softirq_pending();
1144
1145 if (likely(!pending))
1146 return false;
1147
1148 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1149 if (!cpu_active(smp_processor_id())) {
1150 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1151 if (!pending)
1152 return false;
1153 }
1154
1155 /* On RT, softirq handling may be waiting on some lock */
1156 if (local_bh_blocked())
1157 return false;
1158
1159 if (ratelimit < 10) {
1160 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1161 pending);
1162 ratelimit++;
1163 }
1164
1165 return true;
1166 }
1167
can_stop_idle_tick(int cpu,struct tick_sched * ts)1168 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1169 {
1170 WARN_ON_ONCE(cpu_is_offline(cpu));
1171
1172 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1173 return false;
1174
1175 if (need_resched())
1176 return false;
1177
1178 if (unlikely(report_idle_softirq()))
1179 return false;
1180
1181 if (tick_nohz_full_enabled()) {
1182 int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1183
1184 /*
1185 * Keep the tick alive to guarantee timekeeping progression
1186 * if there are full dynticks CPUs around
1187 */
1188 if (tick_cpu == cpu)
1189 return false;
1190
1191 /* Should not happen for nohz-full */
1192 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1193 return false;
1194 }
1195
1196 return true;
1197 }
1198
1199 /**
1200 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1201 *
1202 * When the next event is more than a tick into the future, stop the idle tick
1203 */
tick_nohz_idle_stop_tick(void)1204 void tick_nohz_idle_stop_tick(void)
1205 {
1206 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207 int cpu = smp_processor_id();
1208 ktime_t expires;
1209
1210 /*
1211 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1212 * tick timer expiration time is known already.
1213 */
1214 if (ts->timer_expires_base)
1215 expires = ts->timer_expires;
1216 else if (can_stop_idle_tick(cpu, ts))
1217 expires = tick_nohz_next_event(ts, cpu);
1218 else
1219 return;
1220
1221 ts->idle_calls++;
1222
1223 if (expires > 0LL) {
1224 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1225
1226 tick_nohz_stop_tick(ts, cpu);
1227
1228 ts->idle_sleeps++;
1229 ts->idle_expires = expires;
1230
1231 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1232 ts->idle_jiffies = ts->last_jiffies;
1233 nohz_balance_enter_idle(cpu);
1234 }
1235 } else {
1236 tick_nohz_retain_tick(ts);
1237 }
1238 }
1239
tick_nohz_idle_retain_tick(void)1240 void tick_nohz_idle_retain_tick(void)
1241 {
1242 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1243 }
1244
1245 /**
1246 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1247 *
1248 * Called when we start the idle loop.
1249 */
tick_nohz_idle_enter(void)1250 void tick_nohz_idle_enter(void)
1251 {
1252 struct tick_sched *ts;
1253
1254 lockdep_assert_irqs_enabled();
1255
1256 local_irq_disable();
1257
1258 ts = this_cpu_ptr(&tick_cpu_sched);
1259
1260 WARN_ON_ONCE(ts->timer_expires_base);
1261
1262 tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1263 tick_nohz_start_idle(ts);
1264
1265 local_irq_enable();
1266 }
1267
1268 /**
1269 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1270 *
1271 * A timer may have been added/modified/deleted either by the current IRQ,
1272 * or by another place using this IRQ as a notification. This IRQ may have
1273 * also updated the RCU callback list. These events may require a
1274 * re-evaluation of the next tick. Depending on the context:
1275 *
1276 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1277 * time accounting. The next tick will be re-evaluated on the next idle
1278 * loop iteration.
1279 *
1280 * 2) If the CPU is nohz_full:
1281 *
1282 * 2.1) If there is any tick dependency, restart the tick if stopped.
1283 *
1284 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and
1285 * stop/update it accordingly.
1286 */
tick_nohz_irq_exit(void)1287 void tick_nohz_irq_exit(void)
1288 {
1289 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290
1291 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1292 tick_nohz_start_idle(ts);
1293 else
1294 tick_nohz_full_update_tick(ts);
1295 }
1296
1297 /**
1298 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1299 *
1300 * Return: %true if the tick handler has run, otherwise %false
1301 */
tick_nohz_idle_got_tick(void)1302 bool tick_nohz_idle_got_tick(void)
1303 {
1304 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1305
1306 if (ts->got_idle_tick) {
1307 ts->got_idle_tick = 0;
1308 return true;
1309 }
1310 return false;
1311 }
1312
1313 /**
1314 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1315 * or the tick, whichever expires first. Note that, if the tick has been
1316 * stopped, it returns the next hrtimer.
1317 *
1318 * Called from power state control code with interrupts disabled
1319 *
1320 * Return: the next expiration time
1321 */
tick_nohz_get_next_hrtimer(void)1322 ktime_t tick_nohz_get_next_hrtimer(void)
1323 {
1324 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1325 }
1326
1327 /**
1328 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1329 * @delta_next: duration until the next event if the tick cannot be stopped
1330 *
1331 * Called from power state control code with interrupts disabled.
1332 *
1333 * The return value of this function and/or the value returned by it through the
1334 * @delta_next pointer can be negative which must be taken into account by its
1335 * callers.
1336 *
1337 * Return: the expected length of the current sleep
1338 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1339 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1340 {
1341 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1342 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343 int cpu = smp_processor_id();
1344 /*
1345 * The idle entry time is expected to be a sufficient approximation of
1346 * the current time at this point.
1347 */
1348 ktime_t now = ts->idle_entrytime;
1349 ktime_t next_event;
1350
1351 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1352
1353 *delta_next = ktime_sub(dev->next_event, now);
1354
1355 if (!can_stop_idle_tick(cpu, ts))
1356 return *delta_next;
1357
1358 next_event = tick_nohz_next_event(ts, cpu);
1359 if (!next_event)
1360 return *delta_next;
1361
1362 /*
1363 * If the next highres timer to expire is earlier than 'next_event', the
1364 * idle governor needs to know that.
1365 */
1366 next_event = min_t(u64, next_event,
1367 hrtimer_next_event_without(&ts->sched_timer));
1368
1369 return ktime_sub(next_event, now);
1370 }
1371
1372 /**
1373 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1374 * for a particular CPU.
1375 * @cpu: target CPU number
1376 *
1377 * Called from the schedutil frequency scaling governor in scheduler context.
1378 *
1379 * Return: the current idle calls counter value for @cpu
1380 */
tick_nohz_get_idle_calls_cpu(int cpu)1381 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1382 {
1383 struct tick_sched *ts = tick_get_tick_sched(cpu);
1384
1385 return ts->idle_calls;
1386 }
1387
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1388 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1389 ktime_t now)
1390 {
1391 unsigned long ticks;
1392
1393 ts->idle_exittime = now;
1394
1395 if (vtime_accounting_enabled_this_cpu())
1396 return;
1397 /*
1398 * We stopped the tick in idle. update_process_times() would miss the
1399 * time we slept, as it does only a 1 tick accounting.
1400 * Enforce that this is accounted to idle !
1401 */
1402 ticks = jiffies - ts->idle_jiffies;
1403 /*
1404 * We might be one off. Do not randomly account a huge number of ticks!
1405 */
1406 if (ticks && ticks < LONG_MAX)
1407 account_idle_ticks(ticks);
1408 }
1409
tick_nohz_idle_restart_tick(void)1410 void tick_nohz_idle_restart_tick(void)
1411 {
1412 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1413
1414 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1415 ktime_t now = ktime_get();
1416 tick_nohz_restart_sched_tick(ts, now);
1417 tick_nohz_account_idle_time(ts, now);
1418 }
1419 }
1420
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1421 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1422 {
1423 if (tick_nohz_full_cpu(smp_processor_id()))
1424 __tick_nohz_full_update_tick(ts, now);
1425 else
1426 tick_nohz_restart_sched_tick(ts, now);
1427
1428 tick_nohz_account_idle_time(ts, now);
1429 }
1430
1431 /**
1432 * tick_nohz_idle_exit - Update the tick upon idle task exit
1433 *
1434 * When the idle task exits, update the tick depending on the
1435 * following situations:
1436 *
1437 * 1) If the CPU is not in nohz_full mode (most cases), then
1438 * restart the tick.
1439 *
1440 * 2) If the CPU is in nohz_full mode (corner case):
1441 * 2.1) If the tick can be kept stopped (no tick dependencies)
1442 * then re-evaluate the next tick and try to keep it stopped
1443 * as long as possible.
1444 * 2.2) If the tick has dependencies, restart the tick.
1445 *
1446 */
tick_nohz_idle_exit(void)1447 void tick_nohz_idle_exit(void)
1448 {
1449 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1450 bool idle_active, tick_stopped;
1451 ktime_t now;
1452
1453 local_irq_disable();
1454
1455 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1456 WARN_ON_ONCE(ts->timer_expires_base);
1457
1458 tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1459 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1460 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1461
1462 if (idle_active || tick_stopped)
1463 now = ktime_get();
1464
1465 if (idle_active)
1466 tick_nohz_stop_idle(ts, now);
1467
1468 if (tick_stopped)
1469 tick_nohz_idle_update_tick(ts, now);
1470
1471 local_irq_enable();
1472 }
1473
1474 /*
1475 * In low-resolution mode, the tick handler must be implemented directly
1476 * at the clockevent level. hrtimer can't be used instead, because its
1477 * infrastructure actually relies on the tick itself as a backend in
1478 * low-resolution mode (see hrtimer_run_queues()).
1479 */
tick_nohz_lowres_handler(struct clock_event_device * dev)1480 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1481 {
1482 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1483
1484 dev->next_event = KTIME_MAX;
1485
1486 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1487 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1488 }
1489
tick_nohz_activate(struct tick_sched * ts)1490 static inline void tick_nohz_activate(struct tick_sched *ts)
1491 {
1492 if (!tick_nohz_enabled)
1493 return;
1494 tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1495 /* One update is enough */
1496 if (!test_and_set_bit(0, &tick_nohz_active))
1497 timers_update_nohz();
1498 }
1499
1500 /**
1501 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1502 */
tick_nohz_switch_to_nohz(void)1503 static void tick_nohz_switch_to_nohz(void)
1504 {
1505 if (!tick_nohz_enabled)
1506 return;
1507
1508 if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1509 return;
1510
1511 /*
1512 * Recycle the hrtimer in 'ts', so we can share the
1513 * highres code.
1514 */
1515 tick_setup_sched_timer(false);
1516 }
1517
tick_nohz_irq_enter(void)1518 static inline void tick_nohz_irq_enter(void)
1519 {
1520 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1521 ktime_t now;
1522
1523 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1524 return;
1525 now = ktime_get();
1526 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1527 tick_nohz_stop_idle(ts, now);
1528 /*
1529 * If all CPUs are idle we may need to update a stale jiffies value.
1530 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1531 * alive but it might be busy looping with interrupts disabled in some
1532 * rare case (typically stop machine). So we must make sure we have a
1533 * last resort.
1534 */
1535 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1536 tick_nohz_update_jiffies(now);
1537 }
1538
1539 #else
1540
tick_nohz_switch_to_nohz(void)1541 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1542 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts)1543 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1544
1545 #endif /* CONFIG_NO_HZ_COMMON */
1546
1547 /*
1548 * Called from irq_enter() to notify about the possible interruption of idle()
1549 */
tick_irq_enter(void)1550 void tick_irq_enter(void)
1551 {
1552 tick_check_oneshot_broadcast_this_cpu();
1553 tick_nohz_irq_enter();
1554 }
1555
1556 static int sched_skew_tick;
1557
skew_tick(char * str)1558 static int __init skew_tick(char *str)
1559 {
1560 get_option(&str, &sched_skew_tick);
1561
1562 return 0;
1563 }
1564 early_param("skew_tick", skew_tick);
1565
1566 /**
1567 * tick_setup_sched_timer - setup the tick emulation timer
1568 * @hrtimer: whether to use the hrtimer or not
1569 */
tick_setup_sched_timer(bool hrtimer)1570 void tick_setup_sched_timer(bool hrtimer)
1571 {
1572 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1573
1574 /* Emulate tick processing via per-CPU hrtimers: */
1575 hrtimer_setup(&ts->sched_timer, tick_nohz_handler, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1576
1577 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1578 tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1579
1580 /* Get the next period (per-CPU) */
1581 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1582
1583 /* Offset the tick to avert 'jiffies_lock' contention. */
1584 if (sched_skew_tick) {
1585 u64 offset = TICK_NSEC >> 1;
1586 do_div(offset, num_possible_cpus());
1587 offset *= smp_processor_id();
1588 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1589 }
1590
1591 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1592 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1593 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1594 else
1595 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1596 tick_nohz_activate(ts);
1597 }
1598
1599 /*
1600 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1601 * duty before disabling IRQs in idle for the last time.
1602 */
tick_sched_timer_dying(int cpu)1603 void tick_sched_timer_dying(int cpu)
1604 {
1605 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1606 ktime_t idle_sleeptime, iowait_sleeptime;
1607 unsigned long idle_calls, idle_sleeps;
1608
1609 /* This must happen before hrtimers are migrated! */
1610 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1611 hrtimer_cancel(&ts->sched_timer);
1612
1613 idle_sleeptime = ts->idle_sleeptime;
1614 iowait_sleeptime = ts->iowait_sleeptime;
1615 idle_calls = ts->idle_calls;
1616 idle_sleeps = ts->idle_sleeps;
1617 memset(ts, 0, sizeof(*ts));
1618 ts->idle_sleeptime = idle_sleeptime;
1619 ts->iowait_sleeptime = iowait_sleeptime;
1620 ts->idle_calls = idle_calls;
1621 ts->idle_sleeps = idle_sleeps;
1622 }
1623
1624 /*
1625 * Async notification about clocksource changes
1626 */
tick_clock_notify(void)1627 void tick_clock_notify(void)
1628 {
1629 int cpu;
1630
1631 for_each_possible_cpu(cpu)
1632 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1633 }
1634
1635 /*
1636 * Async notification about clock event changes
1637 */
tick_oneshot_notify(void)1638 void tick_oneshot_notify(void)
1639 {
1640 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1641
1642 set_bit(0, &ts->check_clocks);
1643 }
1644
1645 /*
1646 * Check if a change happened, which makes oneshot possible.
1647 *
1648 * Called cyclically from the hrtimer softirq (driven by the timer
1649 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1650 * mode, because high resolution timers are disabled (either compile
1651 * or runtime). Called with interrupts disabled.
1652 */
tick_check_oneshot_change(int allow_nohz)1653 int tick_check_oneshot_change(int allow_nohz)
1654 {
1655 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1656
1657 if (!test_and_clear_bit(0, &ts->check_clocks))
1658 return 0;
1659
1660 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1661 return 0;
1662
1663 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1664 return 0;
1665
1666 if (!allow_nohz)
1667 return 1;
1668
1669 tick_nohz_switch_to_nohz();
1670 return 0;
1671 }
1672